2021-06-08 22:19:18 +02:00
|
|
|
{
|
|
|
|
"cells": [
|
|
|
|
{
|
|
|
|
"cell_type": "code",
|
|
|
|
"execution_count": 1,
|
2021-06-08 23:29:05 +02:00
|
|
|
"id": "cf20b791",
|
2021-06-08 22:19:18 +02:00
|
|
|
"metadata": {},
|
|
|
|
"outputs": [],
|
|
|
|
"source": [
|
|
|
|
"import pandas as pd\n",
|
|
|
|
"import numpy as np"
|
|
|
|
]
|
|
|
|
},
|
|
|
|
{
|
|
|
|
"cell_type": "code",
|
|
|
|
"execution_count": 2,
|
2021-06-08 23:29:05 +02:00
|
|
|
"id": "8114cccf",
|
2021-06-08 22:19:18 +02:00
|
|
|
"metadata": {},
|
|
|
|
"outputs": [],
|
|
|
|
"source": [
|
|
|
|
"delim = ';'\n",
|
|
|
|
"\n",
|
|
|
|
"base_path = '/opt/iui-datarelease1-sose2021/'\n",
|
|
|
|
"\n",
|
|
|
|
"Xpickle_file = './X.pickle'\n",
|
|
|
|
"\n",
|
|
|
|
"ypickle_file = './y.pickle'"
|
|
|
|
]
|
|
|
|
},
|
|
|
|
{
|
|
|
|
"cell_type": "code",
|
|
|
|
"execution_count": 3,
|
2021-06-08 23:29:05 +02:00
|
|
|
"id": "e1ebb5fe",
|
2021-06-08 22:19:18 +02:00
|
|
|
"metadata": {},
|
|
|
|
"outputs": [],
|
|
|
|
"source": [
|
|
|
|
"THRESH = [70]\n",
|
|
|
|
"LEEWAY = [0]\n",
|
|
|
|
"EPOCH = [20, 30, 50]\n",
|
|
|
|
"\n",
|
|
|
|
"DENSE_COUNT = range(1,4)\n",
|
|
|
|
"DENSE_NEURONS = range(600, 2401, 600)\n",
|
|
|
|
"\n",
|
|
|
|
"DENSE2_COUNT = range(1,4)\n",
|
|
|
|
"DENSE2_NEURONS = range(600, 2401, 600)\n",
|
|
|
|
"\n",
|
|
|
|
"AVG_FROM = 30\n",
|
|
|
|
"\n",
|
|
|
|
"threshold_p = 0.99"
|
|
|
|
]
|
|
|
|
},
|
|
|
|
{
|
|
|
|
"cell_type": "code",
|
|
|
|
"execution_count": 4,
|
2021-06-08 23:29:05 +02:00
|
|
|
"id": "e2315c69",
|
2021-06-08 22:19:18 +02:00
|
|
|
"metadata": {},
|
|
|
|
"outputs": [],
|
|
|
|
"source": [
|
|
|
|
"import pickle\n",
|
|
|
|
"\n",
|
|
|
|
"def load_pickles():\n",
|
|
|
|
" _p = open(Xpickle_file, 'rb')\n",
|
|
|
|
" X = pickle.load(_p)\n",
|
|
|
|
" _p.close()\n",
|
|
|
|
" \n",
|
|
|
|
" _p = open(ypickle_file, 'rb')\n",
|
|
|
|
" y = pickle.load(_p)\n",
|
|
|
|
" _p.close()\n",
|
|
|
|
" \n",
|
|
|
|
" return (np.asarray(X, dtype=pd.DataFrame), np.asarray(y, dtype=str))"
|
|
|
|
]
|
|
|
|
},
|
|
|
|
{
|
|
|
|
"cell_type": "code",
|
|
|
|
"execution_count": 5,
|
2021-06-08 23:29:05 +02:00
|
|
|
"id": "62536ff0",
|
2021-06-08 22:19:18 +02:00
|
|
|
"metadata": {},
|
|
|
|
"outputs": [],
|
|
|
|
"source": [
|
|
|
|
"import os\n",
|
|
|
|
"\n",
|
|
|
|
"def load_data():\n",
|
|
|
|
" if os.path.isfile(Xpickle_file) and os.path.isfile(ypickle_file):\n",
|
|
|
|
" return load_pickles()\n",
|
|
|
|
" data = []\n",
|
|
|
|
" label = []\n",
|
|
|
|
" for user in range(0, user_count):\n",
|
|
|
|
" user_path = base_path + str(user) + '/split_letters_csv/'\n",
|
|
|
|
" for file in os.listdir(user_path):\n",
|
|
|
|
" file_name = user_path + file\n",
|
|
|
|
" letter = ''.join(filter(lambda x: x.isalpha(), file))[0]\n",
|
|
|
|
" data.append(pd.read_csv(file_name, delim))\n",
|
|
|
|
" label.append(letter)\n",
|
|
|
|
" return (np.asarray(data, dtype=pd.DataFrame), np.asarray(label, dtype=str), np.asarray(file_name))"
|
|
|
|
]
|
|
|
|
},
|
|
|
|
{
|
|
|
|
"cell_type": "code",
|
|
|
|
"execution_count": 6,
|
2021-06-08 23:29:05 +02:00
|
|
|
"id": "dd1162bb",
|
2021-06-08 22:19:18 +02:00
|
|
|
"metadata": {},
|
|
|
|
"outputs": [],
|
|
|
|
"source": [
|
|
|
|
"def shorten(npList, thresh, leeway):\n",
|
|
|
|
" temp = npList['Force']\n",
|
|
|
|
" \n",
|
|
|
|
" temps_over_T = np.where(temp > thresh)[0]\n",
|
|
|
|
" return npList[max(temps_over_T[0]-leeway,0):temps_over_T[-1]+leeway]"
|
|
|
|
]
|
|
|
|
},
|
|
|
|
{
|
|
|
|
"cell_type": "code",
|
|
|
|
"execution_count": 7,
|
2021-06-08 23:29:05 +02:00
|
|
|
"id": "6879e37a",
|
2021-06-08 22:19:18 +02:00
|
|
|
"metadata": {},
|
|
|
|
"outputs": [],
|
|
|
|
"source": [
|
|
|
|
"from tensorflow.keras.preprocessing.sequence import pad_sequences\n",
|
|
|
|
"\n",
|
|
|
|
"def preproc(data, label, thresh, leeway):\n",
|
|
|
|
" #shorten\n",
|
|
|
|
" XX = np.array(list(map(shorten, data, [thresh for _ in range(len(data))], [leeway for _ in range(len(data))])),dtype=object)\n",
|
|
|
|
"\n",
|
|
|
|
" #filter\n",
|
|
|
|
" len_mask = np.where(np.asarray(list(map(len, XX))) <= int(pd.Series(np.asarray(list(map(len, XX)))).quantile(threshold_p)))\n",
|
|
|
|
" X_filter = XX[len_mask] \n",
|
|
|
|
" y_filter = label[len_mask]\n",
|
|
|
|
" \n",
|
|
|
|
" #drop millis\n",
|
|
|
|
" [x.drop(labels='Millis', axis=1) for x in X_filter]\n",
|
|
|
|
"\n",
|
|
|
|
" #pad\n",
|
|
|
|
" X_filter = pad_sequences(X_filter, dtype=float, padding='post')\n",
|
|
|
|
" \n",
|
|
|
|
" return (X_filter, y_filter)"
|
|
|
|
]
|
|
|
|
},
|
|
|
|
{
|
|
|
|
"cell_type": "code",
|
|
|
|
"execution_count": 8,
|
2021-06-08 23:29:05 +02:00
|
|
|
"id": "51f25f8e",
|
2021-06-08 22:19:18 +02:00
|
|
|
"metadata": {},
|
|
|
|
"outputs": [],
|
|
|
|
"source": [
|
|
|
|
"import tensorflow as tf\n",
|
|
|
|
"from tensorflow.keras.models import Sequential\n",
|
|
|
|
"from tensorflow.keras.layers import Dense, Flatten, BatchNormalization\n",
|
|
|
|
"\n",
|
|
|
|
"def build_model(dcount, dnons, dcount2, dnons2, X_shape):\n",
|
|
|
|
" model = Sequential()\n",
|
|
|
|
"\n",
|
|
|
|
" model.add(BatchNormalization(input_shape=X_shape))\n",
|
|
|
|
" \n",
|
|
|
|
" model.add(Flatten())\n",
|
|
|
|
"\n",
|
|
|
|
" for i in range(dcount):\n",
|
|
|
|
" model.add(Dense(dnons, activation='relu'))\n",
|
|
|
|
" \n",
|
|
|
|
" for i in range(dcount2):\n",
|
|
|
|
" model.add(Dense(dnons2, activation='relu'))\n",
|
|
|
|
" \n",
|
|
|
|
" model.add(Dense(26, activation='softmax'))\n",
|
|
|
|
"\n",
|
|
|
|
" model.compile(\n",
|
|
|
|
" optimizer=tf.keras.optimizers.Adam(0.001),\n",
|
|
|
|
" loss=\"categorical_crossentropy\", \n",
|
|
|
|
" metrics=[\"acc\"],\n",
|
|
|
|
" )\n",
|
|
|
|
"\n",
|
|
|
|
" return model\n",
|
|
|
|
"\n"
|
|
|
|
]
|
|
|
|
},
|
|
|
|
{
|
|
|
|
"cell_type": "code",
|
|
|
|
"execution_count": 9,
|
2021-06-08 23:29:05 +02:00
|
|
|
"id": "4ccd56dd",
|
2021-06-08 22:19:18 +02:00
|
|
|
"metadata": {},
|
|
|
|
"outputs": [],
|
|
|
|
"source": [
|
|
|
|
"def get_avg_acc(X_train, y_train, X_test, y_test, epoch, dcount, dnons, dcount2, dnons2):\n",
|
|
|
|
" accs = []\n",
|
|
|
|
" for i in range(AVG_FROM):\n",
|
|
|
|
" model = build_model(dcount, dnons, dcount2, dnons2, X_train[0].shape)\n",
|
|
|
|
" model.fit(X_train, y_train, \n",
|
|
|
|
" epochs=epoch,\n",
|
|
|
|
" batch_size=128,\n",
|
|
|
|
" shuffle=True,\n",
|
|
|
|
" validation_data=(X_test, y_test),\n",
|
|
|
|
" verbose=0,\n",
|
|
|
|
" )\n",
|
|
|
|
" results = model.evaluate(X_test, y_test, batch_size=128, verbose=0)\n",
|
|
|
|
" accs.append((model,results[1]))\n",
|
|
|
|
" return np.mean(np.delete(accs,0,1).astype('float64'))\n"
|
|
|
|
]
|
|
|
|
},
|
|
|
|
{
|
|
|
|
"cell_type": "code",
|
|
|
|
"execution_count": 10,
|
2021-06-08 23:29:05 +02:00
|
|
|
"id": "4ed39aad",
|
2021-06-08 22:19:18 +02:00
|
|
|
"metadata": {},
|
|
|
|
"outputs": [],
|
|
|
|
"source": [
|
|
|
|
"from sklearn.model_selection import train_test_split\n",
|
|
|
|
"from sklearn.preprocessing import LabelEncoder, LabelBinarizer\n",
|
|
|
|
"import tensorflow as tf\n",
|
|
|
|
"X, y = load_data()\n",
|
|
|
|
"result = pd.DataFrame({'Threshold': pd.Series([], dtype='int'),\n",
|
|
|
|
" 'Leeway': pd.Series([], dtype='int'),\n",
|
|
|
|
" 'Epoch': pd.Series([], dtype='int'),\n",
|
|
|
|
" 'DENSE_COUNT1': pd.Series([], dtype='int'),\n",
|
|
|
|
" 'DENSE_NEURON1': pd.Series([], dtype='int'),\n",
|
|
|
|
" 'DENSE_COUNT2': pd.Series([], dtype='int'),\n",
|
|
|
|
" 'DENSE_NEURON2': pd.Series([], dtype='int'),\n",
|
|
|
|
" 'Accuracy': pd.Series([], dtype='float')})"
|
|
|
|
]
|
|
|
|
},
|
|
|
|
{
|
|
|
|
"cell_type": "code",
|
|
|
|
"execution_count": 11,
|
2021-06-08 23:29:05 +02:00
|
|
|
"id": "92e85d4f",
|
2021-06-08 22:19:18 +02:00
|
|
|
"metadata": {},
|
|
|
|
"outputs": [],
|
|
|
|
"source": [
|
|
|
|
"# FIRST CELL: set these variables to limit GPU usage.\n",
|
|
|
|
"os.environ['TF_FORCE_GPU_ALLOW_GROWTH'] = 'true' # this is required\n",
|
|
|
|
"os.environ['CUDA_VISIBLE_DEVICES'] = '1' # set to '0' for GPU0, '1' for GPU1 or '2' for GPU2. Check \"gpustat\" in a terminal."
|
|
|
|
]
|
|
|
|
},
|
|
|
|
{
|
|
|
|
"cell_type": "code",
|
|
|
|
"execution_count": null,
|
2021-06-08 23:29:05 +02:00
|
|
|
"id": "f81aa159",
|
2021-06-08 22:19:18 +02:00
|
|
|
"metadata": {},
|
|
|
|
"outputs": [
|
|
|
|
{
|
|
|
|
"name": "stdout",
|
|
|
|
"output_type": "stream",
|
|
|
|
"text": [
|
|
|
|
"Testing with: Threshold: 70\n",
|
|
|
|
" Leeway: 0\n",
|
|
|
|
" Epoch: 20\n",
|
|
|
|
" Dense Count 1: 1\n",
|
|
|
|
" Dense Neurons 1: 600\n",
|
|
|
|
" Dense Count 2: 1\n",
|
|
|
|
" Dense Neurons 2: 600\n",
|
|
|
|
"Accuracy: 76.83\n",
|
|
|
|
"Testing with: Threshold: 70\n",
|
|
|
|
" Leeway: 0\n",
|
|
|
|
" Epoch: 20\n",
|
|
|
|
" Dense Count 1: 1\n",
|
|
|
|
" Dense Neurons 1: 600\n",
|
|
|
|
" Dense Count 2: 1\n",
|
|
|
|
" Dense Neurons 2: 1200\n",
|
|
|
|
"Accuracy: 77.67\n",
|
|
|
|
"Testing with: Threshold: 70\n",
|
|
|
|
" Leeway: 0\n",
|
|
|
|
" Epoch: 20\n",
|
|
|
|
" Dense Count 1: 1\n",
|
|
|
|
" Dense Neurons 1: 600\n",
|
|
|
|
" Dense Count 2: 1\n",
|
|
|
|
" Dense Neurons 2: 1800\n",
|
|
|
|
"Accuracy: 77.85\n",
|
|
|
|
"Testing with: Threshold: 70\n",
|
|
|
|
" Leeway: 0\n",
|
|
|
|
" Epoch: 20\n",
|
|
|
|
" Dense Count 1: 1\n",
|
|
|
|
" Dense Neurons 1: 600\n",
|
|
|
|
" Dense Count 2: 1\n",
|
|
|
|
" Dense Neurons 2: 2400\n",
|
|
|
|
"Accuracy: 77.80\n",
|
|
|
|
"Testing with: Threshold: 70\n",
|
|
|
|
" Leeway: 0\n",
|
|
|
|
" Epoch: 20\n",
|
|
|
|
" Dense Count 1: 1\n",
|
|
|
|
" Dense Neurons 1: 600\n",
|
|
|
|
" Dense Count 2: 2\n",
|
|
|
|
" Dense Neurons 2: 600\n",
|
|
|
|
"Accuracy: 78.19\n",
|
|
|
|
"Testing with: Threshold: 70\n",
|
|
|
|
" Leeway: 0\n",
|
|
|
|
" Epoch: 20\n",
|
|
|
|
" Dense Count 1: 1\n",
|
|
|
|
" Dense Neurons 1: 600\n",
|
|
|
|
" Dense Count 2: 2\n",
|
|
|
|
" Dense Neurons 2: 1200\n",
|
|
|
|
"Accuracy: 77.89\n",
|
|
|
|
"Testing with: Threshold: 70\n",
|
|
|
|
" Leeway: 0\n",
|
|
|
|
" Epoch: 20\n",
|
|
|
|
" Dense Count 1: 1\n",
|
|
|
|
" Dense Neurons 1: 600\n",
|
|
|
|
" Dense Count 2: 2\n",
|
|
|
|
" Dense Neurons 2: 1800\n",
|
|
|
|
"Accuracy: 77.72\n",
|
|
|
|
"Testing with: Threshold: 70\n",
|
|
|
|
" Leeway: 0\n",
|
|
|
|
" Epoch: 20\n",
|
|
|
|
" Dense Count 1: 1\n",
|
|
|
|
" Dense Neurons 1: 600\n",
|
|
|
|
" Dense Count 2: 2\n",
|
|
|
|
" Dense Neurons 2: 2400\n",
|
|
|
|
"Accuracy: 78.04\n",
|
|
|
|
"Testing with: Threshold: 70\n",
|
|
|
|
" Leeway: 0\n",
|
|
|
|
" Epoch: 20\n",
|
|
|
|
" Dense Count 1: 1\n",
|
|
|
|
" Dense Neurons 1: 600\n",
|
|
|
|
" Dense Count 2: 3\n",
|
|
|
|
" Dense Neurons 2: 600\n",
|
|
|
|
"Accuracy: 78.24\n",
|
|
|
|
"Testing with: Threshold: 70\n",
|
|
|
|
" Leeway: 0\n",
|
|
|
|
" Epoch: 20\n",
|
|
|
|
" Dense Count 1: 1\n",
|
|
|
|
" Dense Neurons 1: 600\n",
|
|
|
|
" Dense Count 2: 3\n",
|
|
|
|
" Dense Neurons 2: 1200\n",
|
|
|
|
"Accuracy: 78.49\n",
|
|
|
|
"Testing with: Threshold: 70\n",
|
|
|
|
" Leeway: 0\n",
|
|
|
|
" Epoch: 20\n",
|
|
|
|
" Dense Count 1: 1\n",
|
|
|
|
" Dense Neurons 1: 600\n",
|
|
|
|
" Dense Count 2: 3\n",
|
|
|
|
" Dense Neurons 2: 1800\n",
|
|
|
|
"Accuracy: 78.35\n",
|
|
|
|
"Testing with: Threshold: 70\n",
|
|
|
|
" Leeway: 0\n",
|
|
|
|
" Epoch: 20\n",
|
|
|
|
" Dense Count 1: 1\n",
|
|
|
|
" Dense Neurons 1: 600\n",
|
|
|
|
" Dense Count 2: 3\n",
|
|
|
|
" Dense Neurons 2: 2400\n",
|
|
|
|
"Accuracy: 77.62\n",
|
|
|
|
"Testing with: Threshold: 70\n",
|
|
|
|
" Leeway: 0\n",
|
|
|
|
" Epoch: 20\n",
|
|
|
|
" Dense Count 1: 1\n",
|
|
|
|
" Dense Neurons 1: 1200\n",
|
|
|
|
" Dense Count 2: 1\n",
|
|
|
|
" Dense Neurons 2: 600\n",
|
|
|
|
"Accuracy: 77.26\n",
|
|
|
|
"Testing with: Threshold: 70\n",
|
|
|
|
" Leeway: 0\n",
|
|
|
|
" Epoch: 20\n",
|
|
|
|
" Dense Count 1: 1\n",
|
|
|
|
" Dense Neurons 1: 1200\n",
|
|
|
|
" Dense Count 2: 1\n",
|
|
|
|
" Dense Neurons 2: 1200\n",
|
|
|
|
"Accuracy: 78.00\n",
|
|
|
|
"Testing with: Threshold: 70\n",
|
|
|
|
" Leeway: 0\n",
|
|
|
|
" Epoch: 20\n",
|
|
|
|
" Dense Count 1: 1\n",
|
|
|
|
" Dense Neurons 1: 1200\n",
|
|
|
|
" Dense Count 2: 1\n",
|
|
|
|
" Dense Neurons 2: 1800\n",
|
|
|
|
"Accuracy: 77.84\n",
|
|
|
|
"Testing with: Threshold: 70\n",
|
|
|
|
" Leeway: 0\n",
|
|
|
|
" Epoch: 20\n",
|
|
|
|
" Dense Count 1: 1\n",
|
|
|
|
" Dense Neurons 1: 1200\n",
|
|
|
|
" Dense Count 2: 1\n",
|
|
|
|
" Dense Neurons 2: 2400\n",
|
|
|
|
"Accuracy: 77.82\n",
|
|
|
|
"Testing with: Threshold: 70\n",
|
|
|
|
" Leeway: 0\n",
|
|
|
|
" Epoch: 20\n",
|
|
|
|
" Dense Count 1: 1\n",
|
|
|
|
" Dense Neurons 1: 1200\n",
|
|
|
|
" Dense Count 2: 2\n",
|
|
|
|
" Dense Neurons 2: 600\n",
|
|
|
|
"Accuracy: 77.73\n",
|
|
|
|
"Testing with: Threshold: 70\n",
|
|
|
|
" Leeway: 0\n",
|
|
|
|
" Epoch: 20\n",
|
|
|
|
" Dense Count 1: 1\n",
|
|
|
|
" Dense Neurons 1: 1200\n",
|
|
|
|
" Dense Count 2: 2\n",
|
|
|
|
" Dense Neurons 2: 1200\n",
|
|
|
|
"Accuracy: 78.04\n",
|
|
|
|
"Testing with: Threshold: 70\n",
|
|
|
|
" Leeway: 0\n",
|
|
|
|
" Epoch: 20\n",
|
|
|
|
" Dense Count 1: 1\n",
|
|
|
|
" Dense Neurons 1: 1200\n",
|
|
|
|
" Dense Count 2: 2\n",
|
|
|
|
" Dense Neurons 2: 1800\n",
|
|
|
|
"Accuracy: 78.02\n",
|
|
|
|
"Testing with: Threshold: 70\n",
|
|
|
|
" Leeway: 0\n",
|
|
|
|
" Epoch: 20\n",
|
|
|
|
" Dense Count 1: 1\n",
|
|
|
|
" Dense Neurons 1: 1200\n",
|
|
|
|
" Dense Count 2: 2\n",
|
|
|
|
" Dense Neurons 2: 2400\n",
|
|
|
|
"Accuracy: 78.30\n",
|
|
|
|
"Testing with: Threshold: 70\n",
|
|
|
|
" Leeway: 0\n",
|
|
|
|
" Epoch: 20\n",
|
|
|
|
" Dense Count 1: 1\n",
|
|
|
|
" Dense Neurons 1: 1200\n",
|
|
|
|
" Dense Count 2: 3\n",
|
|
|
|
" Dense Neurons 2: 600\n",
|
|
|
|
"Accuracy: 78.06\n",
|
|
|
|
"Testing with: Threshold: 70\n",
|
|
|
|
" Leeway: 0\n",
|
|
|
|
" Epoch: 20\n",
|
|
|
|
" Dense Count 1: 1\n",
|
|
|
|
" Dense Neurons 1: 1200\n",
|
|
|
|
" Dense Count 2: 3\n",
|
|
|
|
" Dense Neurons 2: 1200\n",
|
|
|
|
"Accuracy: 78.31\n",
|
|
|
|
"Testing with: Threshold: 70\n",
|
|
|
|
" Leeway: 0\n",
|
|
|
|
" Epoch: 20\n",
|
|
|
|
" Dense Count 1: 1\n",
|
|
|
|
" Dense Neurons 1: 1200\n",
|
|
|
|
" Dense Count 2: 3\n",
|
|
|
|
" Dense Neurons 2: 1800\n",
|
|
|
|
"Accuracy: 78.44\n",
|
|
|
|
"Testing with: Threshold: 70\n",
|
|
|
|
" Leeway: 0\n",
|
|
|
|
" Epoch: 20\n",
|
|
|
|
" Dense Count 1: 1\n",
|
|
|
|
" Dense Neurons 1: 1200\n",
|
|
|
|
" Dense Count 2: 3\n",
|
|
|
|
" Dense Neurons 2: 2400\n",
|
|
|
|
"Accuracy: 78.24\n",
|
|
|
|
"Testing with: Threshold: 70\n",
|
|
|
|
" Leeway: 0\n",
|
|
|
|
" Epoch: 20\n",
|
|
|
|
" Dense Count 1: 1\n",
|
|
|
|
" Dense Neurons 1: 1800\n",
|
|
|
|
" Dense Count 2: 1\n",
|
|
|
|
" Dense Neurons 2: 600\n",
|
|
|
|
"Accuracy: 77.21\n",
|
|
|
|
"Testing with: Threshold: 70\n",
|
|
|
|
" Leeway: 0\n",
|
|
|
|
" Epoch: 20\n",
|
|
|
|
" Dense Count 1: 1\n",
|
|
|
|
" Dense Neurons 1: 1800\n",
|
|
|
|
" Dense Count 2: 1\n",
|
|
|
|
" Dense Neurons 2: 1200\n",
|
|
|
|
"Accuracy: 77.88\n",
|
|
|
|
"Testing with: Threshold: 70\n",
|
|
|
|
" Leeway: 0\n",
|
|
|
|
" Epoch: 20\n",
|
|
|
|
" Dense Count 1: 1\n",
|
|
|
|
" Dense Neurons 1: 1800\n",
|
|
|
|
" Dense Count 2: 1\n",
|
|
|
|
" Dense Neurons 2: 1800\n",
|
|
|
|
"Accuracy: 77.46\n",
|
|
|
|
"Testing with: Threshold: 70\n",
|
|
|
|
" Leeway: 0\n",
|
|
|
|
" Epoch: 20\n",
|
|
|
|
" Dense Count 1: 1\n",
|
|
|
|
" Dense Neurons 1: 1800\n",
|
|
|
|
" Dense Count 2: 1\n",
|
|
|
|
" Dense Neurons 2: 2400\n",
|
|
|
|
"Accuracy: 77.99\n",
|
|
|
|
"Testing with: Threshold: 70\n",
|
|
|
|
" Leeway: 0\n",
|
|
|
|
" Epoch: 20\n",
|
|
|
|
" Dense Count 1: 1\n",
|
|
|
|
" Dense Neurons 1: 1800\n",
|
|
|
|
" Dense Count 2: 2\n",
|
|
|
|
" Dense Neurons 2: 600\n",
|
|
|
|
"Accuracy: 78.13\n",
|
|
|
|
"Testing with: Threshold: 70\n",
|
|
|
|
" Leeway: 0\n",
|
|
|
|
" Epoch: 20\n",
|
|
|
|
" Dense Count 1: 1\n",
|
|
|
|
" Dense Neurons 1: 1800\n",
|
|
|
|
" Dense Count 2: 2\n",
|
|
|
|
" Dense Neurons 2: 1200\n",
|
|
|
|
"Accuracy: 78.58\n",
|
|
|
|
"Testing with: Threshold: 70\n",
|
|
|
|
" Leeway: 0\n",
|
|
|
|
" Epoch: 20\n",
|
|
|
|
" Dense Count 1: 1\n",
|
|
|
|
" Dense Neurons 1: 1800\n",
|
|
|
|
" Dense Count 2: 2\n",
|
|
|
|
" Dense Neurons 2: 1800\n",
|
|
|
|
"Accuracy: 78.19\n",
|
|
|
|
"Testing with: Threshold: 70\n",
|
|
|
|
" Leeway: 0\n",
|
|
|
|
" Epoch: 20\n",
|
|
|
|
" Dense Count 1: 1\n",
|
|
|
|
" Dense Neurons 1: 1800\n",
|
|
|
|
" Dense Count 2: 2\n",
|
|
|
|
" Dense Neurons 2: 2400\n",
|
|
|
|
"Accuracy: 78.35\n",
|
|
|
|
"Testing with: Threshold: 70\n",
|
|
|
|
" Leeway: 0\n",
|
|
|
|
" Epoch: 20\n",
|
|
|
|
" Dense Count 1: 1\n",
|
|
|
|
" Dense Neurons 1: 1800\n",
|
|
|
|
" Dense Count 2: 3\n",
|
|
|
|
" Dense Neurons 2: 600\n",
|
|
|
|
"Accuracy: 78.37\n",
|
|
|
|
"Testing with: Threshold: 70\n",
|
|
|
|
" Leeway: 0\n",
|
|
|
|
" Epoch: 20\n",
|
|
|
|
" Dense Count 1: 1\n",
|
|
|
|
" Dense Neurons 1: 1800\n",
|
|
|
|
" Dense Count 2: 3\n",
|
|
|
|
" Dense Neurons 2: 1200\n",
|
|
|
|
"Accuracy: 78.53\n",
|
|
|
|
"Testing with: Threshold: 70\n",
|
|
|
|
" Leeway: 0\n",
|
|
|
|
" Epoch: 20\n",
|
|
|
|
" Dense Count 1: 1\n",
|
|
|
|
" Dense Neurons 1: 1800\n",
|
|
|
|
" Dense Count 2: 3\n",
|
|
|
|
" Dense Neurons 2: 1800\n",
|
|
|
|
"Accuracy: 78.48\n",
|
|
|
|
"Testing with: Threshold: 70\n",
|
|
|
|
" Leeway: 0\n",
|
|
|
|
" Epoch: 20\n",
|
|
|
|
" Dense Count 1: 1\n",
|
|
|
|
" Dense Neurons 1: 1800\n",
|
|
|
|
" Dense Count 2: 3\n",
|
|
|
|
" Dense Neurons 2: 2400\n",
|
|
|
|
"Accuracy: 78.07\n",
|
|
|
|
"Testing with: Threshold: 70\n",
|
|
|
|
" Leeway: 0\n",
|
|
|
|
" Epoch: 20\n",
|
|
|
|
" Dense Count 1: 1\n",
|
|
|
|
" Dense Neurons 1: 2400\n",
|
|
|
|
" Dense Count 2: 1\n",
|
|
|
|
" Dense Neurons 2: 600\n",
|
|
|
|
"Accuracy: 76.76\n",
|
|
|
|
"Testing with: Threshold: 70\n",
|
|
|
|
" Leeway: 0\n",
|
|
|
|
" Epoch: 20\n",
|
|
|
|
" Dense Count 1: 1\n",
|
|
|
|
" Dense Neurons 1: 2400\n",
|
|
|
|
" Dense Count 2: 1\n",
|
|
|
|
" Dense Neurons 2: 1200\n",
|
|
|
|
"Accuracy: 77.73\n",
|
|
|
|
"Testing with: Threshold: 70\n",
|
|
|
|
" Leeway: 0\n",
|
|
|
|
" Epoch: 20\n",
|
|
|
|
" Dense Count 1: 1\n",
|
|
|
|
" Dense Neurons 1: 2400\n",
|
|
|
|
" Dense Count 2: 1\n",
|
|
|
|
" Dense Neurons 2: 1800\n",
|
|
|
|
"Accuracy: 77.93\n",
|
|
|
|
"Testing with: Threshold: 70\n",
|
|
|
|
" Leeway: 0\n",
|
|
|
|
" Epoch: 20\n",
|
|
|
|
" Dense Count 1: 1\n",
|
|
|
|
" Dense Neurons 1: 2400\n",
|
|
|
|
" Dense Count 2: 1\n",
|
|
|
|
" Dense Neurons 2: 2400\n",
|
|
|
|
"Accuracy: 77.75\n",
|
|
|
|
"Testing with: Threshold: 70\n",
|
|
|
|
" Leeway: 0\n",
|
|
|
|
" Epoch: 20\n",
|
|
|
|
" Dense Count 1: 1\n",
|
|
|
|
" Dense Neurons 1: 2400\n",
|
|
|
|
" Dense Count 2: 2\n",
|
|
|
|
" Dense Neurons 2: 600\n",
|
|
|
|
"Accuracy: 78.17\n",
|
|
|
|
"Testing with: Threshold: 70\n",
|
|
|
|
" Leeway: 0\n",
|
|
|
|
" Epoch: 20\n",
|
|
|
|
" Dense Count 1: 1\n",
|
|
|
|
" Dense Neurons 1: 2400\n",
|
|
|
|
" Dense Count 2: 2\n",
|
|
|
|
" Dense Neurons 2: 1200\n",
|
|
|
|
"Accuracy: 78.36\n",
|
|
|
|
"Testing with: Threshold: 70\n",
|
|
|
|
" Leeway: 0\n",
|
|
|
|
" Epoch: 20\n",
|
|
|
|
" Dense Count 1: 1\n",
|
|
|
|
" Dense Neurons 1: 2400\n",
|
|
|
|
" Dense Count 2: 2\n",
|
|
|
|
" Dense Neurons 2: 1800\n",
|
|
|
|
"Accuracy: 78.51\n",
|
|
|
|
"Testing with: Threshold: 70\n",
|
|
|
|
" Leeway: 0\n",
|
|
|
|
" Epoch: 20\n",
|
|
|
|
" Dense Count 1: 1\n",
|
|
|
|
" Dense Neurons 1: 2400\n",
|
|
|
|
" Dense Count 2: 2\n",
|
|
|
|
" Dense Neurons 2: 2400\n",
|
|
|
|
"Accuracy: 77.98\n",
|
|
|
|
"Testing with: Threshold: 70\n",
|
|
|
|
" Leeway: 0\n",
|
|
|
|
" Epoch: 20\n",
|
|
|
|
" Dense Count 1: 1\n",
|
|
|
|
" Dense Neurons 1: 2400\n",
|
|
|
|
" Dense Count 2: 3\n",
|
|
|
|
" Dense Neurons 2: 600\n",
|
|
|
|
"Accuracy: 78.27\n",
|
|
|
|
"Testing with: Threshold: 70\n",
|
|
|
|
" Leeway: 0\n",
|
|
|
|
" Epoch: 20\n",
|
|
|
|
" Dense Count 1: 1\n",
|
|
|
|
" Dense Neurons 1: 2400\n",
|
|
|
|
" Dense Count 2: 3\n",
|
|
|
|
" Dense Neurons 2: 1200\n",
|
|
|
|
"Accuracy: 78.48\n",
|
|
|
|
"Testing with: Threshold: 70\n",
|
|
|
|
" Leeway: 0\n",
|
|
|
|
" Epoch: 20\n",
|
|
|
|
" Dense Count 1: 1\n",
|
|
|
|
" Dense Neurons 1: 2400\n",
|
|
|
|
" Dense Count 2: 3\n",
|
|
|
|
" Dense Neurons 2: 1800\n",
|
|
|
|
"Accuracy: 78.62\n",
|
|
|
|
"Testing with: Threshold: 70\n",
|
|
|
|
" Leeway: 0\n",
|
|
|
|
" Epoch: 20\n",
|
|
|
|
" Dense Count 1: 1\n",
|
|
|
|
" Dense Neurons 1: 2400\n",
|
|
|
|
" Dense Count 2: 3\n",
|
|
|
|
" Dense Neurons 2: 2400\n",
|
|
|
|
"Accuracy: 78.13\n",
|
|
|
|
"Testing with: Threshold: 70\n",
|
|
|
|
" Leeway: 0\n",
|
|
|
|
" Epoch: 20\n",
|
|
|
|
" Dense Count 1: 2\n",
|
|
|
|
" Dense Neurons 1: 600\n",
|
|
|
|
" Dense Count 2: 1\n",
|
|
|
|
" Dense Neurons 2: 600\n",
|
|
|
|
"Accuracy: 77.97\n",
|
|
|
|
"Testing with: Threshold: 70\n",
|
|
|
|
" Leeway: 0\n",
|
|
|
|
" Epoch: 20\n",
|
|
|
|
" Dense Count 1: 2\n",
|
|
|
|
" Dense Neurons 1: 600\n",
|
|
|
|
" Dense Count 2: 1\n",
|
|
|
|
" Dense Neurons 2: 1200\n",
|
|
|
|
"Accuracy: 77.89\n",
|
|
|
|
"Testing with: Threshold: 70\n",
|
|
|
|
" Leeway: 0\n",
|
|
|
|
" Epoch: 20\n",
|
|
|
|
" Dense Count 1: 2\n",
|
|
|
|
" Dense Neurons 1: 600\n",
|
|
|
|
" Dense Count 2: 1\n",
|
|
|
|
" Dense Neurons 2: 1800\n",
|
|
|
|
"Accuracy: 77.77\n",
|
|
|
|
"Testing with: Threshold: 70\n",
|
|
|
|
" Leeway: 0\n",
|
|
|
|
" Epoch: 20\n",
|
|
|
|
" Dense Count 1: 2\n",
|
|
|
|
" Dense Neurons 1: 600\n",
|
|
|
|
" Dense Count 2: 1\n",
|
|
|
|
" Dense Neurons 2: 2400\n",
|
|
|
|
"Accuracy: 77.82\n",
|
|
|
|
"Testing with: Threshold: 70\n",
|
|
|
|
" Leeway: 0\n",
|
|
|
|
" Epoch: 20\n",
|
|
|
|
" Dense Count 1: 2\n",
|
|
|
|
" Dense Neurons 1: 600\n",
|
|
|
|
" Dense Count 2: 2\n",
|
|
|
|
" Dense Neurons 2: 600\n",
|
|
|
|
"Accuracy: 77.92\n",
|
|
|
|
"Testing with: Threshold: 70\n",
|
|
|
|
" Leeway: 0\n",
|
|
|
|
" Epoch: 20\n",
|
|
|
|
" Dense Count 1: 2\n",
|
|
|
|
" Dense Neurons 1: 600\n",
|
|
|
|
" Dense Count 2: 2\n",
|
|
|
|
" Dense Neurons 2: 1200\n",
|
|
|
|
"Accuracy: 78.13\n",
|
|
|
|
"Testing with: Threshold: 70\n",
|
|
|
|
" Leeway: 0\n",
|
|
|
|
" Epoch: 20\n",
|
|
|
|
" Dense Count 1: 2\n",
|
|
|
|
" Dense Neurons 1: 600\n",
|
|
|
|
" Dense Count 2: 2\n",
|
|
|
|
" Dense Neurons 2: 1800\n",
|
|
|
|
"Accuracy: 77.94\n",
|
|
|
|
"Testing with: Threshold: 70\n",
|
|
|
|
" Leeway: 0\n",
|
|
|
|
" Epoch: 20\n",
|
|
|
|
" Dense Count 1: 2\n",
|
|
|
|
" Dense Neurons 1: 600\n",
|
|
|
|
" Dense Count 2: 2\n",
|
|
|
|
" Dense Neurons 2: 2400\n",
|
|
|
|
"Accuracy: 78.08\n",
|
|
|
|
"Testing with: Threshold: 70\n",
|
|
|
|
" Leeway: 0\n",
|
|
|
|
" Epoch: 20\n",
|
|
|
|
" Dense Count 1: 2\n",
|
|
|
|
" Dense Neurons 1: 600\n",
|
|
|
|
" Dense Count 2: 3\n",
|
|
|
|
" Dense Neurons 2: 600\n",
|
|
|
|
"Accuracy: 77.92\n",
|
|
|
|
"Testing with: Threshold: 70\n",
|
|
|
|
" Leeway: 0\n",
|
|
|
|
" Epoch: 20\n",
|
|
|
|
" Dense Count 1: 2\n",
|
|
|
|
" Dense Neurons 1: 600\n",
|
|
|
|
" Dense Count 2: 3\n",
|
|
|
|
" Dense Neurons 2: 1200\n",
|
|
|
|
"Accuracy: 78.00\n",
|
|
|
|
"Testing with: Threshold: 70\n",
|
|
|
|
" Leeway: 0\n",
|
|
|
|
" Epoch: 20\n",
|
|
|
|
" Dense Count 1: 2\n",
|
|
|
|
" Dense Neurons 1: 600\n",
|
|
|
|
" Dense Count 2: 3\n",
|
2021-06-08 22:21:03 +02:00
|
|
|
" Dense Neurons 2: 1800\n",
|
|
|
|
"Accuracy: 77.61\n",
|
|
|
|
"Testing with: Threshold: 70\n",
|
|
|
|
" Leeway: 0\n",
|
|
|
|
" Epoch: 20\n",
|
|
|
|
" Dense Count 1: 2\n",
|
|
|
|
" Dense Neurons 1: 600\n",
|
|
|
|
" Dense Count 2: 3\n",
|
2021-06-08 23:29:05 +02:00
|
|
|
" Dense Neurons 2: 2400\n",
|
|
|
|
"Accuracy: 77.48\n",
|
|
|
|
"Testing with: Threshold: 70\n",
|
|
|
|
" Leeway: 0\n",
|
|
|
|
" Epoch: 20\n",
|
|
|
|
" Dense Count 1: 2\n",
|
|
|
|
" Dense Neurons 1: 1200\n",
|
|
|
|
" Dense Count 2: 1\n",
|
|
|
|
" Dense Neurons 2: 600\n",
|
|
|
|
"Accuracy: 78.17\n",
|
|
|
|
"Testing with: Threshold: 70\n",
|
|
|
|
" Leeway: 0\n",
|
|
|
|
" Epoch: 20\n",
|
|
|
|
" Dense Count 1: 2\n",
|
|
|
|
" Dense Neurons 1: 1200\n",
|
|
|
|
" Dense Count 2: 1\n",
|
|
|
|
" Dense Neurons 2: 1200\n",
|
|
|
|
"Accuracy: 78.35\n",
|
|
|
|
"Testing with: Threshold: 70\n",
|
|
|
|
" Leeway: 0\n",
|
|
|
|
" Epoch: 20\n",
|
|
|
|
" Dense Count 1: 2\n",
|
|
|
|
" Dense Neurons 1: 1200\n",
|
|
|
|
" Dense Count 2: 1\n",
|
|
|
|
" Dense Neurons 2: 1800\n",
|
|
|
|
"Accuracy: 78.19\n",
|
|
|
|
"Testing with: Threshold: 70\n",
|
|
|
|
" Leeway: 0\n",
|
|
|
|
" Epoch: 20\n",
|
|
|
|
" Dense Count 1: 2\n",
|
|
|
|
" Dense Neurons 1: 1200\n",
|
|
|
|
" Dense Count 2: 1\n",
|
|
|
|
" Dense Neurons 2: 2400\n",
|
|
|
|
"Accuracy: 78.38\n",
|
|
|
|
"Testing with: Threshold: 70\n",
|
|
|
|
" Leeway: 0\n",
|
|
|
|
" Epoch: 20\n",
|
|
|
|
" Dense Count 1: 2\n",
|
|
|
|
" Dense Neurons 1: 1200\n",
|
|
|
|
" Dense Count 2: 2\n",
|
|
|
|
" Dense Neurons 2: 600\n",
|
|
|
|
"Accuracy: 77.83\n",
|
|
|
|
"Testing with: Threshold: 70\n",
|
|
|
|
" Leeway: 0\n",
|
|
|
|
" Epoch: 20\n",
|
|
|
|
" Dense Count 1: 2\n",
|
|
|
|
" Dense Neurons 1: 1200\n",
|
|
|
|
" Dense Count 2: 2\n",
|
|
|
|
" Dense Neurons 2: 1200\n",
|
|
|
|
"Accuracy: 78.21\n",
|
|
|
|
"Testing with: Threshold: 70\n",
|
|
|
|
" Leeway: 0\n",
|
|
|
|
" Epoch: 20\n",
|
|
|
|
" Dense Count 1: 2\n",
|
|
|
|
" Dense Neurons 1: 1200\n",
|
|
|
|
" Dense Count 2: 2\n",
|
|
|
|
" Dense Neurons 2: 1800\n",
|
|
|
|
"Accuracy: 78.31\n",
|
|
|
|
"Testing with: Threshold: 70\n",
|
|
|
|
" Leeway: 0\n",
|
|
|
|
" Epoch: 20\n",
|
|
|
|
" Dense Count 1: 2\n",
|
|
|
|
" Dense Neurons 1: 1200\n",
|
|
|
|
" Dense Count 2: 2\n",
|
|
|
|
" Dense Neurons 2: 2400\n",
|
|
|
|
"Accuracy: 78.23\n",
|
|
|
|
"Testing with: Threshold: 70\n",
|
|
|
|
" Leeway: 0\n",
|
|
|
|
" Epoch: 20\n",
|
|
|
|
" Dense Count 1: 2\n",
|
|
|
|
" Dense Neurons 1: 1200\n",
|
|
|
|
" Dense Count 2: 3\n",
|
|
|
|
" Dense Neurons 2: 600\n",
|
|
|
|
"Accuracy: 78.54\n",
|
|
|
|
"Testing with: Threshold: 70\n",
|
|
|
|
" Leeway: 0\n",
|
|
|
|
" Epoch: 20\n",
|
|
|
|
" Dense Count 1: 2\n",
|
|
|
|
" Dense Neurons 1: 1200\n",
|
|
|
|
" Dense Count 2: 3\n",
|
|
|
|
" Dense Neurons 2: 1200\n",
|
|
|
|
"Accuracy: 78.53\n",
|
|
|
|
"Testing with: Threshold: 70\n",
|
|
|
|
" Leeway: 0\n",
|
|
|
|
" Epoch: 20\n",
|
|
|
|
" Dense Count 1: 2\n",
|
|
|
|
" Dense Neurons 1: 1200\n",
|
|
|
|
" Dense Count 2: 3\n",
|
|
|
|
" Dense Neurons 2: 1800\n",
|
|
|
|
"Accuracy: 78.14\n",
|
|
|
|
"Testing with: Threshold: 70\n",
|
|
|
|
" Leeway: 0\n",
|
|
|
|
" Epoch: 20\n",
|
|
|
|
" Dense Count 1: 2\n",
|
|
|
|
" Dense Neurons 1: 1200\n",
|
|
|
|
" Dense Count 2: 3\n",
|
|
|
|
" Dense Neurons 2: 2400\n",
|
|
|
|
"Accuracy: 77.81\n",
|
|
|
|
"Testing with: Threshold: 70\n",
|
|
|
|
" Leeway: 0\n",
|
|
|
|
" Epoch: 20\n",
|
|
|
|
" Dense Count 1: 2\n",
|
|
|
|
" Dense Neurons 1: 1800\n",
|
|
|
|
" Dense Count 2: 1\n",
|
|
|
|
" Dense Neurons 2: 600\n",
|
|
|
|
"Accuracy: 78.81\n",
|
|
|
|
"Testing with: Threshold: 70\n",
|
|
|
|
" Leeway: 0\n",
|
|
|
|
" Epoch: 20\n",
|
|
|
|
" Dense Count 1: 2\n",
|
|
|
|
" Dense Neurons 1: 1800\n",
|
|
|
|
" Dense Count 2: 1\n",
|
|
|
|
" Dense Neurons 2: 1200\n",
|
|
|
|
"Accuracy: 78.33\n",
|
|
|
|
"Testing with: Threshold: 70\n",
|
|
|
|
" Leeway: 0\n",
|
|
|
|
" Epoch: 20\n",
|
|
|
|
" Dense Count 1: 2\n",
|
|
|
|
" Dense Neurons 1: 1800\n",
|
|
|
|
" Dense Count 2: 1\n",
|
|
|
|
" Dense Neurons 2: 1800\n",
|
|
|
|
"Accuracy: 78.43\n",
|
|
|
|
"Testing with: Threshold: 70\n",
|
|
|
|
" Leeway: 0\n",
|
|
|
|
" Epoch: 20\n",
|
|
|
|
" Dense Count 1: 2\n",
|
|
|
|
" Dense Neurons 1: 1800\n",
|
|
|
|
" Dense Count 2: 1\n",
|
|
|
|
" Dense Neurons 2: 2400\n",
|
|
|
|
"Accuracy: 78.58\n",
|
|
|
|
"Testing with: Threshold: 70\n",
|
|
|
|
" Leeway: 0\n",
|
|
|
|
" Epoch: 20\n",
|
|
|
|
" Dense Count 1: 2\n",
|
|
|
|
" Dense Neurons 1: 1800\n",
|
|
|
|
" Dense Count 2: 2\n",
|
|
|
|
" Dense Neurons 2: 600\n",
|
|
|
|
"Accuracy: 78.42\n",
|
|
|
|
"Testing with: Threshold: 70\n",
|
|
|
|
" Leeway: 0\n",
|
|
|
|
" Epoch: 20\n",
|
|
|
|
" Dense Count 1: 2\n",
|
|
|
|
" Dense Neurons 1: 1800\n",
|
|
|
|
" Dense Count 2: 2\n",
|
|
|
|
" Dense Neurons 2: 1200\n",
|
|
|
|
"Accuracy: 78.58\n",
|
|
|
|
"Testing with: Threshold: 70\n",
|
|
|
|
" Leeway: 0\n",
|
|
|
|
" Epoch: 20\n",
|
|
|
|
" Dense Count 1: 2\n",
|
|
|
|
" Dense Neurons 1: 1800\n",
|
|
|
|
" Dense Count 2: 2\n",
|
|
|
|
" Dense Neurons 2: 1800\n",
|
|
|
|
"Accuracy: 78.44\n",
|
|
|
|
"Testing with: Threshold: 70\n",
|
|
|
|
" Leeway: 0\n",
|
|
|
|
" Epoch: 20\n",
|
|
|
|
" Dense Count 1: 2\n",
|
|
|
|
" Dense Neurons 1: 1800\n",
|
|
|
|
" Dense Count 2: 2\n",
|
|
|
|
" Dense Neurons 2: 2400\n",
|
|
|
|
"Accuracy: 78.18\n",
|
|
|
|
"Testing with: Threshold: 70\n",
|
|
|
|
" Leeway: 0\n",
|
|
|
|
" Epoch: 20\n",
|
|
|
|
" Dense Count 1: 2\n",
|
|
|
|
" Dense Neurons 1: 1800\n",
|
|
|
|
" Dense Count 2: 3\n",
|
|
|
|
" Dense Neurons 2: 600\n",
|
|
|
|
"Accuracy: 78.42\n",
|
|
|
|
"Testing with: Threshold: 70\n",
|
|
|
|
" Leeway: 0\n",
|
|
|
|
" Epoch: 20\n",
|
|
|
|
" Dense Count 1: 2\n",
|
|
|
|
" Dense Neurons 1: 1800\n",
|
|
|
|
" Dense Count 2: 3\n",
|
|
|
|
" Dense Neurons 2: 1200\n"
|
2021-06-08 22:19:18 +02:00
|
|
|
]
|
|
|
|
}
|
|
|
|
],
|
|
|
|
"source": [
|
|
|
|
"%%time\n",
|
|
|
|
"\n",
|
|
|
|
"for t in THRESH:\n",
|
|
|
|
" for l in LEEWAY:\n",
|
|
|
|
" for e in EPOCH:\n",
|
|
|
|
" for dc in DENSE_COUNT:\n",
|
|
|
|
" for dn in DENSE_NEURONS:\n",
|
|
|
|
" for dc2 in DENSE2_COUNT:\n",
|
|
|
|
" for dn2 in DENSE2_NEURONS:\n",
|
|
|
|
" print(f\"Testing with: Threshold: {t}\")\n",
|
|
|
|
" print(f\" Leeway: {l}\")\n",
|
|
|
|
" print(f\" Epoch: {e}\")\n",
|
|
|
|
" print(f\" Dense Count 1: {dc}\")\n",
|
|
|
|
" print(f\" Dense Neurons 1: {dn}\")\n",
|
|
|
|
" print(f\" Dense Count 2: {dc2}\")\n",
|
|
|
|
" print(f\" Dense Neurons 2: {dn2}\")\n",
|
|
|
|
" Xp, yp = preproc(X, y, t, l)\n",
|
|
|
|
" lb = LabelBinarizer()\n",
|
|
|
|
"\n",
|
|
|
|
" ypt = lb.fit_transform(yp)\n",
|
|
|
|
" X_train, X_test, y_train, y_test = train_test_split(Xp, ypt, test_size=0.2, random_state=177013)\n",
|
|
|
|
" acc = get_avg_acc(X_train,y_train,X_test, y_test, e, dc,dn,dc2,dn2)\n",
|
|
|
|
" result = result.append({'Threshold': t,\n",
|
|
|
|
" 'Leeway': l,\n",
|
|
|
|
" 'Epoch': e,\n",
|
|
|
|
" 'DENSE_COUNT1': dc,\n",
|
|
|
|
" 'DENSE_NEURON1': dn,\n",
|
|
|
|
" 'DENSE_COUNT2': dc2,\n",
|
|
|
|
" 'DENSE_NEURON2': dn2,\n",
|
|
|
|
" 'Accuracy': acc}, ignore_index=True)\n",
|
|
|
|
" print(f\"Accuracy: {acc*100:.2f}\\n\\n\")"
|
|
|
|
]
|
|
|
|
},
|
|
|
|
{
|
|
|
|
"cell_type": "code",
|
|
|
|
"execution_count": null,
|
2021-06-08 23:29:05 +02:00
|
|
|
"id": "ee06862c",
|
2021-06-08 22:19:18 +02:00
|
|
|
"metadata": {},
|
|
|
|
"outputs": [],
|
|
|
|
"source": [
|
|
|
|
"result.to_csv('./results.csv')"
|
|
|
|
]
|
|
|
|
},
|
|
|
|
{
|
|
|
|
"cell_type": "code",
|
|
|
|
"execution_count": null,
|
2021-06-08 23:29:05 +02:00
|
|
|
"id": "32c1ff00",
|
2021-06-08 22:19:18 +02:00
|
|
|
"metadata": {},
|
|
|
|
"outputs": [],
|
|
|
|
"source": [
|
|
|
|
"exit()"
|
|
|
|
]
|
|
|
|
}
|
|
|
|
],
|
|
|
|
"metadata": {
|
|
|
|
"kernelspec": {
|
|
|
|
"display_name": "Python 3",
|
|
|
|
"language": "python",
|
|
|
|
"name": "python3"
|
|
|
|
},
|
|
|
|
"language_info": {
|
|
|
|
"codemirror_mode": {
|
|
|
|
"name": "ipython",
|
|
|
|
"version": 3
|
|
|
|
},
|
|
|
|
"file_extension": ".py",
|
|
|
|
"mimetype": "text/x-python",
|
|
|
|
"name": "python",
|
|
|
|
"nbconvert_exporter": "python",
|
|
|
|
"pygments_lexer": "ipython3",
|
|
|
|
"version": "3.8.5"
|
|
|
|
}
|
|
|
|
},
|
|
|
|
"nbformat": 4,
|
|
|
|
"nbformat_minor": 5
|
|
|
|
}
|