age_cache_simulation/01_nb_cncf_optimization/01-objective_gridsearch.ipynb

288 lines
10 KiB
Plaintext
Raw Normal View History

{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"id": "ab5cd7d1-1a57-46fc-8282-dae0a6cc2944",
"metadata": {},
"outputs": [],
"source": [
"import matplotlib.pyplot as plt\n",
"import numpy as np\n",
"import random\n",
"import pandas as pd\n",
"import itertools\n",
"from tqdm import tqdm"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "3d1ad0b9-f6a8-4e98-84aa-6e02e4279954",
"metadata": {},
"outputs": [],
"source": [
"SEED = 42\n",
"np.random.seed(SEED)\n",
"random.seed(SEED)\n",
"\n",
"ZIPF_CONSTANT = 2"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "5a27d416-8f98-4814-af9e-6c6bef95f4ef",
"metadata": {},
"outputs": [],
"source": [
"def eta_star(db_object_count, c_f, cache_sz, c_delta, lambda_vals):\n",
" num = (db_object_count * c_f - cache_sz * c_delta)\n",
" denom = np.sum(1.0/lambda_vals)\n",
" if denom == 0:\n",
" print(\"sum(1.0/lambda_vals) == 0\")\n",
" print(db_object_count, c_f, cache_sz, c_delta, lambda_vals)\n",
" return max(0, num/denom)"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "6276a9ce-f839-4fe6-90f2-2195cf065fc8",
"metadata": {},
"outputs": [],
"source": [
"def h_i_star(c_f, eta, lambda_vals, c_delta):\n",
" optimized_hitrate = (c_f - (eta/lambda_vals)) / c_delta\n",
" return optimized_hitrate"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "dcd31a8c-6864-4b9a-8bb3-998f0c32baf6",
"metadata": {},
"outputs": [],
"source": [
"def get_index_of_furthest_hitrate_from_boundary(hitrates):\n",
" lower_bound_violation = hitrates[(hitrates < 0)]\n",
" upper_bound_violation = hitrates[(hitrates > 1)]\n",
" smallest_delta = np.abs(np.min(lower_bound_violation))\n",
" biggest_delta = np.max(upper_bound_violation) - 1\n",
" if smallest_delta > biggest_delta:\n",
" print(smallest_delta)\n",
" index = np.where(hitrates == np.min(local_hitrates))[0][0]\n",
" return index\n",
" else:\n",
" \n",
" index = np.where(hitrates == np.max(local_hitrates))[0][0]\n",
" return index"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "9d774304-ae68-43b3-a76a-e970c06c5236",
"metadata": {},
"outputs": [],
"source": [
"def get_index_of_furthest_hitrate_from_boundary(hitrates):\n",
" outside_bounds = (hitrates < 0) | (hitrates > 1)\n",
" distances = np.where(outside_bounds, np.maximum(np.abs(hitrates - 0), np.abs(hitrates - 1)), -np.inf)\n",
" index = np.argmax(distances)\n",
" return index"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "0e21c26f-058a-4e56-a5ad-1c47bf28656c",
"metadata": {
"scrolled": true
},
"outputs": [],
"source": [
"def optimize_hitrates(db_object_count, cache_size, c_f, c_delta, lambda_vals):\n",
" optimized_hitrates = np.zeros(db_object_count)\n",
" current_db_object_count = db_object_count\n",
" current_cache_size = cache_size\n",
" \n",
" differenc_set = np.arange(db_object_count)\n",
" fix_i = []\n",
" while True:\n",
" if current_db_object_count == 0:\n",
" if current_cache_size > 0:\n",
" # print(\"Re-optimize objects with optimal hitrate of 0.\")\n",
" differenc_set = np.where(optimized_hitrates == 0)[0]\n",
" fix_i = np.setdiff1d(np.arange(db_object_count), differenc_set).tolist()\n",
" current_db_object_count = len(differenc_set)\n",
" continue\n",
" else:\n",
" # print(\"Stop optimization.\")\n",
" optimized_hitrates[differenc_set] = 0\n",
" break\n",
" \n",
" eta = eta_star(current_db_object_count, c_f, current_cache_size, c_delta, lambda_vals[differenc_set])\n",
" optimized_hitrates[differenc_set] = h_i_star(c_f, eta, lambda_vals[differenc_set], c_delta)\n",
"\n",
" if eta < 0:\n",
" # print(\"eta was negative.\")\n",
" current_cache_size = current_db_object_count * c_f / c_delta # Adjust cache size for next iteration\n",
" continue\n",
" \n",
" if len((optimized_hitrates[differenc_set])[((optimized_hitrates[differenc_set]) < 0) | ((optimized_hitrates[differenc_set])> 1)]) == 0:\n",
" # print(\"All values optimized.\")\n",
" break\n",
" \n",
" max_outbound_index = get_index_of_furthest_hitrate_from_boundary(optimized_hitrates)\n",
" fix_i.append(max_outbound_index)\n",
" differenc_set = np.setdiff1d(np.arange(db_object_count), fix_i)\n",
" \n",
" old_hitrate = optimized_hitrates[max_outbound_index]\n",
" optimized_hitrates[max_outbound_index] = (1 if optimized_hitrates[max_outbound_index] > 1 else 0)\n",
" \n",
" current_db_object_count -= 1\n",
" current_cache_size -= optimized_hitrates[max_outbound_index]\n",
" return optimized_hitrates"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "b6bf3329-3a63-4807-ab8b-8a54f824f47e",
"metadata": {},
"outputs": [],
"source": [
"def objective_function(optimized_hitrates, c_f, c_delta, lambda_vals):\n",
" return np.sum(lambda_vals*(1-optimized_hitrates)*c_f+0.5*np.power(optimized_hitrates,2)*c_delta)"
]
},
{
"cell_type": "code",
"execution_count": 9,
"id": "7a998837-72b8-4039-95a5-ca8d9c8e65ab",
"metadata": {},
"outputs": [],
"source": [
"# Perform grid search\n",
"def grid_search(db_object_counts, cache_sizes, c_f_values, c_delta_values):\n",
" best_objective = float('inf')\n",
" best_params = None\n",
"\n",
" # Iterate through all combinations of parameters\n",
" for db_object_count, cache_size, c_f, c_delta in tqdm(itertools.product(db_object_counts, cache_sizes, c_f_values, c_delta_values), total=len(db_object_counts) * len(cache_sizes) * len(c_f_values) * len(c_delta_values), desc=\"Grid Search Progress\"):\n",
" if db_object_count < cache_size:\n",
" continue\n",
" lambda_vals = np.array([np.random.zipf(ZIPF_CONSTANT) for i in np.arange(1, db_object_count + 1,1)])\n",
" # print(db_object_count, cache_size, c_f, c_delta)\n",
" # Call the optimization function\n",
" optimized_hitrates = optimize_hitrates(db_object_count, cache_size, c_f, c_delta, lambda_vals)\n",
"\n",
" # Compute the objective function\n",
" objective = objective_function(optimized_hitrates, c_f, c_delta, lambda_vals)\n",
" \n",
" # Track the best (minimum) objective and corresponding parameters\n",
" if objective < best_objective:\n",
" best_objective = objective\n",
" best_params = (db_object_count, cache_size, c_f, c_delta)\n",
"\n",
" return best_objective, best_params"
]
},
{
"cell_type": "code",
"execution_count": 10,
"id": "a271b52d-1f24-4670-ae3f-af5dd9096a2f",
"metadata": {
"scrolled": true
},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"Grid Search Progress: 100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 64152/64152 [12:27<00:00, 85.87it/s]"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"CPU times: user 12min 16s, sys: 11.5 s, total: 12min 28s\n",
"Wall time: 12min 27s\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\n"
]
}
],
"source": [
"%%time\n",
"\n",
"# Define the grid search space\n",
"test_ratios = np.array([0.1, 0.2, 0.5, 0.7, 1, 1.5, 2, 5, 10])\n",
"db_object_count_values = np.round(np.array([10, 15, 30, 100, 200, 500]))\n",
"cache_size_values = np.unique(np.round(np.array([db_object_count_values * i for i in test_ratios]).flatten()))\n",
"c_f_values = np.array([0.1, 0.2, 0.5, 0.7, 1, 1.5, 2, 5, 10])\n",
"c_delta_values = np.unique(np.array([c_f_values * i for i in test_ratios]).flatten())\n",
"\n",
"best_objective, best_params = grid_search(db_object_count_values, cache_size_values, c_f_values, c_delta_values)"
]
},
{
"cell_type": "code",
"execution_count": 11,
"id": "b2f625d0-ebe0-4a5d-92ff-7de03942ef51",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"(0.05000000000000002, (10, 10.0, 1.5, 0.010000000000000002))"
]
},
"execution_count": 11,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"best_objective, best_params "
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "86a23d02-6f14-4d4d-ad8a-39084ea69151",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "graphs",
"language": "python",
"name": "graphs"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.12.7"
}
},
"nbformat": 4,
"nbformat_minor": 5
}