
Overview of IoT Fuzzing Techniques
Tuan-Dat Tran

(3012345)

University of Duisburg-Essen
tuan-dat.tran@stud.uni-due.de

Abstract—Due to the rising popularity of IoT
devices and embedded systems and their usage
in, not only in the business sector, but also at
home, the view has been shifting on the security
of those devices. To address this issue, there have
been many approaches in detecting, analyzing and
mitigation of security flaws in IoT devices. One of
the ideas to detect vulnerabilities in an automated
manner is IoT Fuzzing. Contrary to regular fuzzing
it comes with its own constraints and techniques
to optimize performance and coverage of attack
surfaces.

In this paper we are comparing techniques used
by IoT fuzzers to circumvent the adversities pre-
sented by IoT devices like app-based approaches
by IoTFuzzer and Snipuzz or emulation approaches
used by Firm-Afl.

Due to the wide range of different IoT fuzzing
tools we are dividing the comperison of the tech-
niques based on the type of IoT fuzzing tool. We
also outline the evolution of IoT fuzzing techniques
to visualize the progress made in the field. This
overview can then be used to choose the optimal
usage of a specific IoT fuzzing device in a given
use case or combine different techniques used in
different fuzzing tools to create a novel approach
and find new security flaws through an combined
usage of IoT fuzzing techniques.

I. Introduction

Internet of Things (IoT) devices and embedded
systems are becoming more and more prevalent,
and with billions of devices being connected to
the internet they are an integral part of everyday
life[10]. Despite IoT devices being so widespread
they are riddled with security vulnerabilities,
which makes them an easy target for attackers,
since many of those vulnerabilities are considered
“low hanging fruits”. This led to over 70 unique
attack incidents[12] between 2010 and 2016, while
the number of IoT devices and embedded systems

in use is steadily rising and with it the amount of
vulnerabilities in the wild.

While implementation flaws and app over-
privilege are just some of the many security
problems an IoT device can have, detection and
mitigation of these security flaws has proven itself
to be challenging[13]. One approach to discover
those flaws is called fuzz-testing, or fuzzing. Mit-
igation of found security flaws can often be hard
due to the nature of embedded devices being
heavily customized and often not adhering to
one specific standard. Therefore, the fixing of
security flaws is often left to the manufacturer
of the device, since they possess the necessary
toolchains, source code and pipelines to provide
security patches to their devices.

Fuzzing is a method to test software for flaws
by automatically generating and sending mal-
formed data to the software. There are many ways
to generate and send data to the software. An
example for a specific type of input generation is
mutation based fuzzing, which is utilized by IoT
Fuzzer[7]. Mutation based fuzzing takes a valid
input and changes specific parts of it to trigger
an unexpected state in the software and therefore
crashing it. Crashing or bringing the software into
an unexpected state is the general goal of fuzzing,
since behavior like this indicates the presence of
a bug.

Due to fuzzing being an automated process,
fuzzing became a common tool for software
testing in software development. Conventional
fuzzing of software can be easily done concur-
rently, since software can, in most cases, be eas-
ily executed concurrently[13]. This increases the
throughput of the fuzzer and thus the amount
of test cases the software is tested against. This
is one of the issues, which IoT fuzzers have to



deal with, since the fuzzing IoT devices usually
include fuzzing the physical device itself if there is
no emulation solution available, while emulation
enables another class of issues and complexity to
the fuzzing process. An example for an arising
problem due to emulation is the acquisition of
the firmware. The process of firmware acquisition
is different for every device, since it is dependant
on the willingness of the manufacturer to publicly
release the firmware. If the manufacturer does not
release the firmeware for his device the firmware
needs to be extracted directly from the device,
which can vary in difficulty depending on the
device[13].

Alternativly to fuzzing there are other ways to
test software for vulnerabilities like static and dy-
namic firmware analysis. Static firmware analysis
is the analysis of firmware without executing it by
using tools like binwalk[1] to unpack the firmware
and reverse engineering it with an reverse engi-
neering tool like IDA[11][6]. For dynamic analysis
the firmware is executed to be investigated. This
can be done in a multitude of ways, for example
running the firmware on the original device or em-
ulating the device to have the firmware run in the
emulated environment. The running firmwares
behavior is then analyzed[5]. The advantage of
static analysis is the possibility to automate and
scaling the processes of analyzing the firmware[4],
since the testing does not depend on a physi-
cal device. On the other hand, static analysis
also yields a high amount of false positives and
may not find completly new vulnerabilities, with
the usage of its heuristics[17]. Another challenge
during static analysis is the handling of packed
or obfuscated code. This can be overcome with
dynamic analysis[16] by emulating the physical
device, which increases scalability and eliminates
the need to acquire the physical device to test
it[5].

Since IoT devices offer a large surface area
regarding communication e.g. network proto-
cols, their companion app or their web inter-
face[3][2][15]. For this reason fuzzers, which were
not originally designed to fuzz IoT devices can
still be utilized for IoT fuzzing, like in the case
of boofuzz, which was developed with the intent
to fuzz network protocols[2]. IoT fuzzers can also

make use of techniques used by dynamic analysis,
since both approaches require execution of the
firmware. This makes emulation a feasable way
of testing IoT devices to increase scalability[8]. In
this work we will focus mainly on fuzzers, which
were primarily developed for IoT fuzzing, but
since techniques used by non-IoT focused fuzzers
are also used by fuzzers, that focus on IoT devices,
non-IoT focused fuzzers will be considered in the
overview.

Even though IoT fuzzers are used for finding
security vulnerabilities in devices and fixing those
errors or learning from them and mitigating them
is the next logical step we will not discuss mitiga-
tion techniques in this paper, since this is outside
of our scope. We will also not dive deep into
specific techniques and how they work in detail
or are implemented.

By creating an overview of different IoT fuzzing
techniques we hope to archive a comprehensive
list of IoT fuzzing tools and their properties to
help developers and researchers to find the right
tool for their job and weight in the positive on
negative aspects of existing approaches to im-
prove upon them.

II. Background
A. IoT devices and embedded systems

The terms IoT devices and embedded systems
describe a great amount of devices. Embedded
systems are devices, interact with their surround-
ings via sensors and regulators and are built
to serve a specific purpose[13]. IoT devices on
the other hand are broadly described as devices,
which extend regular devices with an internet
connection and enable them to communicate over
it[14]. The term embedded devices can describe
many devices such as cameras or industrial con-
trol systems (ICS), which makes it hard to make
general statements about embedded devices. The
same is the case for IoT devices, which includes
the definition of internet capable embedded sys-
tems. Ongoing, when we describe IoT devices,
the description also fits embedded systems if not
explicitly mentioned.

IoT devices, due to being built for specific
purposes, don’t need as much processing power
as a general computer does. This leads to them

2



having an hardware platform specifically tailored
to their use case. For this reason the amount
of different hardware and software architectures
used in IoT devices is diverse and unlistable.
The works of Hahm et al.[9] proposes a classi-
fication into low-end and high-end IoT devices
and deviding those two classificatoins into three
subcategories for low-end devices. Those classes
represent the complexity and computing capabil-
ity of those devices with “Class 0” having the
least resources and “Class 2” devices having the
most resources. In the works of Muench et al.[13]
a similar classification is done. They are classified
in “Type-0” to “Type-III” systems. T0 (Type-0)
systems represent multi-purpose systems, which
don’t fall under the classification of embedded
systems or IoT devices. T1 (Type-1) devices are
devices, which use a general purpose operating
system like Linux. The OS (operating system)
is often modified to be more lightweight and
offer a lightweight user environment like busybox.
T2 (Type-2) devices run on customized operat-
ing systems, which are tailored to the devices
use case. In order to save space and computa-
tional power typical OS functions like a Memory
Management Unit may be omited. T3 (Type-3)
devices run on a single control loop. On these
devices the firmware and the software, which runs
the devices functionalities, are a single instance.
This leads to a so called “monolithic firmware”,
consisting of the application and system code
compiled together.

We will later use these classes, and especially
those proposed by Muench et al.[13] to classify
IoT devices when comparing IoT fuzzing tech-
niques, since different types of IoT devices require
different approaches to fuzzing.

Due to the heterogenic nature of IoT devices in
terms of e.g. OS, instruction sets or memory lay-
outs, analysis of the firmware proves difficult[4].
Reasons for this are the different requirements a
manufacturer has for his device like the energy
efficiency, real-time capabilty or memory foot-
print[9].

Like mentioned earlier IoT devices, and espe-
cially home-based ones, use a multiple ways to
connect to the internet. Either directly through
WiFi or via a intermediary device like a smart-

Router Smartphone

Printer Smartwatch

Zigbee/Z-Wave

Smart Lightbulb
IoT Hub

User

Internet

PC

Home network

Figure 1. Example of IoT home network.

Send malformed input

Software

Monitor for crash/timeout/exit

Fuzzer

Input
generation

Monitor

Adjust input

Figure 2. Generalization of fuzzing process.

phone and connecting to it with Bluetooth[15].
Another way is having an IoT hub, which acts
as proxy between other IoT devices and either
another intermediary via Bluetooth or directly
WiFi. This leads to many ways an IoT network
can be structured, depending on the kind and
number of IoT devices (Figure 1).

B. Fuzzing

III. IoT Fuzzing

Mutation based fuzzing Taint Emulation
Message

3



A. Adversaries
B. Whitebox Fuzzing
C. Blackbox Fuzzing
D. Greybox Fuzzing

IV. Overview of IoT Tools and
Techniques

In this section we are going to look the overview
of different IoT Fuzzing devicesTable I. As we can
see the fuzzers requireing firmware, i.e. whitebox
fuzzers, are mostly designed to fuzz IoT devices,
built on top of linux devices. This is due to.

A. Techniques
B. Classification

V. Conclusion
In this paper we created an overview of the

different IoT fuzzing techniques used by state
of the art IoT fuzzing tools and compared their
approaches in regards of input generation, exe-
cution speed, crash detection heuristics and their
device scopes based on the classification in the
work of Muench et al.[13]. The comparison was
done seperatly based on whether they were black-
/white- or greybox fuzzers.

References
[1] Binwalk. https://github.com/ReFirmLabs/binwalk.
[2] boofuzz. https://github.com/jtpereyda/boofuzz.
[3] Jiongyi Chen et al. “IoTFuzzer: Discovering Memory

Corruptions in IoT Through App-based Fuzzing”.
In: 25th Annual Network and Distributed System
Security Symposium, NDSS 2018, San Diego,
California, USA, February 18-21, 2018.
The Internet Society, 2018.
url: http://wp.internetsociety.org/ndss/wp-
content/uploads/sites/25/2018/02/ndss2018%5C_01A-
1%5C_Chen%5C_paper.pdf.

[4] Andrei Costin, Jonas Zaddach, Aurélien Francillon, and
Davide Balzarotti. “A Large-Scale Analysis of the
Security of Embedded Firmwares”.
In: Proceedings of the 23rd USENIX Security
Symposium, San Diego, CA, USA, August 20-22, 2014.
Ed. by Kevin Fu and Jaeyeon Jung.
USENIX Association, 2014, pp. 95–110. url:
https://www.usenix.org/conference/usenixsecurity14/
technical-sessions/presentation/costin.

[5] Andrei Costin, Apostolis Zarras, and
Aurélien Francillon.
“Automated Dynamic Firmware Analysis at Scale: A
Case Study on Embedded Web Interfaces”.
In: Proceedings of the 11th ACM on Asia Conference on
Computer and Communications Security, AsiaCCS
2016, Xi’an, China, May 30 - June 3, 2016. Ed. by
Xiaofeng Chen, XiaoFeng Wang, and Xinyi Huang.
ACM, 2016, pp. 437–448.
doi: 10.1145/2897845.2897900.
url: https://doi.org/10.1145/2897845.2897900.

[6] Yaniv David, Nimrod Partush, and Eran Yahav.
“FirmUp: Precise Static Detection of Common
Vulnerabilities in Firmware”.
In: Proceedings of the Twenty-Third International
Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS 2018,
Williamsburg, VA, USA, March 24-28, 2018.
Ed. by Xipeng Shen, James Tuck, Ricardo Bianchini,
and Vivek Sarkar. ACM, 2018, pp. 392–404.
doi: 10.1145/3173162.3177157.
url: https://doi.org/10.1145/3173162.3177157.

[7] The OWASP Foundation. Fuzzing | OWASP. 2021.
url:
https://web.archive.org/web/20210414111843/https:
//owasp.org/www-community/Fuzzing (visited on
04/14/2021).

[8] Zhijie Gui, Hui Shu, Fei Kang, and Xiaobing Xiong.
“FIRMCORN: Vulnerability-Oriented Fuzzing of IoT
Firmware via Optimized Virtual Execution”.
In: IEEE Access 8 (2020), pp. 29826–29841.
doi: 10.1109/ACCESS.2020.2973043.
url: https://doi.org/10.1109/ACCESS.2020.2973043.

[9] Oliver Hahm, Emmanuel Baccelli, Hauke Petersen, and
Nicolas Tsiftes. “Operating Systems for Low-End
Devices in the Internet of Things: A Survey”.
In: IEEE Internet Things J. 3.5 (2016), pp. 720–734.
doi: 10.1109/JIOT.2015.2505901.
url: https://doi.org/10.1109/JIOT.2015.2505901.

[10] Mark Hung. “Leading the IoT Gartner Insight on How
to Lead in a Cnnected World”.
In: Gartner Research 1 (2017), pp. 1–5.

[11] IDA Pro. https://hex-rays.com/ida-pro/.
[12] David McMillen.

“Security attacks on industrial control systems”.
In: Technical Report. IBM, 2015.

[13] Marius Muench, Jan Stijohann, Frank Kargl,
Aurélien Francillon, and Davide Balzarotti.
“What You Corrupt Is Not What You Crash:
Challenges in Fuzzing Embedded Devices”.
In: 25th Annual Network and Distributed System
Security Symposium, NDSS 2018, San Diego,
California, USA, February 18-21, 2018.
The Internet Society, 2018.
url: http://wp.internetsociety.org/ndss/wp-
content/uploads/sites/25/2018/02/ndss2018%5C_01A-
4%5C_Muench%5C_paper.pdf.

[14] Brien Posey. IoT devices. 2021. url:
https://web.archive.org/web/20210520072243/https://
internetofthingsagenda.techtarget.com/definition/IoT-
device (visited on 05/20/2021).

[15] Dong Wang, Xiaosong Zhang, Ting Chen, and
Jingwei Li. “Discovering Vulnerabilities in COTS IoT

4



Tool Year Fuzzing approach Techniques Scope
SIoTFuzzer 2021 Blackbox
IoTFuzzer 2018 Blackbox

Firm-AFL[17] 2019 Greybox
Snipuzz 2021 Blackbox

Firmcorn 2020
FirmFuzz 2019

Diane 2021 Blackbox
HFuzz 2019

IoTHunter 2019
WMIFuzzer 2019 Blackbox

Table I
An overview of different IoT fuzzing tools.

Devices through Blackbox Fuzzing Web Management
Interface”. In: Secur. Commun. Networks 2019 (2019),
5076324:1–5076324:19. doi: 10.1155/2019/5076324.
url: https://doi.org/10.1155/2019/5076324.

[16] Jonas Zaddach, Luca Bruno, Aurélien Francillon, and
Davide Balzarotti.
“AVATAR: A Framework to Support Dynamic Security
Analysis of Embedded Systems’ Firmwares”.
In: 21st Annual Network and Distributed System
Security Symposium, NDSS 2014, San Diego,
California, USA, February 23-26, 2014.
The Internet Society, 2014. url:
https://www.ndss-symposium.org/ndss2014/avatar-
framework-support-dynamic-security-analysis-
embedded-systems-firmwares.

[17] Yaowen Zheng, Ali Davanian, Heng Yin,
Chengyu Song, Hongsong Zhu, and Limin Sun.
“FIRM-AFL: High-Throughput Greybox Fuzzing of
IoT Firmware via Augmented Process Emulation”. In:
28th USENIX Security Symposium, USENIX Security
2019, Santa Clara, CA, USA, August 14-16, 2019.
Ed. by Nadia Heninger and Patrick Traynor.
USENIX Association, 2019, pp. 1099–1114.
url: https://www.usenix.org/conference/
usenixsecurity19/presentation/zheng.

5


