Overview of IoT Fuzzing Techniques

Tuan-Dat Tran
(3012345)

University of Duisburg-Essen
tuan-dat.tran@stud.uni-due.de

Abstract—Due to the rising popularity of IoT
devices and embedded systems and their usage
in, not only in the business sector, but also at
home, the focus has been shifting on the security
of those devices. To address this issue, there have
been many approaches in detecting, analyzing and
mitigating security flaws in IoT devices. One of
the ideas to detect vulnerabilities in an automated
manner is IoT Fuzzing. Contrary to regular fuzzing
it comes with its own constraints and techniques
to optimize performance and coverage of attack
surfaces.

In this paper we are comparing techniques used
by IoT fuzzers to circumvent the adversities pre-
sented by IoT devices like app-based approaches
by IoTFuzzer and Snipuzz or emulation approaches
used by Firm-Afl.

Due to the wide range of different IoT fuzzing
tools we are dividing the comperison of the tech-
niques based on the type of IoT fuzzing tool. We
also outline the evolution of IoT fuzzing techniques
to visualize the progress made in the field. This
overview can then be used to choose the optimal
usage of a specific IoT fuzzing device in a given
use case or combine different techniques used in
different fuzzing tools to create a novel approach
and find new security flaws through an combined
usage of IoT fuzzing techniques.

I. INTRODUCTION

Internet of Things (IoT) devices and embedded
systems are becoming more and more prevalent,
and with billions of devices being connected to
the internet they are an integral part of everyday
life[18]. Despite IoT devices being so widespread
they are riddled with security vulnerabilities,
which makes them an easy target for attackers,
since many of those vulnerabilities are considered
“low hanging fruits”. This led to over 70 unique
attack incidents[21] between 2010 and 2016, while
the number of IoT devices and embedded systems

in use is steadily rising and with it the amount of
vulnerabilities in the wild.

While implementation flaws and app over-
privilege are just some of the many security
problems an IoT device can have, detection and
mitigation of these security flaws has proven itself
to be challenging[22]. One approach to discover
those flaws is called fuzz-testing, or fuzzing. Mit-
igation of found security flaws can often be hard
due to the nature of embedded devices being
heavily customized and often not adhering to
one specific standard. Therefore, the fixing of
security flaws is often left to the manufacturer
of the device, since they possess the necessary
toolchains, source code and pipelines to provide
security patches to their devices.

Fuzzing is a method to test software for flaws
by automatically generating and sending mal-
formed data to the software. There are many ways
to generate and send data to the software. An
example for a specific type of input generation is
mutation based fuzzing, which is utilized by IoT
Fuzzer[13]. Mutation based fuzzing takes a valid
input and changes specific parts of it to trigger
an unexpected state in the software and therefore
crashing it. Crashing or bringing the software into
an unexpected state is the general goal of fuzzing,
since behavior like this indicates the presence of
a bug.

Due to fuzzing being an automated process,
fuzzing became a common tool for software
testing in software development. Conventional
fuzzing of software can be easily done concur-
rently, since software can, in most cases, be eas-
ily executed concurrently[22]. This increases the
throughput of the fuzzer and thus the amount
of test cases the software is tested against. This
is one of the issues, which IoT fuzzers have to

deal with, since the fuzzing IoT devices usually
include fuzzing the physical device itself if there is
no emulation solution available, while emulation
enables another class of issues and complexity to
the fuzzing process. An example for an arising
problem due to emulation is the acquisition of
the firmware. The process of firmware acquisition
is different for every device, since it is dependant
on the willingness of the manufacturer to publicly
release the firmware. If the manufacturer does not
release the firmeware for his device the firmware
needs to be extracted directly from the device,
which can vary in difficulty depending on the
device[22].

Alternativly to fuzzing there are other ways to
test software for vulnerabilities like static and dy-
namic firmware analysis. Static firmware analysis
is the analysis of firmware without executing it by
using tools like binwalk[4] to unpack the firmware
and reverse engineering it with a reverse engineer-
ing tool like IDA[19][10]. For dynamic analysis
the firmware is executed to be investigated. This
can be done in a multitude of ways, for example
running the firmware on the original device or em-
ulating the device to have the firmware run in the
emulated environment. The running firmwares
behavior is then analyzed[9]. The advantage of
static analysis is the possibility to automate and
scaling the processes of analyzing the firmware[8],
since the testing does not depend on a physi-
cal device. On the other hand, static analysis
also yields a high amount of false positives and
may not find completly new vulnerabilities, with
the usage of its heuristics[40]. Another challenge
during static analysis is the handling of packed
or obfuscated code. This can be overcome with
dynamic analysis[38] by emulating the physical
device, which increases scalability and eliminates
the need to acquire the physical device to test
it[9)].

Since IoT devices offer a large surface area
regarding communication e.g. network proto-
cols, their companion app or their web inter-
face[6][5][35]. For this reason fuzzers, which were
not originally designed to fuzz IoT devices can
still be utilized for IoT fuzzing, like in the case
of boofuzz, which was developed with the intent
to fuzz network protocols[5]. IoT fuzzers can also

make use of techniques used by dynamic analysis,
since both approaches require execution of the
firmware. This makes emulation a feasable way of
testing loT devices to increase scalability[15]. In
this work we will focus mainly on fuzzers, which
were primarily developed for IoT fuzzing, but
since techniques used by non-IoT focused fuzzers
are also used by fuzzers, that focus on IoT devices,
non-IoT focused fuzzers will be considered in the
overview.

Even though IoT fuzzers are used for finding
security vulnerabilities in devices and fixing those
errors or learning from them and mitigating them
is the next logical step we will not discuss mitiga-
tion techniques in this paper, since this is outside
of our scope. We will also not dive deep into the
implementations of specific techniques.

By creating an overview of different [oT fuzzing
techniques we hope to archive a comprehensive
list of IoT fuzzing tools and their properties to
help developers and researchers to find the right
tool for their job and weight in the positive on
negative aspects of existing approaches to im-
prove upon them.

II. BACKGROUND
A. IoT devices and embedded systems

The terms [oT devices and embedded systems
describe a great amount of devices. Embedded
systems are devices, which interact with their sur-
roundings via sensors and regulators and are built
to serve a specific purpose[22]. ToT devices on
the other hand are broadly described as devices,
which extend regular devices with an internet
connection and enable them to communicate over
it[26]. The term embedded devices can describe
many devices such as cameras or industrial con-
trol systems (ICS), which makes it hard to gener-
alize embedded devices. This also applies to IoT
devices, which includes the definition of internet
capable embedded systems. Ongoing, when we
describe IoT devices, the description also fits
embedded systems if not explicitly mentioned.

The wide applicability of IoT devices in the
context of business, manufacturing and home-use
increases the surface area for vulnerabilities to
be found. IoT devices being so diverse regard-
ing their functionalities and ways to offer their

Home network

User

E? R
& _ I
0 S g

Smartphone

o}))

Printer Smartwatch

Zigbee/Z-Wave a

loT Hub -
Smart Lightbulb

Internet

Figure 1. Example of IoT home network (inspred by Wang et
al.[35]).

services further increases the possible ways to
accumulate vulnerabilitiescitation neeeded.

[oT devices, due to being built for specific
purposes, don’t need as much processing power
as a general computer does. This leads to them
having an hardware platform specifically tailored
to their use case. And due to the heterogenic
nature of IoT devices in terms of e.g. OS, in-
struction sets or memory layouts, analysis of the
firmware proves difficult[8]. Reasons for this are
the different requirements a manufacturer has for
the device like the energy efficiency, real-time
capabilty or memory footprint[16].

Like mentioned earlier IoT devices, and es-
pecially home-based ones, use multiple ways to
connect to the internet. Either directly through
WiFi or via a intermediary device like a smart-
phone and connecting to it with Bluetooth[35].
Another way is having an IoT hub, which acts
as proxy between other IoT devices and either
another intermediary via Bluetooth or directly
WiFi. This leads to many ways an [oT network
can be structured, depending on the kind and
number of IoT devices (Figure 1).

[oT firmware is the bridge between the hard-
ware of the device and the software running on
it. Firmware expects presence of certain hard-
ware at boot- and/or runtime and may log the
error or keeps trying to find it and goes into a

busy loop[32]. Sometimtes [oT firmware can be
acquired through the vendors website. Alternative
methods for acquiring the firmware are extraction
from the physical device, even though this way
can be challenging due to debugging ports (e.g.
JTAG interface) to dump the firmware from the
device may not be available[6][30]. Additionally
firmware is often packed or even encrypted, which
poses as an obstacle for firmware analysis. In
some cases proprietary compression algorithms
or encryption without knowledge of the secret
key makes firmware analysis infeasable or even
impossible.

The works of Hahm et al.[16] proposes a clas-
sification into low-end and high-end IoT devices
and deviding those two classificatoins into three
subcategories for low-end devices. Those classes
represent the complexity and computing capabil-
ity of those devices with “Class 0” having the
least resources and “Class 2” devices having the
most resources. In the works of Muench et al.[22]
a similar classification is done. They are classified
in “Type-0” to “Type-I11" systems. TO (Type-0)
systems represent multi-purpose systems, which
don’t fall under the classification of embedded
systems or IoT devices. T1 (Type-1) devices are
devices, which use a general purpose operating
system like Linux. The OS (operating system)
is often modified to be more lightweight and
offer a lightweight user environment like busybox.
T2 (Type-2) devices run on customized operat-
ing systems, which are tailored to the devices
use case. In order to save space and computa-
tional power typical OS functions like a Memory
Management Unit may be omited. T3 (Type-3)
devices run on a single control loop. On these
devices the firmware and the software, which runs
the devices functionalities, are a single instance.
This leads to a so called “blob firmware”[31],
consisting of the application and system code
compiled together. Muench et al.[22] add, that the
classification of the device merely indicates about
the kind of available security mechanisms, while
the usage of them varies from device to device.

We will later use these classes, and especially
those proposed by Muench et al.[22], to classify
IoT devices when comparing IoT fuzzing tech-
niques, since different types of IoT devices require

Fuzzer
Monitor @
Input

generation

Figure 2. Generalization of fuzzing process.

Monitor for crash/timeout/exit

A 4

Software

Send malformed input

different approaches to fuzzing, while also posing
different challenges.

Multi-purpose systems (i.e. smartphones and
computers) deploy many mechanisms to detect
faults like segmentation faults and report them
through core dumps. IoT devices may not have
such functionalities due to their more minimal-
istic designs to only perform the tasks they
were built for. Therefore functionalities like heap
hardening may not be present due to the IoT
devices limited computing power and constrained
costs[22].

B. Fuzzing

Fuzzing describes the process of testing a soft-
ware for faulty and unexpcted behavior by send-
ing malformed messages as input for the soft-
ware[13]. The basic fuzzing process can be di-
vided into three steps: (1) input generation (2)
sending messages as input to software and (3)
monitor software behavior in reaction to the given
input (Figure 2). Due to the need to have the
tested software running, fuzzing is considered a
dynamic technique. Advantages of fuzzing are the
automation and scalability of the process. This
enables fuzzing to be run many test cases in a
short amount of time, which makes throughput
of the fuzzer an important metric in evaluating
fuzzers[7]. This is achieved by easily being able to
run software concurrently on multiple processors.
An alternative way is running the software in a
virtual environment[22].

There are multipe types of fuzzing techniques
based on the amount of known information about

the software. Whitebox, blackbox and greybox
fuzzing. Whitebox fuzzing has complete informa-
tion about the softwares source code. Blackbox
fuzzing on the other hand has no such informa-
tion, while greybox fuzzing lies inbetween regard-
ing the available information. Blackbox fuzzing
relies purly on the binary of a program or the
program in it’s already executed state[20]. This
leads to blackbox fuzzers generally creating many
unnecessary test cases due to the lack of knowl-
edge about the target[15]. Greybox fuzzers may
use the additional information to improve the
monitoring by injecting instrumentation to the
binary at compile time[7]. Whitebox fuzzers can
utilize the full source code to increase efficiency
by using techniques like symbolic execution or
dynamic taint analysis[28]. Comparing blackbox
fuzzers with greybox fuzzers or even whitebox
fuzzers is therefore not worthwhile, due to the
different starting conditions[11].

During the input generation step the fuzzer
generates and prepares messages according to its
generation strategy. Choosing which generation
strategy is used depends on the given informa-
tion or constraints of the system that is fuzzed.
The fuzzer radamsa[27], a general purpose black-
box fuzzer, for example creates messages derived
from a possibly valid input and changes parts
of it to generate new test cases. Which classifies
him as a mutation based fuzzer, since radamsa
modifies existing input to create test cases. The
operations on the given input can be substitu-
tion of characters, bit flips or other operations,
based on the tools internal heuristics (Figure 3).
There are lists, which contain strings, that have
a high propability to cause issues when used as
input[3][14]. These lists may be used by fuzzers
as well to generate input, but the generated
input can also be random. The goal is to find a
input, which makes the software crash or display
otherwise unexpected behavior.

The message sending step depends on the tar-
get of the message. Software offers many ways to
interact with it, from simple things like user input
via textfields in desktop applications to packages
sent by the users through web browsers to web
servers. Those points of contacts are possible
targets for fuzzing. And dependant on the target,

0 > echo "rm -rf / --no-preserve-root" | radamsa -n
5

1 rm -rf / --no-presef / --no-preserve-root

2 rm -rf / --no-preserve-root

3 rm -rf --no-preserve-roo

4 rm -rf!!;xcalc\0\u0000�\n

\340282366920938463463374607431768211457 ! xcalc$’%
d\0$!!%d\x00 / --no-preserve-root

5 rm -rf / --no-preserve-r’xcalc/#x’xcalcaaaa’d%n\0\
x0aNaN%#x7p%d;xcalc+infoot

Figure 3. Example output of radamsa on “rm -rf / -no-
preserve-root” (omitted non-printable characters)

different techniques for message generation may
be used. If a network protocol is fuzzed, like with
the tools boofuzz[5], the fuzzer needs to have
an understanding of the network protocol which
is fuzzed. While other fuzzers like XSStrike[36],
which was built to find XSS (cross site scripting)
bugs, target web applications. While XSS bugs
will not crash the software, they are a serious
security threat, which enable an attacker to inject
code to websites[12].

Monitoring the softwares behavior upon re-
ceiving a malformed message as input is the
last step of a typical fuzzing loop. The behavior
monitored depends on the earlier steps, but after
every loop the original programs state should be
restored to have an equal ground for all test
cases. When the fuzzer looks for XSS bugs or
SQL injections, the program will not crash, when
such a bug is triggered. This has to be taken into
consideration while monitoring the software and
therefore other methods of detecting those bugs
will have to be used than methods, which are
used to detect crashes due to memory errors like
buffer overflows. Fuzzers who don’t try to trigger
crashes usually use the applications answer to the
input message to determine whether the test case
triggered the event, which was tested for[5]. To
monitor a softwares crash the fuzzer can provide
instrumentation, with which the tested software
is compiled[1], if greybox fuzzing is used. A black-
box approach could be monitoring for specific
output of the software after a malformed input
has been sent or monitoring the status of the
network connection for networking capable soft-
ware. A fuzzers goal is to cover as many parts of

the software as possible. Evaluating the coverage
of the software is only possible for greybox or
whitebox fuzzers, since they can instrument the
code. This metric can be used to guide the fuzzing
process of generating input like in the state-of-art
mutational fuzzer AFL[1] and its fork afl++[2].

Another property of fuzzers is their adjust-
ments to the input after a fuzzing loop is done.
They are categorized into smart and “dumb”
fuzzers. Dumb fuzzers aren’t aware of the input
structure and therefore only try random input,
substitutions based on heuristics, delete parts of
the input or add parts to the input. This can
lead to a lot of test cases, which don’t lead
anywhere. Another disadvantage is that input
generated by a dumb fuzzer may easily be dis-
missed if a specific input structure is expected.
Looking at smart fuzzers, which try to generate
valid input based on the softwares protocol[5],
grammar([17] or model[25] describe grammar,
protocol, model. To perform smart fuzzing the
input model must be provided to the fuzzer,
which may not be as easily accessable on propri-
etary devices, although there are ways to derive
an input model from a large sample of valid and
invalid input.

III. INTRICACIES OF I0oT FuzzING

[oT Fuzzing is the application of fuzzers on 10T
devices, which poses new challenges, since fuzzing
hardware and their firmware and fuzzing software
work on different domains, each with their own
challenges.

The works of Muench et al.[22] offers insight
into the challenges of fuzzing embedded devices.
They mention three main challanges. The first
challenge being fault detection. Regular fuzzing
assumes, that crashes are generally observable.
Due to an IoT devices limited computational
capability fault detection functionalities, usu-
ally present in multi-purpose devices, are rarely
present in embedded systems. Even when crash
causing fault detection mechanisms are available,
they would be logged on multi-purpose systems,
whileembedded devices usually do not provide
feedback like multi-purpose systems do due to
the lack the necessary 1/O capabilities. A liveness
check, also called probing, can be performed to

check the status of the device while fuzzing it.
Probing can be either active and passive. During
active probing the fuzzer sends regular known
to be valid messageses to the target system and
evaluates the response. The messages sent by the
fuzzer may cause a state change in the tested
device, which has to be accounted for. Passive
probing uses the devices responses to the test
message to determine liveness or observes visible
crashes.

Muench et al.[22] expands on this by classifying
system crashes by their observability. An observ-
able crash is therefore the most visible and man-
agable kind of crash, where the tested device stops
running and provides an error message or another
6 that is easily visible. It is added, that this also
includes crashes, which don’t provide additional
information about the crash. Observable crashes
are the optimal case regarding crashes, since they
are visible and enable the fuzzer or tester to
react without delay. Reboots are another kind
of crash. Crashes on T3 devices automatically
lead to a reboot, since the crashed software and
firmware on the device are part of the same
“blob firmware”. On other kinds of devices, a
service may crash, while the rest of the system
continues to run without problems. In reaction to
malformed input a device may hang. That means,
that it halts execution and doesn’t react to any
more input. This may be due to being stuck in
an infinite loop. This leads to a slowdown in
throughput and the device needs to be restarted
if such behavior is found. Late Crashes pose a
challenge for testing the device. This behavior
is described as the device crashing after a non-
negligible amount of time after the cause of the
crash, like a malformed message, is sent, which
makes correlation between the cause and the
crash challenging. At last there are cases where
neither the device nor the software crash, while
still being in an unexpected state. This can lead
to wrong data and incorrect results. This mal-
functioning of the device is hard to detect, since
the fuzzer needs information about the expected
response to determine whether an its an output
caused by a malfunction or not. This is further
complicated due to the diverse message formats
in use[l1] There are also cases of malformed

input not causing any visible effects, even when
errors occured. These errors may cause crashes
or malfunctioning at a later time, which makes
detecting them during fuzzing almost impossible
without instrumentation[11].

The second challenge is performance and scala-
bility. While regular fuzzers can execute and test
software concurrently to increase the throughput
and therefore find more possible faults in the
software over time. Fuzz testing on an IoT device
is not possible in the same manner, since a phys-
ical device is being fuzzed. Even though multiple
copies of the same device could be purchased, to
scale up the test cases, it would become infeasable
due to financial limitations and infrastructure
requrements like power and space. Emulation can
help with the problem of scalability by emu-
lating the test device, but this approach faces
the challenge of 10T devices being dependant on
the hardware components of the device[40]. After
a fuzzing loop the original state of the tested
device has to be established to start every fuzzing
attempt with the same starting conditions. This
is not a challenge with regular software, since
the softwares original state is reestablished after
rerunning it and changes on the filesystem can be
reverted with a e.g. snapshot of the virtual VM
(virtual machine). Restarting an IoT device can
take up to a minute, since the device needs to be
completly rebooted to get it to a neutral state.

The third challgenge Muench et al.[22] men-
tions is the instrumentation. Instrumentation on
desktop systems is used to obtain coverage infor-
mation about the software that is being fuzzed
and detect memory corruptions by adding them
during compile time or run time. Instrumenta-
tion being added during compile time therefore
requires the firmware beforehand. This is already
an issue on loT devices, since acquireing the
firmware is not always possible. Additionally the
variety of operating systems and processor archi-
tectures, makes instrumentation on IoT devices
a challenging task. Obtaining the manufacturers
toolchain to re-compile the firmware is rarely
possible. This could be solved by utilizing binary
dynamic instrumentation frameworks like val-
grind[34] or using QEMUs instrumentation[33],

but these methods heavily depend on the OS and
CPU architecture.

Furthermore, IoT fuzzing suffers from the simi-
lar or the same problems as regular fuzzing based
on the fuzzing approach. Therefore an [oT fuzzer
which utilizes network protocol fuzzing will face
the same challenges as the used network protocol
fuzzer, like generating valid input[29], on top of
the challanges of fuzzing an IoT device.

IV. OvERvVIEW OF I0T TOOLS AND
TECHNIQUES

In this section we are going to create an
overview of different IoT fuzzers, list the tech-
niques they utilize and look at the techniques
advantages and disadvantages (Table I). As we
can see the fuzzers requiring firmware, i.e. white-
/greybox fuzzers, are mostly designed to fuzz loT
devices, built on top of linux based firmware.
This is due to them usually utilizing emulation
to speed up the fuzzing process, which fuzzing
usually excells at, but where [oT fuzzing esspe-
cially is a bottleneck. Emulation of Linux based
devices covers the most available devicescitation
needed, so going for those makes most sense
instead of building a custom emulator for every
[oT device there is.

A. Techniques

1) Static Instrumentation:

2) Binary Rewriting:

3) Physical Re-Hosting:

4) Full Emulation: Emulation tackes the prob-
lems of throughput and scalability in IoT
fuzzing. This is done by improving the perfor-
mance, successrate and hardware-indipendance of
fuzzers[11]. Full emulation of the firmware with
the help of heuristics mitigates the lack of fault
detection and increases accuracy of found vul-
nerabilities to a level of desktop system applica-
tion fuzzers. Additionally emulation based fuzzing
provides the possibility to repeat test cases and
their executions to further analyze specific test
runs|23].

Often third party developers lack details of
the device to implement good emulator. This
makes building emulator requiring huge amounts
of manual effort[22]. This is due to IoT devices
being heavily dependant on their hardware[40].

5) Partial Emulation: Can lead to accurate
vulnerability detection with decreased perfor-
mance in comparison to full emulation, but possi-
bly better performance than fuzzing the physical
device, since it makes the fuzzing process more
scalable[22].

6) Segment Tracking:

7) Format Specifier Tracking:

8) Heap Object Tracking:

9) Call Stack Tracking:

10) Call Frame Tracking:

11) Stack Object Tracking:

12) Symbolic Ezecution: A technique used to
increase code coverage by using symbols as input
and tracking manipulations and comparisons of
them during runtime([38]. The usage of the input
is then backtracked to solve the constraints of
specific code branches if a desired state is reached.
Symbolic execution has the problem of path ex-
plosions and constraint solving, which poses as
an obstacle to scalability[7]. Path explosions is
the exponential increase of code branches the
larger the program is. A part of this problem
are possible infinite loops. Constraint solving can
pose another challenge, since depending on “how
deep” the programs tracking goes, the calculation
of the constraints of a specific branch can be
complexcitation needed.

13) Liveness Check: May cause timeouts to be
detected as crashes. Slows down fuzzing. Omit-
ting liveness check improves performance, since
probing packages aren’t sent, which make up a
certain percentage of traffic, that do not con-
tribute to the detection of vulnerabilities during
the fuzzing process.

14) Generational fuzzer: Does not require a
protocol template Generational fuzzers, such as
PROTOS, SPIKE, and PEACH, construct inputs
according to some providedformat specification.
Generational fuzzing requires an input format
specification,which imposes significant manual ef-
fort to create (especiallywhen attempting to fuzz
software on a large scale) or maybe infeasible if
the format is not available. Thus, most recent-
work in the field of fuzzing, including this paper,
focuses on mutational fuzzing[24].

15) Mutation based fuzzing: Requires proto-
col template By contrast, mutational fuzzers,

Tool Year Fuzzing approach Techniques Scope
SloTFuzzer[39] 2021 Blackbox
IoTFuzzer[6] 2018 Blackbox
Firm-AFL[40] 2019 Greybox
Snipuzz[11] 2021 Blackbox
Firmcorn[15] 2020
FirmFuzz[32] 2019 Greybox Static analysis, Emulation (QEMU) Linux based MIPS & LE ARM firmware
Diane[29] 2021 Blackbox
HFuzz[20] 2019
IoTHunter[37] 2019
WMIFuzzer[35] 2019 Blackbox Mutation Web Management Interface in IoT devices

Table 1
AN OVERVIEW OF DIFFERENT 10T FUZZING TOOLS.

includingAFL, honggfuzz, and zzuf, create in-
puts by ran-domly mutating analyst-provided or
randomly-generated seeds[24].

16) Taint-based fuzzing: [7][6]

17) genetic algorithm: [7]

18) evolutionary fuzzing: [28]

19) wulnerability-oriented fuzzing: [15]

20) Stateful Message Generation: [39]

21) Coverage-oriented fuzzing: Since only a

fraction of firmware code has vulnerabilities the
graybox approach to fuzzing by increasing code
coverage leads to test cases, which end up not
finding vulnerabilities[15].

B. Classification
V. CONCLUSION

In this paper we created an overview of the
different IoT fuzzing techniques used by state
of the art IoT fuzzing tools and compared their
approaches in regards of input generation, exe-
cution speed, crash detection heuristics and their
device scopes based on the classification in the
work of Muench et al.[22]. The comparison was
done seperatly based on whether they were black-
/white- or greybox fuzzers.

REFERENCES

[1] american fuzzy lob. https://github.com/google/AFL.

[2] American Fuzzy Lop plus plus.
https://github.com/AFLplusplus/AFLplusplus.

[3] Big List of Naughty Strings. https:
//github.com/minimaxir /big-list-of-naughty-strings.

[4] Binwalk. https://github.com/ReFirmLabs/binwalk.

[5] boofuzz. https://github.com/jtpereyda/boofuzz.

(10]

Jiongyi Chen et al. “IoTFuzzer: Discovering Memory
Corruptions in IoT Through App-based Fuzzing”.

In: 25th Annual Network and Distributed System
Security Symposium, NDSS 2018, San Diego,
California, USA, February 18-21, 2018.

The Internet Society, 2018.

URL: http://wp.internetsociety.org/ndss/wp-
content/uploads/sites/25/2018/02/ndss2018%5C__01A-
1%5C_ Chen%5C__paper.pdf.

Peng Chen and Hao Chen.

“Angora: Efficient Fuzzing by Principled Search”.

In: 2018 IEEE Symposium on Security and Privacy, SP
2018, Proceedings, 21-28 May 2018, San Francisco,
California, USA. IEEE Computer Society, 2018,

pp. 711-725. por: 10.1109/SP.2018.00046.

URL: https://doi.org/10.1109/SP.2018.00046.

Andrei Costin, Jonas Zaddach, Aurélien Francillon, and
Davide Balzarotti. “A Large-Scale Analysis of the
Security of Embedded Firmwares”.

In: Proceedings of the 28rd USENIX Security
Symposium, San Diego, CA, USA, August 20-22, 2014.
Ed. by Kevin Fu and Jaeyeon Jung.

USENIX Association, 2014, pp. 95-110. URL:
https://www.usenix.org/conference/usenixsecurity14/
technical-sessions/presentation/costin.

Andrei Costin, Apostolis Zarras, and

Aurélien Francillon.

“Automated Dynamic Firmware Analysis at Scale: A
Case Study on Embedded Web Interfaces”.

In: Proceedings of the 11th ACM on Asia Conference on
Computer and Communications Security, AsiaCCS
2016, Xi’an, China, May 30 - June 3, 2016. Ed. by
Xiaofeng Chen, XiaoFeng Wang, and Xinyi Huang.
ACM, 2016, pp. 437-448.

DoI: 10.1145/2897845.2897900.

URL: https://doi.org/10.1145/2897845.2897900.

Yaniv David, Nimrod Partush, and Eran Yahav.
“FirmUp: Precise Static Detection of Common
Vulnerabilities in Firmware”.

In: Proceedings of the Twenty-Third International
Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS 2018,
Williamsburg, VA, USA, March 24-28, 2018.

Ed. by Xipeng Shen, James Tuck, Ricardo Bianchini,
and Vivek Sarkar. ACM, 2018, pp. 392-404.

[11]

[12]

[13]

[16]

[17]

[21]

[22]

DpoI: 10.1145/3173162.3177157.

URL: https://doi.org/10.1145/3173162.3177157.
Xiaotao Feng et al. “Snipuzz: Black-box Fuzzing of IoT
Firmware via Message Snippet Inference”.

In: CoRR abs/2105.05445 (2021). arXiv: 2105.05445.
URL: https://arxiv.org/abs/2105.05445.

The OWASP Foundation.

Cross Site Scripting (XSS) Software Attack | OWASP.
2021. URL:
https://web.archive.org/web/20210615012447 /https:

/ /owasp.org/www-community/attacks/xss/ (visited on
06,/15,/2021).

The OWASP Foundation. Fuzzing | OWASP. 2021.
URL:
https://web.archive.org/web/20210414111843 /https:

/ /owasp.org/www-community /Fuzzing (visited on
04/14/2021).

FuzzDB. https://github.com/fuzzdb-project /fuzzdb.
Zhijie Gui, Hui Shu, Fei Kang, and Xiaobing Xiong.
“FIRMCORN: Vulnerability-Oriented Fuzzing of IoT
Firmware via Optimized Virtual Execution”.

In: IEEE Access 8 (2020), pp. 29826-29841.

pol: 10.1109/ACCESS.2020.2973043.

URL: https://doi.org/10.1109/ACCESS.2020.2973043.
Oliver Hahm, Emmanuel Baccelli, Hauke Petersen, and
Nicolas Tsiftes. “Operating Systems for Low-End
Devices in the Internet of Things: A Survey”.

In: IEEE Internet Things J. 3.5 (2016), pp. 720-734.
por: 10.1109/JI0T.2015.2505901.

URL: https://doi.org/10.1109/JI0T.2015.2505901.
Renéta Hodovan, Akos Kiss, and Tibor Gyiméthy.
“Grammarinator: a grammar-based open source
fuzzer”. In: Proceedings of the 9th ACM SIGSOFT
International Workshop on Automating TEST Case
Design, Selection, and Evaluation,
A-TEST@ESEC/SIGSOFT FSE 2018, Lake Buena
Vista, FL, USA, November 05, 2018. Ed. by

Wishnu Prasetya, Tanja E. J. Vos, and Sinem Getir.
ACM, 2018, pp. 45-48. DoI: 10.1145/3278186.3278193.
URL: https://doi.org/10.1145/3278186.3278193.

Mark Hung. “Leading the IoT Gartner Insight on How
to Lead in a Cnnected World”.

In: Gartner Research 1 (2017), pp. 1-5.

IDA Pro. https://hex-rays.com/ida-pro/.

Xinyao Liu, Baojiang Cui, Junsong Fu, and Jinxin Ma.
“HFuzz: Towards automatic fuzzing testing of NB-IoT
core network protocols implementations”. In: Future
Gener. Comput. Syst. 108 (2020), pp. 390-400.

por: 10.1016/j.future.2019.12.032.

URL: https://doi.org/10.1016/j.future.2019.12.032.
David McMillen.

“Security attacks on industrial control systems”.

In: Technical Report. IBM, 2015.

Marius Muench, Jan Stijohann, Frank Kargl,

Aurélien Francillon, and Davide Balzarotti.

“What You Corrupt Is Not What You Crash:
Challenges in Fuzzing Embedded Devices”.

In: 25th Annual Network and Distributed System
Security Symposium, NDSS 2018, San Diego,
California, USA, February 18-21, 2018.

The Internet Society, 2018.

URL: http://wp.internetsociety.org/ndss/wp-

29]

(32]

content /uploads/sites/25/2018/02/ndss2018%5C__ 01A-
4%5C__Muench%5C__paper.pdf.

Panda. https://github.com/panda-re/panda.

Hui Peng, Yan Shoshitaishvili, and Mathias Payer.
“T-Fuzz: Fuzzing by Program Transformation”.

In: 2018 IEEE Symposium on Security and Privacy, SP
2018, Proceedings, 21-28 May 2018, San Francisco,
California, USA. IEEE Computer Society, 2018,

pp. 697-710. por: 10.1109/SP.2018.00056.

URL: https://doi.org/10.1109/SP.2018.00056.
Van-Thuan Pham, Marcel B6hme, and

Abhik Roychoudhury. “Model-Based Whitebox Fuzzing
for Program Binaries”.

In: Proceedings of the 81st IEEE/ACM International
Conference on Automated Software Engineering.

ASE 2016. Singapore, Singapore: Association for
Computing Machinery, 2016, pp. 543-553.

ISBN: 9781450338455. poI: 10.1145/2970276.2970316.
URL: https://doi.org/10.1145/2970276.2970316.

Brien Posey. IoT devices. 2021. URL:
https://web.archive.org/web/20210520072243 /https://
internetofthingsagenda.techtarget.com/definition /IoT-
device (visited on 05/20/2021).

radamsa. https://gitlab.com/akihe/radamsa.

Sanjay Rawat, Vivek Jain, Ashish Kumar,

Lucian Cojocar, Cristiano Giuffrida, and Herbert Bos.
“VUzzer: Application-aware Evolutionary Fuzzing”.

In: 24th Annual Network and Distributed System
Security Symposium, NDSS 2017, San Diego,
California, USA, February 26 - March 1, 2017.

The Internet Society, 2017.

URL: https://www.ndss-symposium.org/ndss2017/ndss-
2017-programme/vuzzer-application-aware-
evolutionary-fuzzing/.

Nilo Redini et al.

“DIANE: Identifying Fuzzing Triggers in Apps to
Generate Under-constrained Inputs for IoT Devices”.
In: 42nd IEEE Symposium on Security and Privacy
2021. 2021.

Nilo Redini et al. “Karonte: Detecting Insecure
Multi-binary Interactions in Embedded Firmware”.

In: 2020 IEEE Symposium on Security and Privacy, SP
2020, San Francisco, CA, USA, May 18-21, 2020.
IEEE, 2020, pp. 1544-1561.

por: 10.1109/SP40000.2020.00036.

URL: https://doi.org/10.1109/SP40000.2020.00036.
Nilo Redini et al. “Karonte: Detecting Insecure
Multi-binary Interactions in Embedded Firmware”.

In: 2020 IEEE Symposium on Security and Privacy, SP
2020, San Francisco, CA, USA, May 18-21, 2020.
IEEE, 2020, pp. 1544-1561.

por: 10.1109/SP40000.2020.00036.

URL: https://doi.org/10.1109/SP40000.2020.00036.
Prashast Srivastava, Hui Peng, Jiahao Li,

Hamed Okhravi, Howard E. Shrobe, and

Mathias Payer. “FirmFuzz: Automated IoT Firmware
Introspection and Analysis”.

In: Proceedings of the 2nd International ACM Workshop
on Security and Privacy for the Internet-of-Things, loT
SEP@CCS 2019, London, UK, November 15, 2019.
Ed. by Peng Liu and Yuqing Zhang. ACM, 2019,

pp. 15-21. por: 10.1145/3338507.3358616.

URL: https://doi.org/10.1145/3338507.3358616.

[38]

[39]

[40]

TriforceAFL.

https://github.com/nccgroup/Triforce AFL.

Valgrind. https://www.valgrind.org/.

Dong Wang, Xiaosong Zhang, Ting Chen, and
Jingwei Li. “Discovering Vulnerabilities in COTS IoT
Devices through Blackbox Fuzzing Web Management
Interface”. In: Secur. Commun. Networks 2019 (2019),
5076324:1-5076324:19. po1: 10.1155/2019/5076324.
URL: https://doi.org/10.1155/2019/5076324.
XSStrike. https://github.com/s0md3v/XSStrike.

Bo Yu, Pengfei Wang, Tai Yue, and Yong Tang.
“Poster: Fuzzing IoT Firmware via Multi-stage
Message Generation”.

In: Proceedings of the 2019 ACM SIGSAC Conference
on Computer and Communications Security, CCS 2019,
London, UK, November 11-15, 2019.

Ed. by Lorenzo Cavallaro, Johannes Kinder,
XiaoFeng Wang, and Jonathan Katz. ACM, 2019,
pp. 2525-2527. pol: 10.1145/3319535.3363247.

URL: https://doi.org/10.1145/3319535.3363247.

Jonas Zaddach, Luca Bruno, Aurélien Francillon, and
Davide Balzarotti.

“AVATAR: A Framework to Support Dynamic Security
Analysis of Embedded Systems’ Firmwares”.

In: 21st Annual Network and Distributed System
Security Symposium, NDSS 2014, San Diego,
California, USA, February 23-26, 2014.

The Internet Society, 2014. URL:
https://www.ndss-symposium.org/ndss2014 /avatar-
framework-support-dynamic-security-analysis-
embedded-systems-firmwares.

Hangwei Zhang, Kai Lu, Xu Zhou, Qidi Yin,

Pengfei Wang, and Tai Yue.

“SloTFuzzer: Fuzzing Web Interface in IoT Firmware
via Stateful Message Generation”.

In: Applied Sciences 11.7 (2021), p. 3120.

Yaowen Zheng, Ali Davanian, Heng Yin,

Chengyu Song, Hongsong Zhu, and Limin Sun.
“FIRM-AFL: High-Throughput Greybox Fuzzing of
IoT Firmware via Augmented Process Emulation”. In:
28th USENIX Security Symposium, USENIX Security
2019, Santa Clara, CA, USA, August 14-16, 2019.
Ed. by Nadia Heninger and Patrick Traynor.
USENIX Association, 2019, pp. 1099-1114.

URL: https://www.usenix.org/conference/
usenixsecurity19/presentation/zheng.

10

