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Abstract—Due to the rising popularity of IoT
devices and embedded systems and their usage in
not only in the business sector but also at home,
the focus has been shifting to the security of those
devices. To address this issue, there have been
many approaches in detecting, analysing and mit-
igating security flaws in IoT devices like static[8]
and dynamic analysis[9]. Another approach to vul-
nerability detection is fuzzing.

Fuzzing is a technique originally used for auto-
mated black box testing software and became a
highly researched topic[6][37][35][36], expanding its
usage from black box testing to white and grey box
testing. Fuzzers generate test cases to test software
for vulnerabilities. The generation of those test
cases are done in many ways.

IoT fuzzers focus on fuzzing IoT devices. Al-
though there are similarities to regular fuzzing,
fuzzing IoT devices comes with its own constraints
and techniques.

In this paper, we are comparing techniques used
by IoT fuzzers to circumvent the challenges pre-
sented by IoT devices and the constraints of the
solutions proposed by the IoT fuzzers.

I. Introduction

Internet of Things (IoT) devices and embedded
systems are becoming more and more prevalent,
and with billions of devices being connected to
the internet, they are an integral part of everyday
life[16]. Despite IoT devices being so widespread,
they are riddled with security vulnerabilities,
which makes them an easy target for attackers,
since many of those vulnerabilities are considered
“low-hanging fruits”[6]. One example of such a
vulnerability in IoT devices is the 2016 Mirai
botnet which consisted of an average of 200,000 to
300,000 IoT devices[3] while it was suspected that
over half a million are vulnerable to the security
vulnerabilities the Mirai Botnet utilized[19].

While information leakage[38] and insecure lo-
gin credentials[3] are just some of the many secu-
rity problems an IoT device can have, detection
and mitigation of these security flaws has proven
itself to be challenging. One approach to discover
those flaws is called fuzz-testing, or fuzzing.

Fuzzing is a method to test software for flaws
by automatically generating and sending large
amount of malformed data to the software. This is
done while the fuzzer monitors the software’s re-
action to this data for malfunction like crashes or
other unexpected behaviour. The goal of fuzzers is
to detect vulnerabilities in the software in an au-
tomated manner. Despite the simplistic approach
to vulnerability detection, it has proven itself to
be effective[21]. The simplistic approach enabled
researchers to extend the capabilities of fuzzing
from creating test cases consisting of random data
to sophisticated systems which use a wide variety
of information about the context and source code
of the software. The complexity of fuzzing tools
goes so far that the techniques used by fuzzers
diverge to such an extent that they can be divided
into different classes, each with their own strength
and weaknesses[22].

A huge advantage of fuzzing compared to other
vulnerability detection approaches is the automa-
tion of the analysis, which makes fuzzing a highly
scalable method to find vulnerabilities[23]. Scal-
ing up the fuzzing process enables a higher rate
of generation test cases and therefore increases
the coverage on the target program. On the other
hand, insufficiently “smart” test generation meth-
ods can lead the fuzzer to run for a long time
without finding any new code paths or otherwise
advancing the fuzzing process[28].

IoT fuzzing applies the methodologies of
fuzzing to IoT devices. Just like different kind



of fuzzers, IoT fuzzing has its own advantages
and disadvantages. IoT devices offer a large sur-
face area regarding communication, e.g. network
protocols, their companion app or their web in-
terface[6][5][35]. For this reason, fuzzers which
were not originally designed to fuzz IoT devices
can still be utilized for IoT fuzzing, like in the
case of boofuzz, which was developed with the
intent to fuzz network protocols[5]. IoT Fuzzing
also opens the door for new techniques, unique to
IoT devices, by fuzzing the companion app of the
device[6].

In this paper, we present an overview of differ-
ent fuzzing tools and techniques for IoT devices.
We focus on advantages and disadvantages of
those techniques in the context of their use-case
to help developers and researchers find the right
tool for their job and weigh in the positive and
negative aspects of existing approaches. The IoT
fuzzing tools, chosen for the overview, were cho-
sen to cover as many recently developed fuzzing
techniques to the best of our abilities.

The paper is structured as follows. First we
introduce IoT devices, firmware and general
fuzzing. In Section III, we lead into IoT fuzzing
and its challenges to create a knowledge basis to
introduce IoT fuzzing techniques in Section IV,
the main section. Section V contains related work,
that is closely tied to IoT fuzzing. And finishing
up with the conclusion in section VI.

II. Background
A. IoT devices and embedded systems

The terms IoT devices and embedded systems
describe a large amount of devices. Embedded
systems are devices which interact with their sur-
roundings via sensors and regulators and are built
to serve a specific purpose[23]. IoT devices on
the other hand are broadly described as devices
which extend regular devices with an internet
connection to enable them to communicate over
the internet[27]. The term embedded devices can
describe many devices such as cameras or in-
dustrial control systems (ICS), which makes it
hard to generalize embedded devices. This also
applies to IoT devices, since the extension of
an embedded system by an internet connection,
makes it an IoT device.
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Figure 1. Example of IoT home network (inspred by Wang et
al.[35]).

IoT devices, due to being built for specific pur-
poses, do not need as much processing power as a
general computer does. This leads to them having
a hardware platform specifically tailored to their
use case. And due to the heterogenic nature of
IoT devices in terms of e.g. operating systems,
instruction sets or memory layouts, analysis of
the firmware proves difficult[8]. Reasons for this
are the different requirements a manufacturer has
for the device like the energy efficiency, real-time
processing or memory footprint[14].

IoT devices, and especially home-based ones,
use multiple ways to connect to the internet. IoT
devices connect to the internet either directly
through Wi-Fi or via an intermediary device like a
smartphone and connecting to it with Bluetooth.
Another way is having an IoT hub which acts as
proxy between other IoT devices and either an-
other intermediary via Bluetooth or directly Wi-
Fi[35]. This leads to many ways an IoT network
can be structured, depending on the kind and
number of IoT devices (Figure 1).

The works of Hahm et al.[14] propose a clas-
sification into low-end and high-end IoT devices
and dividing those two classifications into three
subcategories for low-end devices. Those classes
represent the complexity and computing capa-
bility of those devices, with “Class 0” having
the least resources and “Class 2” devices having
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the most resources. Multi-purpose systems (i.e.
smartphones and computers) deploy many mech-
anisms to detect faults like segmentation faults
and report them through core dumps. IoT de-
vices may not have such functionalities. The more
minimalistic design of IoT fuzzers causes them to
only perform the specific tasks they were built
for. Therefore, functionalities like heap hardening
may not be present due to the IoT device’s limited
computing power and constrained costs[23].

B. Firmware
IoT firmware on IoT devices is the software,

that acts as an intermediate between higher
level software and the hardware of the device.
This functionality is provided by the firmwares
simplified interface of lower level functionalities,
that can be used by higher level software[13] to
communicate with the hardware. Since firmware
communicates with many parts of the IoT device,
it contains a lot of information about it.

There are several types of firmware based on
the type of device they are used in. In the works of
Muench et al.[23] devices are classified in “Type-
0” to “Type-III” systems:

T0 (Type-0) systems represent multi-purpose
systems, which don’t fall under the classification
of embedded systems or IoT devices.

T1 (Type-1) devices are devices, which use a
general purpose operating system, like Linux. The
operating system on T1 devices is often modified
to be more minimalistic and offer a lightweight
user environment like busybox.

T2 (Type-2) devices run on completely cus-
tomized operating systems which are tailored to
the device’s use case. In order to save space and
computational power, typical operating system
functions like a Memory Management Unit may
be omitted.

T3 (Type-3) devices run on a single control
loop. On these devices, the firmware and the
software, which runs the device’s functionalities,
are a single instance. This leads to a so-called
“blob firmware”[30], consisting of the application
and system code compiled together.

Like all software, firmware is susceptible to
bugs and misconfigurations, which can lead to
vulnerabilities[8]. For this reason, analysis tools

are needed to find such vulnerabilities. There are
several methods to analyse firmware for bugs, but
they all have to face the challenge of working
around the heterogenity of firmware[8].

To analyse firmware, firmware first has to be
acquired. This can be done by downloading it
from the vendor’s website. An alternative method
of acquiring firmware is extracting it from the
physical device. This is done by either some kind
of debugging port or by reading the flash memory
directly. Extracting firmware manually poses a
challenge in itself, since debugging ports are not
always available on the end product[6][31].

Additionally, firmware is often packed or even
encrypted, which poses yet another obstacle
for firmware analysis. In some cases, propri-
etary compression algorithms or encryption make
firmware analysis infeasible or even impossible.

C. Fuzzing
Fuzzing describes the process of testing a soft-

ware for faulty or unexpected behaviour by send-
ing it malformed messages as input[12].

There are multiple types of fuzzing techniques
based on the amount of known information about
the software: White box, back box and grey box
fuzzing. White box fuzzing has complete infor-
mation about the software’s source code. Black
box fuzzing on the other hand has no such infor-
mation, while grey box fuzzing lies in between
regarding the available information. Black box
fuzzing relies purely on the binary of a program
or the program in its already executed state[20].
This leads to back box fuzzers generally creating
many unnecessary test cases due to the lack of
knowledge about the internals of the target[13].
Another problem with back box fuzzers is the
detection of errors. Internal system errors, which
may lead to misbehaviour at a later time, can not
be easily detected by black box fuzzers as they
occur. Black box fuzzers therefore often rely on
externally visible exceptions. Advantages of black
box fuzzing are the narrow and quick tests due to
the limited surface area to target, focusing only
on the aspects of the software the user interacts
with[18]. Additionally, back box fuzzing may be
the only way of fuzzing a target when there is
no source code available. White box fuzzers on

3



the other hand have access to the source code
of the fuzzing target. Test cases generated by
white box fuzzers are based on the analysis of
the given source code. Techniques like symbolic
execution or dynamic taint analysis are utilized to
increase the efficiency of the fuzzer. In comparison
to back box fuzzing, white box fuzzing usually has
a higher overhead since the additional analysis is
performed on the targets source code[21]. Grey
box fuzzers take the middle ground between white
and black box fuzzers and only use some informa-
tion about the internals of the target software to
improve the fuzzing process. This may be done by
injecting instrumentation to the binary at com-
pile time[7] or by performing lightweight static
analysis on the source code of the software[21].
The usage of limited knowledge enables grey box
fuzzers to have higher throughput than white box
fuzzers, while being more accurate than black
box fuzzers. Comparing back box fuzzers with
grey box fuzzers or even white box fuzzers is
therefore not feasible, due to the different starting
conditions and use cases[11].

The basic fuzzing process can be divided into
three steps: (1) input generation and sending
that input to the software, (2) monitoring the
software’s behaviour in reaction to the given input
and (3) adjusting the input according to the
software’s behaviour (Figure 2).

During the input generation step, the fuzzer
generates and prepares messages according to its
generation strategy. Choosing which generation
strategy is used depends on the given information
or constraints of the system that is being fuzzed.
The given information about the fuzzing target
differentiates fuzzers into the categories black-,
white- and grey box fuzzers.

Monitoring the software’s behaviour upon re-
ceiving a malformed message as input is another
step of a typical fuzzing loop. The monitored
behaviour depends on the earlier steps, but after
every loop the original program’s state should
be restored to have an equal ground for all test
cases. When the fuzzer looks for XSS bugs or
SQL injections, the program will not crash, when
such a bug is triggered. This has to be taken into
consideration while monitoring the software and
therefore other methods of detecting those bugs

will have to be used than methods, which are
used to detect crashes due to memory errors like
buffer overflows. Fuzzers who do not try to trigger
crashes usually use the application’s answer to the
input message to determine whether the test case
triggered the event, which was tested for[5]. To
monitor a software’s crash, the fuzzer can provide
instrumentation, with which the tested software
is compiled[1], if grey box fuzzing is used. A back
box approach could be monitoring for specific
output of the software after a malformed input
has been sent, or monitoring the status of the
network connection for networking capable soft-
ware. A fuzzers goal is to cover as many parts of
the software as possible. Evaluating the coverage
of the software is only possible for grey box or
white box fuzzers, since they can instrument the
code. This metric can be used to guide the fuzzing
process of generating input, like in the state-of-art
mutational fuzzer AFL[1] and its fork afl++[2].

Another property of fuzzers is their adjust-
ments to the input after a fuzzing loop is done.
They are categorized into smart and “dumb”
fuzzers. Dumb fuzzers are not aware of the input
structure and therefore only try random input,
substitutions based on heuristics, delete parts of
the input or add parts to the input. This can lead
to a lot of test cases, which do not lead anywhere.
Another disadvantage is that input generated
by a dumb fuzzer may easily be dismissed if a
specific input structure is expected. Looking at
smart fuzzers, which try to generate valid input
based on the software’s protocol[5], grammar[15]
or model[26]. To perform smart fuzzing the input
model must be provided to the fuzzer, which may
not be as easily accessible on proprietary devices,
although there are ways to derive an input model
from a large sample of valid and invalid input.

Advantages of fuzzing are the automation and
scalability of the process. This enables fuzzing
to run many test cases in a short amount of
time, which makes throughput of the fuzzer an
important metric in evaluating fuzzers[7]. This is
achieved by easily being able to run software con-
currently on multiple processors. An alternative
way is running the software in a virtual environ-
ment[23] and executing the virtual environments
concurrently.
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Figure 2. Fuzzing with AFL[1].

III. Challenges of IoT Fuzzing

IoT fuzzing is the application of fuzzing tech-
niques on IoT devices. This approach poses
new challenges, since fuzzing hardware and its
firmware and fuzzing software operate on different
domains, which have each their own challenges.

Muench et al.[23] describe the main challenges:
The first challenge, fault detection, is about the
complexity of observing crashes on IoT devices
during the fuzzing process. Fuzzing regular soft-
ware may already yield unobservable unexpected
behaviour. Working with IoT devices adds an-
other layer to this problem, since IoT devices do
not have the same I/O capabilities and memory
protection measurements as a multi-purpose sys-
tem does. The second challenge in IoT fuzzing
is the performance and scalability of the fuzzing
process. Running a regular fuzzer concurrently
on multiple processes rarely poses a challenge.
When fuzzing IoT devices, either multiple copies
of the same device have to be bought to create
a comparable scenario, which is often infeasible
or emulation has to be utilized, which poses its
own multitude of challenges. The third challenge
is instrumentation, used in non-back box fuzzing
approaches, to collect code coverage information
and detect subtle memory corruptions. There are
multiple approaches to add instrumentation to a
program or its environment for regular fuzzing.
A challenge of adding instrumentation to IoT
devices is the need to often use static and dynamic

analysis to imitate the functionalities of instru-
mentation, since they often can not be directly
applied to the IoT device. The reasons for this
will be explained later.

(1) The challenge of fault detection on IoT de-
vices means, that memory corruptions in the de-
vice caused by IoT fuzzers can often go unnoticed
since they do not necessarily lead to crashes. Pro-
tection measurements on multi-purpose systems
detect memory corruptions on the system caused
by fuzzing and cause a crash, making memory cor-
ruptions therefore visible to regular fuzzers. Such
measurements are rarely implemented on IoT
devices due to limited computing resources[23].

A liveness check, also called probing, can be
performed to check the status of the device while
fuzzing it. Probing can either be active or passive.
During active probing, the fuzzer sends regular
known to be valid messages to the target system
and evaluates the response. The messages sent by
the fuzzer may cause a state change in the tested
device, which has to be accounted for. Passive
probing uses the device’s responses to the test
message to determine liveness or observes visible
crashes.

Muench et al.[23] expands on this by classi-
fying system crashes by their observability. An
observable crash is therefore the most visible
and manageable kind of crash. During observable
crashes, the device stops running and provides
some form of error message or draws attention to
the faulty behaviour in another way. It is added
that this also includes crashes, which do not
provide additional information about the crash,
such as error messages. Observable crashes are the
optimal case among system crashes, since they are
visible from the outside and enable the fuzzer or
tester to react to the crash without delay.

Reboots are another kind of crash. A crash
inducing error of a software on an IoT device
usually does not lead to the crash of the whole
system, since they work indipendently from each
other. In T3 devices, where the software and
firmware are one and the same, a crash of an
outward facing service leads to a crash of the
whole system.

In reaction to malformed input, a device may
hang. That means that it halts execution and
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does not react to any more input. This may be
due to being stuck in an infinite loop. This leads
to a slowdown in throughput of a fuzzer and the
device needs to be restarted if such behaviour is
found.

Late Crashes pose a challenge for testing the
device. This behaviour is described as the device
crashing after a non-negligible amount of time
after the real cause of the crash, like a malformed
message, is sent. This makes correlation between
the cause and the crash challenging.

At last, there are cases where neither the device
nor the software crash while still being in an
unexpected state, which leads to wrong data or
an incorrect output. This kind of malfunctioning
of the device is hard to detect, since the fuzzer
needs information about the expected response
to determine whether it is an output caused by
a malfunction or not. This is further complicated
due to the diverse message formats used in IoT
devices[11].

There are also cases of malformed input not
causing any visible effects, even when errors oc-
curred. These errors may cause crashes or mal-
functioning at a later time, which makes detecting
them during fuzzing almost impossible without
instrumentation[11].

(2) The second challenge is performance and
scalability. While regular fuzzers can execute
and test software concurrently to increase the
throughput and therefore find more possible
faults in the software over time. Fuzz testing
on an IoT device is not possible in the same
manner, since a physical device is being fuzzed.
Even though multiple copies of the same device
could be purchased, to scale up the test cases, it
would become infeasible due to financial limita-
tions and infrastructure requirements like power
and space. Emulation can help with the problem
of scalability by emulating the test device, but
this approach faces the challenge of IoT devices
being dependent on the hardware components of
the device[39].

After a fuzzing loop, the original state of the
tested device has to be established to start every
fuzzing attempt under the same conditions. This
is not a challenge with regular software, since
the software’s original state is re-established after

rerunning it. Changes on the file system, that
were caused by the tested software can be eas-
ily reverted with e.g. a snapshot of the virtual
machine running the test. To establish a testing
condition on IoT devices, without the knowledge
of its internals, the easiest method is restarting
an IoT device. This step can take up to a minute,
which negatively affects the throughput of IoT
fuzzers.

(3) The third challenge Muench et al.[23]
mentions is instrumentation. Instrumentation on
desktop systems is used to obtain coverage infor-
mation about the software that is being fuzzed
and detect memory corruptions by adding them
during compile or run time. Instrumentation be-
ing added during compile time therefore requires
the firmware beforehand. This is already an issue
on IoT devices, since acquiring the firmware is
not always possible. Additionally, the variety of
operating systems and processor architectures,
makes instrumentation on IoT devices a challeng-
ing task. Moreover, obtaining the manufacturer’s
tool chain to re-compile the firmware with in-
strumentation is rarely possible. A workaround to
this approach could be the use of binary dynamic
instrumentation frameworks like valgrind[34] or
using QEMU’s instrumentation[33], but these
methods heavily depend on the OS and CPU
architecture.

IV. Overview of IoT Tools and
Techniques

Here we give an overview of different IoT
fuzzers, their techniques and list their advantages
and disadvantages (Table I).

A. Input Generation
1) Mutational fuzzing: Mutation based fuzzing

is a method of input generation[25]. Mutational
fuzzing requires a set of predefined messages to
start the mutation on. These mutations can in-
clude e.g. bit flipping, checking for out of bound
bugs, sending empty data or substituting parts of
the message with random data[11] to explore new
program states or trigger unexpected behaviour.
This way the fuzzing process can get started
easily with only a couple of, so called, seed mes-
sages. A disadvantage of mutational fuzzing is the
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Tool Technique Target Fuzzing Techniques Crash detection
SIoTFuzzer[37] Black box Web Interface Stateful Message Generation* Network Monitor

IoTFuzzer[6] Black box Companion App* Generation
Mutation
Taint analysis

Passive probing

Firm-AFL[39] Grey box Firmware Mutation
Augmented Process Emulation*

Emulation

Snipuzz[11] Black box API Snippet-based mutation* Network Monitor

Firmcorn[13] Grey box Firmware Optimal virtual execution*
Vulnerability-oriented fuzzing*

Instrumentation

Diane[29] Black box Companion App Under-constraint Input Generation* Passive probing
Active Probing

HFuzz[20] Grey box Network protocol Message Structure Tree* Instrumentation

WMIFuzzer[35] Black box Web Interface Mutation
Generation

Network Monitor

* = Novel technique in fuzzer
Table I

An overview of different IoT fuzzing tools.

limited coverage. A mutational fuzzer can rarely
generate input, that deals with a target’s complex
sanity checks, since mutational input generation
does not take the input format into account[25].

2) Generational fuzzer: Generation based
fuzzers create messages from scratch while being
provided with the format specifications for
the input. Creating such a format specification
requires manual effort and may even be infeasible,
especially if the format is not available[25]. In the
work of Srivastava et al.[32] they attribute the
performance of FirmFuzz to their generational
approach of input generation, due to resulting
the constrained state space, that leads to a
decreased overhead.

3) Under-constrained Input Generation:
Under-constrained Input Generation is a
technique utilized by the fuzzer DIANE. Here
a combination of static and dynamic analysis is
used on the companion app to find functions,
that produce “valid yet under-constrained”
inputs for the IoT device. The companion app’s
own functions are then used to generate input
for the IoT device, that is not constrained by
the app and structurally correct enough to not
be discarded by the IoT device. The limitations
of this approach lie in the implementation of

the app analysis to find the desired functions.
Additionally, since this is a back box approach
to input generation, coverage is another issue.

4) Snippet-based mutation: Snipped-based mu-
tation is a novel approach to input generation of
Snipuzz[11]. Snippet-based mutation is the appli-
cation of the mutation-based fuzzing approach on
snippets. Snippets are parts of messages, deter-
mined by a heuristic algorithm and hierarchical
clustering. Those snippets are categorized by the
response they trigger from the IoT device. Snip-
pets are then used to build new messages to trig-
ger new program states. This method of mutation
and message generation creates messages, which
more likely follow message or protocol constraints
of IoT devices, which leads to more effective
fuzzing. Since this mutation method is guided
by the response of the tested device, detailed
responses are required to accurately categorize
snippets[11].

5) Message Structure Tree: Message Structure
Tree is a mutational fuzzing technique where the
valid input is analysed to create a tree structure
based on heuristics to mutate single fields of the
input[20]. This way, the grammar of the protocol
can be derived without explicitly providing the
input format.
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6) Stateful Message Generation: This tech-
nique was introduced by SIoTFuzzer[37] which
fuzzes web interfaces of IoT devices. Stateful
Message Generation (SMG) is divided into three
parts: front-end analysis, state analysis and seed
generation. SMG considers that communication
depends on certain states and therefore groups
together messages as a test case to fuzz the target
system. So far, SMG is only used to fuzz web
interfaces in SIoTFuzzer[37].

B. Instrumentation

1) Binary Rewriting/Instrumentation: Binary
rewriting can be used to add instrumentation to
firmware[23]. Instrumentation can be used to, e.g.
add hooks to specific functions. This is inter-
esting for fuzzing once instrumentation is added
to internal exceptions to check for crashes or
otherwise unexpected behaviour[13]. To perform
binary rewriting, disassembly of the firmware is
necessary, which requires partial decompilation.
An additional challenge is the missing room for
additional instrumentation due to embedded de-
vices being optimized for their memory usage[23].

2) Symbolic Execution: A technique used to
increase code coverage by using symbols as input
and tracking manipulations and comparisons of
them during runtime[36]. The usage of the input
is then backtracked to solve the constraints of
specific code branches if a desired state is reached.
Symbolic execution has the problem of path ex-
plosions and constraint solving, which poses as
an obstacle to scalability[7]. Path explosions is
the exponential increase of code branches the
larger the program is. A part of this problem
are possible infinite loops. Constraint solving can
pose another challenge, since depending on “how
deep” the program’s tracking goes, the calculation
of the constraints of a specific branch can be very
complex[28].

3) Taint analysis: Taint analysis is used to
track data of interest during execution. The data
that is being tracked is called taint source. IoT-
Fuzzer[6] uses taint analysis to track, e.g. user
input to find out which input influences network
messages sent to the analysed IoT device.

C. Emulation

1) Full Emulation: Emulation tackles the
problems of throughput and scalability in IoT
fuzzing. This is done by improving the perfor-
mance, success rate and hardware indipendence
of fuzzers[11]. Full emulation of the firmware,
with the help of heuristics, mitigates the lack of
fault detection and increases accuracy of found
vulnerabilities to a level of desktop system ap-
plication fuzzers. Additionally, emulation based
fuzzing provides the possibility to repeat test
cases and their executions to further analyse spe-
cific test runs[24]. Often third party developers
lack details of the device to implement a good
emulator. This makes building emulator require
huge amounts of manual effort[23], due to IoT
devices heavily dependence on their hardware[39].
Failing to emulate even a part of a device or its
peripherals may lead to the firmware not running
at all[32].

2) Partial Emulation: Partial emulation can
lead to accurate vulnerability detection with de-
creased performance in comparison to full emula-
tion but possibly better performance than fuzzing
the physical device, since it makes the fuzzing
process more scalable[23]. Partial emulation is
done by only emulating parts of the firmware or
its peripheral devices.

3) Augmented Process Emulation: This
method of emulation is proposed and used by
Firm-AFL[39]. Augmented process emulation
utilizes both system-level emulation and user-
mode emulation to increase execution speed of
the tested firmware or software. Here system-
level emulation is only used when necessary,
due to its low speed, while user-mode emulation
is used the rest of the time. This improves
the overall throughput of fuzzers utilizing
Augmented Process Emulation compared to
fuzzers using emulators, that only make use
of system emulation. Currently, Augmented
Process Emulation is limited to firmware that
can be emulated in a system emulator and runs
a POSIX-compatible operating system.

4) Optimized Virtual Execution: This tech-
nique used by Firmcorn[13], where the firmware
instructions are executed in a lightweight CPU
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emulator. This approach circumvents the over-
head generated by full-system emulation. The
execution is further optimized by using heuristic
algorithms like omitting unnecessary functions to
optimize the execution process.

D. Code Coverage
1) Vulnerability-oriented fuzzing:

Vulnerability-oriented fuzzing is used in
Firmcorn[13]. For this method, static analysis
is used to find vulnerable code. Vulnerable
code is determined by multiple factors like,
complexity, number of memory operations and
call to sensitive functions. Those attributes
are calculated based on information about the
target’s control flow, like the number of edges
of a function or the cyclomatic complexity of a
function.

2) Coverage-oriented fuzzing: Coverage-
oriented fuzzing generates input with the
traversion of different execution paths in mind.
This is done to maximize code coverage to reach
paths which may be vulnerable by taking the
ability of an input to trigger new paths into
account[28]. While coverage guided fuzzing tries
to maximize code coverage, usually most of a
software’s code is not vulnerable, therefore a lot
of resources are spent on exploring invulnerable
code paths.

3) Directed fuzzing: Direct fuzzing is the pro-
cess of generating input with the goal of travers-
ing specific execution paths[28]. Since only a frac-
tion of firmware code has vulnerabilities, the grey
box approach to fuzzing by only focusing on code
coverage leads to many test cases, that end up
not finding vulnerabilities[13].

E. Crash Detection
1) Active Probing: Active probing is used to

determine the state of the target by regularly
sending messages to the target. The response of
the target to such a message is known. Should
the response deviate from the expected message
or should the device not respond at all, it can be
assumed that there is an error.

While this probing method can detect errors
that do not lead to crashes, the probing messages
could lead to unexpected states of the target

themselves. Sending additional messages to probe
for the liveness of the target, also slows down the
overall fuzzing process, since such probing mes-
sages do not contribute to increasing the coverage
of the target.
2) Passive Probing: During passive probing

the messages, that are sent for fuzz testing, are
used to determine the state of the target. While
the target device responds in an acceptable time
window, it assumed, that no crash has occurred.

V. Related Work
A. Static Analysis

Alternatively to fuzzing, there are other ways
to test software for vulnerabilities such as static
firmware analysis. Static firmware analysis is the
analysis of firmware without executing it by using
tools like binwalk[4] to unpack the firmware and
reverse engineering it with a reverse engineering
tool like IDA[17][10]. The advantage of static
analysis is the possibility to automate and scale
the processes of analysing the firmware[8], since
the testing does not depend on a physical device.
On the other hand, static analysis also yields a
high amount of false positives and may not find
completely new vulnerabilities with the usage of
its heuristics[39]. Another challenge during static
analysis is the handling of packed or obfuscated
code, since it first has to be unpacked or deobfus-
cated to perform meaningful analysis on it[8].
1) Dynamic Analysis: Dynamic Firmware

analysis is another alternative to fuzzing. For
dynamic analysis, the firmware is executed to be
investigated. This can be done in a multitude of
ways. For example, by running the firmware on
the original device or emulating the device to have
the firmware run in a virtual environment. The
running firmware’s behaviour is then analysed[9].
The challenge of working with packed or obfus-
cated code during static firmware analysis can be
overcome with dynamic analysis[36] by emulating
the physical device, which increases scalability
and eliminates the need to acquire the physical
device to test it[9].

VI. Conclusion
In this paper we created an overview of the

different IoT fuzzing techniques used by state-

9



of-the-art IoT fuzzing tools and compared their
approaches in regard to input generation, crash
detection and their device scopes. The IoT fuzzers
we looked at, utilized many techniques to make
use of many attack surfaces and even used soft-
ware outside the IoT devices themselves to gain
information about the device, like IoTFuzzer[6].
There were also fuzzers, which did not create
a new approach to fuzzing itself, but applied
existing fuzzing techniques to the field of IoT
fuzzing.

All in all, there are many techniques used in the
field of IoT fuzzing, including some that are even
outside the field of conventional fuzzing, such as
symbolic execution, which belongs more in the
class of dynamic analysis techniques. This makes
fuzzing a very diverse topic for research, in which
there is a lot of room for improvement.
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VII. Appendix
A. Reconnaissance

To gain information about the system, we start
off with nmap. The result of the port scan resulted
in 6 open ports: 22 (ssh), 53 (dns), 80 (http), 443
(https), 5515 (unknown) and 65534 (unknown).
Knowing that there was a backdoor service on
this device, it was probably on either port 5515
or 65534, since those are not part of the IANA
well-known ports.

0 nmap $TARGET -p-
1 nmap $TARGET -sV -sC -p22,53,80,443,5515, 65534
2

Figure 3. SYN scan all ports and detailed scan over open ports.

B. Getting shell and adding user
Connecting with port 5515 via netcat returned

a root user shell. To add a user, I simply
edited the /etc/shadow and /etc/passwd file by
adding one entry in each file. The entry for the
/etc/passwd-file contained the username, uid etc.
and the other one contained the username, md5
hashed password etc. for the /etc/shadow-file. To

0 echo "echo tuan:x:1001:1001::/root:/bin/ash >> /
etc/passwd;exit" | nc -nv $TARGET 5515

1 echo ’echo tuan:\$1\$123456\
$qqQvjw0PqIk7otmzNsUIN0:18145:0:99999:7::: >> /
etc/shadow;exit’ | nc -nv $TARGET 5515

2

Figure 4. Adding user “tuan” with the password “password”.

check whether the user was added correctly, I
logged in via SSH with the new user.

C. SSH Brute-force
For brute forcing the SSH login for “iotgoa-

tuser” I used hydra. An alternative to brute forc-
ing over ssh would be getting the /etc/shadow
and /etc/passwd files and cracking the passwords
of its users locally with tools like JohnTheRip-
per or Hashcat. This method would circumvent

defence mechanisms like fail2ban, although the
usage of such defence mechanisms is unlikely on
an IoT device.

0 hydra -l iotgoatuser -P ./data/passwords.txt ssh
://TARGET -t 4 -f

1

Figure 5. Brute-force ssh

D. MITM
When visiting the web-interface of the IoT

device via Firefox, we are greeted with a warning,
that the certificate is self-signed. This poses a
threat to the user, since self-signed certificates
can not be revoked and don’t expire. If the cer-
tificate was somehow leaked, the integrity of the
website could not be restored without replacing
the certificate, which may not be easily done
on an IoT device sold to hundreds or thousands
of consumers. Self-signed certificates are used
nonetheless on IoT devices, since they are easier
to obtain and free of charge.

To proceed with the testing, I had to simply
press “Accept the Risk and Continue” in the
browser.

Logging in on the web interface with the cre-
dentials we obtained in the brute forcing step
didn’t seem to have worked. I then tried brute
forcing the login form with burpsuites “Intruder”
function and a wordlist from SecLists1, using the
root-user and the iotgoatuser-user, which didn’t
work either.

Using the backdoor, I then changed the root
password to “asdfasdf”, since the already existing
password didn’t seem easily crackable. Logging in
with the new credentials worked.

Looking at the luci-directory in /usr/lib/lu-
a/luci/ we found /usr/lib/lua/luci/con-
troller/iotgoat/iotgoat.lua, which lists the secret
developer page under https://$TARGET/cgi-
bin/luci/admin/iotgoat/cmdinject.

E. Static analysis
To start the static analysis, we first extract and

unpack the filesystem by finding the filesystem in
1https://github.com/danielmiessler/SecLists
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the firmware with binwalk, extracting it with dd
and unpacking it with unsquashfs. This gives us
access to the whole file system of the IoT device
we are analysing.

0 binwalk ./data/Syssec\ IoT\ Device.bin
1 dd if=data/Syssec\ IoT\ Device.bin of=data/0

x1F5A50 bs=1 skip=2054736 count=2813038
2 unsquashfs data/0x1F5A50
3

Figure 6. Extracting and unpacking filesystem

To find the shadow and passwd file, we can
simply run a find command to look for them or,
by simply knowing, that they are usually in the
/etc/ directory.

The same can be done for the certificate to find
a certificate in /etc/ssl/certs/ca-certificates.crt.

F. Write-up
The full write-up can be found

here: https://git.uni-due.de/sktatran/
syssec-embedded-security-writeup/-/blob/
main/writeup.org
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