
Overview of IoT Fuzzing Techniques
Tuan-Dat Tran

(3012345)

University of Duisburg-Essen
tuan-dat.tran@stud.uni-due.de

Abstract—Due to the rising popularity of IoT
devices and embedded systems and their usage
in not only in the business sector but also at
home, the focus has been shifting on the security
of those devices. To address this issue, there have
been many approaches in detecting, analyzing and
mitigating security flaws in IoT devices. One of
the ideas to detect vulnerabilities in an automated
manner is IoT Fuzzing. Contrary to regular fuzzing
it comes with its own constraints and techniques
to optimize performance and coverage of attack
surfaces.

In this paper we are comparing techniques used
by IoT fuzzers to circumvent the adversities pre-
sented by IoT devices like app-based approaches
by IoTFuzzer and Snipuzz or emulation approaches
used by Firm-Afl.

Due to the wide range of different IoT fuzzing
tools we are dividing the comparison of the tech-
niques based on the type of IoT fuzzing tool. We
also outline the evolution of IoT fuzzing techniques
to visualize the progress made in the field. This
overview can then be used to choose the optimal
usage of a specific IoT fuzzing device in a given
use case or combine different techniques used in
different fuzzing tools to create a novel approach
and find new security flaws through a combined
usage of IoT fuzzing techniques.

I. Introduction

Internet of Things (IoT) devices and embedded
systems are becoming more and more prevalent,
and with billions of devices being connected to
the internet they are an integral part of everyday
life[18]. Despite IoT devices being so widespread
they are riddled with security vulnerabilities,
which makes them an easy target for attackers,
since many of those vulnerabilities are considered
“low-hanging fruits”. This led to over 70 unique
attack incidents[21] between 2010 and 2016 while
the number of IoT devices and embedded systems

in use is steadily rising and with it the amount of
vulnerabilities in the wild.

While implementation flaws and app over-
privilege are just some of the many security
problems an IoT device can have, detection and
mitigation of these security flaws has proven itself
to be challenging[22]. One approach to discover
those flaws is called fuzz-testing, or fuzzing. Mit-
igation of found security flaws can often be hard
due to the nature of embedded devices being
heavily customized and often not adhering to
one specific standard. Therefore, the fixing of
security flaws is often left to the manufacturer
of the device, since they possess the necessary
tool chains, source code and pipelines to provide
security patches to their devices.

Fuzzing is a method to test software for flaws
by automatically generating and sending mal-
formed data to the software. There are many ways
to generate and send data to the software. An
example for a specific type of input generation
is mutation based fuzzing, which is utilized by
IoTFuzzer[6][13]. Mutation based fuzzing takes
a valid input and changes specific parts of it
to trigger an unexpected state in the software
and therefore crash it. Crashing or bringing the
software into an unexpected state is the general
goal of fuzzing, since behavior like this indicates
the presence of a bug.

Due to fuzzing being an automated process,
fuzzing became a common tool for software
testing in software development. Conventional
fuzzing of software can be easily done concur-
rently, since software can, in most cases, be eas-
ily executed concurrently[22]. This increases the
throughput of the fuzzer and thus the amount
of test cases the software is tested against. This
is one of the issues, which IoT fuzzers have to



deal with, since the fuzzing IoT devices usually in-
cludes fuzzing the physical device itself if there is
no emulation solution available. While emulation
increases scalability, it also enables another range
of issues and complexity to the fuzzing process
e.g. the acquisition of the firmware to emulate.
The process of firmware acquisition is different
for every device, since it is dependent on the
willingness of the manufacturer to publicly release
the firmware. If the manufacturer does not release
the firmware for his device, the firmware needs to
be extracted directly from the device, which can
vary in difficulty depending on the device[22].

Alternatively to fuzzing there are other ways to
test software for vulnerabilities like static and dy-
namic firmware analysis. Static firmware analysis
is the analysis of firmware without executing it by
using tools like binwalk[4] to unpack the firmware
and reverse engineer it with a reverse engineering
tool like IDA[19][10]. For dynamic analysis the
firmware is executed to be investigated. This can
be done in a multitude of ways, for example
running the firmware on the original device or em-
ulating the device to have the firmware run in the
emulated environment. The running firmware’s
behavior is then analyzed[9]. The advantage of
static analysis is the possibility to automate and
scale the processes of analyzing the firmware[8],
since the testing does not depend on a physi-
cal device. On the other hand, static analysis
also yields a high amount of false positives and
may not find completely new vulnerabilities with
the usage of its heuristics[39]. Another challenge
during static analysis is the handling of packed
or obfuscated code. This can be overcome with
dynamic analysis[37], by emulating the physical
device, which increases scalability and eliminates
the need to acquire the physical device to test
it[9].

IoT devices offer a large surface area regard-
ing communication e.g. network protocols, their
companion app or their web interface[6][5][35].
For this reason fuzzers which were not originally
designed to fuzz IoT devices can still be utilized
for IoT fuzzing, like in the case of boofuzz, which
was developed with the intent to fuzz network
protocols[5]. IoT fuzzers can also make use of
techniques used by dynamic analysis since both

approaches require execution of the firmware.
This makes emulation a feasible way of testing
IoT devices to increase scalability[15]. In this
work we will focus mainly on fuzzers, which were
primarily developed for IoT fuzzing.

Even though IoT fuzzers are used for find-
ing security vulnerabilities in devices, and fixing
those errors or learning from them and mitigating
them is the next logical step, we will not discuss
mitigation techniques in this paper since this is
outside of our scope. We will also not dive deep
into the implementations of specific techniques.

By creating an overview of different IoT fuzzing
techniques, we hope to archive a comprehensive
list of IoT fuzzing tools and their properties to
help developers and researchers to find the right
tool for their job and weigh in the positive and
negative aspects of existing approaches.

II. Background
A. IoT devices and embedded systems

The terms IoT devices and embedded systems
describe a great amount of devices. Embedded
systems are devices which interact with their sur-
roundings via sensors and regulators and are built
to serve a specific purpose[22]. IoT devices on the
other hand are broadly described as devices which
extend regular devices with an internet connec-
tion and enable them to communicate over it[26].
The term embedded devices can describe many
devices such as cameras or industrial control sys-
tems (ICS), which makes it hard to generalize em-
bedded devices. This also applies to IoT devices,
which includes the definition of internet capable
embedded systems. Ongoing, when we describe
IoT devices, the description also fits embedded
systems if not explicitly mentioned otherwise.

The wide applicability of IoT devices in the
context of business, manufacturing and home-use
increases the surface area for vulnerabilities to
be found. IoT devices, being so diverse regard-
ing their functionalities and ways to offer their
services, further increases the possible ways to
accumulate vulnerabilities.

IoT devices, due to being built for specific
purposes, don’t need as much processing power
as a general computer does. This leads to them
having a hardware platform specifically tailored

2



Router Smartphone

Printer Smartwatch

Zigbee/Z-Wave

Smart Lightbulb
IoT Hub

User

Internet

PC

Home network

Figure 1. Example of IoT home network (inspred by Wang et
al.[35]).

to their use case. And due to the heterogenic
nature of IoT devices in terms of e.g. OS, in-
struction sets or memory layouts, analysis of the
firmware proves difficult[8]. Reasons for this are
the different requirements a manufacturer has for
the device like the energy efficiency, real-time
capability or memory footprint[16].

As mentioned earlier, IoT devices, and espe-
cially home-based ones, use multiple ways to
connect to the internet. IoT devices connect to
the internet either directly through WiFi or via
an intermediary device like a smartphone and
connecting to it with Bluetooth[35]. Another way
is having an IoT hub which acts as proxy between
other IoT devices and either another intermediary
via Bluetooth or directly WiFi. This leads to
many ways an IoT network can be structured
depending on the kind and number of IoT devices
(Figure 1).

IoT firmware is the bridge between the hard-
ware of the device and the software running on it.
Sometimes IoT firmware can be acquired through
the vendors website. Alternative methods for ac-
quiring the firmware are extraction from the phys-
ical device, even though this way can be challeng-
ing due to debugging ports (e.g. JTAG interface)
to dump the firmware from the device may not
be available[6][30]. Firmware running on an IoT
device expects the presence of certain hardware

at boot- and/or runtime. Therefore missing hard-
ware may cause the device to get stuck in a busy
loop trying to find the hardware[32]. Additionally
firmware is often packed or even encrypted, which
poses as an obstacle for firmware analysis. In
some cases proprietary compression algorithms
or encryption without knowledge of the secret
key makes firmware analysis infeasible or even
impossible.

The works of Hahm et al.[16] propose a clas-
sification into low-end and high-end IoT devices
and dividing those two classifications into three
subcategories for low-end devices. Those classes
represent the complexity and computing capabil-
ity of those devices with “Class 0” having the
least resources and “Class 2” devices having the
most resources. In the works of Muench et al.[22]
a similar classification is used. They are classified
in “Type-0” to “Type-III” systems. T0 (Type-0)
systems represent multi-purpose systems, which
don’t fall under the classification of embedded
systems or IoT devices. T1 (Type-1) devices are
devices, which use a general purpose operating
system like Linux. The OS (operating system) is
often modified to be more lightweight and offer
a lightweight user environment like busybox. T2
(Type-2) devices run on customized operating
systems which are tailored to the devices use case.
In order to save space and computational power,
typical OS functions like a Memory Management
Unit may be omitted. T3 (Type-3) devices run
on a single control loop. On these devices the
firmware and the software, which runs the devices
functionalities, are a single instance. This leads to
a so-called “blob firmware”[31], consisting of the
application and system code compiled together.
Muench et al.[22] add that the classification of
the device merely indicates the kind of available
security mechanisms while the usage of them
varies from device to device.

Multi-purpose systems (i.e. smartphones and
computers) deploy many mechanisms to detect
faults like segmentation faults and report them
through core dumps. IoT devices may not have
such functionalities. The more minimalistic de-
sign of IoT fuzzers causes them to only perform
the tasks they were built for. Therefore function-
alities like heap hardening may not be present due

3



Send malformed input

Software

Monitor for crash/timeout/exit

Fuzzer

Input
generation

Monitor

Figure 2. Generalization of fuzzing process.

to the IoT devices limited computing power and
constrained costs[22].
B. Fuzzing

Fuzzing describes the process of testing a soft-
ware for faulty and unexpected behavior by send-
ing malformed messages as input for the soft-
ware[13]. The basic fuzzing process can be di-
vided into three steps: (1) input generation (2)
sending messages as input to software and (3)
monitor software behavior in reaction to the given
input (Figure 2). Due to the need to have the
tested software running, fuzzing is considered a
dynamic technique. Advantages of fuzzing are
the automation and scalability of the process.
This enables fuzzing to run many test cases in
a short amount of time which makes throughput
of the fuzzer an important metric in evaluating
fuzzers[7]. This is achieved by easily being able to
run software concurrently on multiple processors.
An alternative way is running the software in a
virtual environment[22].

There are multiple types of fuzzing techniques
based on the amount of known information about
the software: Whitebox, blackbox and greybox
fuzzing. Whitebox fuzzing has complete informa-
tion about the software’s source code. Blackbox
fuzzing on the other hand has no such information
while greybox fuzzing lies in between regarding
the available information. Blackbox fuzzing relies
purely on the binary of a program or the program
in its already executed state[20]. This leads to
blackbox fuzzers generally creating many unnec-
essary test cases due to the lack of knowledge

0 > echo "rm -rf / --no-preserve-root" | radamsa -n
5

1 rm -rf / --no-presef / --no-preserve-root
2 rm -rf / --no-preserve-root
3 rm -rf --no-preserve-roo
4 rm -rf!!;xcalc\0\u0000&#000;\n

\340282366920938463463374607431768211457!xcalc$’%
d\0$!!%d\x00 / --no-preserve-root

5 rm -rf / --no-preserve-r’xcalc%#x’xcalcaaaa%d%n\0\
x0aNaN%#x%p%d;xcalc+infoot

6

Figure 3. Example output of radamsa on “rm -rf / –no-
preserve-root” (omitted non-printable characters)

about the target[15]. Greybox fuzzers may use the
additional information to improve the monitoring
by injecting instrumentation to the binary at
compile time[7]. Whitebox fuzzers can utilize the
full source code to increase efficiency by using
techniques like symbolic execution or dynamic
taint analysis[28]. Comparing blackbox fuzzers
with greybox fuzzers or even whitebox fuzzers
is therefore not worthwhile, due to the different
starting conditions[11].

During the input generation step the fuzzer
generates and prepares messages according to its
generation strategy. Choosing which generation
strategy is used depends on the given information
or constraints of the system that is fuzzed. The
fuzzer radamsa[27], a general purpose blackbox
fuzzer, for example creates messages derived from
a possibly valid input and changes parts of it
to generate new test cases. This classifies it as
a mutation based fuzzer, since radamsa modifies
existing input to create test cases. The opera-
tions on the given input can be substitution of
characters, bit flips or other operations, based on
the tools internal heuristics (Figure 3). There are
lists, which contain strings that have a high prob-
ability to cause issues when used as input[3][14].
These lists may be used by fuzzers as well to
generate input but the generated input can also
be random. The goal is to find an input which
makes the software crash or display otherwise
unexpected behavior.

The message sending step depends on the tar-
get of the message. Software offers many ways to
interact with it, from simple things like user input
via text fields in desktop applications to packages

4



sent by the users through web browsers to web
servers. Those points of contact are possible tar-
gets for fuzzing. And dependent on the target,
different techniques for message generation may
be used. If a network protocol is fuzzed, like with
the tools boofuzz[5], the fuzzer needs to have
an understanding of the network protocol which
is fuzzed. While other fuzzers like XSStrike[36],
which was built to find XSS (cross site scripting)
bugs, target web applications. While XSS bugs
will not crash the software, they are a serious
security threat, which enable an attacker to inject
code to websites[12].

Monitoring the softwares behavior upon re-
ceiving a malformed message as input is the
last step of a typical fuzzing loop. The behavior
monitored depends on the earlier steps, but after
every loop the original programs state should be
restored to have an equal ground for all test
cases. When the fuzzer looks for XSS bugs or
SQL injections, the program will not crash, when
such a bug is triggered. This has to be taken into
consideration while monitoring the software and
therefore other methods of detecting those bugs
will have to be used than methods, which are
used to detect crashes due to memory errors like
buffer overflows. Fuzzers who don’t try to trigger
crashes usually use the applications answer to the
input message to determine whether the test case
triggered the event, which was tested for[5]. To
monitor a softwares crash the fuzzer can provide
instrumentation, with which the tested software
is compiled[1], if greybox fuzzing is used. A black-
box approach could be monitoring for specific
output of the software after a malformed input
has been sent or monitoring the status of the
network connection for networking capable soft-
ware. A fuzzers goal is to cover as many parts of
the software as possible. Evaluating the coverage
of the software is only possible for greybox or
whitebox fuzzers, since they can instrument the
code. This metric can be used to guide the fuzzing
process of generating input like in the state-of-art
mutational fuzzer AFL[1] and its fork afl++[2].

Another property of fuzzers is their adjust-
ments to the input after a fuzzing loop is done.
They are categorized into smart and “dumb”
fuzzers. Dumb fuzzers aren’t aware of the input

structure and therefore only try random input,
substitutions based on heuristics, delete parts of
the input or add parts to the input. This can lead
to a lot of test cases, which don’t lead anywhere.
Another disadvantage is that input generated
by a dumb fuzzer may easily be dismissed if a
specific input structure is expected. Looking at
smart fuzzers, which try to generate valid input
based on the softwares protocol[5], grammar[17]
or model[25]. To perform smart fuzzing the input
model must be provided to the fuzzer, which may
not be as easily accessible on proprietary devices,
although there are ways to derive an input model
from a large sample of valid and invalid input.

III. Intricacies of IoT Fuzzing
IoT Fuzzing is the application of fuzzers on IoT

devices, which poses new challenges, since fuzzing
hardware and their firmware and fuzzing software
work on different domains, each with their own
challenges.

The works of Muench et al.[22] offers insight
into the challenges of fuzzing embedded devices.
They mention three main challenges. The first
challenge being fault detection. Regular fuzzing
assumes that crashes are generally observable.
Due to an IoT devices limited computational
capability fault detection functionalities, usu-
ally present in multi-purpose devices, are rarely
present in embedded systems. Even when crash
causing fault detection mechanisms are available,
they would be logged on multi-purpose systems
while embedded devices usually do not provide
feedback like multi-purpose systems do due to
the lack the necessary I/O capabilities. A liveness
check, also called probing, can be performed to
check the status of the device while fuzzing it.
Probing can be either active and passive. During
active probing the fuzzer sends regular known
to be valid messages to the target system and
evaluates the response. The messages sent by the
fuzzer may cause a state change in the tested
device, which has to be accounted for. Passive
probing uses the devices responses to the test
message to determine liveness or observes visible
crashes.

Muench et al.[22] expands on this by classifying
system crashes by their observability. An observ-

5



able crash is therefore the most visible and man-
agable kind of crash, where the tested device stops
running and provides an error message or another
6 that is easily visible. It is added that this also
includes crashes, which don’t provide additional
information about the crash. Observable crashes
are the optimal case regarding crashes, since they
are visible and enable the fuzzer or tester to
react without delay. Reboots are another kind
of crash. Crashes on T3 devices automatically
lead to a reboot, since the crashed software and
firmware on the device are part of the same
“blob firmware”. On other kinds of devices, a
service may crash while the rest of the system
continues to run without problems. In reaction
to malformed input a device may hang. That
means that it halts execution and doesn’t react to
any more input. This may be due to being stuck
in an infinite loop. This leads to a slowdown in
throughput and the device needs to be restarted
if such behavior is found. Late Crashes pose a
challenge for testing the device. This behavior
is described as the device crashing after a non-
negligible amount of time after the cause of the
crash, like a malformed message, is sent, which
makes correlation between the cause and the
crash challenging. At last there are cases where
neither the device nor the software crash while
still being in an unexpected state. This can lead
to wrong data and incorrect results. This mal-
functioning of the device is hard to detect, since
the fuzzer needs information about the expected
response to determine whether its an output
caused by a malfunction or not. This is further
complicated due to the diverse message formats
in use[11] There are also cases of malformed
input not causing any visible effects, even when
errors occurred. These errors may cause crashes
or malfunctioning at a later time, which makes
detecting them during fuzzing almost impossible
without instrumentation[11].

The second challenge is performance and scala-
bility. While regular fuzzers can execute and test
software concurrently to increase the throughput
and therefore find more possible faults in the
software over time. Fuzz testing on an IoT device
is not possible in the same manner, since a phys-
ical device is being fuzzed. Even though multiple

copies of the same device could be purchased, to
scale up the test cases, it would become infeasible
due to financial limitations and infrastructure
requirements like power and space. Emulation
can help with the problem of scalability by em-
ulating the test device, but this approach faces
the challenge of IoT devices being dependent on
the hardware components of the device[39]. After
a fuzzing loop the original state of the tested
device has to be established to start every fuzzing
attempt with the same starting conditions. This
is not a challenge with regular software, since
the softwares original state is reestablished after
rerunning it and changes on the file system can be
reverted with a e.g. snapshot of the virtual VM
(virtual machine). Restarting an IoT device can
take up to a minute, since the device needs to be
completely rebooted to get it to a neutral state.

The third challenge Muench et al.[22] men-
tions is the instrumentation. Instrumentation on
desktop systems is used to obtain coverage infor-
mation about the software that is being fuzzed
and detect memory corruptions by adding them
during compile time or run time. Instrumentation
being added during compile time therefore re-
quires the firmware beforehand. This is already an
issue on IoT devices, since acquiring the firmware
is not always possible. Additionally the variety
of operating systems and processor architectures,
makes instrumentation on IoT devices a chal-
lenging task. Obtaining the manufacturers tool
chain to re-compile the firmware is rarely pos-
sible. This could be solved by utilizing binary
dynamic instrumentation frameworks like val-
grind[34] or using QEMUs instrumentation[33],
but these methods heavily depend on the OS and
CPU architecture.

Furthermore, IoT fuzzing suffers from the simi-
lar or the same problems as regular fuzzing based
on the fuzzing approach. Therefore an IoT fuzzer
which utilizes network protocol fuzzing will face
the same challenges as the used network protocol
fuzzer, like generating valid input[29], on top of
the aforementioned challenges of fuzzing an IoT
device.

6



IV. Overview of IoT Tools and
Techniques

In this section, we are going to create an
overview of different IoT fuzzers, list the tech-
niques they utilize and look at the techniques
advantages and disadvantages (Table I).

A. Mutational fuzzing
Mutation based fuzzing is a method of input

generation[24]. Mutational fuzzing requires pre-
defined messages to start the mutation on. These
mutation can include e.g. bit flipping, checking
for out of bound bugs, sending empty data or
substituting parts of the message with random
data[11] to explore new program states or trigger
unexpected behavior.

B. Generational fuzzer
Generation based fuzzers create messages from

scratch while being provided with the format
specifications for the input. Creating such a for-
mat specification requires manual effort and may
even be infeasible, especially if a format is not
available[24].

C. Snippet-based mutation
Snipped-based mutation is a novel approach

to input generation of Snipuzz[11]. Snippet-based
mutation is the application of the mutation-based
fuzzing approach on snippets. Snippets are parts
of messages, determined by a heuristic algorithm
and hierarchical clustering. Those snippets are
categorized by the response they trigger from
the IoT device. Snippets are then used to build
new messages to trigger new program states.
This method of mutation and message genera-
tion creates messages, which more likely follow
message or protocol constraints of IoT devices,
which leads to more effective fuzzing. Since this
mutation method is guided by the response of the
tested device, detailed responses are required to
accurately categorize snippets[11].

D. Message Structure Tree
Message Structure Tree is a mutational fuzzing

technique where the valid input is analyzed to
create a tree structure based on heuristics to
mutate single fields of the input[20]. This way the

grammar of the protocol can be derived without
explicitly providing the input format.

E. Binary Rewriting/Instrumentation
Binary rewriting can be used to add instrumen-

tation to firmware[22]. Instrumentation can be
used to e.g. add hooks to specific functions. This
is interesting for fuzzing once instrumentation is
added to internal exceptions to check for crashes
or otherwise unexpected behavior[15]. To perform
binary rewriting disassembly of the firmware is
necessary, which requires partial decompilation.
An additional challenge is the missing room for
additional instrumentation due to embedded de-
vices being optimized for their memory usage[22].

F. Full Emulation
Emulation tackles the problems of through-

put and scalability in IoT fuzzing. This is done
by improving the performance, success rate and
hardware-indipendance of fuzzers[11]. Full emu-
lation of the firmware with the help of heuristics
mitigates the lack of fault detection and increases
accuracy of found vulnerabilities to a level of
desktop system application fuzzers. Additionally
emulation based fuzzing provides the possibility
to repeat test cases and their executions to further
analyze specific test runs[23]. Often third party
developers lack details of the device to implement
good emulator. This makes building emulator
requiring huge amounts of manual effort[22]. This
is due to IoT devices being heavily dependent on
their hardware[39].

G. Partial Emulation
Partial emulation can lead to accurate vul-

nerability detection with decreased performance
in comparison to full emulation, but possibly
better performance than fuzzing the physical de-
vice, since it makes the fuzzing process more
scalable[22]. Partial emulation is done by only
emulating parts of the firmware or its peripheral
devices.

H. Augmented Process Emulation
This method of emulation is proposed and used

by Firm-AFL[39]. Augmented process emulation
utilizes both system-level emulation and user-
mode emulation to increase execution speed of the

7



Tool Technique Target Fuzzing Techniques Crash detection
SIoTFuzzer[38] Blackbox Web Interface Stateful Message Generation* Network Monitor

IoTFuzzer[6] Blackbox Companion App* Generation&Mutation
Taint analysis

Passive probing

Firm-AFL[39] Greybox Firmware Mutation
Augmented Process Emulation*

Emulation

Snipuzz[11] Blackbox API Snippet-based mutation* Network Monitor

Firmcorn[15] Greybox Firmware Optimal virtual execution*
Vulnerability-oriented fuzzing*

Instrumentation

Diane[29] Blackbox Companion App Mutation Active probing

HFuzz[20] Greybox Network protocol Message Structure Tree* Instrumentation

WMIFuzzer[35] Blackbox Web Interface Mutation Network Monitor

* = Novel technique in fuzzer
Table I

An overview of different IoT fuzzing tools.

tested firmware/software. System-level emulation
is only used when necessary, since it slows down
execution. Currently augmented process emula-
tion is limited to firmware that can be emulated in
a system emulator and runs a POSIX-compatible
operating system.

I. Optimized Virtual Execution
This technique used by Firmcorn[15] executes

firmware instructions in a lightweight CPU em-
ulator. This approach circumvents the overhead
generated by full-system emulation. The exe-
cution is further optimized by using heuristic
algorithms like omitting unnecessary functions
to optimize the execution process. Additionally
the optimized virtual execution uses information
about the context of the firmware.

J. Symbolic Execution
A technique used to increase code coverage

by using symbols as input and tracking manip-
ulations and comparisons of them during run-
time[37]. The usage of the input is then back-
tracked to solve the constraints of specific code
branches if a desired state is reached. Symbolic
execution has the problem of path explosions and
constraint solving, which poses as an obstacle
to scalability[7]. Path explosions is the expo-
nential increase of code branches the larger the
program is. A part of this problem are possible

infinite loops. Constraint solving can pose another
challenge, since depending on “how deep” the
programs tracking goes, the calculation of the
constraints of a specific branch can be complex.

K. Liveness Check
By checking for liveness a fuzzer can determine

the state of an IoT device. This is done actively by
sending regular heartbeat messages to the device
or passively by checking for expected responses of
the IoT device. Liveness checks may cause time-
outs to be detected as crashes, which slows down
fuzzing. Omitting active liveness check improves
performance, since probing packages aren’t sent,
which make up a certain percentage of traffic that
do not contribute to the detection of vulnerabili-
ties during the fuzzing process.

L. Taint analysis
Taint analysis is used to track data of interest

during execution. The data that is being tracked
is called taint source. IoTFuzzer[6] uses taint
analysis to track e.g. user input to find out which
input influences network messages sent to the
analyzed IoT device.

M. Stateful Message Generation
This technique was introduced by SIoT-

Fuzzer[38] which fuzzes web interfaces of IoT
devices. Stateful Message Generation (SMG) is

8



divided into three parts: front-end analysis, state
analysis and seed generation. SMG considers that
communication depends on certain states and
therefore groups together messages as a test case
to fuzz the target system. So far SMG is only used
to fuzz web interfaces in SIoTFuzzer[38].

N. Vulnerability-oriented fuzzing
Vulnerability-oriented fuzzing is used in Firm-

corn[15]. For this method, static analysis is used
to find vulnerable code. Vulnerable code is deter-
mined by multiple factors like, complexity, num-
ber of memory operations and call to sensitive
functions.

O. Coverage-oriented fuzzing
Coverage-oriented fuzzing generates input with

the traversion of different execution paths in
mind. This is done to maximize code coverage
to reach paths which may be vulnerable. This is
done by taking the ability of an input to trig-
ger new paths into account[28]. While coverage
guided fuzzing tries to maximize code coverage,
usually most of a softwares code is not vulnerable,
therefore a lot of resources are spent on exploring
paths, which are not vulnerable.

P. Directed fuzzing
Direct fuzzing is the process of generating in-

put with the goal of traversing specific execu-
tion paths[28]. Since only a fraction of firmware
code has vulnerabilities the graybox approach
to fuzzing by increasing code coverage leads to
test cases, which end up not finding vulnerabili-
ties[15].

V. Conclusion
In this paper we created an overview of the

different IoT fuzzing techniques used by state
of the art IoT fuzzing tools and compared their
approaches in regards to input generation, crash
detection heuristics and their device scopes. The
IoT fuzzer we looked at, utilized many techniques
to make use of many attack surfaces and even
used software outside the IoT devices themselves
to gain information about the device, like IoT-
Fuzzer[6] which used the devices companion app
to send fuzzing messages to the tested device.

9


