diff --git a/00_aoi_caching_simulation/.aoi_cache/lambda_distribution.pdf b/00_aoi_caching_simulation/.aoi_cache/lambda_distribution.pdf index 8e8500d..36c3e49 100644 Binary files a/00_aoi_caching_simulation/.aoi_cache/lambda_distribution.pdf and b/00_aoi_caching_simulation/.aoi_cache/lambda_distribution.pdf differ diff --git a/00_aoi_caching_simulation/.aoi_cache/lambda_vs_access_count.pdf b/00_aoi_caching_simulation/.aoi_cache/lambda_vs_access_count.pdf index 4a725ab..824b4bd 100644 Binary files a/00_aoi_caching_simulation/.aoi_cache/lambda_vs_access_count.pdf and b/00_aoi_caching_simulation/.aoi_cache/lambda_vs_access_count.pdf differ diff --git a/00_aoi_caching_simulation/.aoi_cache/objects_in_cache_over_time.pdf b/00_aoi_caching_simulation/.aoi_cache/objects_in_cache_over_time.pdf index 1fc0070..931a514 100644 Binary files a/00_aoi_caching_simulation/.aoi_cache/objects_in_cache_over_time.pdf and b/00_aoi_caching_simulation/.aoi_cache/objects_in_cache_over_time.pdf differ diff --git a/00_aoi_caching_simulation/aoi_cache_simulation.ipynb b/00_aoi_caching_simulation/aoi_cache_simulation.ipynb index c2f0fd8..6d34cb2 100644 --- a/00_aoi_caching_simulation/aoi_cache_simulation.ipynb +++ b/00_aoi_caching_simulation/aoi_cache_simulation.ipynb @@ -16,16 +16,18 @@ "import os\n", "import shutil\n", "from tqdm import tqdm\n", + "import math\n", "\n", "# Types of cache\n", "class CacheType(Enum):\n", " LRU = 1\n", " RANDOM_EVICTION = 2\n", + " TTL = 3\n", "\n", "# Constants\n", "SEED = 42\n", "DATABASE_OBJECTS = 100 # Number of objects in the database\n", - "ACCESS_COUNT_LIMIT = 2000 # Total time to run the simulation\n", + "ACCESS_COUNT_LIMIT = 1000 # Total time to run the simulation\n", "EXPERIMENT_BASE_DIR = \"./experiments/\"\n", "TEMP_BASE_DIR = \"./.aoi_cache/\"\n", "\n", @@ -93,12 +95,12 @@ " \"Infinite TTL\": (int(DATABASE_OBJECTS / 2), 0, CacheType.LRU, 0),\n", " \"Random Eviction\": (int(DATABASE_OBJECTS / 2), 10, CacheType.RANDOM_EVICTION, 5),\n", " \"RE without Refresh\": (int(DATABASE_OBJECTS / 2), 0, CacheType.RANDOM_EVICTION, 5),\n", - " \"No Refresh (0.5s ttl)\": (DATABASE_OBJECTS, 0, CacheType.LRU, 0.5),\n", - " \"No Refresh (1.0s ttl)\": (DATABASE_OBJECTS, 0, CacheType.LRU, 1),\n", - " \"No Refresh (2.0s ttl)\": (DATABASE_OBJECTS, 0, CacheType.LRU, 2),\n", - " \"No Refresh (3.0s ttl)\": (DATABASE_OBJECTS, 0, CacheType.LRU, 3),\n", - " \"No Refresh (4.0s ttl)\": (DATABASE_OBJECTS, 0, CacheType.LRU, 4),\n", - " \"No Refresh (5.0s ttl)\": (DATABASE_OBJECTS, 0, CacheType.LRU, 5),\n", + " \"No Refresh (0.5s ttl)\": (DATABASE_OBJECTS, 0, CacheType.TTL, 0.5),\n", + " \"No Refresh (1.0s ttl)\": (DATABASE_OBJECTS, 0, CacheType.TTL, 1),\n", + " \"No Refresh (2.0s ttl)\": (DATABASE_OBJECTS, 0, CacheType.TTL, 2),\n", + " \"No Refresh (3.0s ttl)\": (DATABASE_OBJECTS, 0, CacheType.TTL, 3),\n", + " \"No Refresh (4.0s ttl)\": (DATABASE_OBJECTS, 0, CacheType.TTL, 4),\n", + " \"No Refresh (5.0s ttl)\": (DATABASE_OBJECTS, 0, CacheType.TTL, 5),\n", "}\n", "\n", "experiment_name = \"No Refresh (5.0s ttl)\"\n", @@ -107,7 +109,11 @@ "CACHE_CAPACITY = config[0]\n", "MAX_REFRESH_RATE = config[1]\n", "cache_type = config[2]\n", - "CACHE_TTL = config[3]\n" + "CACHE_TTL = config[3]\n", + "\n", + "if cache_type == CacheType.TTL:\n", + " assert CACHE_TTL > 0, \"Needs CACHE_TTL to be greater than 0 when using TTL-Cache.\"\n", + " assert CACHE_CAPACITY >= DATABASE_OBJECTS, \"Cache Size needs to be greater or equal to the amount of Database Objects.\"" ] }, { @@ -162,79 +168,90 @@ " self.cumulative_cache_time = {i: 0 for i in range(1, DATABASE_OBJECTS + 1)} # Stores the cumulative time the object has spent between its eviction and when it was first pulled into the cache\n", " \n", " def get(self, obj_id):\n", - " if obj_id in self.storage and \\\n", - " (self.ttl[obj_id] > env.now or CACHE_TTL == 0):\n", + " if obj_id in self.storage:\n", + " # Cache hit: Refresh TTL if TTL-Cache\n", + " if self.cache_type == CacheType.TTL:\n", + " if self.ttl[obj_id] > env.now:\n", + " self.ttl[obj_id] = env.now + CACHE_TTL\n", + " \n", " # Cache hit: increment hit count and update cumulative age\n", " self.hits[obj_id] += 1\n", - " self.cumulative_age[obj_id] += (env.now - self.initial_fetch[obj_id])\n", " self.access_count[obj_id] += 1\n", + " age = (env.now - self.initial_fetch[obj_id])\n", + " self.cumulative_age[obj_id] += age\n", + "\n", + " # Cache hit: Refresh database object\n", + " # self.initial_fetch[obj_id] = env.now\n", " else:\n", + " assert obj_id not in self.storage.keys(), \"Found object in cache on miss.\"\n", + " assert obj_id not in self.initial_fetch.keys(), \"Found age timer on miss.\"\n", + " assert obj_id not in self.object_start_time.keys(), \"Found cache time ratio timer on miss.\"\n", + " # Cache miss: Add TTL if TTL-Cache\n", + " # When full cache: If non-TTL-Cache: Evict. If TTL-Cache: Don't add to Cache.\n", + " if self.cache_type == CacheType.TTL:\n", + " assert obj_id not in self.ttl.keys(), \"Found cache time ratio timer on miss.\"\n", + " self.ttl[obj_id] = env.now + CACHE_TTL\n", + " else:\n", + " if len(self.storage) == DATABASE_OBJECTS:\n", + " if self.cache_type == CacheType.LRU:\n", + " self.evict_oldest()\n", + " elif self.cache_type == CacheType.RANDOM_EVICTION:\n", + " self.evict_random()\n", + " elif self.cache-type == CacheType.TTL:\n", + " return\n", + " \n", " # Cache miss: increment miss count\n", " self.misses[obj_id] += 1\n", - " self.cumulative_age[obj_id] += 0\n", " self.access_count[obj_id] += 1\n", + " self.cumulative_age[obj_id] += 0\n", + " \n", + " # Cache miss: Fetch the object from the database\n", + " self.storage[obj_id] = self.db.get_object(obj_id)\n", " self.initial_fetch[obj_id] = env.now\n", " self.object_start_time[obj_id] = env.now\n", " \n", - " # Fetch the object from the database if it’s not in cache\n", - " obj = self.db.get_object(obj_id)\n", - " \n", - " # If the cache is full, evict the oldest object\n", - " if len(self.storage) > CACHE_CAPACITY:\n", - " if self.cache_type == CacheType.LRU:\n", - " self.evict_oldest()\n", - " elif self.cache_type == CacheType.RANDOM_EVICTION:\n", - " self.evict_random()\n", - " \n", - " # Add the object to cache, set TTL, reset age, and schedule next refresh\n", - " self.storage[obj_id] = obj\n", - " if CACHE_TTL != 0:\n", - " self.ttl[obj_id] = env.now + CACHE_TTL\n", - " else:\n", - " self.ttl[obj_id] = 0\n", " if MAX_REFRESH_RATE != 0:\n", " self.next_refresh[obj_id] = env.now + np.random.exponential(1/self.db.mu_values[obj_id]) # Schedule refresh\n", - "\n", " \n", " def evict_oldest(self):\n", " \"\"\"Remove the oldest item from the cache to make space.\"\"\"\n", " oldest_id = min(self.initial_fetch, key=self.initial_fetch.get) # Find the oldest item by age\n", " print(f\"[{env.now:.2f}] Cache: Evicting oldest object {oldest_id} to make space at {self.ttl[oldest_id]:.2f}\")\n", + " self.cumulative_cache_time[obj_id] += (env.now - self.object_start_time[obj_id])\n", " del self.storage[oldest_id]\n", - " del self.ttl[oldest_id]\n", " del self.initial_fetch[oldest_id]\n", + " del self.object_start_time[obj_id]\n", "\n", " def evict_random(self):\n", " \"\"\"Remove a random item from the cache to make space.\"\"\"\n", " random_id = np.random.choice(list(self.storage.keys())) # Select a random key from the cache\n", " print(f\"[{env.now:.2f}] Cache: Evicting random object {random_id} to make space at {self.ttl[random_id]:.2f}\")\n", + " self.cumulative_cache_time[obj_id] += (env.now - self.object_start_time[obj_id])\n", " del self.storage[random_id]\n", - " del self.ttl[random_id]\n", " del self.initial_fetch[random_id]\n", + " del self.object_start_time[obj_id]\n", " \n", " def refresh_object(self, obj_id):\n", " \"\"\"Refresh the object from the database to keep it up-to-date. TTL is increased on refresh.\"\"\"\n", " obj = self.db.get_object(obj_id)\n", " self.storage[obj_id] = obj\n", - " if CACHE_TTL != 0:\n", + " if self.cache_type == CacheType.TTL:\n", " self.ttl[obj_id] = env.now + CACHE_TTL\n", - " else:\n", - " self.ttl[obj_id] = 0\n", - " self.initial_fetch[obj_id] = env.now\n", + " self.cumulative_cache_time[obj_id] += (env.now - self.object_start_time[obj_id])\n", " # print(f\"[{env.now:.2f}] Cache: Refreshed object {obj_id}\")\n", " \n", " def check_expired(self):\n", " \"\"\"Increment age of each cached object.\"\"\"\n", - " for obj_id in list(self.ttl.keys()):\n", - " # print(f\"[{env.now:.2f}] Cache: Object {obj_id} aged to {env.now-self.initial_fetch[obj_id]}\")\n", - " if CACHE_TTL != 0 and self.ttl[obj_id] <= env.now:\n", - " # Remove object if its TTL expired\n", - " # print(f\"[{env.now:.2f}] Cache: Object {obj_id} expired\")\n", - " self.cumulative_cache_time[obj_id] += (env.now - self.object_start_time[obj_id])\n", - " del self.storage[obj_id]\n", - " del self.ttl[obj_id]\n", - " del self.initial_fetch[obj_id]\n", - " del self.object_start_time[obj_id]\n", + " if self.cache_type == CacheType.TTL:\n", + " for obj_id in list(self.ttl.keys()):\n", + " if self.ttl[obj_id] <= env.now:\n", + " # Remove object if its TTL expired\n", + " # print(f\"[{env.now:.2f}] Cache: Object {obj_id} expired\")\n", + " self.cumulative_cache_time[obj_id] += (env.now - self.object_start_time[obj_id])\n", + " del self.storage[obj_id]\n", + " del self.ttl[obj_id]\n", + " del self.initial_fetch[obj_id]\n", + " del self.object_start_time[obj_id]\n", "\n", " \n", " def record_cache_state(self):\n", @@ -254,7 +271,7 @@ " \"\"\"Process that ages cache objects over time, removes expired items, and refreshes based on object-specific intervals.\"\"\"\n", " last_full_second = 0\n", " while True:\n", - " cache.check_expired() # Age objects and remove expired ones\n", + " cache.check_expired() # Remove expired objects\n", "\n", " if MAX_REFRESH_RATE != 0:\n", " # Refresh objects based on their individual refresh intervals\n", @@ -283,10 +300,13 @@ " while True:\n", " obj_id, next_request = min(cache.db.next_request.items(), key=lambda x: x[1])\n", " yield env.timeout(next_request - env.now)\n", + "\n", + " # For progress bar\n", " if (int(env.now) % 1) == 0 and int(env.now) != last_print:\n", " last_print = int(env.now)\n", " pbar.n = min(cache.access_count.values())\n", " pbar.refresh()\n", + " \n", " if env.now >= next_request:\n", " # print(f\"[{env.now:.2f}] Client: Requesting object {obj_id}\")\n", " cache.get(obj_id)\n", @@ -295,8 +315,12 @@ " next_request = env.now + np.random.exponential(1/cache.db.lambda_values[obj_id])\n", " cache.request_log[obj_id].append(next_request)\n", " cache.db.next_request[obj_id] = next_request\n", + " \n", + " # Simulation stop condition\n", " if all(access_count >= ACCESS_COUNT_LIMIT for access_count in cache.access_count.values()):\n", - " print(env.now)\n", + " print(f\"Simulation ended after {env.now} seconds.\")\n", + " for obj_id in cache.storage.keys():\n", + " cache.cumulative_cache_time[obj_id] += (env.now - cache.object_start_time[obj_id])\n", " event.succeed()" ] }, @@ -330,16 +354,16 @@ "name": "stderr", "output_type": "stream", "text": [ - "Progress: 100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████▉| 1999/2000 [00:10<00:00, 183.69it/s]" + "Progress: 100%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████▊| 999/1000 [00:05<00:00, 182.11it/s]" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2114.009548152859\n", - "CPU times: user 9.85 s, sys: 1.31 s, total: 11.2 s\n", - "Wall time: 10.9 s\n" + "Simulation ended after 1056.5430396768973 seconds.\n", + "CPU times: user 5.01 s, sys: 614 ms, total: 5.63 s\n", + "Wall time: 5.5 s\n" ] } ], @@ -365,106 +389,106 @@ "name": "stdout", "output_type": "stream", "text": [ - "Object 1: Hit Rate = 0.83, Average Time spend in Cache: 0.81,Average Age = 2.07, Exprected Age = 0.35\n", - "Object 2: Hit Rate = 0.94, Average Time spend in Cache: 0.87,Average Age = 2.32, Exprected Age = 0.44\n", - "Object 3: Hit Rate = 0.84, Average Time spend in Cache: 0.82,Average Age = 2.08, Exprected Age = 0.35\n", - "Object 4: Hit Rate = 0.83, Average Time spend in Cache: 0.82,Average Age = 2.10, Exprected Age = 0.35\n", - "Object 5: Hit Rate = 0.91, Average Time spend in Cache: 0.87,Average Age = 2.26, Exprected Age = 0.41\n", - "Object 6: Hit Rate = 0.83, Average Time spend in Cache: 0.81,Average Age = 2.09, Exprected Age = 0.35\n", - "Object 7: Hit Rate = 0.96, Average Time spend in Cache: 0.87,Average Age = 2.40, Exprected Age = 0.46\n", - "Object 8: Hit Rate = 0.84, Average Time spend in Cache: 0.82,Average Age = 2.07, Exprected Age = 0.35\n", - "Object 9: Hit Rate = 0.83, Average Time spend in Cache: 0.81,Average Age = 2.03, Exprected Age = 0.35\n", - "Object 10: Hit Rate = 0.83, Average Time spend in Cache: 0.82,Average Age = 2.04, Exprected Age = 0.35\n", - "Object 11: Hit Rate = 0.91, Average Time spend in Cache: 0.89,Average Age = 2.26, Exprected Age = 0.41\n", - "Object 12: Hit Rate = 0.84, Average Time spend in Cache: 0.81,Average Age = 2.04, Exprected Age = 0.35\n", - "Object 13: Hit Rate = 0.84, Average Time spend in Cache: 0.81,Average Age = 2.10, Exprected Age = 0.35\n", - "Object 14: Hit Rate = 0.83, Average Time spend in Cache: 0.82,Average Age = 2.07, Exprected Age = 0.34\n", - "Object 15: Hit Rate = 0.91, Average Time spend in Cache: 0.86,Average Age = 2.25, Exprected Age = 0.41\n", - "Object 16: Hit Rate = 0.91, Average Time spend in Cache: 0.87,Average Age = 2.28, Exprected Age = 0.42\n", - "Object 17: Hit Rate = 0.83, Average Time spend in Cache: 0.82,Average Age = 2.01, Exprected Age = 0.35\n", - "Object 18: Hit Rate = 0.83, Average Time spend in Cache: 0.80,Average Age = 2.13, Exprected Age = 0.35\n", - "Object 19: Hit Rate = 0.94, Average Time spend in Cache: 0.87,Average Age = 2.32, Exprected Age = 0.44\n", - "Object 20: Hit Rate = 0.83, Average Time spend in Cache: 0.80,Average Age = 2.04, Exprected Age = 0.35\n", - "Object 21: Hit Rate = 0.83, Average Time spend in Cache: 0.82,Average Age = 2.07, Exprected Age = 0.35\n", - "Object 22: Hit Rate = 0.83, Average Time spend in Cache: 0.82,Average Age = 2.09, Exprected Age = 0.35\n", - "Object 23: Hit Rate = 0.84, Average Time spend in Cache: 0.81,Average Age = 2.08, Exprected Age = 0.35\n", - "Object 24: Hit Rate = 0.91, Average Time spend in Cache: 0.88,Average Age = 2.28, Exprected Age = 0.41\n", - "Object 25: Hit Rate = 0.84, Average Time spend in Cache: 0.80,Average Age = 2.08, Exprected Age = 0.35\n", - "Object 26: Hit Rate = 0.84, Average Time spend in Cache: 0.81,Average Age = 2.07, Exprected Age = 0.35\n", - "Object 27: Hit Rate = 0.83, Average Time spend in Cache: 0.82,Average Age = 2.15, Exprected Age = 0.35\n", - "Object 28: Hit Rate = 0.96, Average Time spend in Cache: 0.86,Average Age = 2.41, Exprected Age = 0.46\n", - "Object 29: Hit Rate = 0.83, Average Time spend in Cache: 0.81,Average Age = 2.08, Exprected Age = 0.35\n", - "Object 30: Hit Rate = 0.83, Average Time spend in Cache: 0.82,Average Age = 2.07, Exprected Age = 0.35\n", - "Object 31: Hit Rate = 0.83, Average Time spend in Cache: 0.82,Average Age = 2.06, Exprected Age = 0.34\n", - "Object 32: Hit Rate = 0.95, Average Time spend in Cache: 0.86,Average Age = 2.36, Exprected Age = 0.45\n", - "Object 33: Hit Rate = 0.83, Average Time spend in Cache: 0.82,Average Age = 2.12, Exprected Age = 0.35\n", - "Object 34: Hit Rate = 0.95, Average Time spend in Cache: 0.87,Average Age = 2.37, Exprected Age = 0.45\n", - "Object 35: Hit Rate = 0.84, Average Time spend in Cache: 0.81,Average Age = 2.05, Exprected Age = 0.35\n", - "Object 36: Hit Rate = 0.83, Average Time spend in Cache: 0.83,Average Age = 2.02, Exprected Age = 0.34\n", - "Object 37: Hit Rate = 0.84, Average Time spend in Cache: 0.82,Average Age = 2.05, Exprected Age = 0.35\n", - "Object 38: Hit Rate = 0.94, Average Time spend in Cache: 0.87,Average Age = 2.36, Exprected Age = 0.44\n", - "Object 39: Hit Rate = 0.98, Average Time spend in Cache: 0.76,Average Age = 2.44, Exprected Age = 0.48\n", - "Object 40: Hit Rate = 0.83, Average Time spend in Cache: 0.79,Average Age = 2.07, Exprected Age = 0.34\n", - "Object 41: Hit Rate = 0.95, Average Time spend in Cache: 0.85,Average Age = 2.38, Exprected Age = 0.45\n", - "Object 42: Hit Rate = 0.95, Average Time spend in Cache: 0.86,Average Age = 2.37, Exprected Age = 0.45\n", - "Object 43: Hit Rate = 0.91, Average Time spend in Cache: 0.88,Average Age = 2.24, Exprected Age = 0.41\n", - "Object 44: Hit Rate = 0.83, Average Time spend in Cache: 0.82,Average Age = 2.04, Exprected Age = 0.34\n", - "Object 45: Hit Rate = 0.83, Average Time spend in Cache: 0.83,Average Age = 2.11, Exprected Age = 0.35\n", - "Object 46: Hit Rate = 0.83, Average Time spend in Cache: 0.82,Average Age = 2.12, Exprected Age = 0.35\n", - "Object 47: Hit Rate = 0.98, Average Time spend in Cache: 0.78,Average Age = 2.45, Exprected Age = 0.48\n", - "Object 48: Hit Rate = 0.83, Average Time spend in Cache: 0.81,Average Age = 2.14, Exprected Age = 0.35\n", - "Object 49: Hit Rate = 0.83, Average Time spend in Cache: 0.81,Average Age = 2.12, Exprected Age = 0.35\n", - "Object 50: Hit Rate = 0.83, Average Time spend in Cache: 0.82,Average Age = 2.06, Exprected Age = 0.35\n", - "Object 51: Hit Rate = 0.96, Average Time spend in Cache: 0.87,Average Age = 2.41, Exprected Age = 0.46\n", - "Object 52: Hit Rate = 0.98, Average Time spend in Cache: 0.81,Average Age = 2.46, Exprected Age = 0.48\n", - "Object 53: Hit Rate = 0.83, Average Time spend in Cache: 0.82,Average Age = 2.06, Exprected Age = 0.35\n", - "Object 54: Hit Rate = 0.83, Average Time spend in Cache: 0.81,Average Age = 2.05, Exprected Age = 0.34\n", - "Object 55: Hit Rate = 0.83, Average Time spend in Cache: 0.82,Average Age = 2.09, Exprected Age = 0.34\n", - "Object 56: Hit Rate = 0.83, Average Time spend in Cache: 0.82,Average Age = 2.07, Exprected Age = 0.34\n", - "Object 57: Hit Rate = 0.84, Average Time spend in Cache: 0.83,Average Age = 2.07, Exprected Age = 0.35\n", - "Object 58: Hit Rate = 0.99, Average Time spend in Cache: 0.68,Average Age = 2.46, Exprected Age = 0.49\n", - "Object 59: Hit Rate = 0.91, Average Time spend in Cache: 0.87,Average Age = 2.23, Exprected Age = 0.41\n", - "Object 60: Hit Rate = 0.84, Average Time spend in Cache: 0.81,Average Age = 2.07, Exprected Age = 0.35\n", - "Object 61: Hit Rate = 0.99, Average Time spend in Cache: 0.57,Average Age = 2.47, Exprected Age = 0.49\n", - "Object 62: Hit Rate = 0.83, Average Time spend in Cache: 0.82,Average Age = 2.07, Exprected Age = 0.34\n", - "Object 63: Hit Rate = 0.83, Average Time spend in Cache: 0.81,Average Age = 2.08, Exprected Age = 0.35\n", - "Object 64: Hit Rate = 0.91, Average Time spend in Cache: 0.87,Average Age = 2.27, Exprected Age = 0.41\n", - "Object 65: Hit Rate = 0.84, Average Time spend in Cache: 0.81,Average Age = 2.06, Exprected Age = 0.35\n", - "Object 66: Hit Rate = 0.98, Average Time spend in Cache: 0.78,Average Age = 2.46, Exprected Age = 0.48\n", - "Object 67: Hit Rate = 0.84, Average Time spend in Cache: 0.81,Average Age = 2.05, Exprected Age = 0.35\n", - "Object 68: Hit Rate = 1.00, Average Time spend in Cache: 0.29,Average Age = 2.49, Exprected Age = 0.50\n", - "Object 69: Hit Rate = 0.83, Average Time spend in Cache: 0.81,Average Age = 2.04, Exprected Age = 0.34\n", - "Object 70: Hit Rate = 0.83, Average Time spend in Cache: 0.83,Average Age = 2.06, Exprected Age = 0.35\n", - "Object 71: Hit Rate = 0.91, Average Time spend in Cache: 0.84,Average Age = 2.25, Exprected Age = 0.41\n", - "Object 72: Hit Rate = 0.83, Average Time spend in Cache: 0.81,Average Age = 2.09, Exprected Age = 0.35\n", - "Object 73: Hit Rate = 0.83, Average Time spend in Cache: 0.82,Average Age = 2.10, Exprected Age = 0.35\n", - "Object 74: Hit Rate = 0.84, Average Time spend in Cache: 0.82,Average Age = 2.06, Exprected Age = 0.35\n", - "Object 75: Hit Rate = 0.94, Average Time spend in Cache: 0.88,Average Age = 2.31, Exprected Age = 0.44\n", - "Object 76: Hit Rate = 0.91, Average Time spend in Cache: 0.86,Average Age = 2.28, Exprected Age = 0.41\n", - "Object 77: Hit Rate = 0.91, Average Time spend in Cache: 0.87,Average Age = 2.25, Exprected Age = 0.42\n", - "Object 78: Hit Rate = 0.94, Average Time spend in Cache: 0.88,Average Age = 2.32, Exprected Age = 0.44\n", - "Object 79: Hit Rate = 0.99, Average Time spend in Cache: 0.71,Average Age = 2.46, Exprected Age = 0.49\n", - "Object 80: Hit Rate = 0.83, Average Time spend in Cache: 0.82,Average Age = 2.10, Exprected Age = 0.35\n", - "Object 81: Hit Rate = 0.83, Average Time spend in Cache: 0.80,Average Age = 2.06, Exprected Age = 0.34\n", - "Object 82: Hit Rate = 0.96, Average Time spend in Cache: 0.85,Average Age = 2.41, Exprected Age = 0.46\n", - "Object 83: Hit Rate = 0.91, Average Time spend in Cache: 0.87,Average Age = 2.32, Exprected Age = 0.41\n", - "Object 84: Hit Rate = 0.83, Average Time spend in Cache: 0.82,Average Age = 2.05, Exprected Age = 0.35\n", - "Object 85: Hit Rate = 0.83, Average Time spend in Cache: 0.82,Average Age = 2.06, Exprected Age = 0.35\n", - "Object 86: Hit Rate = 0.91, Average Time spend in Cache: 0.86,Average Age = 2.28, Exprected Age = 0.41\n", - "Object 87: Hit Rate = 0.84, Average Time spend in Cache: 0.82,Average Age = 2.09, Exprected Age = 0.35\n", - "Object 88: Hit Rate = 0.91, Average Time spend in Cache: 0.86,Average Age = 2.24, Exprected Age = 0.41\n", - "Object 89: Hit Rate = 0.83, Average Time spend in Cache: 0.81,Average Age = 2.04, Exprected Age = 0.35\n", - "Object 90: Hit Rate = 0.84, Average Time spend in Cache: 0.81,Average Age = 2.08, Exprected Age = 0.35\n", - "Object 91: Hit Rate = 0.91, Average Time spend in Cache: 0.88,Average Age = 2.26, Exprected Age = 0.41\n", - "Object 92: Hit Rate = 0.91, Average Time spend in Cache: 0.84,Average Age = 2.28, Exprected Age = 0.41\n", - "Object 93: Hit Rate = 0.94, Average Time spend in Cache: 0.89,Average Age = 2.38, Exprected Age = 0.44\n", - "Object 94: Hit Rate = 0.83, Average Time spend in Cache: 0.81,Average Age = 2.09, Exprected Age = 0.34\n", - "Object 95: Hit Rate = 0.91, Average Time spend in Cache: 0.87,Average Age = 2.25, Exprected Age = 0.41\n", - "Object 96: Hit Rate = 0.83, Average Time spend in Cache: 0.81,Average Age = 2.04, Exprected Age = 0.35\n", - "Object 97: Hit Rate = 0.83, Average Time spend in Cache: 0.81,Average Age = 2.08, Exprected Age = 0.35\n", - "Object 98: Hit Rate = 0.99, Average Time spend in Cache: 0.47,Average Age = 2.48, Exprected Age = 0.49\n", - "Object 99: Hit Rate = 0.95, Average Time spend in Cache: 0.86,Average Age = 2.38, Exprected Age = 0.45\n", - "Object 100: Hit Rate = 0.91, Average Time spend in Cache: 0.87,Average Age = 2.26, Exprected Age = 0.41\n" + "Object 1: Hit Rate = 0.99, Expected Hit Rate = 0.99, Average Time spend in Cache: 0.99, Average Age = 86.27, Expected Age = 0.49\n", + "Object 2: Hit Rate = 1.00, Expected Hit Rate = 1.00, Average Time spend in Cache: 1.00, Average Age = 518.48, Expected Age = 0.50\n", + "Object 3: Hit Rate = 0.99, Expected Hit Rate = 0.99, Average Time spend in Cache: 0.99, Average Age = 130.46, Expected Age = 0.49\n", + "Object 4: Hit Rate = 0.99, Expected Hit Rate = 0.99, Average Time spend in Cache: 1.00, Average Age = 65.80, Expected Age = 0.49\n", + "Object 5: Hit Rate = 1.00, Expected Hit Rate = 1.00, Average Time spend in Cache: 1.00, Average Age = 516.46, Expected Age = 0.50\n", + "Object 6: Hit Rate = 0.99, Expected Hit Rate = 0.99, Average Time spend in Cache: 0.99, Average Age = 88.47, Expected Age = 0.49\n", + "Object 7: Hit Rate = 1.00, Expected Hit Rate = 1.00, Average Time spend in Cache: 1.00, Average Age = 525.33, Expected Age = 0.50\n", + "Object 8: Hit Rate = 0.99, Expected Hit Rate = 0.99, Average Time spend in Cache: 0.99, Average Age = 144.73, Expected Age = 0.49\n", + "Object 9: Hit Rate = 0.99, Expected Hit Rate = 0.99, Average Time spend in Cache: 0.99, Average Age = 113.08, Expected Age = 0.49\n", + "Object 10: Hit Rate = 0.99, Expected Hit Rate = 0.99, Average Time spend in Cache: 0.99, Average Age = 69.91, Expected Age = 0.49\n", + "Object 11: Hit Rate = 1.00, Expected Hit Rate = 1.00, Average Time spend in Cache: 1.00, Average Age = 545.38, Expected Age = 0.50\n", + "Object 12: Hit Rate = 0.99, Expected Hit Rate = 0.99, Average Time spend in Cache: 0.99, Average Age = 85.16, Expected Age = 0.49\n", + "Object 13: Hit Rate = 0.99, Expected Hit Rate = 0.99, Average Time spend in Cache: 0.99, Average Age = 86.42, Expected Age = 0.49\n", + "Object 14: Hit Rate = 0.99, Expected Hit Rate = 0.99, Average Time spend in Cache: 0.99, Average Age = 89.83, Expected Age = 0.49\n", + "Object 15: Hit Rate = 1.00, Expected Hit Rate = 1.00, Average Time spend in Cache: 1.00, Average Age = 518.96, Expected Age = 0.50\n", + "Object 16: Hit Rate = 1.00, Expected Hit Rate = 1.00, Average Time spend in Cache: 1.00, Average Age = 540.84, Expected Age = 0.50\n", + "Object 17: Hit Rate = 0.99, Expected Hit Rate = 0.99, Average Time spend in Cache: 0.99, Average Age = 122.01, Expected Age = 0.49\n", + "Object 18: Hit Rate = 0.99, Expected Hit Rate = 0.99, Average Time spend in Cache: 0.99, Average Age = 134.20, Expected Age = 0.49\n", + "Object 19: Hit Rate = 1.00, Expected Hit Rate = 1.00, Average Time spend in Cache: 1.00, Average Age = 526.43, Expected Age = 0.50\n", + "Object 20: Hit Rate = 0.99, Expected Hit Rate = 0.99, Average Time spend in Cache: 0.99, Average Age = 75.73, Expected Age = 0.49\n", + "Object 21: Hit Rate = 0.99, Expected Hit Rate = 0.99, Average Time spend in Cache: 0.99, Average Age = 95.90, Expected Age = 0.49\n", + "Object 22: Hit Rate = 0.99, Expected Hit Rate = 0.99, Average Time spend in Cache: 0.99, Average Age = 63.96, Expected Age = 0.49\n", + "Object 23: Hit Rate = 0.99, Expected Hit Rate = 0.99, Average Time spend in Cache: 0.99, Average Age = 139.96, Expected Age = 0.49\n", + "Object 24: Hit Rate = 1.00, Expected Hit Rate = 1.00, Average Time spend in Cache: 1.00, Average Age = 528.02, Expected Age = 0.50\n", + "Object 25: Hit Rate = 0.99, Expected Hit Rate = 0.99, Average Time spend in Cache: 0.99, Average Age = 122.85, Expected Age = 0.49\n", + "Object 26: Hit Rate = 0.99, Expected Hit Rate = 0.99, Average Time spend in Cache: 0.99, Average Age = 96.64, Expected Age = 0.49\n", + "Object 27: Hit Rate = 0.99, Expected Hit Rate = 0.99, Average Time spend in Cache: 0.99, Average Age = 79.15, Expected Age = 0.49\n", + "Object 28: Hit Rate = 1.00, Expected Hit Rate = 1.00, Average Time spend in Cache: 1.00, Average Age = 532.88, Expected Age = 0.50\n", + "Object 29: Hit Rate = 1.00, Expected Hit Rate = 0.99, Average Time spend in Cache: 1.00, Average Age = 203.43, Expected Age = 0.50\n", + "Object 30: Hit Rate = 0.99, Expected Hit Rate = 0.99, Average Time spend in Cache: 0.99, Average Age = 128.23, Expected Age = 0.49\n", + "Object 31: Hit Rate = 0.99, Expected Hit Rate = 0.99, Average Time spend in Cache: 0.99, Average Age = 145.19, Expected Age = 0.49\n", + "Object 32: Hit Rate = 1.00, Expected Hit Rate = 1.00, Average Time spend in Cache: 1.00, Average Age = 533.60, Expected Age = 0.50\n", + "Object 33: Hit Rate = 0.99, Expected Hit Rate = 0.99, Average Time spend in Cache: 1.00, Average Age = 134.02, Expected Age = 0.49\n", + "Object 34: Hit Rate = 1.00, Expected Hit Rate = 1.00, Average Time spend in Cache: 1.00, Average Age = 524.09, Expected Age = 0.50\n", + "Object 35: Hit Rate = 0.99, Expected Hit Rate = 0.99, Average Time spend in Cache: 1.00, Average Age = 116.60, Expected Age = 0.49\n", + "Object 36: Hit Rate = 0.99, Expected Hit Rate = 0.99, Average Time spend in Cache: 1.00, Average Age = 134.98, Expected Age = 0.49\n", + "Object 37: Hit Rate = 1.00, Expected Hit Rate = 0.99, Average Time spend in Cache: 1.00, Average Age = 174.10, Expected Age = 0.50\n", + "Object 38: Hit Rate = 1.00, Expected Hit Rate = 1.00, Average Time spend in Cache: 1.00, Average Age = 531.44, Expected Age = 0.50\n", + "Object 39: Hit Rate = 1.00, Expected Hit Rate = 1.00, Average Time spend in Cache: 1.00, Average Age = 529.81, Expected Age = 0.50\n", + "Object 40: Hit Rate = 0.99, Expected Hit Rate = 0.99, Average Time spend in Cache: 0.99, Average Age = 79.26, Expected Age = 0.49\n", + "Object 41: Hit Rate = 1.00, Expected Hit Rate = 1.00, Average Time spend in Cache: 1.00, Average Age = 529.68, Expected Age = 0.50\n", + "Object 42: Hit Rate = 1.00, Expected Hit Rate = 1.00, Average Time spend in Cache: 1.00, Average Age = 525.51, Expected Age = 0.50\n", + "Object 43: Hit Rate = 1.00, Expected Hit Rate = 1.00, Average Time spend in Cache: 1.00, Average Age = 534.66, Expected Age = 0.50\n", + "Object 44: Hit Rate = 0.99, Expected Hit Rate = 0.99, Average Time spend in Cache: 0.99, Average Age = 222.32, Expected Age = 0.49\n", + "Object 45: Hit Rate = 0.99, Expected Hit Rate = 0.99, Average Time spend in Cache: 0.99, Average Age = 71.63, Expected Age = 0.49\n", + "Object 46: Hit Rate = 0.99, Expected Hit Rate = 0.99, Average Time spend in Cache: 0.99, Average Age = 95.27, Expected Age = 0.49\n", + "Object 47: Hit Rate = 1.00, Expected Hit Rate = 1.00, Average Time spend in Cache: 1.00, Average Age = 530.73, Expected Age = 0.50\n", + "Object 48: Hit Rate = 0.99, Expected Hit Rate = 0.99, Average Time spend in Cache: 0.99, Average Age = 142.18, Expected Age = 0.49\n", + "Object 49: Hit Rate = 0.99, Expected Hit Rate = 0.99, Average Time spend in Cache: 0.99, Average Age = 70.83, Expected Age = 0.49\n", + "Object 50: Hit Rate = 0.99, Expected Hit Rate = 0.99, Average Time spend in Cache: 0.99, Average Age = 83.70, Expected Age = 0.49\n", + "Object 51: Hit Rate = 1.00, Expected Hit Rate = 1.00, Average Time spend in Cache: 1.00, Average Age = 528.00, Expected Age = 0.50\n", + "Object 52: Hit Rate = 1.00, Expected Hit Rate = 1.00, Average Time spend in Cache: 1.00, Average Age = 527.27, Expected Age = 0.50\n", + "Object 53: Hit Rate = 0.99, Expected Hit Rate = 0.99, Average Time spend in Cache: 0.99, Average Age = 150.62, Expected Age = 0.49\n", + "Object 54: Hit Rate = 0.99, Expected Hit Rate = 0.99, Average Time spend in Cache: 0.99, Average Age = 95.04, Expected Age = 0.49\n", + "Object 55: Hit Rate = 0.99, Expected Hit Rate = 0.99, Average Time spend in Cache: 0.99, Average Age = 120.14, Expected Age = 0.49\n", + "Object 56: Hit Rate = 0.99, Expected Hit Rate = 0.99, Average Time spend in Cache: 0.99, Average Age = 106.77, Expected Age = 0.49\n", + "Object 57: Hit Rate = 0.99, Expected Hit Rate = 0.99, Average Time spend in Cache: 1.00, Average Age = 144.58, Expected Age = 0.49\n", + "Object 58: Hit Rate = 1.00, Expected Hit Rate = 1.00, Average Time spend in Cache: 1.00, Average Age = 525.37, Expected Age = 0.50\n", + "Object 59: Hit Rate = 1.00, Expected Hit Rate = 1.00, Average Time spend in Cache: 1.00, Average Age = 530.54, Expected Age = 0.50\n", + "Object 60: Hit Rate = 1.00, Expected Hit Rate = 0.99, Average Time spend in Cache: 0.99, Average Age = 132.33, Expected Age = 0.50\n", + "Object 61: Hit Rate = 1.00, Expected Hit Rate = 1.00, Average Time spend in Cache: 1.00, Average Age = 530.68, Expected Age = 0.50\n", + "Object 62: Hit Rate = 0.99, Expected Hit Rate = 0.99, Average Time spend in Cache: 0.99, Average Age = 63.55, Expected Age = 0.49\n", + "Object 63: Hit Rate = 0.99, Expected Hit Rate = 0.99, Average Time spend in Cache: 0.99, Average Age = 81.29, Expected Age = 0.49\n", + "Object 64: Hit Rate = 1.00, Expected Hit Rate = 1.00, Average Time spend in Cache: 1.00, Average Age = 522.91, Expected Age = 0.50\n", + "Object 65: Hit Rate = 1.00, Expected Hit Rate = 0.99, Average Time spend in Cache: 0.99, Average Age = 159.42, Expected Age = 0.50\n", + "Object 66: Hit Rate = 1.00, Expected Hit Rate = 1.00, Average Time spend in Cache: 1.00, Average Age = 529.66, Expected Age = 0.50\n", + "Object 67: Hit Rate = 0.99, Expected Hit Rate = 0.99, Average Time spend in Cache: 0.99, Average Age = 74.62, Expected Age = 0.49\n", + "Object 68: Hit Rate = 1.00, Expected Hit Rate = 1.00, Average Time spend in Cache: 1.00, Average Age = 529.53, Expected Age = 0.50\n", + "Object 69: Hit Rate = 0.99, Expected Hit Rate = 0.99, Average Time spend in Cache: 0.99, Average Age = 136.06, Expected Age = 0.49\n", + "Object 70: Hit Rate = 0.99, Expected Hit Rate = 0.99, Average Time spend in Cache: 0.99, Average Age = 98.80, Expected Age = 0.49\n", + "Object 71: Hit Rate = 1.00, Expected Hit Rate = 1.00, Average Time spend in Cache: 1.00, Average Age = 532.41, Expected Age = 0.50\n", + "Object 72: Hit Rate = 0.99, Expected Hit Rate = 0.99, Average Time spend in Cache: 0.99, Average Age = 140.26, Expected Age = 0.49\n", + "Object 73: Hit Rate = 0.99, Expected Hit Rate = 0.99, Average Time spend in Cache: 0.99, Average Age = 86.30, Expected Age = 0.49\n", + "Object 74: Hit Rate = 0.99, Expected Hit Rate = 0.99, Average Time spend in Cache: 1.00, Average Age = 140.32, Expected Age = 0.49\n", + "Object 75: Hit Rate = 1.00, Expected Hit Rate = 1.00, Average Time spend in Cache: 1.00, Average Age = 527.98, Expected Age = 0.50\n", + "Object 76: Hit Rate = 1.00, Expected Hit Rate = 1.00, Average Time spend in Cache: 1.00, Average Age = 530.24, Expected Age = 0.50\n", + "Object 77: Hit Rate = 1.00, Expected Hit Rate = 1.00, Average Time spend in Cache: 1.00, Average Age = 259.58, Expected Age = 0.50\n", + "Object 78: Hit Rate = 1.00, Expected Hit Rate = 1.00, Average Time spend in Cache: 1.00, Average Age = 528.38, Expected Age = 0.50\n", + "Object 79: Hit Rate = 1.00, Expected Hit Rate = 1.00, Average Time spend in Cache: 1.00, Average Age = 525.00, Expected Age = 0.50\n", + "Object 80: Hit Rate = 0.99, Expected Hit Rate = 0.99, Average Time spend in Cache: 0.99, Average Age = 70.65, Expected Age = 0.49\n", + "Object 81: Hit Rate = 0.99, Expected Hit Rate = 0.99, Average Time spend in Cache: 0.99, Average Age = 142.99, Expected Age = 0.49\n", + "Object 82: Hit Rate = 1.00, Expected Hit Rate = 1.00, Average Time spend in Cache: 1.00, Average Age = 528.39, Expected Age = 0.50\n", + "Object 83: Hit Rate = 1.00, Expected Hit Rate = 1.00, Average Time spend in Cache: 1.00, Average Age = 527.83, Expected Age = 0.50\n", + "Object 84: Hit Rate = 0.99, Expected Hit Rate = 0.99, Average Time spend in Cache: 1.00, Average Age = 127.04, Expected Age = 0.49\n", + "Object 85: Hit Rate = 0.99, Expected Hit Rate = 0.99, Average Time spend in Cache: 0.99, Average Age = 133.20, Expected Age = 0.49\n", + "Object 86: Hit Rate = 1.00, Expected Hit Rate = 1.00, Average Time spend in Cache: 1.00, Average Age = 538.40, Expected Age = 0.50\n", + "Object 87: Hit Rate = 0.99, Expected Hit Rate = 0.99, Average Time spend in Cache: 0.99, Average Age = 94.57, Expected Age = 0.49\n", + "Object 88: Hit Rate = 1.00, Expected Hit Rate = 1.00, Average Time spend in Cache: 1.00, Average Age = 530.51, Expected Age = 0.50\n", + "Object 89: Hit Rate = 1.00, Expected Hit Rate = 0.99, Average Time spend in Cache: 1.00, Average Age = 131.36, Expected Age = 0.50\n", + "Object 90: Hit Rate = 0.99, Expected Hit Rate = 0.99, Average Time spend in Cache: 1.00, Average Age = 104.07, Expected Age = 0.49\n", + "Object 91: Hit Rate = 1.00, Expected Hit Rate = 1.00, Average Time spend in Cache: 1.00, Average Age = 525.81, Expected Age = 0.50\n", + "Object 92: Hit Rate = 1.00, Expected Hit Rate = 1.00, Average Time spend in Cache: 1.00, Average Age = 530.95, Expected Age = 0.50\n", + "Object 93: Hit Rate = 1.00, Expected Hit Rate = 1.00, Average Time spend in Cache: 1.00, Average Age = 524.21, Expected Age = 0.50\n", + "Object 94: Hit Rate = 0.99, Expected Hit Rate = 0.99, Average Time spend in Cache: 1.00, Average Age = 137.10, Expected Age = 0.49\n", + "Object 95: Hit Rate = 1.00, Expected Hit Rate = 1.00, Average Time spend in Cache: 1.00, Average Age = 533.23, Expected Age = 0.50\n", + "Object 96: Hit Rate = 0.99, Expected Hit Rate = 0.99, Average Time spend in Cache: 0.98, Average Age = 82.53, Expected Age = 0.49\n", + "Object 97: Hit Rate = 0.99, Expected Hit Rate = 0.99, Average Time spend in Cache: 0.98, Average Age = 40.14, Expected Age = 0.49\n", + "Object 98: Hit Rate = 1.00, Expected Hit Rate = 1.00, Average Time spend in Cache: 1.00, Average Age = 527.31, Expected Age = 0.50\n", + "Object 99: Hit Rate = 1.00, Expected Hit Rate = 1.00, Average Time spend in Cache: 1.00, Average Age = 524.64, Expected Age = 0.50\n", + "Object 100: Hit Rate = 1.00, Expected Hit Rate = 1.00, Average Time spend in Cache: 1.00, Average Age = 526.64, Expected Age = 0.50\n" ] } ], @@ -474,538 +498,17 @@ "for obj_id in range(1, DATABASE_OBJECTS + 1):\n", " if cache.access_count[obj_id] != 0:\n", " hit_rate = cache.hits[obj_id] / max(1, cache.access_count[obj_id]) # Avoid division by zero\n", - " avg_age = cache.cumulative_age[obj_id] / max(1, cache.access_count[obj_id])\n", + " expected_hit_rate = 1-math.exp(-db.lambda_values[obj_id]*CACHE_TTL)\n", " avg_cache_time = cache.cumulative_cache_time[obj_id] / max(1, simulation_end_time) # Only average over hits\n", - " expected_age = (0.5*pow(hit_rate,2))\n", - " print(f\"Object {obj_id}: Hit Rate = {hit_rate:.2f}, Average Time spend in Cache: {avg_cache_time:.2f},Average Age = {avg_age:.2f}, Exprected Age = {expected_age:.2f}\")\n", - " statistics.append({\"obj_id\": obj_id,\"hit_rate\": hit_rate, \"avg_cache_time\":avg_cache_time, \"avg_age\": avg_age, \"expected_age\": expected_age})" + " avg_age = cache.cumulative_age[obj_id] / max(1, cache.access_count[obj_id])\n", + " expected_age = pow(hit_rate,2) / 2\n", + " print(f\"Object {obj_id}: Hit Rate = {hit_rate:.2f}, Expected Hit Rate = {expected_hit_rate:.2f}, Average Time spend in Cache: {avg_cache_time:.2f}, Average Age = {avg_age:.2f}, Expected Age = {expected_age:.2f}\")\n", + " statistics.append({\"obj_id\": obj_id,\"hit_rate\": hit_rate, \"expected_hitrate\": expected_hit_rate, \"avg_cache_time\":avg_cache_time, \"avg_age\": avg_age, \"expected_age\": expected_age})" ] }, { "cell_type": "code", "execution_count": 11, - "id": "3f9f5442-dee5-4545-b7b0-6a716e9d943b", - "metadata": { - "scrolled": true - }, - "outputs": [ - { - "data": { - "text/plain": [ - "[{'obj_id': 1,\n", - " 'hit_rate': 0.8343359555761222,\n", - " 'avg_cache_time': {0.810432254071845},\n", - " 'avg_age': 2.068923674198366,\n", - " 'expected_age': 0.34805824338356045},\n", - " {'obj_id': 2,\n", - " 'hit_rate': 0.9368521766863339,\n", - " 'avg_cache_time': {0.8697853571068594},\n", - " 'avg_age': 2.3207402902916767,\n", - " 'expected_age': 0.4388460004809609},\n", - " {'obj_id': 3,\n", - " 'hit_rate': 0.8387391502969392,\n", - " 'avg_cache_time': {0.8200673629152411},\n", - " 'avg_age': 2.083112933481689,\n", - " 'expected_age': 0.3517416811204158},\n", - " {'obj_id': 4,\n", - " 'hit_rate': 0.8345864661654135,\n", - " 'avg_cache_time': {0.817667207716411},\n", - " 'avg_age': 2.098241838496266,\n", - " 'expected_age': 0.3482672847532365},\n", - " {'obj_id': 5,\n", - " 'hit_rate': 0.9079009995240361,\n", - " 'avg_cache_time': {0.8745472033792867},\n", - " 'avg_age': 2.2637599890084745,\n", - " 'expected_age': 0.41214211246837196},\n", - " {'obj_id': 6,\n", - " 'hit_rate': 0.8327790973871734,\n", - " 'avg_cache_time': {0.8080445983334636},\n", - " 'avg_age': 2.0885926647923605,\n", - " 'expected_age': 0.3467605125224976},\n", - " {'obj_id': 7,\n", - " 'hit_rate': 0.9611706197398623,\n", - " 'avg_cache_time': {0.8721183854707718},\n", - " 'avg_age': 2.396789243995202,\n", - " 'expected_age': 0.4619244801255555},\n", - " {'obj_id': 8,\n", - " 'hit_rate': 0.8350230414746543,\n", - " 'avg_cache_time': {0.8224079743937736},\n", - " 'avg_age': 2.0748384445301578,\n", - " 'expected_age': 0.34863173989679114},\n", - " {'obj_id': 9,\n", - " 'hit_rate': 0.8310523831996225,\n", - " 'avg_cache_time': {0.808204836664193},\n", - " 'avg_age': 2.030852029418002,\n", - " 'expected_age': 0.3453240318108861},\n", - " {'obj_id': 10,\n", - " 'hit_rate': 0.8308288899660689,\n", - " 'avg_cache_time': {0.8177615771744638},\n", - " 'avg_age': 2.0440294768985754,\n", - " 'expected_age': 0.34513832220112506},\n", - " {'obj_id': 11,\n", - " 'hit_rate': 0.9088757396449704,\n", - " 'avg_cache_time': {0.891248201160126},\n", - " 'avg_age': 2.2625636303653898,\n", - " 'expected_age': 0.413027555057596},\n", - " {'obj_id': 12,\n", - " 'hit_rate': 0.8373071528751753,\n", - " 'avg_cache_time': {0.8102551278956152},\n", - " 'avg_age': 2.0383876738470725,\n", - " 'expected_age': 0.35054163412796613},\n", - " {'obj_id': 13,\n", - " 'hit_rate': 0.8361344537815126,\n", - " 'avg_cache_time': {0.8105750271598551},\n", - " 'avg_age': 2.0954043404028435,\n", - " 'expected_age': 0.34956041240025426},\n", - " {'obj_id': 14,\n", - " 'hit_rate': 0.8290556900726392,\n", - " 'avg_cache_time': {0.8201096214390584},\n", - " 'avg_age': 2.0706796740450875,\n", - " 'expected_age': 0.34366666862091},\n", - " {'obj_id': 15,\n", - " 'hit_rate': 0.908745247148289,\n", - " 'avg_cache_time': {0.8605605035087328},\n", - " 'avg_age': 2.2466123908950646,\n", - " 'expected_age': 0.4129089621073024},\n", - " {'obj_id': 16,\n", - " 'hit_rate': 0.9110956360259982,\n", - " 'avg_cache_time': {0.8747680644435698},\n", - " 'avg_age': 2.2834548671334542,\n", - " 'expected_age': 0.41504762899280906},\n", - " {'obj_id': 17,\n", - " 'hit_rate': 0.8320683111954459,\n", - " 'avg_cache_time': {0.8150399870989544},\n", - " 'avg_age': 2.0097170455667013,\n", - " 'expected_age': 0.3461688372478207},\n", - " {'obj_id': 18,\n", - " 'hit_rate': 0.8342067651262506,\n", - " 'avg_cache_time': {0.8032009912464316},\n", - " 'avg_age': 2.1273968056684316,\n", - " 'expected_age': 0.3479504634912017},\n", - " {'obj_id': 19,\n", - " 'hit_rate': 0.9354469684588985,\n", - " 'avg_cache_time': {0.8651012574814502},\n", - " 'avg_age': 2.3206810673715705,\n", - " 'expected_age': 0.43753051539947174},\n", - " {'obj_id': 20,\n", - " 'hit_rate': 0.833976833976834,\n", - " 'avg_cache_time': {0.7986061563297104},\n", - " 'avg_age': 2.0432248271474878,\n", - " 'expected_age': 0.34775867980501185},\n", - " {'obj_id': 21,\n", - " 'hit_rate': 0.8348837209302326,\n", - " 'avg_cache_time': {0.8152281904411368},\n", - " 'avg_age': 2.0677338592418755,\n", - " 'expected_age': 0.3485154137371552},\n", - " {'obj_id': 22,\n", - " 'hit_rate': 0.8338068181818182,\n", - " 'avg_cache_time': {0.8174427840452981},\n", - " 'avg_age': 2.086382182099578,\n", - " 'expected_age': 0.3476169050232438},\n", - " {'obj_id': 23,\n", - " 'hit_rate': 0.8357510528778662,\n", - " 'avg_cache_time': {0.8057637380263669},\n", - " 'avg_age': 2.0794074474530007,\n", - " 'expected_age': 0.34923991119323095},\n", - " {'obj_id': 24,\n", - " 'hit_rate': 0.9097920074783828,\n", - " 'avg_cache_time': {0.8768806713137},\n", - " 'avg_age': 2.277444995774618,\n", - " 'expected_age': 0.4138607484357729},\n", - " {'obj_id': 25,\n", - " 'hit_rate': 0.8363039399624765,\n", - " 'avg_cache_time': {0.8033370429558485},\n", - " 'avg_age': 2.0831638192632096,\n", - " 'expected_age': 0.3497021399983808},\n", - " {'obj_id': 26,\n", - " 'hit_rate': 0.8382218148487626,\n", - " 'avg_cache_time': {0.8105553974196054},\n", - " 'avg_age': 2.0739601366722598,\n", - " 'expected_age': 0.3513079054441766},\n", - " {'obj_id': 27,\n", - " 'hit_rate': 0.8346604215456674,\n", - " 'avg_cache_time': {0.8174373373929206},\n", - " 'avg_age': 2.1512142438129023,\n", - " 'expected_age': 0.34832900964739566},\n", - " {'obj_id': 28,\n", - " 'hit_rate': 0.960876670191291,\n", - " 'avg_cache_time': {0.8625135261787757},\n", - " 'avg_age': 2.4084789355150056,\n", - " 'expected_age': 0.4616419876589515},\n", - " {'obj_id': 29,\n", - " 'hit_rate': 0.8324705882352941,\n", - " 'avg_cache_time': {0.8104802301710875},\n", - " 'avg_age': 2.0824021086384605,\n", - " 'expected_age': 0.3465036401384083},\n", - " {'obj_id': 30,\n", - " 'hit_rate': 0.8315191670610507,\n", - " 'avg_cache_time': {0.8174875104134197},\n", - " 'avg_age': 2.072225068112276,\n", - " 'expected_age': 0.34571206259495174},\n", - " {'obj_id': 31,\n", - " 'hit_rate': 0.8260656540911318,\n", - " 'avg_cache_time': {0.8153992880564279},\n", - " 'avg_age': 2.061721077642618,\n", - " 'expected_age': 0.3411922324345047},\n", - " {'obj_id': 32,\n", - " 'hit_rate': 0.952234570820525,\n", - " 'avg_cache_time': {0.8556777555326739},\n", - " 'avg_age': 2.3617840905668293,\n", - " 'expected_age': 0.4533753389328747},\n", - " {'obj_id': 33,\n", - " 'hit_rate': 0.8347378277153558,\n", - " 'avg_cache_time': {0.8177898808005426},\n", - " 'avg_age': 2.1157873141297703,\n", - " 'expected_age': 0.3483936205094755},\n", - " {'obj_id': 34,\n", - " 'hit_rate': 0.953300196509074,\n", - " 'avg_cache_time': {0.8723919138738911},\n", - " 'avg_age': 2.37152246660409,\n", - " 'expected_age': 0.4543906323321196},\n", - " {'obj_id': 35,\n", - " 'hit_rate': 0.8371985157699443,\n", - " 'avg_cache_time': {0.8056650949556616},\n", - " 'avg_age': 2.0546440283833953,\n", - " 'expected_age': 0.35045067740369884},\n", - " {'obj_id': 36,\n", - " 'hit_rate': 0.8293269230769231,\n", - " 'avg_cache_time': {0.8321331411343728},\n", - " 'avg_age': 2.019798753122858,\n", - " 'expected_age': 0.3438915726701184},\n", - " {'obj_id': 37,\n", - " 'hit_rate': 0.8385178408051235,\n", - " 'avg_cache_time': {0.820059027970993},\n", - " 'avg_age': 2.0459185671323534,\n", - " 'expected_age': 0.3515560846742432},\n", - " {'obj_id': 38,\n", - " 'hit_rate': 0.9372218690400509,\n", - " 'avg_cache_time': {0.8698808303188571},\n", - " 'avg_age': 2.3594967138941594,\n", - " 'expected_age': 0.43919241590346314},\n", - " {'obj_id': 39,\n", - " 'hit_rate': 0.9754142169962586,\n", - " 'avg_cache_time': {0.7626087843902165},\n", - " 'avg_age': 2.4388237909562465,\n", - " 'expected_age': 0.47571644735921215},\n", - " {'obj_id': 40,\n", - " 'hit_rate': 0.8275,\n", - " 'avg_cache_time': {0.794355906656446},\n", - " 'avg_age': 2.0686563554852295,\n", - " 'expected_age': 0.34237812500000003},\n", - " {'obj_id': 41,\n", - " 'hit_rate': 0.9524259237398182,\n", - " 'avg_cache_time': {0.845923081620667},\n", - " 'avg_age': 2.3773225761537065,\n", - " 'expected_age': 0.453557570105823},\n", - " {'obj_id': 42,\n", - " 'hit_rate': 0.9532319832888476,\n", - " 'avg_cache_time': {0.8603717658690662},\n", - " 'avg_age': 2.368518600216613,\n", - " 'expected_age': 0.45432560698239494},\n", - " {'obj_id': 43,\n", - " 'hit_rate': 0.9076295585412668,\n", - " 'avg_cache_time': {0.876926816727247},\n", - " 'avg_age': 2.244802766787443,\n", - " 'expected_age': 0.41189570776890744},\n", - " {'obj_id': 44,\n", - " 'hit_rate': 0.82810236600676,\n", - " 'avg_cache_time': {0.8224668160130034},\n", - " 'avg_age': 2.0368413613592855,\n", - " 'expected_age': 0.34287676429299696},\n", - " {'obj_id': 45,\n", - " 'hit_rate': 0.8323863636363636,\n", - " 'avg_cache_time': {0.8319088220634105},\n", - " 'avg_age': 2.1104292351117517,\n", - " 'expected_age': 0.3464335291838843},\n", - " {'obj_id': 46,\n", - " 'hit_rate': 0.8343443770415305,\n", - " 'avg_cache_time': {0.8225991984196005},\n", - " 'avg_age': 2.1195374144133803,\n", - " 'expected_age': 0.3480652697504098},\n", - " {'obj_id': 47,\n", - " 'hit_rate': 0.980509111403344,\n", - " 'avg_cache_time': {0.7793000913510133},\n", - " 'avg_age': 2.4490817341548503,\n", - " 'expected_age': 0.4806990587724876},\n", - " {'obj_id': 48,\n", - " 'hit_rate': 0.8343675417661098,\n", - " 'avg_cache_time': {0.8080294162265821},\n", - " 'avg_age': 2.136948776052968,\n", - " 'expected_age': 0.3480845973764105},\n", - " {'obj_id': 49,\n", - " 'hit_rate': 0.8318116290245074,\n", - " 'avg_cache_time': {0.8130078566363472},\n", - " 'avg_age': 2.1232360998461477,\n", - " 'expected_age': 0.3459552930902024},\n", - " {'obj_id': 50,\n", - " 'hit_rate': 0.8326159732185557,\n", - " 'avg_cache_time': {0.817458050161407},\n", - " 'avg_age': 2.055003674129556,\n", - " 'expected_age': 0.3466246794293414},\n", - " {'obj_id': 51,\n", - " 'hit_rate': 0.9612454770519901,\n", - " 'avg_cache_time': {0.8652760189728331},\n", - " 'avg_age': 2.4115942850497527,\n", - " 'expected_age': 0.46199643357645404},\n", - " {'obj_id': 52,\n", - " 'hit_rate': 0.9782768777614138,\n", - " 'avg_cache_time': {0.8078795902330617},\n", - " 'avg_age': 2.457015718981127,\n", - " 'expected_age': 0.4785128247813101},\n", - " {'obj_id': 53,\n", - " 'hit_rate': 0.8317399617590823,\n", - " 'avg_cache_time': {0.8224509800875742},\n", - " 'avg_age': 2.0588664125261387,\n", - " 'expected_age': 0.3458956819934998},\n", - " {'obj_id': 54,\n", - " 'hit_rate': 0.8293036750483559,\n", - " 'avg_cache_time': {0.8081452701769272},\n", - " 'avg_age': 2.053967188615532,\n", - " 'expected_age': 0.34387229272435454},\n", - " {'obj_id': 55,\n", - " 'hit_rate': 0.828125,\n", - " 'avg_cache_time': {0.8176938747650575},\n", - " 'avg_age': 2.085346884674153,\n", - " 'expected_age': 0.3428955078125},\n", - " {'obj_id': 56,\n", - " 'hit_rate': 0.8280565026790063,\n", - " 'avg_cache_time': {0.8173220706448464},\n", - " 'avg_age': 2.074950238616093,\n", - " 'expected_age': 0.3428387858144936},\n", - " {'obj_id': 57,\n", - " 'hit_rate': 0.8393339333933393,\n", - " 'avg_cache_time': {0.8270340728801309},\n", - " 'avg_age': 2.0691955449482378,\n", - " 'expected_age': 0.3522407258727672},\n", - " {'obj_id': 58,\n", - " 'hit_rate': 0.9883888888888889,\n", - " 'avg_cache_time': {0.6768908831920782},\n", - " 'avg_age': 2.4643101465551154,\n", - " 'expected_age': 0.48845629783950617},\n", - " {'obj_id': 59,\n", - " 'hit_rate': 0.9093491124260356,\n", - " 'avg_cache_time': {0.8748411466058176},\n", - " 'avg_age': 2.2267777175980874,\n", - " 'expected_age': 0.4134579041350093},\n", - " {'obj_id': 60,\n", - " 'hit_rate': 0.8384580082606701,\n", - " 'avg_cache_time': {0.8104072319895872},\n", - " 'avg_age': 2.0723452264510507,\n", - " 'expected_age': 0.35150591580822493},\n", - " {'obj_id': 61,\n", - " 'hit_rate': 0.9923634975181367,\n", - " 'avg_cache_time': {0.5747045857007451},\n", - " 'avg_age': 2.472985486607898,\n", - " 'expected_age': 0.49239265560321444},\n", - " {'obj_id': 62,\n", - " 'hit_rate': 0.8294685990338164,\n", - " 'avg_cache_time': {0.8224411637289837},\n", - " 'avg_age': 2.0655736147672212,\n", - " 'expected_age': 0.3440090783915611},\n", - " {'obj_id': 63,\n", - " 'hit_rate': 0.8315939278937381,\n", - " 'avg_cache_time': {0.8105502727907914},\n", - " 'avg_age': 2.0794497864895076,\n", - " 'expected_age': 0.3457742304548678},\n", - " {'obj_id': 64,\n", - " 'hit_rate': 0.9081364829396326,\n", - " 'avg_cache_time': {0.865498922040767},\n", - " 'avg_age': 2.2665026207308543,\n", - " 'expected_age': 0.41235593582298274},\n", - " {'obj_id': 65,\n", - " 'hit_rate': 0.8366013071895425,\n", - " 'avg_cache_time': {0.8129554073994908},\n", - " 'avg_age': 2.0648277501716747,\n", - " 'expected_age': 0.34995087359562566},\n", - " {'obj_id': 66,\n", - " 'hit_rate': 0.9804088183921069,\n", - " 'avg_cache_time': {0.781811758702253},\n", - " 'avg_age': 2.4642764008736737,\n", - " 'expected_age': 0.48060072559050365},\n", - " {'obj_id': 67,\n", - " 'hit_rate': 0.839392544868845,\n", - " 'avg_cache_time': {0.8057032348271645},\n", - " 'avg_age': 2.0516174721394225,\n", - " 'expected_age': 0.35228992219069794},\n", - " {'obj_id': 68,\n", - " 'hit_rate': 0.9971018872070984,\n", - " 'avg_cache_time': {0.28694251969249696},\n", - " 'avg_age': 2.4912476009423554,\n", - " 'expected_age': 0.49710608673597856},\n", - " {'obj_id': 69,\n", - " 'hit_rate': 0.8279362010633156,\n", - " 'avg_cache_time': {0.8104624011213533},\n", - " 'avg_age': 2.044782938269008,\n", - " 'expected_age': 0.34273917651557745},\n", - " {'obj_id': 70,\n", - " 'hit_rate': 0.8330975954738331,\n", - " 'avg_cache_time': {0.827067381762729},\n", - " 'avg_age': 2.061054243655572,\n", - " 'expected_age': 0.3470258017921412},\n", - " {'obj_id': 71,\n", - " 'hit_rate': 0.9102174421323358,\n", - " 'avg_cache_time': {0.8438498811202659},\n", - " 'avg_age': 2.245598184286809,\n", - " 'expected_age': 0.414247895980966},\n", - " {'obj_id': 72,\n", - " 'hit_rate': 0.8317490494296578,\n", - " 'avg_cache_time': {0.8103677547984748},\n", - " 'avg_age': 2.094107348921501,\n", - " 'expected_age': 0.34590324061356964},\n", - " {'obj_id': 73,\n", - " 'hit_rate': 0.8348666053357866,\n", - " 'avg_cache_time': {0.8222844065855565},\n", - " 'avg_age': 2.097902145286362,\n", - " 'expected_age': 0.34850112435245},\n", - " {'obj_id': 74,\n", - " 'hit_rate': 0.8388838883888389,\n", - " 'avg_cache_time': {0.8223920952154627},\n", - " 'avg_age': 2.059451157427686,\n", - " 'expected_age': 0.35186308909918895},\n", - " {'obj_id': 75,\n", - " 'hit_rate': 0.936951316839585,\n", - " 'avg_cache_time': {0.884020791397808},\n", - " 'avg_age': 2.313501961216909,\n", - " 'expected_age': 0.4389388850637162},\n", - " {'obj_id': 76,\n", - " 'hit_rate': 0.9075005990893842,\n", - " 'avg_cache_time': {0.8603442007780137},\n", - " 'avg_age': 2.278602079093859,\n", - " 'expected_age': 0.4117786686737956},\n", - " {'obj_id': 77,\n", - " 'hit_rate': 0.9112534309240622,\n", - " 'avg_cache_time': {0.8674652781940188},\n", - " 'avg_age': 2.2542752448800436,\n", - " 'expected_age': 0.4151914076854373},\n", - " {'obj_id': 78,\n", - " 'hit_rate': 0.9380210791253736,\n", - " 'avg_cache_time': {0.8839771052976533},\n", - " 'avg_age': 2.324935499962482,\n", - " 'expected_age': 0.4399417724417652},\n", - " {'obj_id': 79,\n", - " 'hit_rate': 0.9867845598022438,\n", - " 'avg_cache_time': {0.705585200712788},\n", - " 'avg_age': 2.46010684921625,\n", - " 'expected_age': 0.48687188373205403},\n", - " {'obj_id': 80,\n", - " 'hit_rate': 0.8322211630123928,\n", - " 'avg_cache_time': {0.8177314370626462},\n", - " 'avg_age': 2.097477368005882,\n", - " 'expected_age': 0.3462960320828498},\n", - " {'obj_id': 81,\n", - " 'hit_rate': 0.8304836345872008,\n", - " 'avg_cache_time': {0.8034749610214771},\n", - " 'avg_age': 2.0624698657772527,\n", - " 'expected_age': 0.3448515336585836},\n", - " {'obj_id': 82,\n", - " 'hit_rate': 0.9619305958282668,\n", - " 'avg_cache_time': {0.8509832375052683},\n", - " 'avg_age': 2.41091877839736,\n", - " 'expected_age': 0.46265523559526217},\n", - " {'obj_id': 83,\n", - " 'hit_rate': 0.9100070307007265,\n", - " 'avg_cache_time': {0.8722800197572179},\n", - " 'avg_age': 2.3170644212278697,\n", - " 'expected_age': 0.41405639796237653},\n", - " {'obj_id': 84,\n", - " 'hit_rate': 0.833254828073481,\n", - " 'avg_cache_time': {0.8177016874896731},\n", - " 'avg_age': 2.0464469902323,\n", - " 'expected_age': 0.3471568042538831},\n", - " {'obj_id': 85,\n", - " 'hit_rate': 0.833255269320843,\n", - " 'avg_cache_time': {0.8247840962323026},\n", - " 'avg_age': 2.061285101346782,\n", - " 'expected_age': 0.34715717192547535},\n", - " {'obj_id': 86,\n", - " 'hit_rate': 0.9074074074074074,\n", - " 'avg_cache_time': {0.8555887732493566},\n", - " 'avg_age': 2.2769598734065584,\n", - " 'expected_age': 0.41169410150891633},\n", - " {'obj_id': 87,\n", - " 'hit_rate': 0.8397639582387654,\n", - " 'avg_cache_time': {0.8224276969838862},\n", - " 'avg_age': 2.0870135852266167,\n", - " 'expected_age': 0.35260175277841943},\n", - " {'obj_id': 88,\n", - " 'hit_rate': 0.907762338284619,\n", - " 'avg_cache_time': {0.8602891254952841},\n", - " 'avg_age': 2.235994985739091,\n", - " 'expected_age': 0.4120162314039796},\n", - " {'obj_id': 89,\n", - " 'hit_rate': 0.8307105388650453,\n", - " 'avg_cache_time': {0.8080035927903887},\n", - " 'avg_age': 2.035873238721567,\n", - " 'expected_age': 0.34503999969072696},\n", - " {'obj_id': 90,\n", - " 'hit_rate': 0.8352996696554978,\n", - " 'avg_cache_time': {0.8079407137714084},\n", - " 'avg_age': 2.0794798223111317,\n", - " 'expected_age': 0.3488627690632919},\n", - " {'obj_id': 91,\n", - " 'hit_rate': 0.9086402266288952,\n", - " 'avg_cache_time': {0.8794285016730224},\n", - " 'avg_age': 2.2588139685983926,\n", - " 'expected_age': 0.41281353072410504},\n", - " {'obj_id': 92,\n", - " 'hit_rate': 0.9085754783841248,\n", - " 'avg_cache_time': {0.841418447951084},\n", - " 'avg_age': 2.2786416827720615,\n", - " 'expected_age': 0.4127546999604706},\n", - " {'obj_id': 93,\n", - " 'hit_rate': 0.9372827804107425,\n", - " 'avg_cache_time': {0.8936600617349919},\n", - " 'avg_age': 2.378841722682071,\n", - " 'expected_age': 0.4392495052272461},\n", - " {'obj_id': 94,\n", - " 'hit_rate': 0.8275355218030377,\n", - " 'avg_cache_time': {0.8105095792801881},\n", - " 'avg_age': 2.094877983310673,\n", - " 'expected_age': 0.3424075199229129},\n", - " {'obj_id': 95,\n", - " 'hit_rate': 0.9085263912108908,\n", - " 'avg_cache_time': {0.8700376807857447},\n", - " 'avg_age': 2.2455942083568528,\n", - " 'expected_age': 0.41271010176334233},\n", - " {'obj_id': 96,\n", - " 'hit_rate': 0.8329366968110423,\n", - " 'avg_cache_time': {0.812733015130395},\n", - " 'avg_age': 2.0386270901405714,\n", - " 'expected_age': 0.3468917704472451},\n", - " {'obj_id': 97,\n", - " 'hit_rate': 0.83082158483228,\n", - " 'avg_cache_time': {0.8084037771066447},\n", - " 'avg_age': 2.0786109804084023,\n", - " 'expected_age': 0.3451322529116107},\n", - " {'obj_id': 98,\n", - " 'hit_rate': 0.9946180888462768,\n", - " 'avg_cache_time': {0.4651534320375863},\n", - " 'avg_age': 2.4811043242858535,\n", - " 'expected_age': 0.49463257133011007},\n", - " {'obj_id': 99,\n", - " 'hit_rate': 0.952843435525392,\n", - " 'avg_cache_time': {0.8627920808474391},\n", - " 'avg_age': 2.375694850086415,\n", - " 'expected_age': 0.4539553063119159},\n", - " {'obj_id': 100,\n", - " 'hit_rate': 0.9087917254348848,\n", - " 'avg_cache_time': {0.8674273959799007},\n", - " 'avg_age': 2.2584215419035614,\n", - " 'expected_age': 0.4129512001094576}]" - ] - }, - "execution_count": 11, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "statistics" - ] - }, - { - "cell_type": "code", - "execution_count": 12, "id": "b2d18372-cdba-4151-ae32-5bf45466bf94", "metadata": {}, "outputs": [], @@ -1017,7 +520,7 @@ }, { "cell_type": "code", - "execution_count": 13, + "execution_count": 12, "id": "80971714-44f1-47db-9e89-85be7c885bde", "metadata": {}, "outputs": [ @@ -1048,6 +551,8 @@ "
100 rows × 9 columns
\n", + "100 rows × 11 columns
\n", "" ], "text/plain": [ - " access_count hits misses mu lambda hit_rate avg_age \\\n", - "1 2161 1803 358 0 1 0.834336 2.068924 \n", - "2 6271 5875 396 0 3 0.936852 2.320740 \n", - "3 2189 1836 353 0 1 0.838739 2.083113 \n", - "4 2128 1776 352 0 1 0.834586 2.098242 \n", - "5 4202 3815 387 0 2 0.907901 2.263760 \n", - ".. ... ... ... .. ... ... ... \n", - "96 2101 1750 351 0 1 0.832937 2.038627 \n", - "97 2057 1709 348 0 1 0.830822 2.078611 \n", - "98 78225 77804 421 0 37 0.994618 2.481104 \n", - "99 8546 8143 403 0 4 0.952843 2.375695 \n", - "100 4254 3866 388 0 2 0.908792 2.258422 \n", + " access_count hits misses mu lambda hit_rate avg_cache_time \\\n", + "1 1060 1048 12 0 1 0.988679 0.986652 \n", + "2 3141 3140 1 0 3 0.999682 0.999596 \n", + "3 1060 1054 6 0 1 0.994340 0.992451 \n", + "4 1053 1041 12 0 1 0.988604 0.995039 \n", + "5 2073 2072 1 0 2 0.999518 0.999509 \n", + ".. ... ... ... .. ... ... ... \n", + "96 1026 1015 11 0 1 0.989279 0.983446 \n", + "97 1015 1001 14 0 1 0.986207 0.984133 \n", + "98 39278 39277 1 0 37 0.999975 0.999964 \n", + "99 4158 4157 1 0 4 0.999759 0.999997 \n", + "100 2084 2083 1 0 2 0.999520 0.999942 \n", "\n", - " expected_age age_delta \n", - "1 0.348058 1.720865 \n", - "2 0.438846 1.881894 \n", - "3 0.351742 1.731371 \n", - "4 0.348267 1.749975 \n", - "5 0.412142 1.851618 \n", - ".. ... ... \n", - "96 0.346892 1.691735 \n", - "97 0.345132 1.733479 \n", - "98 0.494633 1.986472 \n", - "99 0.453955 1.921740 \n", - "100 0.412951 1.845470 \n", + " cache_time_delta avg_age expected_age age_delta \n", + "1 0.002027 86.266415 0.488743 85.777672 \n", + "2 0.000086 518.478962 0.499682 517.979280 \n", + "3 0.001888 130.457732 0.494356 129.963377 \n", + "4 -0.006435 65.802517 0.488669 65.313848 \n", + "5 0.000008 516.463009 0.499518 515.963491 \n", + ".. ... ... ... ... \n", + "96 0.005833 82.531337 0.489336 82.042001 \n", + "97 0.002074 40.135630 0.486302 39.649328 \n", + "98 0.000011 527.312192 0.499975 526.812217 \n", + "99 -0.000237 524.637562 0.499760 524.137803 \n", + "100 -0.000421 526.641909 0.499520 526.142389 \n", "\n", - "[100 rows x 9 columns]" + "[100 rows x 11 columns]" ] }, - "execution_count": 13, + "execution_count": 12, "metadata": {}, "output_type": "execute_result" } @@ -1252,6 +779,38 @@ "merged" ] }, + { + "cell_type": "code", + "execution_count": 13, + "id": "8630b3e8-50d1-4590-833d-27651d84a366", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "access_count 1026.000000\n", + "hits 1015.000000\n", + "misses 11.000000\n", + "mu 0.000000\n", + "lambda 1.000000\n", + "hit_rate 0.989279\n", + "avg_cache_time 0.983446\n", + "cache_time_delta 0.005833\n", + "avg_age 82.531337\n", + "expected_age 0.489336\n", + "age_delta 82.042001\n", + "Name: 96, dtype: float64" + ] + }, + "execution_count": 13, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "merged.iloc[merged['cache_time_delta'].argmax()]" + ] + }, { "cell_type": "code", "execution_count": 14, @@ -1260,7 +819,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAACWAAAAHWCAYAAADzMbJhAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy80BEi2AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydd3wUxfvHP5eE3kGKKBJE7GJBxY4oir13EfFnL1/bV/1iQcUGFhRBEBDpWGiCGHoNPZRAgABJSAKk996u7O+Py15md2e23O1dEnzer5cvw93e7uzs7MwzT3VIkiSBIAiCIAiCIAiCIAiCIAiCIAiCIAiCIAiCIAiCsExYfTeAIAiCIAiCIAiCIAiCIAiCIAiCIAiCIAiCIAiisUIOWARBEARBEARBEARBEARBEARBEARBEARBEARBEH5CDlgEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRB+Qg5YBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQfkIOWARBEARBEARBEARBEARBEARBEARBEARBEARBEH5CDlgEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRB+Qg5YBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQfkIOWARBEARBEARBEARBEARBEARBEARBEARBEARBEH5CDlgEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRB+Qg5YBEEQBEEQBEEQBEEQJtmwYQMcDgcWLFhQ300xRXZ2Nh566CF06tQJDocDY8eOte3cqampcDgc+O677wyP/fTTT+FwOGy7dihwOBz49NNP67sZtuBwOPDaa6/VdzMaNZGRkRg2bFh9N4MgCIIgCIIgCIIgiAYKOWARBEEQBEEQBEEQBNGgmDFjBhwOB5o3b4709HTN9zfeeCMuvPDCemhZ4+Ott97CypUr8f7772P27Nm47bbbdI8vLy/H559/jr59+6Jly5Zo164drr/+esyaNQuSJIWo1dZZtmxZo3GW2rBhAx544AF069YNTZs2RZcuXXD33Xdj0aJF9d00W3A6nRg3bhyuuOIKtGnTBq1bt8YVV1yBcePGwel01nfzfMjOlGb+IwiCIAiCIAiCIAiCMCKivhtAEARBEARBEARBEATBo7q6GqNHj8b48ePruymNlnXr1uHee+/FO++8Y3hsdnY2br75Zhw6dAiPPfYYXnvtNVRVVWHhwoV4+umnsWzZMsydOxfh4eGW2/HRRx9h+PDh/tyCKZYtW4YJEybY6oRVWVmJiAh7VWeffPIJPvvsM/Tp0wcvvvgievbsifz8fCxbtgwPPvgg5s6diyeeeMLWa4aS8vJy3Hnnndi4cSPuuusuDBs2DGFhYVixYgXeeOMNLFq0CFFRUWjVqlV9NxXnnXceZs+erfjs/fffR+vWrfHhhx9qjj9y5AjCwiiWlSAIgiAIgiAIgiAIPuSARRAEQRAEQRAEQRBEg+SSSy7BL7/8gvfffx/du3ev7+aElPLyclucVHJyctC+fXtTxz799NM4dOgQ/vrrL9xzzz2+z19//XW8++67+O6773DppZfif//7n+V2RERE2O7MFGyaN29u6/kWLFiAzz77DA899BB+++03NGnSxPfdu+++i5UrVzaoDFH+8Pbbb2Pjxo0YP368ouThyy+/jAkTJuC1117DO++8g59//jlkbZIkCVVVVWjRooXi865du2LIkCGKz0aPHo1TTjlF8zkANGvWLKjtJAiCIAiCIAiCIAiicUNhWwRBEARBEARBEARBNEg++OADuN1ujB49Wve41NRUOBwOzJgxQ/Odw+FQZEX69NNP4XA4kJCQgCFDhqBdu3bo3LkzRowYAUmScOLECdx7771o27YtunXrhjFjxnCv6Xa78cEHH6Bbt25o1aoV7rnnHpw4cUJz3I4dO3DbbbehXbt2aNmyJQYMGIAtW7YojpHbFB8fjyeeeAIdOnTAddddp3vPycnJePjhh9GxY0e0bNkSV111FaKionzfy2UcJUnChAkTDEupbd++HStXrsSwYcMUzlcyo0aNQp8+ffD111+jsrJS8/0PP/yAnj17okWLFhgwYAAOHDjAvUc1c+bMQb9+/dCiRQt07NgRjz32mLAf77jjDnTo0AGtWrVC37598eOPPwIAhg0bhgkTJgAAt2zcH3/8gX79+qFNmzZo27YtLrroIt9v9RCNnaSkJAwbNgzt27dHu3bt8Mwzz6CiosLwfCNGjEDHjh0xbdo0hfOVzODBg3HXXXcBAGpqavDxxx+jX79+aNeuHVq1aoXrr78e69ev1/zO4/Hgxx9/xEUXXYTmzZujc+fOuO2227Br1y7NsYsXL8aFF16IZs2a4YILLsCKFSs0x6Snp+P//u//0LVrV99x06ZNM7y/tLQ0/Prrr7jpppsUzlcyr776KgYOHIipU6ciLS0NAHDhhRdi4MCB3Hs67bTT8NBDDyk+Gzt2LC644AI0b94cXbt2xYsvvojCwkLFbyMjI3HXXXdh5cqVuPzyy9GiRQtMnjzZsP1GREZGYtiwYb5/y+/Y5s2b8frrr6Nz585o3749XnzxRdTU1KCoqAhDhw5Fhw4d0KFDB7z33nuaMp5m74kgCIIgCIIgCIIgiIYPOWARBEEQBEEQBEEQBNEg6dWrF4YOHYpffvkFGRkZtp770UcfhcfjwejRo9G/f3988cUXGDt2LG655Racdtpp+Prrr3HWWWfhnXfeQXR0tOb3X375JaKiovC///0Pr7/+OlavXo1BgwYpnJPWrVuHG264ASUlJfjkk0/w1VdfoaioCDfddBNiYmI053z44YdRUVGBr776Cs8//7yw7dnZ2bjmmmuwcuVKvPLKK/jyyy9RVVWFe+65B3/99RcA4IYbbvCVV7vlllswe/ZsTbk1lqVLlwIAhg4dyv0+IiICTzzxBAoLCzUOZLNmzcK4cePw6quv4v3338eBAwdw0003ITs7W3g9wNuHQ4cORZ8+ffD999/jzTffxNq1a3HDDTegqKjId9zq1atxww03ID4+Hm+88QbGjBmDgQMH4p9//gEAvPjii7jlllsAwHef8r2uXr0ajz/+ODp06ICvv/4ao0ePxo033qi5Bys88sgjKC0txahRo/DII49gxowZGDlypO5vEhMTcfjwYdx3331o06aN4TVKSkowdepU3Hjjjfj666/x6aefIjc3F4MHD8bevXsVxz777LN488030aNHD3z99dcYPnw4mjdvju3btyuO27x5M1555RU89thj+Oabb1BVVYUHH3wQ+fn5vmOys7Nx1VVXYc2aNXjttdfw448/4qyzzsKzzz6LsWPH6rZ5+fLlcLvdwjEEeMeXy+XyOX49+uijiI6ORlZWlqatGRkZeOyxx3yfvfjii3j33Xdx7bXX4scff8QzzzyDuXPnYvDgwZrMYUeOHMHjjz+OW265BT/++CMuueQS3bYHwn/+8x8kJiZi5MiRuOeeezBlyhSMGDECd999N9xuN7766itcd911+PbbbzXvoJV7IgiCIAiCIAiCIAiigSMRBEEQBEEQBEEQBEE0IKZPny4BkHbu3CkdPXpUioiIkF5//XXf9wMGDJAuuOAC379TUlIkANL06dM15wIgffLJJ75/f/LJJxIA6YUXXvB95nK5pNNPP11yOBzS6NGjfZ8XFhZKLVq0kJ5++mnfZ+vXr5cASKeddppUUlLi+3zevHkSAOnHH3+UJEmSPB6P1KdPH2nw4MGSx+PxHVdRUSH16tVLuuWWWzRtevzxx031z5tvvikBkDZt2uT7rLS0VOrVq5cUGRkpud1uxf2/+uqrhue87777JABSYWGh8JhFixZJAKRx48ZJklTX7y1atJDS0tJ8x+3YsUMCIL311luae5RJTU2VwsPDpS+//FJxjf3790sRERG+z10ul9SrVy+pZ8+emrax/frqq69KPDXXG2+8IbVt21ZyuVyGfaBGNHb+7//+T3Hc/fffL3Xq1En3XEuWLJEASD/88IOpa7tcLqm6ulrxWWFhodS1a1fF9detWycBULwfMmz/AJCaNm0qJSUl+T7bt2+fBEAaP36877Nnn31WOvXUU6W8vDzFuR577DGpXbt2UkVFhbDN8riMjY0VHrNnzx4JgPT2229LkiRJR44c0bRBkiTplVdekVq3bu273qZNmyQA0ty5cxXHrVixQvN5z549JQDSihUrhO0QccEFF0gDBgzgftezZ0/FXCDPU+p3/Oqrr5YcDof00ksv+T6T5xj23FbuiSAIgiAIgiAIgiCIhg9lwCIIgiAIgiAIgiAIosFy5pln4qmnnsKUKVOQmZlp23mfe+4539/h4eG4/PLLIUkSnn32Wd/n7du3xznnnIPk5GTN74cOHarIZPTQQw/h1FNPxbJlywAAe/fuRWJiIp544gnk5+cjLy8PeXl5KC8vx80334zo6Gh4PB7FOV966SVTbV+2bBmuvPJKRZnC1q1b44UXXkBqairi4+PNdQJDaWkpAOhmZ5K/KykpUXx+33334bTTTvP9+8orr0T//v19fcFj0aJF8Hg8eOSRR3x9k5eXh27duqFPnz6+UnuxsbFISUnBm2++ifbt2yvOoVdSUaZ9+/YoLy/H6tWrDY81i/o5XX/99cjPz9f0C4v8nZnsV4B3TDZt2hSAt0xdQUEBXC4XLr/8cuzZs8d33MKFC+FwOPDJJ59ozqHun0GDBqF3796+f/ft2xdt27b1jW9JkrBw4ULcfffdkCRJ8VwGDx6M4uJixbXV+DOGzj77bFxyySX4888/fce43W4sWLAAd999N1q0aAEAmD9/Ptq1a4dbbrlF0a5+/fqhdevWmtKMvXr1wuDBg4XtsJNnn31W0df9+/fXzCXyHMPOJVbviSAIgiAIgiAIgiCIhk1EfTeAIAiCIAiCIAiCIAhCj48++gizZ8/G6NGj8eOPP9pyzjPOOEPx73bt2qF58+Y45ZRTNJ+zJdpk+vTpo/i3w+HAWWedhdTUVADeknMA8PTTTwvbUFxcjA4dOvj+3atXL1NtP3bsGPr376/5/LzzzvN9f+GFF5o6l4zsGFNaWqpxdJIROdio+wLwOtbMmzdPeL3ExERIksT9LQA0adIEAHD06FEAsHw/Mq+88grmzZuH22+/HaeddhpuvfVWPPLII7jtttv8Oh+gHTvyMywsLETbtm25v5E/l/vQDDNnzsSYMWNw+PBhRTk6dpwcPXoU3bt3R8eOHS23W257YWEhACA3NxdFRUWYMmUKpkyZwj1HTk6O8PzsGBLBG0OPPvooPvjgA6Snp+O0007Dhg0bkJOTg0cffdR3TGJiIoqLi9GlSxdT7TL7LtkBby4BgB49emg+l/sasH5PBEEQBEEQBEEQBEE0bMgBiyAIgiAIgiAIgiCIBs2ZZ56JIUOGYMqUKRg+fLjme1EmJLfbLTxneHi4qc8Ab2Ygq8jZrb799ltccskl3GNat26t+Lec7ac+OO+887B48WLExcXhhhtu4B4TFxcHADj//PMDvp7H44HD4cDy5cu5/a7uG3/p0qUL9u7di5UrV2L58uVYvnw5pk+fjqFDh2LmzJl+ndOfcXLuuecCAPbv32/qGnPmzMGwYcNw33334d1330WXLl0QHh6OUaNG+ZzSrGLUbnnMDhkyROg42LdvX+H5ZQfAuLg44ZjnjaFHH30U77//PubPn48333wT8+bNQ7t27RROch6PB126dMHcuXO55+3cubPi36F8l0T9yvucHSNW74kgCIIgCIIgCIIgiIYNOWARBEEQBEEQBEEQBNHg+eijjzBnzhx8/fXXmu/kDERFRUWKz48dOxa09sgZrmQkSUJSUpLPQUUu9da2bVsMGjTI1mv37NkTR44c0Xx++PBh3/dWueuuuzBq1CjMmjWL64Dldrvx22+/oUOHDrj22msV36n7AgASEhIQGRkpvF7v3r0hSRJ69eqFs88+W/c4ADhw4IBuP+qVI2zatCnuvvtu3H333fB4PHjllVcwefJkjBgxAmeddZbwd3Zy9tln45xzzsGSJUvw448/GjqYLViwAGeeeSYWLVqkuDd1qcHevXtj5cqVKCgoMJUFS4/OnTujTZs2cLvdfo3Z22+/HeHh4Zg9ezaGDh3KPWbWrFmIiIhQOFf16tULV155Jf7880+89tprWLRoEe677z40a9bMd0zv3r2xZs0aXHvttfXqqGgnJ+M9EQRBEARBEARBEMS/mbD6bgBBEARBEARBEARBEIQRvXv3xpAhQzB58mRkZWUpvmvbti1OOeUUREdHKz6fOHFi0Noza9YsRam1BQsWIDMzE7fffjsAoF+/fujduze+++47lJWVaX6fm5vr97XvuOMOxMTEYNu2bb7PysvLMWXKFERGRvqVoeqaa67BoEGDMH36dPzzzz+a7z/88EMkJCTgvffe0ziLLF68GOnp6b5/x8TEYMeOHb6+4PHAAw8gPDwcI0eO1GSOkiTJV/bxsssuQ69evTB27FiNgx37u1atWgHQOuGpy0eGhYX5nOSqq6uF7QsGI0eORH5+Pp577jm4XC7N96tWrfL1vZw9ib3HHTt2KJ45ADz44IOQJAkjR47UnM9q5rbw8HA8+OCDWLhwIQ4cOKD53mjM9ujRA8888wzWrFmDn3/+WfP9pEmTsG7dOjz77LM4/fTTFd89+uij2L59O6ZNm4a8vDxF+UEAeOSRR+B2u/H5559rzutyuTTPvTFwMt4TQRAEQRAEQRAEQfyboQxYBEEQBEEQBEEQBEE0Cj788EPMnj0bR44cwQUXXKD47rnnnsPo0aPx3HPP4fLLL0d0dDQSEhKC1paOHTviuuuuwzPPPIPs7GyMHTsWZ511Fp5//nkAXkefqVOn4vbbb8cFF1yAZ555BqeddhrS09Oxfv16tG3bFkuXLvXr2sOHD8fvv/+O22+/Ha+//jo6duyImTNnIiUlBQsXLkRYmH/xdrNmzcLNN9+Me++9F0888QSuv/56VFdXY9GiRdiwYQMeffRRvPvuu5rfnXXWWbjuuuvw8ssvo7q6GmPHjkWnTp3w3nvvCa/Vu3dvfPHFF3j//feRmpqK++67D23atEFKSgr++usvvPDCC3jnnXcQFhaGn3/+GXfffTcuueQSPPPMMzj11FNx+PBhHDx4ECtXrgTgdXgDgNdffx2DBw9GeHg4HnvsMTz33HMoKCjATTfdhNNPPx3Hjh3D+PHjcckll/hK5oWKRx99FPv378eXX36J2NhYPP744+jZsyfy8/OxYsUKrF27Fr/99hsAb0ayRYsW4f7778edd96JlJQUTJo0Ceeff77CoW/gwIF46qmnMG7cOCQmJuK2226Dx+PBpk2bMHDgQLz22muW2jh69GisX78e/fv3x/PPP4/zzz8fBQUF2LNnD9asWYOCggLd3//www84fPgwXnnlFaxYscKX6WrlypVYsmQJBgwYgDFjxmh+98gjj+Cdd97BO++8g44dO2oycA0YMAAvvvgiRo0ahb179+LWW29FkyZNkJiYiPnz5+PHH3/EQw89ZOle65uT8Z4IgiAIgiAIgiAI4t8MOWARBEEQBEEQBEEQBNEoOOusszBkyBDMnDlT893HH3+M3NxcLFiwAPPmzcPtt9+O5cuXo0uXLkFpywcffIC4uDiMGjUKpaWluPnmmzFx4kS0bNnSd8yNN96Ibdu24fPPP8dPP/2EsrIydOvWDf3798eLL77o97W7du2KrVu34n//+x/Gjx+Pqqoq9O3bF0uXLsWdd97p93lPPfVUxMTEYMyYMZg/fz4WLlyIiIgI9O3bFzNmzMDQoUO5pf6GDh2KsLAwjB07Fjk5Objyyivx008/4dRTT9W93vDhw3H22Wfjhx9+8GVw6tGjB2699Vbcc889vuMGDx6M9evXY+TIkRgzZgw8Hg969+7tc3YDvBm1/vOf/+CPP/7AnDlzIEkSHnvsMQwZMgRTpkzBxIkTUVRUhG7duuHRRx/Fp59+6rejWiB88cUXuOmmmzBu3Dj8/PPPKCgoQIcOHXDVVVdhyZIlvvseNmwYsrKyMHnyZKxcuRLnn38+5syZg/nz52PDhg2Kc06fPh19+/bFr7/+infffRft2rXD5ZdfjmuuucZy+7p27YqYmBh89tlnWLRoESZOnIhOnTrhggsu4Jb/VNO6dWusXbsWEydOxJw5c/Duu+9CkiSce+65GDt2LF555RU0adJE87vTTz8d11xzDbZs2YLnnnuOe8ykSZPQr18/TJ48GR988AEiIiIQGRmJIUOGaMpiNhZOxnsiCIIgCIIgCIIgiH8rDslqPnKCIAiCIAiCIAiCIAiCsMCIESMwatQobuk9giAIgiAIgiAIgiAIgmjshD7UjyAIgiAIgiAIgiAIgvhXkZmZiVNOOaW+m0EQBEEQBEEQBEEQBEEQQYFKEBIEQRAEQRAEQRAEQRBBITk5GX/99Rfmz5+Pu+66q76bQxAEQRAEQRAEQRAEQRBBgTJgEQRBEARBEARBEARBEEEhOjoaI0eOxIABA/D999/Xd3MIgiAIgiAIgiAIgiAIIig4JEmS6rsRBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQjRHKgEUQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBOEn5IBFEARBEARBEARBEARBEARBEARBEARBEARBEAThJxH13YCGgMfjQUZGBtq0aQOHw1HfzSEIgiAIgiAIgiAIgiAIgiAIgiAIgiAIgiAIop6RJAmlpaXo3r07wsLEea7IAQtARkYGevToUd/NIAiCIAiCIAiCIAiCIAiCIAiCIAiCIAiCIAiigXHixAmcfvrpwu/JAQtAmzZtAHg7q23btvXcGoKH0+nEqlWrcOutt6JJkyb13RyCIAiCIPyA1nOCIAiCaPzQek4QBEEQjR9azwmCIAii8UPrOUGEjpKSEvTo0cPnWySCHLAAX9nBtm3bkgNWA8XpdKJly5Zo27YtLSAEQRAE0Uih9ZwgCIIgGj+0nhMEQRBE44fWc4IgCIJo/NB6ThChR/YtEiEuTkgQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEHoQg5YBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQfkIOWARBEARBEARBEARBEARBEARBEARBEARBEARBEH5CDlgEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRB+Qg5YBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQfkIOWARBEARBEARBEARBEARBEARBEARBEARBEARBEH5CDlgEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRB+Qg5YBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQfkIOWARBEARBEARBEARBEARBEARBEARBEARBEARBEH5CDlgEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRB+Uq8OWNHR0bj77rvRvXt3OBwOLF68WPG9JEn4+OOPceqpp6JFixYYNGgQEhMTFccUFBTgySefRNu2bdG+fXs8++yzKCsrC+FdEARBEARBEARBEARBEARBEARBEARBEARBEATxb6VeHbDKy8tx8cUXY8KECdzvv/nmG4wbNw6TJk3Cjh070KpVKwwePBhVVVW+Y5588kkcPHgQq1evxj///IPo6Gi88MILoboFgiAIgiAIgiAIgiAIgiAIgiAIgiAIgiAIgiD+xUTU58Vvv/123H777dzvJEnC2LFj8dFHH+Hee+8FAMyaNQtdu3bF4sWL8dhjj+HQoUNYsWIFdu7cicsvvxwAMH78eNxxxx347rvv0L1795DdC0EQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQ/z7q1QFLj5SUFGRlZWHQoEG+z9q1a4f+/ftj27ZteOyxx7Bt2za0b9/e53wFAIMGDUJYWBh27NiB+++/n3vu6upqVFdX+/5dUlICAHA6nXA6nUG6IyIQ5Oci/39uzAn8EXMCHVs3xXcPXoTObZrVZ/MIgiAIgjCBej0nCIIgCKLxQes5QRAEQTR+aD0nCIIgiMYPrecEETrMvmcN1gErKysLANC1a1fF5127dvV9l5WVhS5duii+j4iIQMeOHX3H8Bg1ahRGjhyp+XzVqlVo2bJloE0ngsjq1asBAOP3hCO/2gFkAxMWrcOVnaV6bhlBEARBEGaR13OCIAiCIBovtJ4TBEEQROOH1nOCIAiCaPzQek4QwaeiosLUcQ3WASuYvP/++3j77bd9/y4pKUGPHj1w6623om3btvXYMkKE0+nE6tWrccstt6BJkyb4dN96AF4vwwsv6os7LjutfhtIEARBEIQh6vWcIAiCIIjGB63nBEEQBNH4ofWcIAiCIBo/tJ4TROiQq+oZ0WAdsLp16wYAyM7Oxqmnnur7PDs7G5dcconvmJycHMXvXC4XCgoKfL/n0axZMzRrpi1Z16RJE5qcGjjyMyqsqEvxFh4WjiZNmsDjkbAztQDhYQ7069kBDoejHltKEARBEIQIkrkIgiAIovFD6zlBEARBNH5oPScIQo/k3DK0bBqBbu2a13dTCILQgdZzggg+Zt+xsCC3w2969eqFbt26Ye3atb7PSkpKsGPHDlx99dUAgKuvvhpFRUXYvXu375h169bB4/Ggf//+IW8zERqSckoV/5bgLT+45lA2Hp2yHQ9N2oYtSfn10TSCIAiCIAiCIAiCIAiCIAiCIAiCaNQUlNfgpjEbcdWotcYHEwRBEAQBoJ4zYJWVlSEpKcn375SUFOzduxcdO3bEGWecgTfffBNffPEF+vTpg169emHEiBHo3r077rvvPgDAeeedh9tuuw3PP/88Jk2aBKfTiddeew2PPfYYunfvXk93RQSbE4WVin9LXv8rHC+oq7uZUaw8hiAIgiAIgiAIgiAIgiAIgiAIgiAIY1Lyyuq7CQRBEATR6KhXB6xdu3Zh4MCBvn+//fbbAICnn34aM2bMwHvvvYfy8nK88MILKCoqwnXXXYcVK1agefO6VJdz587Fa6+9hptvvhlhYWF48MEHMW7cuJDfCxE6alwexb9r/a9QUePWfkgQBEEQBEEQBEEQBEEQBEEQBEEQhGkksrMRBEEQhGXqtQThjTfeCEmSNP/NmDEDAOBwOPDZZ58hKysLVVVVWLNmDc4++2zFOTp27IjffvsNpaWlKC4uxrRp09C6det6uBsiVKgdsGRiUgp8f8eeKPL9ve9EESKHR+GjxfuD3TSCCIgVBzLxfzN2oqC8pr6bQjRCJEnC8IVxGLc2sb6bQhCNlt3HCjB0WgyScijCjyCIk5cJ65Pw7vx9kEibThAEQRAEQRAEQQgQ2eIIgiAIghBTrw5YBOEP1eoMWLV2g9bN6hK6/R5z3Pf3vRO2AADmbD8OgmjIvDRnD9YdzsF3q47Ud1OIRsjBjBL8sfMEvl+dUN9NIYhGy4M/b0N0Qi6en7WrvptCEAQRNL5deQTzd6cpglYIgiAIgiAIgiAIgqWcqTrj8VAAD0EQBEGYgRywiEaHtgShV/BzkQBInCQUlFEGLMI6VU638UEEQZgirbCivptAEAQRdEh2IAiCIAiCIAiCIEREhDl8f3sogzJBEARBmIIcsIhGR6XKUCDLfS5Pw0uHWlrlxP60YirvcZJRVFGDWdtSUVbtUnzucnuw53ghnO7AxqLDYXwMQQSThj53HcsvR3pRZX03gziJaaBDnyAIwlbMbp+SckqRU1oV3MY0AtIKK3A8nxx0CYKoX4ornDiYUVzfzQgKCdmlyCurru9mnLTklFRRqXWCIAjCb/anNx75I7e0GonZpaaOdbk92H0scJsOERryy6qRYPLZNiQOpBejpMqp+fxIVinyTcq/kiRh74kiVNZQMB1BNHTIAYtodBzOLFH8W7aRNkQB6c5xm3H3T5ux/khOfTeFsJFLPluNj5ccxIWfrFR8/vk/8Xhg4laMXHowoPOrHbsIwgw7UwttO1dDnrvKql0Y8O0GXDt6HaW+JoIGjSyCIP4N/LHTuER7elElBn0fjSu/XBuCFjVc3B4J1329Hjd8ux4VNSSrEwRRfwwcswF3jtuMnakF9d0UWzmWX45bf4jG5V+sqe+mnLRc+dVaDPp+I7KKyamaIAiCsM79E7diR3J+fTfDFFd8uQa3/BCNEwXGATRfrziMB3/eihGLD4SgZUSg9PtiDW79IbpROZVHJ+TirvGbMfiHaMXnSTmlGDw2Gv1Myr+/xRzHfRO24OlpMcFoJkEQNkIOWESjo33LJsoPatNUON0Nz1x6vFbA+2dfZj23hAgFM7cdAwDM2W5szFLDZhpKK6TMPoR11h7Ktu1cDXnuyimpUxa7KU0RESQorTpBEP8G/okzXucPNKIo52BS46oL9skrpXLhBEHUHwXl3jlodbx9+7+GwJ7j9gUUEfocyioxPoggCIIgOKw93PCCdfWISzPez/6yKQUA8MfOE8FuDmEju481nmCE5Qe8updMlRP8jhRr9/DbDq/dMeYkC8QgiJMRcsAiGh0VqvSKDTkDlg8qKUcY4GYy+ZDhn/CHsLC6ica20oENcO4KY2p0uikDFhEkaBomCILwEka1sQEAEpMbkbqEIIiGgKsBBiEGgqMhbj5PUmzTFxAEQRAnPw7dfzZ4JMpxf9LSuGRHflsb1z0QBGEFcsAiGh1rVFleZL0BT/mkVirUl7F+0Z70gEtlFVc68eyMnVi6L8OmVnmZvS0Vr87d07Ad2BoQwSrJ5mrADliSJOGDv/bj+1VH6rspjQpJkvD+ojiMXZMQkusx/lewbaqzeJ7Ryw/j078DK8FphMgBq8blwctzdmPO9mNBvf6/mS+j4vHFP/Ehu976wzkYNj0Gi2PT8fS0GFNpw+uTn9Yl4j+/xzYKx8A18dl4ZnoMckqp/EhD4+MlB/DtysOKzypqXHhu5i4s3J1m6hwrDmRhyNQdOJZfzv2+vNp7vkV7zJ2POLmwanSdsTXF7982dkYvP4z/LYiDJEkNMtuyGY7mlmHotJiTrlQZEXxcbg9e/W0PZmxJMT44SOxMLcBTv+7A0Vz7yotUOd14YdYuzDsJMhyk5DWesitmSCsMnax/29hoRA6PwmdLQ7e3aUg0ZvWfPDfN3JoalPPvTC3A0Gkxts47BEE0fhbtScNzM3ehvFpZivyndYl4Z/4+v/dJ36w4jI+XNK6yd44QR6PM23UCz8/ahUpVUgazyNmtiODw0eL9eH/R/vrRFZwEvkusXs5MHx7Pb9i68YbAp38fxKjlh+q7GQRBDlhE46Nt8ybcz3kORGpF+YYgOc+Y4WBGYCm+x69NxNrDOfjP77E2tcjLiCUHEbU/03bHrpOVZ6bvDMp5Waerq3p1Cso1/OVobhl+23Ec49Yl/esMb4FwMKMEv8ecwNg1iSG53nVnneL72y4HECtnqXK6MWnjUczYmoqs4uA5dbD7fNZxcdGeNCw/kIWPFjcuxUVjobjCiV82pWDq5hQUVYSm9NIzM3Ziw5FcvPnnXmxMyMVbf+4NyXX95btVCVi6LwPbk/PruymGPDdrF9YfycXn/9CGtCFxPL8Cs7Ydw4T1RxXr7bTNKVhzKBv/nb/P1HlemrMbm5PyMGYV3wH4l03JWHMoG2/PM3c+4uRCnfLeiC1JdXNaetG/p0y20+3BpI1H8eeuE0jKKUNxhbO+m+QXr8zZg+iEXDw8aVt9N4VoZETtz0RUXCY+rUcHlYcnbcOmxDy8MGuXbeecve0YVsVn472Fcbads74IDzsJrE4M3wnklmBwOKsUADCtHh0M65PGEDAiYtmBLETFZeKTIAV+PTxpG6ITcvHS7N1BOT9BEI2Tt+ftw5pD2fhlU7Li8+9WJWDB7jTsOV5k+Zxuj4SJG45i1rZjDT7gkCXU2YDfWxCH1fHZmLvDv4DbfSeK7G0Q4SO/rBpzth/H7zHHkVtWHfLrNyZJ2O3he7/vOlZXgvtQZqnhecJOMvnfbjKLKzFjayomb0xGtcs/p02CsAtywCIaHVW1E2f3ds0B1HkG8xywalSflfvpKW8HgaY7LQyy0l8dwUGEFtaR5IyOLeuxJVqqnHXvUWNW1IWaSmdo55sezLixK4uaFZGevWQwM+qxGw02s2BpFc1hwcTNPOD6ygKSVdI4sjX5G5VXH+RSBqwGBascYOfUgnL/ZMCUPH4GrILy0DhREg2TQGT+k63clR6szFvpdCv2la5GJA9nFv97nOYIe2lIsrVoPfOHwhAFEoSCk7lEbDADvyiorHHrdSpCpLv8NzmdEwRhnvwyvhxR7YcOmNXdVrsacWrCENGQZFPCC6sfbsyyRSho14KfVITFjD3ntPYt7GjOSQvZMYmGBDlgEY2OEwXeTXCrZhEA6jK08BThNSrhVeRpbERplRP704otKWrUGWAC1fGonZsLymswe1uqfQtJI1LeFVc4ER9gRrH6pMrpxubEPIWR3s0IrGmFgSl6DmYUI8/GqAN27PpjcErJK8dfsaEpc1TldCP2eGHAJT8BILukSjHOjudXWCqLwPabHe0BvEpAUUkpNgW0XYZB3lkKymtwIL2Yc2zd0cHSaVfWuLGXiSpzMnN6I5rCQkqNy4M9xwsDXitYp7pAHYoBZbvcHgl7jhdq1mw17CaqvsguqTIsR2HHWHS5Pdw+8XgkxB4vRFWIHTz/TdRnH7Nvlh2OtGrZUX7XgnlvSTlliIrL/NeVtj5RUIF5u07ozrWS5B1bZrIIysduO5pvu1NnhYnzSZKEA+nFKK1SOv8ZjUtJkrDvRFHATn6lVU78vS8Df8WmafZf8vwY7DHmUTkesw6SwXa09fcec0qrkJSjjJptEq6v8imvdmGPBdn5WH45MsgozWVxbDoOZYZ+j5pRVIlUCw5KZo+vT3V1RY1Lka1APTyLK53Yd6LIL0ca0sN7Ka5w4mCGdk8XCmR5RC8qXTboZRVX2eqAB9AYAACXn7rRUJNdUoWkHOXey6zjYWZxJebt1JfNTgaqXW5b9vt2UFBeg8NZoV8HzV632uXG2kPZGn2yxyNh9rZUW/WoIqqc5p9XSZWTq3sLFkk5ZcgRBL1lFldanotzOO+vv9i5R5ffmVUHs/BLdLJlfa1Ib+X2QyZhx4FVmUbed4UioF7dtuX7M4Mi80qShP1p2j2oTNMI86Zsq/3Z2JIKJWaX6s5ZB9KLUVyp7MfM4kok6+gzTxRUWMrEVuV0YzeTvamgvMY2e11GUSUOZZZgL0feZ99ZM+Uwy6pdmL/rBD5ecqBe9VRm2mpGxtHTyeRUWs94bpac0irM23miwWeVUutxCKI+IQcsolHBCrk+B6zaedTJEYDVmwN/J927x2/G3T9txtpD5ksYXjVqreLfgTpEqNffyz5fjRFLDuLRyfaUk2hMcuZ1X6/DHeM2Yc/xQuODGyCjlx/GkF93KEqlsRu1P3ed8PvcR7JKcee4zRgydUdAbWRZfiDT97c6q5wZBn63AW/9uQ+/7ThuW5tEvDB7N+6fuBXTt6YGfK77JmzBHeM24WhuGSpr3Ljh2/W47uv1poV1VuDzZyOuxu2RcO3odRjw7QbuBtuhOtYOeBvWp6fF4K7xmzWKIPaadtwvj2dmxODV3/b4/r2OmZNP5gjwQBi+MA4PTNyKMauOBHSeV+bW9bsdj/e9RQfwwMStGLsmAd+vPoIHJm7Fewv0y6GFQiFqRP+v1uLmMRuRo5M5yo6h+N2qBDwwcSs++Gu/4vO5O47h/olb8fS0mMAvAooG4jFrWyrun7gVz820r9yRWdh3K6Ooboz5PaZUP/xxbSIemLgV83bVOUXbmQWipMqJQd9vxKu/7cHIpcEpC9NQuf6b9XhvQRx+WC0un7QxIdf02Pot5jjun7gVj/+y3bb3XYbN0ClSYm9MyMVd4zdj8A/Ris+NHLB2phbi3glb8NSvgcmhd43fjNd/j8Vbf+7Dr5uV5aG+XnEYD0zcig9V86PdKOQaj6TYhw5fFNzSZaOWe+9xhMWyyld+uRaDvo9WBAwYveHv1coJyxh5X0RZtQsDvt2Aa0avowwyKlbHZ+PNP/fi9h83hfza14xehxu/24ASgbGKRZIk88fX4zN+fMp23Dthi/D7V+buxr0TtmDb0YZf9rmhcsO363HnuM3Yfawg5Nf+aV0SHpi4VbcU8rrD2QC8erWB321AoY3ZO0n+bTwGqf5frcWg75V7L1bXoOfUfvWodXhvYRzenrc3mE2sd978Yy8emLgVE9Yn1XdTcNnnq3Hb2E0hd8K6/AvvdROy9Us3/ee3WDw7cxfuGLdJ4bD+5NQdGLHkIC7/Yk2wm4rXf4/FAxO3Ykp0suGxt34fjbvGb0Z0Qm7Q25VdUoVB32/ElV+t5X5/9ah1GPjdBo1Dhx5X1r6/2TZkMv9lUzLun7hVoZfyl3fme2XfF2bvxpfLDlkuZ8rq7Nn15MuoQ5bbwu6trM7Kf+/LwL0TtuChEJQZV/vspuZX4PYfN9keHL/ucA7u/mkz7h6/mbl2Xc80NQgsYbG61jcm0SA1rxy3/BAtnLO2Hc3HXeM34+YxGxWfXz1qHW4as5ErU9W4PLj+m/W4/pv1ph0dX527R6Gjv3PcZtwxbhNibbDXXTN6HW7/cRPum7AFv8co7WRfLat718yoyt6Ztw/vLojDrG3H0OfD5QG3zQ5EzqmBOMgXVTjx5d4I3PBdtPHBfnDll2vx3sI4xfvZEClh1inXvywwlGh4kAMW0agoY5wOTu/gTbcoy0dORlLq17MDAGiUiv6WzUjN9yqxl8Zl+PV777UDm/BFzgVsneBAaEy+C6W142DDYfMOccHGimA/o9Y5aOGeOgOoXUrArUfzAACHs4xrRptlcWy67+9ASs+MWm59M2oVWTEx0wYHLDli4EC6MqOY2Y2IwgHLhufLOn7xUl6zc4RdGbd4Z9lf63i1XvX+hWKzuj1ZaSBg5+TGFq0UKhbVvr8TNxwN6DxsVJMd9rio/VkAgMnRyfi5tm2L9/q/xoaaozlKB2/WEO2wwaV50kZvnyzYrcweOLfWkXVHij3GsmYR4bac52RiTm0fb07Kq9d27A9CtLM8rljsnLvTCuqy4szZHnyn64bITzrGr+W1854Z2f33mLr+i0m11zjOOhLd3bc79xi5rRmq6Emj8SLLYQcDVMYfy69zIPp2pdKB+JdNXocs1pEwGLC6T5fbo+i3uLTgZiOQnc7+2OlfUAbb/0YrUlSc1/Fq1rZjhudlMzyTA4MSdn4NpXMaK/OrM3Bzj2eallnUcMsQ7zN4x7YkeR2vlvghO9qRyfVkQDair7EQZGgXk6O974s8//BYuk/53TELGRmMUM9f/0aH0sZmkErKrjNUsvqYnFLjAB1/5gmgXn1QLbH8gFdmm7rJ2KEnVGwPsXOs/EobOeWuis/2/b0rtU4e35YcuvbKbfh1s/Hzyqp1XJKfcTDRy2bEzpHpflRsOGKDflqWjdfZYAdYuk85J8zebiwDi2CdJfzRw7PLkdUM2Av3eHV9oci+Kmrb5iR7nQPl+TqV2QtWMdl22rU0LuEmYzURQkQjUiobJSRYedA7Z4iCWJPztM4/rM3VbKnHtYL3ccORwMaF2qbxx06lbmkqE6Bl5imvOBj8OdQM7AgTZaENxEHeTllZj4RsezIbBgtWzrerQgxB+As5YBGNCjn7TniYA+G1gpG8EWCdEzq3buY9XpUVK9A0k2bnbJ4CJ1AltZk0lQGdv1HlwKqlnr3G2JrLRqWzjLBLIAhGFiB27DWWkkKBlm5SOFM4HH4NNbYJdhipPIo2ab9nP7OtBKHOadRfsRukUCmx2X4Na0Sb5caOnRnOwhz1W+LGX5qEK8cb+8oFc2my+9WyosD6t9BQFG+sgdjvBFgG/wbsdaKwo2ziyYyV/gmmXG5GlgsTaAmMxkswXp/6eicVqes9EqoDlPVDCdtjHVo1te284cyzaCTJU0JGMDLRmsEtWVsrlJkW9NvZGB4xrTuBY1fgjhXC/RCW7dxfqvcy/0bbTGMzSLE6Kfbx0RxQR0PSh9RXW6xMLVZKmQWDhjZ09WwOrFzjj67DDv1IQw0aDyRIGdBm3LVCKLtE1DS7TQS8OZ21t1jZF1rtT7nSzskA731h5T3evlahX6/n982pygKl9ywbi50KUFaVaSZYgwJxkGcfW33I9w0FVsZtTOODODkhByyiUSFPmk3CtWaJooq6bFeywKYWKNhJNy6tCOd/vAL9v1qjW/+YhScIFlc68eyMnfibiaDgKTMCLZfHCj9sWQnAq4x6b8E+jFubyG3bPyYyd8Wk5GPotBjLNd1FSJKE/l+tQeTwKGQUWY+QMcPaQ9nGB+mwZG86npu5U1Nb/PlZuxA5PEpTYk0Na4SoqPGv5rosWIkEo30nihA5PIpbguT3mON4cfYuRQQgq+hYfyTwyKCB321AOvP8+n+1Ft8xmQiO5Zdj6LQYYaSZ0ilH+73L7cFln69G5PAoS3XGZU4UVCByeBTuUJX7CFSZwc4nDiijLM1u4thIE3ZO2JSYi6enxWjeYwDYmVqAodNiuHMSGwUxd8dxvDJ3N2pcHkQOj0Lk8ChFKm67FJF6Z/leVWaJnW8DkfM3Jnj7x8y8cTS3br7KsDGKv6iiBv83Yyd+23Ec/zdjp250dkNhwLfrETk8ShG1ZMT3q47gg7/2KwwaLnfdmBIZOr5bGVg5Q5Yqp3Yz9FdsGp6Zzi+59cU/8fgyKt6Wa3/+T7widbXenL8lKU9RUkvtdLtgd12WEocqG13fT1cicngUcpjU+1VONy78xPs5by5gUZaSqnsmz87YieIKfgmACeuTEDk8CqOWHdLMKawsFBWXiSV703mn0MCTdz5avN83XmZvSzV1nl+ikzFseoyifEFuaTUih0eh1/tRqKwxl2UwUIortDJScm6ZInKV/W7U8kO4ecwGDJtubn7iEZ9Rgqd+3YEle9MxdFoMdqkyG5UzskRJZd3fe08U+f6OHB5luvSaWvHGU7TpldPUo7za5Xv2sixjV9au71cdwW1jo/HUrzt876W83t80ZoNmbkrKKcVTv+7wZQENBEmS8MFf+/G9qmxrldONF2fvwh8xyuhLj0fC+R+vMHVus2ujxyNp+jLHj9IdTrcHr/62R5MVNPZ4ke9vtyDFvSglvpF8YTZgZMHuNDw/a5cp+TncpAa4ssbtm0fsMNSzBvoTBRWmsgvN23UC/zdjp6XyLMEgzOHwyVNsuyOHRyky27KY6WXWaeLCkWtQVk+3+fOGo3j7z70BKZbLql14buZO/BWrzaS2ODYdw6bHoKC8BtO3pOC13/boKsOzS6oUme1kuX/5/kxEDo/Cq3P36I7Ju8ZvQuTwKFNjTA27L1GPu9IqJ56buRNL9qb75rBHJteVqTmery9/bKnnTJBm8GsE+PGj1DzvnneHH1lSiiudiBwehcu/WG35t9G173G6QO4wmnKLK5wYNj0Gr/8eiyd+2Y64tCIASjl2cnSy7/Ng8fGSA/hmxWHfv/1xzrDTjKTezz8/a5cmy/UPqxMQOTzKttJf2SVVGDY9RpNFWsSXUfF4f9F+v9cznq6ogCk5FIoMWOsOZ2PY9Bi/ZBhA7PTBVjow6/xwUe2+66hJ3a8eI5cexKhlh/DtysP4eMkBTN2UjNd/j1W0V9brbEnK88nL6mPspkiwLwSAFQeyfO0IBcEOILaDYGaC/mrZIbxlIKdYGQm/x4gzC49YfABv/hHrG2/+ws41q1TZYk4wWa/YR3sgvRhDpu7A7mOF+PCv/RjD7J/Y821OtNYu3r4rlA5rrPxkRKAOWOwYEe2/RGxk1ie24sSo5YcQOTwK25PzsT+tGJHDozDwuw0BBY6L5BDRXtIM49Ym4o0/YhV9sJGz5vrT7uiEXIX+ziqRw6NMlfa2SkWNd/8xh8m6NmrZIYxcqi2DGZ9RgiFTd2h0RoCx/McL5qoQyAMy7PrEjuptR732wmP55Xhn/j5T5W4DfV3V75VeedlyCzrwYCLv+yKHRwnby+o6RU7AZhzkedn2PB4J7y6ssx3WmJTznG4PXp27R5HNee6OY3hu5k6/bZ12klfm1RVfO3qd6d+w4yfQOdosP65JxPCFcQHroVYdzMIz02OE2euIxgc5YBGNCqfLO4k1CQ9TbOiKKpSCg2wcUAtpZ3Vp7fv7vglbUFHjRnZJteka4rxJ9Kd1iVh7OAev/x7r+4y3qf5uVYLmMyuwmY2GL1Qa3uLSijFvV5rGIWLsmgSsPZyD136LhRGL92YgOiEXr/1mri+MOJxViuwS72Lx/iJzhkKrBFre5I0/9mLNoRxNyYjVtSmh77JQ09hf5w85DapIwLp3whYA/JTI7y/aj5UHszGPqT/PGkZenL3brzax8Bzy2PI6b/25F9EJuXj8l+3c329PqVNSDzy3i+b7ZQeyfIL/2/P2Wm6ffN14VcrlQB2QfmM2+g4HMGljXXpwPcUWyxdRdRtgdk546tcYbEzIxf8Wxml+8/CkbYhOyMVLc7TPjj3HpI1HsWx/lsJ5hCVUEa3VTCpotqRmIALn09O8/fOBCQeDXKbkAK+0lr+MXZOIdYdz8MFf+7HucI6ipn1DRS7X9O78faZ/M25dEn7bcVzhyMaWIWE/Z/lLYLy1i7f+3If1gpTVUzen4JdNKQEbt/PKqvHr5hRMiU72KVb01qonp+7AJkZxOFPlbPQ/Zl1mVR3xmSUoqU3f/RHjSDtn+zGfs9zb8/Sf2bvz6+YK9tVeezgHP6zhyxZyya7J0cmITsjFy3PqxrA65f4bf+zVvb7Mj2uU8k5WcZWizNyIJVqlEY8vlx3ChiO5Ckeuz//xOtVJkrZvg8X4WvmNlZHUc6/8XWWNG5M3JuNobjk2HMlVPEsrPDl1OzYl5uGNP7xr50OTtim+Z0s6FDKyrdpQKZeiNMJMVswp0f6VK/mFKXOyrLYshh3yniRJGLcuCYezSrEpMQ+P1joLvFAr0yTnlvtKBMuMXBqPTYl5+I8JedeIo7nl+G3HcYxbl6RYy/6IOY6VB7MxXHWPMakFqDDpNGh2bdzOMfCPXGrd8XTZ/kxExWXik7+V7yYrx4nkhZ1MWRYWo1swm4n1nfn7sDo+G9OY8gEimoSbU1nMqp07JCnwPQKgNIiYjZx8b0Ec1h3OUSjVQ4Uye2udPKV2zH7zz73c35t5dE0ilAf9cbR+1ElfrziMRbHpin2GVaZEJ2PNoRy89ad2DX7zz73YcCQX0zanYOTSePwTl6lbukK9Jsgy+8u1Ooao/ZlIFgQ5SZKEA+ne8frAxC2W74PdH/yoCsaavNF7j2/8sRe/185hrAMmby/CsvJgXbBTQ42iDlX2m5fn7kF0Qi4encLf8+rxQ62OJq+sRmjAFDG09j22It+z/L7zuE/m2no037e/WqwyKj/481a/zm+GEwUVmLXtGCZuOOpz+jHjf9X39HZBa5N6PK87nKORreT3aeg0flCIVT5ecgAbjuTimRk7DY+tqHHhl00p+D3mONL8KPcF1OmK5jPlzJ+bWXftUOgL/m/GLmw4kouPTe4R1LBrLytfrGDKsZldn0tr18LnZ+3yqy0yOSVVmL4lFZOjkzFh/VHM2nYMX0Qdwt/7MhTOdbJe58mpdQ4Af+/LwAYbgiT9gadfshvWsJzth0Oxv7D2gNYWMtiYdfC3SpXTjSnRyfgrNl23JJ3V9Yu3DqfklWP29mM+fT473gLhBZUueeB3G3x/s44d7y/aj81JeXjw562Yu+M4xjP7J1Y+mWxxvzlv1wnuvitU/LzhqE9+khEZw10BOCAByoCPL6P4+l0e6iCqyRuTfY4ok2v1149N2Y77a2XLlLxyhc7WKrK+Rk0gvrzfr07Akr0Z2Mk4GPFK37FBZGbXrqHTYrCHkXnNoHbEnrDO2NHIKgt3p2HNoRzf3qG82oXJ0cmYviVV80w/Wux9v3h7N6Ppg7evW76/LrCY59TGrqfsfPP4L9sRnZCLAd9uwILdaT5dox6BOjurn3PzJmKH2S5tmwd0Lbt4mbEt3/pDNPeY7kwlHVHGc38zNm1LzlfsN5MF+nw16w/nIGp/JkYvrwuU+PCvA1hzKAfzd/k/Z9jFF7VzT3pRpelgXTaDWqBztFl+WJOAP3aeCFgP9cLs3Vh/JBejlh02PphoFJADFtGokBehpowiXpKActUELK/TrHMAALRr0URzDACNIUcET8DJ53iNByO9Ibs3zCxWKmEqnfwFiOfRboTZvjCCbZO6vQ2NgvI6Q76ViDR2w+yv8lfeIKmjRqw4sJQwjgisjSrQsohmMIrUrmay2/RhHCBl2OxjJwqsjxNWIcn2WaC6+GwmStMBh0KpY1Z4Y52DeONKr+/SOYpW3nVzBUoAu4wkRuNQFHVvh0JX3T+hKmsI+Dd3NhRySs1FSYgMy5XOOoWH3hxi5/PwR/UZaPQwGwUj1d6mlew9eg4XrLKDjTpi5xXWuSbbICo8m1HEqNcangzCg83YZCVLmugcQOBrTCUTTcWeO1SZYwoqtH3Hm3sBbb/nmnzP1BSadOAFlO+oP6V6AHPv1jGDDCgiCpmxV2Fj1KE6Uk+W8VMZZZL67ZczhJl9H3Svz4xrdp4pEoxLKxnbzMqKvPlFtN7rUcJRYKuxGhFoNPdaHaqsDC7CrIHM7PpnFnVpN6NybYq2+JntIxBY2cuv8jAmZgz1McU19ZvhQm0osYI6gIsHuzbpRVerxx6vVLOorWyG2wx/MmAx1ypRzVOsrMFbW62sSXaWn7YTf/Y8/tyJUbZSPRRZkf3UE/mbeVMtr8jOfmoDpzOI0eE8w6loXr+Ycbrq1LqZ4js7hyBvr1psYk4IBCsZ7tgMwYGWvy1jnjVrmAtlCcJsP7OtKh2w6j73xxgvYyXrOm/d13se5SYyRZh12m+MsPqqUJaGZPcO1pyqgtNGdr23sx94Y11t8wgFrIzJ05/IzQxkjlHLM4D5IA874OkD2T0Ta5MKdC5lx4iVvQxvD8eT1dj28fo1UALJgCUjsmnJVAv253aj7j6zwddWyCtTji32mamfqexA5o8jNu9tKVbYjrRHsGtuoHJ/oLpCtbys9/43r+dyslZowTiSsWM5slNL39/+ZmxS71XNvisiPRcgdjwNJUrZ1dy4YvswmHscHnatywXl9d/3hD00nhmKIFA3aTaNCPMJExIkhREPqBNg1YuPaO0pq3ZhxYEsHMxQbh6qnG7MZ7ILeSQJ6UWVOJbPeBEz51y4Ow2ZxZVBSdfPZvxSC/isGMIaqNjPzRo0eYak8moX9p0oMm1wL692KVIMy0qGnNIqJOXURQAdyy/3RYEWVzg1/W+GrZy+PlFQYUmxokhhrurbf+IyFEZGFo9HQkJ2KfLKqrmbrsTsUizdl6Hbb7JMqdbF8gQlkYKZPX2oUn3LhiWj67EbJZ4AzhpyrKSNLa50KqJkAKXipaLGhT3HCzV9ll1Shf1pxuNM7UTJPo8tSfnCsl8irG4SeUfzziEaW3ZtSqtdHsRy+lEmr7QGcWneuYG9pl3X33eiyJfyNpRKYiO9nZwpb8aWFIVwLc8HZvB4JMQeL0SV043M4sqAyr+y44Btu55RSmFYZn5zJKsuUknP2GynTjWQR5tXVq1I71xW7cKO5HzdMXgkqxT5zGZGdJ81Lg/2HC/knqupTkaWw5l17WH7aV9ase9c7OdGfZmcWw5JkrA/rVhjMDOr1GWPMrtK5JZWI5Hp2yRVFJs/CmXWEMhmtXEyfWwmYqja5fbN8YezSoTrNIskSb45pbzahUV7tJncRJtztUFFrbBafyQHsQGWmgaUCgU2uEA0RnNLq/HJkgNCo57D4ZWv4nX61N+IMHb9Nyt6uD0SdiTn676jIsOWwqij+i0vUlYmv6waS/amY8WBLM01D6QXa0oLsPcya9sx32/sSF1udq7jHSY3q7C8Bocytc9Tfiesrr/s2upye7BoT5quDG303rOvhpl9Q25ZNQ5n6b/zZg0ubIr85k2Uc/TBjGKh7HY8v0LTp9UuN3YzJeUkWJNDZENC3dztvwJ/c2IeYlK0pSfUsGN0IWd+M4LtZqfbg48W71eU5i2pcmoMbWp56WhumaFTsRnKq10++dIMW5LyNKXhXG7vGi4KjDIzqtTrUVJOGde5Tn0ut1tSjB9APLep9QZWS6my82FKXjnyGTmUXav0ujK7pApJOWWQJK9synNOU88t8RklKKqo4c6jRhzJKvW1U35H/C3zsud4ESpr3KhyunX3LGZw1o4Zl9uDNfHZeH7WLtS4PMgtrdasMwfSi00HbBjtl83oQUTyiToLNODVQcjylmjOFrXocFYJlu3PRHGFEztqSxfZGXThdHtQWeNWGCA3J+Yhu6TKK6cx+/StR/MUz3PPsUKsPZQNNTUuD5buy0BqXjmKKmp0+/JYfjkyiiq5/VKjs85vO5qPJXvTheWhiipqfLKWaP5is58ZBWyy+8sqp9vynMgGQJZV171brD4mv6xacV63R8Ke44VcnY3oPa9xebA1KQ+7jxWiTKeNsceL/HKYZce9QyBf5DF7C49HwtpD2bolNQM1xAWq57AjQ6cegbyvR3PLsWhPGiRJgscjYXtyPrYk5XHvOaekCrO3pSrGKnucFUeoyho3Jm5IwvbkfL/az8o/eg4m6nPboV6Sdd9sP7Dv0J7jhUJjrFVnPPVeKPZ4oSLgVcaMvtPtkTBza6piD718vzjTpxXk+c1MYLokSdh7okhjh2DXTXk+UwS5+encIesDjGDHcpXTjeIKpyK7Lat7NnOfR7JKMWNLCnfPo7ePBbz3Onv7Mc0+hnddyaApZsZ8RY0Ley3Yf2S9YmF5DQ5nlSC9qFKT/UheX0TzhYgZW7yZ79n1I5h6YbXOxZ9yyZav6eft6Ol3PB4J+0yWlj6SVYrskiqUV7sU5dSNno/R+OB1nfy+l1e7sPtYoTCQrcbl0ex99XQQhzJL8U9cXXZ9tU1Qr3whj8oarx5At4QsM3c53R5umcgalwc7kvMV89Ve5rmwY1nhiGdRPyfSBZo9DxtMqZ5nzAYbutwerI7PFsrg8tyrtvsl5ZQaBreyQ2nXsbp5xOX2YPa2VKTklWv2K6xj6O5jhZrxqt43Hs4q8SsQn91z6cHTRbFtyCquwj9xGSonSXLbOVkwn5uVIBoAsoDZJDzMNwNLElBZw3eW2JKkLksgdlaQUzKv++8AnNnZm6nnznGbFCWYSipdvpqzB0cORqtmEQqj4X/9TA1vBtb4oM5WwG5ObvxuA+I/G4yWTZWv98UjVyF19J2G1+FFHjwyeRsOZpTgx8cuwb2XnGZ4jgd/3qpItSx761/55VoAwJbhN6Ft8wgM+HYDACBl1B247pt1KK1yYdEr1+CyMzoIz31Apfh/YuoOrHrrBpzdtQ0Ar4Bz/TfrAQCHP79NN02pTFRcJiY84f1bnXlBLj+UOvpOJKs2ERnFVb60ovNevFrxXY3Lg1tqv8svq8awa3txrz1ubSKe6H+GxtiVkF2G87u3VXz25bJDGHHX+ZpzsKNanSUjLq0IfU9vz712IFz51Vqkjr7TULHCpjr/aX0S3hl8jvDYUgsOWK/M3a15v3cx5XJKqlx4YOJWjLjrfDx7XV3f3zdhCzKLq7D0tetwkU5ZA2VEk0eRPe+Tvw9i2f5M/Kl65nrwBF+97QpPGcMz/i4TKEns2pSujs/G6vhs/PeWs/Gfm/tovh82PQbJeeX484WrFBsiOxywDmeV4t4JW3DRae2w9D/XWTJ+ezxSQJtlo1rpq+KzfSU+lx/Iwp8vXo3UvHLffGBmrp22JQVfRB3CDWd3RnSCt9ze3o9vQfuWTS23lxXS2bXiV1Vpp30ninBxj/YAlM9IdoQsrnQqSjnmlFbjAsE1PZKEML9yV9mDvIG6/Is1AOrW7rf/3ItV8dn44r4LMeSqnprfJWaXYvBYZTroiho32rfUHIp35u/D3/sy8PpNZ2m+0zOmfbnsEG48pzP6dG2j2ej9uDYRb99ytkL5ZSarys8bj+KbFZxU3368akv2ZhgfBOCKL719G/3uQJzRqaXQ6GQF+ZyA15lehlVKRCfkIialAFf26ig8zxu/78WKg1m486JTEbU/E+FhDhz96g7day/em463/tyHvqe3Q5xAMS1699WlnyOY+eVobhmeme4t6XLos9vQoqmx3CGCXSpYmUOUmUbuz5nbjnHnHQccuHr0WlTUuLHolWu45/DXscgfA8nYNQkYX5vK/5Ube+O9287VHMOWb2FhDWbs/GWU3r7fF3Vj7j83nYX/3uqVQzYn5mHIrzvQtW0z7PhgkO8Ydg797J94bErMxfRnrlSU7fMXs06LvKAJ2Qmw/1drUeP24J//XIcLT6uTY96ZH4el+zLwxs198NYtZ2t+n5pXjshTWmk+Z5VTI5YcwO8xJzTHWLkHVlE0Z8dxPMWZh1lF3tJ9GVi6LwPLXr9eI/fKtG/ZhPu5GlZ22pVaiLO6tKn9uwAPTdqGNs0jsP/TwYrfVLvcGPT9RtS4Pdj03kD06OhdDN78Yy+WMyWOJMmabDNvVxq+eehirDmUg+dn7UKvU1ph/Ts3mv49y5BfveVkFr58Nfr1FM+LrHNUVFym8DgR7LJ2wccrUeP2YM7240gZdQccDgduH7tJUz6tRURdn+SUVuHmMRsBmJOD9Lh/4hYkZJfhpycuxV19uwuPi07IQ+fWzX0ld9a8fYPvuX/+TzxmbjuGIVedgS/uu0jzWzNBK0cYhX1WcTUGfc+/P7Wxv7CiRlPS7YfVCZj9bH/FZ/tOFGnKkT3xyw4kfHG7Yo3Ugx2XJVUu9Ptija99Rs6LXdt6Mwz1/8q7R//2ob54d0EcrojsgPkvKdcMp9vj21fHHi/E/RPr7u+09i2wZfhNptqbwMhhqaPvxMaEXAybvhM9OrbApvfMnYPleEEFnp4eg2YRYdiUmIeP7zof/3cdf98twxpUyqpdvpJVH9fOgaxsfvZHyzW/P5BejLvGb8aFp7XFP/+53rCNHo7MzTLgu/UoqnBi/ktX44pI/jsuMqKcKKjEztQC3+9OFFT4dBCpo+8UGvZ4Q8Pl9uC2sZs0n8945grceE4X/olMUdcIp1vCRZ+uUHwrz3G/Pa98PxbtSceltfsWwCtf89rz3oJ9WFwr20aEOeDySPjrlWtwqUqnVFrl9OmfeON10sajGH67Vi4BvOV3ZHj7tatHrUOl043Fr16L9xbsQ0J2GSY8cRnu7Huq7xjW6eyLf+Ix8t4LudcClHJxWmEl3p63FwnZZZj45GW446JThb9j2yMzYf1RvDvYe1+sI+gvm1Kw/kguknLK8POTlyE+swTj1yXhgctOw/ePXOI7bktSHp6cqpWXAGXfy0wa0g+3XdhN06ZzR6ywvDawGTAW7E7zrYEdWjVFaq1O9OW5e3znnRtzHCNqyzpt8HPNNWxTgHqOSRuP4t3B5wSt/N34dUl4naO3YZEkibsG3jbOW6qsyulBq2bhvvJr79x6Nl67SXnOK2vXjV83p2DDuwMBKGV1K6UAz/u4bk4wq3NmWcmUCB6x5CCeujqSe5z60YlkWlH/8HhvYRyi4jLx4oAz8f7t5wEA/mFksI+XHMSOlAJMeOIyAEqnGSMnIrWDDdu/si6pG6f01t0/bTbUhd82NhqJOWX45O+DSB19J7Yk5eHPXfp7ALNYCV6Zt+sE/rdwPy7v2QELXq6TO9juv3rUOs3c8dafezHhycssty1qf6ZPx68HW7r1P7/HYnW81vlXZv2RXN1z5ZRUKfRPOz8chM5t6jI8yrIzwF+bL/t8NcqqXRix+ICiH0ZwSrsa7dPM6J0en7Id+9KKMebhi/Fgv9MNj5eH6WVfrPbJHOFhDuz+aJBvrZy4PgljVidg8AVdMfmpywGYcw75dGk8Pl0aj7O71lXTcJtweMsXBMUavdvq7guB/xVGLzdXdrLK6fa909uO5mOqStfLMnNbKnYy9hEZtZ0wrbACt/0Yje7tWqBN8wiFHc/o8fy9L0N3rubJu/L7LvNQv9Px3cMXa47jyRaso6I6ePmHNd5S32EOBwad11VhE0wvqhSWAxTx0eIDWLgnTfcd+GPnCby/aD+ujOyIAed05pZl/GFNAn7ecBSvDTwL7ww+B8UVTsUend3Dsf1t5Ciu1sNdNcprn4sIV/a5Wd3FSKa86MWfKW3HUzen4COOHVLNtyuP+ErNbnz3RvTspNQ7/b0vA2/8sRfnn9oWy97w7p1OFFRg0PcmbCjMO/vM9J24/cJu+HlIP/zn91iFvubXpy/Hzed1BaDsw48WH0CLJuGKZ/nszJ3YkpSPkfdcgP5ndsRtYzchzAEkjzIvp6r3XEyDFcftSM7Ho1O2o1Orptg94hbFvWxLzsdn917ALdUdEYoJiAgJ5EpHNCpqfA5YDt9iLgGocatLEHonWlao9X5ufI0DjBf5UVW9XFbpLHu4hirVJSsjntGxzlJ8fZ9TNMfm1yp37MqGJEdpmY2m1qtzDwCHMkoUHtouj+QTpjYIDG8yG45ov9/ORDyz3tT+RNLqbRK3J4ujz1nB5txubRQlnvTq3WfVRlGrryrf07nd2vg+UztT8FArcmTlcbCwU3Fk5VRa50pg7SHt2Jim6jO5xKZRNAhrpHR7JI0ScYeJTAQsdjgkWVH22Z3y/dct/LEnp4JdfiBLYVywMypJNig6OTvA+y/lb/gCvX+j5/U3sxmUx4I604ER07ekAlC+o/6U4QS8xicZdtqfrnpu7LWUmfPk6ysdQZvprG92PeLT2rfw63fqy8v9v6pWOfbnTr4CkZehUqT8/Huf9zlP3HCU+70e8hyu7qdfatcDK6WsAPCdr2B+rKujhqwQe4J/fKBDQJEBS6VIYxXpPFbUfh+136vAMDPHzt/lVaSKnK/0WKeSTVgHz21H69ajwgDL17AG9z6MotHv4CdHnVOKSL6yY73gKdhOaa11JmUdPEXv1dJ9xg6CbITgbo5yUQR7zRUHvWMnu0SpoFXLIkZKdfWtX3eWVi6XMdvVnVpp+y6r2NtOeS+knsvkfmP7mEX0HrPrNet8dbHASd3oVWvBZJ6auTWVewwvU6Re9uC7L+Y74Ki3Oew8spYZ72tq5UNehHlZlcvXp2zmJlaZB3jfE39kuSV7vXunQLJcyvDkXJaNCfrfG8G+x6wzqnzbaucrAOjdtq5PErMDd9KVSag91+JY/b3nigNZivuOSakb5zO3eTMVzNl+nPtbq6Vs9MoUq4cGr7TrpkTtGN8gmF+sZAUOpETIfSrDybh1iQDgM9qw5ePZ8a9uN29siNiuylQmG6r9lYEBICalwNe/s5kMFSLYeY/NaCbPgUb7542138vl/IxgdVI8+U8ucbNGx8CrzJyqPAc7N8SqMnuInKV5o1/khL7iQGBZUdjT6pVg5OlaeO+vOksLa6STn210gvZ9yyhi9E9+loIElPsuGTmIcVNCrm/+kud/HvL8JILdm4Q5zM+JgL6DvHodk4MrFu9N9zmaqzPEyjK5Wl7y/k4rs5mR48zCjsk/mL3dI5f34B4/g9n77rEhMy2vK+2Qm81kzPGX71cnGB5jJM78sCYBUzfV9aWeoT+VWe9Yhwo5QNYqCxjHF7PwshrzUD87UT9YyZImG9NZmXe+6h5Yg7uVTHDqY9l5a+Y27/WyBFlHjUrNJaoCq+Q9tUwXlS2FxegdkHXqTsV4aM09Vl531foJnozGfqZur1nMjhUWPecrwHjOS1DJx+rAbpanOc6DZQKZkCerGMmEZqYvOROlWYc8eTyw53Z7JEXZvCmbvDqwlQfr+tJKEBjbh2Z0zWpbnozR/durReejHtrs/lvv+mw5xFXx+nLZbIGMcVoHpe71QHoxJMkrx6vteEZjyehd4m2zZqnaJZrvebIFyx6BPnPqpmRFRuziSid2WrTdAMDCPd526a19c3d47yUmtYDrfAUAP9fqnmT56oSqnDnbx26FPUVfRhC9Ah1UwQFmdRd2mI9Yu+deTpZB+VmzmXvN6mXV+jlZT6PW17DrgroP5+9WzmeyTXHWtlTf31ZVPaxugJW91WNfnvfyVRm2ttXuiecI9q7h4dZ0FUTDhRywiEaFvBFqEh7mm9AkCahxKWdJeZFRp4s0s6joTW/sRkP+q0mIHLDYBacTY9Q6pXUzzeQu/9vuqdrfdNYtVJE3YWHKhY0VCoyuwCvfwG6Q2d+LMkbooacMqdGp48veQ5vmEarUl0z7TJaMk4WFbu20EU1qPDoLfbAJ9fX04AmpwrIjBu1mx5kdZYe4gq/F07otpKG1o808ROO3SbhDmT43CGmheffUlRPxBwTuHBRh4O3AM55YvaSd745yjqn7XK9NihKEgmP0hpxVByIRnThOGmZQD0W1w7EocwRPocpTIrZkshjxlDxG66H8E6GC0qZXxPSyHMB4E91DoAaIJsyGUt08UamGQAiWwzA79Kwa9NWw7zI7Vp0u//razC376zBr5OR/5ilaRbuZwABRmS4WRQY/P7tc9KwCXT/0staYXRt5Y1Uk66tRvJaKeZ7/A5G80LYFP+uU0T2wpxMdy2u7P2sKG5ACqPYDgtK8aqw4r/gj2/grD7Vtrs0cYTTWAx27ovPr3YPCmTuwy3PhzRnq9Vcp95jvBKtzh5V1ybTCW9BeK2uJn1VkAWjnK/XrwMpoLhvmXUDbNzxZIpASWmZ+q1xDrN+M1Z+0amYyM6bJ86r7kB1H6lOIhiLvvkVOB010ym6bQZHxRUfXwpureXO0GflTnQUAsKd8FaCvY4pg+ioQuVOhi7D47vm7FohObbQvVmNnySZWRmHPKrpCFVOOzeZ4NB926DmCoSsJ9PrsRxFhDsV7a3ZNYp+Xv/tEf+Zks3sZdZtE64U/DnJsE/T0xoE8efY+jZ6J1SGmdko9VSdIzmj8ynpZdjyc242f5VY0Xag/t6sUrp0ldc2eUy3rReisqYHqK9TPRp2UwMr9my5BaGKw8e5KMb8z47mdYA9q6XqCbjTMEKZx0rR/vOjJELol7xSynvIc6t9p5XutjdQjSbrrpJH9wWis8ublQGQvFp6MB3jnV+Vc7Amazcqf/Ze6LWwfs/KukROwyEFLPV6DKWv07MQpIaEDb80yu283W16ezRil7kM9tby/Q4R9BwJ5l0RzgrrCEdF4IQcsolEhe8o2jagrfCRB0tSYdXsk5JVVY5EqQsyMAJks8JQHoPDgr/PyD83mmV2s2L8d0C4WgTpfpBVW4OlpMdicmIdZtZE1QJ13b43Lg5fn7OZ66arrNAPeiECPjqKTVTClciKGAW8E4XMzdypSt8tsrY2a356cj6dqU9gD3rHx587jeGHWLkX0kCRJeEdVLvLtP/fC45G4pd9kMgR1lYG61PmAd/yxgk4OUw9YJABpHbC8/1Zv/lccyMT/zdipqE380zpxWZzZ248hcngUHp28DS/O3mW7UZsdi5HDoxA5PMpvIU/+VWmV03cuNoOPxyP5Puehzt4DKPuejUw6msN/z4dNj0Hk8CiMXn7Y95nT4wFPB8NmMxi/NhHvLdjnmw/UEcxj1yTi3fn7FPOFBO/zeWXubu5GRN2XViLxzGwUJUnChZ+sROTwKKyJz8bQaTHYmVqAm8Zs0BxbVOHE/xbECZ9teFiYpgTh7G2peHXuHqw7nI0np273PTt15gtJ0n+u3uvXKN5tmcnR/Ewf6rb85/dYfLPiMPdYHrxMFewcon4WkcOjFHOKv1HVZuTrT/8+iMjhUfhtR11EODsfmB0lx/Lr7pF1aGbRG0dOt4TskipEDo/COR8tR1ax9+8LP1kJSZKw9Wie77luPaqMQrdj2VSvve/M36cYQ80iwjBhfRIih0dh4Hcb8PS0GGw4ksMto6eOADXTRqN3TH5X1IdVOt1Ysjdd8ftAsj6YVQpZmZe/WXEYzzIlkTwe4J84bRQaNypcdZ3Lv1jjGwfsvAoAx/Pr7lv9DPRkMT0+/fsgvua86zUuDzf7iBl4GSnYzfY6JvPEbzv40UvxGSUYOi3G8Fpspssp0cl4YOIWSJKEmFTjyL3I4VGauYfNJiEaAgdNZvBQo85ios7YwjOaqvV0LrcH//k9VpGt0oxizm3BAGHmd+y6ZKYcApuBQn11t0fC8v1eWa1QFeVm9n3lHZVbqlw7RYoakXFblIljW7I2o6geRqVI2TlAvZbmlVXj8i/W4Lqv12t/p9M1oqhSdZYhNkKdfdZ6CmL2uNd/j0V0Qi6e5ryrHknyy1lR7VBY4/Lglbm7MXv7MeSUVuGZ6THcOcasAXLezhO+fc6M2syaZhi17BAen7Id/T5f7ftsU2IeErK1WYz1xq1LYr1R6/5cHJvum/vZeSmnpArDpsdg7aFsJOWU4alfd+hmP2Mf3UeL9+O7lUcUY8UjKVW3clNFWWJ+3nAUb8/b6y1Bwnz+0uzd+D3meO05+PfLZkgzNj6afNcFh8nZFEVzCYueEyF7L9mcLBnj1yUp9oasrgNQ3ud+JkqZN/+sPZSNYdNjkFNShYTsUjz16w7EcjLQsOcsr3Yhnbnmq3P34OcNRw1LgbPR7WrM9LxLsb+yLrOzGafe/nOv4fFsadYB327AS7VlzNVM3piModNiuGVo5RZ/+vdBjFLJU5JUJ/+oM4CL3t+MYq3sOXEDX6dgxgFr5lbvvo/Xn+waqyfz8tZzntFl/u40VLvcuODjFcL9Iy9jCZs9YoYgQ6MZ5GZWOd2aPewPTPah5QeyEDk8CjmlYh2SCLa8MtunW49q1+yyapdivvXXYMz+6vN/4vHM9Bjc8eMmTBNkwhYhz9vLdTLUZBZXYtj0GG52e8CblWPotBgMXxTn+8zhcMDl9uDu8ZsxfNF+7u/YbHxWemFLknff+unfyhIw1S6PZk2ww6D5+u+xmKzKWBqXVoSh02JwKNM/uZwlcngUiiucqKxx4/lZu9D7g2WK73ljZFuOUt/MZkMpKK/B7Fq98I9rEvH2vL2K3x7O8rbZycmeaRUHvBkpRPtHHur9T+TwKIxapi3rpRbxRZmNLqjVkRkZfdn3tMblwVO/7sDC3WlCvV1SThn6frpK8dkBQXbNeydswUWqY9n+5WXaZNGbB3iZ29Vyy74TRUKdltFW6YlfdiApp1Rhl1C35uFJWxE5PAp7jhdxzi/hq2XK5/7dKv5eQI9Fe9Lw3MydeGn2bvy84ShKq5zGmY0BRbUOM6iHydwdx/DS7N2odrmxP60YT/2q3Ffo7Uuszrdq1POTev8oGhaztx/Dy3OUeumdqYUYOi0G3686wt0byWw7ms+VnUXXeurXHZAkSbHn3sfJmCPi+9UJ+N+COF1bnKiHjeRL9bO0qqdLySv3zV07kvMxdFoMUvPKMWr5IYxcqi0xppZhXLW2pNd/j8XUTcpKKp8tjcfW2rVKPU5W18rgW5LyMHRajCablfx+J+bUfe72GATsGrzn6w7n4OwPtWW6fW2Kz9bMoUb9D/D3K2pEjuEeSbke/Lg2UVHyUARrk3hx9i7f54cySxA5PEox/n/bcRyRw6MUmZzMopZz3/qzzobAjmejvQlPDokcHoUHf96m+CzTxFzGu5Y6i3nk8ChIkqRooxm7s9PtwXVfr0Pk8Chf9mAWddY8HpHDo3xZ+ZS/1R7Pzq3q88nVW2ZvP4bbf6wrt56cW45UxjYi28gqGdtwTEoBhkzd4ZN1ZNiAYnbNfWDiVoW9xSjr7RGO/gUw1rsRjQdywCIaFYW1SpOMoiqFwfiLKOXmyuWR8BVvw2ViEyjXDjZCnltD5H+lUMRrDFiqG5MFljidUgl6vDs/DhsTcjHk1x2KOrSy0uqv2DQsP5CFjxYf0Pz2kcnbNJ8BSmVRmMOh8HReyaSNFKXvfeOPvVhzKAerOalW5TIjj03Z7iuXCHg3hv9buB+r4rMVzgp7jhdqUp0uik3H9pR8ZHKUkYBXQWzW69rtkYSCpUghr1aey8JM93bKyKOX5uzBusM5eGxKXT+z51RvtOVU8TtSCrDyYLawLJe/8Dyyec/IDHLTWUPbyKV1tajVxl41RQZptv/ze6zvb9HGllcKxO2RuMaNgd9t8P09ZnUC5u1K86VafW7WLsWxf+/LwPzdaZpSFSMWH8Cy/VlCQxGbVponkLZpps2QAJgz/BxIL/Gls35u1i5EJ+Ti4UnbhI4Pf+46ISzD2STcgUt7dFC0dcSSg4jan4n/m7FLUTLyzT/2Kn7LOm2KlB3Tt6Qq3m0Z9rGc0rouuot9D2KPF2LpvgxM3HDUtMKUt5li5xCjDC1mUqL7E8xQUuX0GQw++KtuI8mW1bqmdyff32qHUvbuX2feB1lFoY5A0TPqRSfk+taAapcHV41aC8BrBNieXIAnfqlzmGP/BoCjgeuVDdfzphFhvrkkJa8cGxNyMWz6Tm4q9Zfm7NZmzDRQ2xtd3+ekzTnPG6p3ANA3JgbSjrrz142F+y7hl/MCvAqLiRuOKsp3uSUJr/0WqzmWp9hlN9aZxZUKo5u6NJqevOVPtoX0okrM2JqKnzcc1Tgb/7mTX4LKDOr5HFAqT9i+GidwiH5y6nZhSSPWMKcucbXneBFXMS1Cb3MvWkOvOasT93Mj1Iq9Kapyy7zxoVY6rYrPxtJ9Gfjsn7q13owxXOFI5edulm3KrT9E+/42E834JmNwV99mk/AwvDzXK6upy8CYfV/NGE+triF6BgdeubOOnDKIgNcoq4ee/PFl1CFu+UHAuFSKUckWtePexT3a+/7Wc2Zix1JGcRWGTosRKgj9Mbqqy5cujk3Hsv1ZGLH4AD7/5xDWH8nlzjE8eJd/b2EcVsVnY+6O474SWGaYHJ2Mbcn5mlT4Q3/lO5+JYF9X1imHfUfYuf7TpQex4Ugunp25C19ExWNTYh5e+22P8PzynJGaV44524/jp/VJCoPNrRd05WaoflPgFPP1isNYtCcdO1IKFFlaVhzMwvu1Bv1DmXwlaPsWde+Eep5Sl+oJNGJedsaV55Ixq8WGR/1oeeM2Ld0nllnZ9/kZxjGbZzt8duYubDiSi5FL4/HM9J3YlJiH+ydu1baXacevm1MUGUej9mfi6xWHFVlseHy2VDwPmen7bkwGXdYpxyys8Vod8Meja1vl+FjBlFlWz23RCbn4qbYUpJqMWjnnV1VJlMziKp/842TmwuJKp3Ddmbwx2dRngLnyyp/87d33/c0pG8OWf2WNf2p440qkU1mwOw3lOoFzvPInYxgD/twd/suF8hD7jLMe8tr78KRtlsqOAUoDJGvk4pXS/V2h5yrSXatuOLsz93P1a/Pr5hSsP5IbkIHx5bniuX3E4gPYcMS7N+PxwM9bEZ2Qq9A93N33VCw7kKVbDpZFby5QB+49OdW7V+U55qnlcDvKB649nKNxpLx3whZEJ+RqnDX8Zdy6RMzenorV8dmmMg/OS66bi3kOIiNq9cI/rEnQlJ6S22xHRnSHAwod9KSNRw2D23iy5+Ro7Xymvu9/4vR1NtGJ+s46X6jmgE2Jefjv/H244Wx+OfJB32/UfPbwJL7+nOeQYqVP9Y598Gft2swzprPl4m46t0vduQ3W2SPZpRi5NF4hrylkNUnylTrmcSBD+45PWH/UUrljAHh73j6sOZSDFQez8PWKw8Iy7QBw2RntfX+zejYzsPo3APjwrwNYcTALC3en46FJ2r5ms7TkqJxNArUvGY2RKkFA9ojFB7D8QJav9JpMdEIuxq1L4u6NZJqEO/i6WkYKLWHWrk2JedifXqx4b9k9s1GSg2qXB3/uOsG9powoE+PiWP3SduqMYZt1gkR4sDaCR6d49T//N3MnJm9MxvQtqZrnrcbt8WD94Rz8vS9DY+dcfiALT0zVBiUDwIuzd2PDkVw8OXUHV+ckr1usY6PHY5QBy3gwGjlUqYMIzTjtfLxEa2dUw+4dWK7o2QFOpt16JW1Z/Svr6MLOezLs+Lc6P8hUOd2Kd1+NogShQT+ZXQvM9OUyju3ik7+1zoLH8iuElYxERMVlaoJ7WNigEbVzkxG88oWsrlEtN8jOqCMWH9A4urOlMWUbGRvs/9afe7E5KQ8fL1b2Cxtgo+6OAd9uMHEX+vgjgxMNE3LAIhoVsnL93ku6G6btzCzSCjZ2lUySzwYEJyUpD0W5G9W9azfU3v8bKXpECluRE5JMSaV1QzFbtzzc4VAYuPLK+cYYHlZSlrIbQ3ZhrxYodaucbqHhzeWWTCtb3JIkFJhEAqo6JaW8GWnehC9YihxVjJroj5JZhMcjcQ2AZdX8cXf/padpPuP9XuSlL9ossu2x8rlZnG7J9DkqdRTBgHJMshvLUo7xE1C+NzzFkkiJakYYNupPo/awRISFoQtjXNDLIKKeXyoUmaX4v+NlN1PDKj7Y22cNkmYym4hgFd7VBnOrqJ9Y/ClVJgmazzpwsEYl9RrAjovjnD5VDxt23F/KKKUAb6Y6UXQSL3KfxelRZnH0ByPFX5vm+qnLWSTJm+lO/ZkepjPZCA4zmxLZxBUs/6JfZEfhd1bKLfLWuXJGkRFIinF/3lV2k61ucqGNax9g/f3Vu76hotSC0U4vS4pozlc7DvhLgeravGGj7rfSKm2/mEn2qFeCw+x6zTr5sW23OvbU61bTiLr2aPvE7Lxh095CME4fu6KH4t+8+VQUnW3kgKyXYl0vopVnVFaeV79P1Hs81ilbL327WQWmR+WAdf6p/FIqRrDrY7bFCPtWAmUzAJQZ9J9ZsmqfEVu6Qq+P2Oqoom7OK617D+TAEKAuo5Le/Ci/3+z+SV3SRtE8k+9OpdMtLr8sOEcbpiykej/Xr2cH9eGmEF3rRKFSRiss928NYU8vKo+q5/wo2s/qLYG5ZdW6RlK264oqnNw53+i9zCk1rzvg0aIpWyYuoFOZoqnORXhjQO0YCXifpeh5sE5XTSPq5gm3R7JlPbFyDnUGLkApqeo5xPK+E40Ff/RR6jXZX+RmqjOLiDiWX6GRr61UmTKSS1KYKHvJoKTQud3amL+wn5iRkY3eYd4e4uIe7S2tdYHqgGTUcri/pbuNkJ+byFHdKgXlNcI9udEtWK2CJr8LTsVezE8HLM5nRmcyK7tb1d2XGIw3XlYOAIjs1Mr0NXjO86J5z0pGfKuOgry+Yff1lzCBDWb6ce+JIuW7wvxpdB9mytH7Q4GOLMUGbmSYdPSSx3h3QbnG0ion917YKdLI4dwqRvNTswj9kshmHK7VOBwOrr6CHSanqfqoxuURjlHeHVzfR+vUqDfGRXIXT0ZhaWJjCV0ZVpftFNhQZNwepX7cLpwuba96swiLx4sdtk71+DejQmP3iiy9TqmbV5sJ9jS9OrdSyMR6sO+KnkO/Xbg9knAvJn8v408GLB5m7stonfNdU5IUY8LMultuEGTMPiveuqAnR/DWTlb+tLJe8mD1VvK+ducxpUOhsuRhcNYt4uSAHLCIRoXsmNGhpb5hNb2okj/R27hXltc7f2SS4/kVGDY9BusP5yBRkGpQkiRExWVi/q4TKK5wKrJXsAtdan65L5WijKjM3BFVtgJRpLSR8ZwV0oyOldnGlKAKcygXJ5FD1NHcMqyJz1Y4M4iEA57jC5vef39ase88IsXfmkM5qHHz+8Tp8ZjeHLk94sWXpzidu+MYtjIZggAgraACKXnlQieDZirHrBqXB7tSCwwNtU63B/+dt8+UQ4tRdIbLI3ENdCKZmick8o5VpwLPK6tGQnapwruch2gsqh0rNN+7PdhzvFAYWVftcuuWrmIjbI2yD7AbQXV7eanAE3PKfKnNeUZNkeAtC8a7jxUoUvtLkoR9J4pQUePyyzki9gQ/Ui0i3KF4T/UckMIcDiRml/oUdewcKNrkGQnu6t+6PRJcbg9+23Fc4Wgk91eV040VB7JwNLfM99/eE0W6Aj57/iqDvttncC63RzJMGw94Mz6wCiCRAwVrmPt1c4pvDVBveN0eCWXVLsSlFak2JN6/1VmY2PGlVmJ7JCAxm58Sl7cGbU7MQ43Lg/zyGmQxOi1R2Vkjig0casIt6k7Uc7PZpV2en9Q43RISs0vxlyAzgqav5YxZkiQsRcCDfcYHM4qRV1aNTQbRunpKCd6cclSQFY93rGLMmOjEKqebW6KouNKJtMIKHGfGR0J2KdIKxeOFdU5Xt80uoxt7viRBFgd2/qtxedcXPfQCCqxSVCm+T5FBzCPVrQ2yLCVJEkYtP4Txa71ZONRzEf88yj4/WhtJuDo+GwfSi33zDwtv2eWtdX+rsqNuPZqHrUneOUV9X0aKY1kWFvWH1ZJ8akU32w3q6Dq2j/JrDWzynCyvGU63BzEp/DETl1bk+zv2RBFijxfC45E0MrAkSUjJK0ecoJyDenlaHJuuKRdo5BAlk5hdiqziKiTllCKntEojL8nvnscjceWcuus5fW3fzzFoyXO0aG1Vf/ztyiPYWRt1yz5q9fps1pBa7XIrZJHM4kokM6VnvH2gnya+oLwGh5jozt2cueFYfrlwnlOU3vNImMdktY2wuujpcCSrVDEr6YnRVczQExnGD2QU+2ReVj7gOZkAyv0Hb51hsw4mZJf6tRk/mlPG3YR4PJKwL7OYdmUWVWH2tlTffk89jtQZAUWI1ib1fcdnliCzuBJTNyUjOiHXN4YlSeKuMWXVLsSkFBiuP4C+vKO+L1k+0etyNrMtoM2wp96r8vabRvspPSX3iYJKxB4vNJDD6/4W6SHsRK+/eEYx0UMRGa7Yz9m+cXsk7t6KN8fqwXOSTMwu5TqKuNzeMel0e1Dj8uDDv/ZjGZNlRs/xdBen3DIvQ6NZtiTlocrphtvjbZPdjjNGuhIWXsAkq4+JzyhRONGzY/TDv5QZDHYfK0SNy4NDmSUoKK/BRibDZUR4GPeZy+uVyOFSgvmptLjSqbtXMePUyMpgZh2lnG6PpaCEYzr6Lr2xoB6HHma+jUsrUpRNVaOXkcUKvD6RJAmzt6Viyd50FJTX+LJF6PWfaI+hHo9qGVCUscIoQwW7nzYKlhLB09VmFVdh3q4TqHa5kVZYodl7m8mqAvDlmeM6uogalwduj4Q5248p5ruiihoczCgW6rzMlNlS43J7sPVoHkqrnEJdrZUgEatt4PUgO7b09EKiE7LrUVJOmW+/o3cfJVVOzDYo16THqoPe6gJW5mcAvvdaLqNsBrlPRHpkUYCBfPtOt0eYobqs2oXfY45zg5X00JufAO8+aPqWFBzPr4DT7cFP6xKxlcnyZPZdYhH9Qm+edbol3z5NJiWvHInZpdw9KE8fHxEWBkmS8FdsGlJVc5iRo4+r1gagliczLAbHmIHVu5ZXu3SziR3KLLHsAGsGnq3kRGFFwBmwjAh3OHCioMKnN+M9F00WOMG5FHK9oI8kyfw8yc6zRoH0gLeSTpEfDooy5dUuXV2IIoicaY8kSZi9/ZgiCYNVeVa2eSVml2JxbLqiL83KYJLKASuvrMYwO6Uo45dsf2PvY1dqASpqvO+HrB/Wc8blB3vW/R3o+N2RXKCZHyQJmLopGavjsxGXVqSQSXn2tdIqp+U9F3Fywq9dRBANFLl8RkR4GFOCUDup5pXVIK9MuzCanX9dbg8iDDQHvhKE5k6p4IZv1wOoK3e26b2B6NGxpeKYf+IyfSXT5vdKUygz2TTYvPI08sR/Sutmis3z4LHRiP9sMFo29b76T/yynds+o0wRrEf6Td9twO4Rt+geDyjL4jgcDkXqcN6imlNahZvHaFM0i/iUkyKTvcbawzm4Z/xmrHvnRmFU/287jqOtIGuK2yMJ09hqj/Vwxx/A35yplWqAt5zBoth03HFRN+551BEdY9ckKMqQiRhfWx5p4Z40pI6+U/dYXtkIlj93Huc7YDEfhTnq3jszERSbORury79YAwD44r4LdX8rcuRwuiXwKvXlllajc5tm+HjJQfwecxzPXBvJ/f03K8RlPzYm5CrqgT87c5duv2aV1L2P7Hs2d8cxblmfcWsTMWF9EnZ/NIjrwc+WsGBxuSUUlNf4aoCvfPMGnNOtDf6KTcfb8/bhgu5t/dpci0pTNAl34H2mtjqvXJnMicIK3FJb7mnnh4MUaZBFQjIvDbAadnhJkoQnpu7QGIHkPnx6Wgx2pGiV/F/cdyGGXNWTe/4f1ybirVvOBiCOuJGZtysN1/fpjLsv5pd6+22HsVKptMqJG7/bAABIGXUHHA4HPlminOeScspwVpfWCuVfYk4ZzvloBX57rr/mnE3Cw/DAxC1IUDlO7TlehLO6tMEQVUprRYph1fubWVQpNJDxlLZDft2Bey/pjiV7MwDUOZCqlQGi7H5qXv1tD9b9d4Dwe70Iex6a98Hg9ZC7Q56f1PywJgFfrzjM/Q7QKsQPpBXjmrNO8ZVKNIusjNp9rMD3vhsxWqddvM28yJDMU6zP3JqKey/xZjs0E/n87MydihKlMvEZJbjua6+sFP/ZYJRWuXDrD9Fo0zwC+z6+lXsutvR0UaUTrZiJn1dShCUhuxRnnmI+Wnl/ejEGfR+Nzf8bqPnurnGbsOFd7+cf/LVfN/U54F85UkCZ+U5mzvbjeO+2c7nHCx2wPBLm707DewvicHGP9ljy6rX4aV2Sb75v2SzCtz7JcxEPdVa90moXVh3Mwgu1zvCf3XuB5jffM2W1KmvcaNE0HB1aakvfKUum1q3Lr9zYG93aNVd81++LNb51mKdQGjw2GmveHsDN9pqSV6675vNQvzPsOpacV46ckip0qc1MyB4qt/OenzYjObcck4ZchtsuPBWTNx4Vlsi456ctvr+j4jIRFZeJj+48D8sPKGWB+bvS8N7COGGb1fLYx0u0MrTaGZ5HdkkVBo+N1t1fXfb5aqSOvhOToo/qKtFkGXv9kRz83wxtST7ZmX79kRzNd4A2U2ZxpRMPT9qG3R8Nwo6Uujnm3glb8MOjF+P+S08HYF7pOHaNsiRYYYUTN43ZiN0fDUKn1s18ZXhZ1Iq4fl+sVsgq7Fg5UVCBjq2a+tLVt22uFVzZ5zZ6xWHF3KxX0sAqg8dGo0ubZr4MJW5JnEUns6LuuqJSigczSnDzmI3Y9dEgTSlumYyiSl8GgSu/qutLWc5lL8/OB7O2HcPtF9btlfSeJnsPX0QdwqOX99Ac88umZFzHibKX70Nm8FivHDtz2zGseXuAximcV/6Mh6gMmlomSckrx9Wj1vn+/fOTl+H2i07FHztP+Eonsvx33l6N7Hy8gG+UE5Xx8LZDOYbvGr8Zvz9/FX7ZZM7BDAAu+GSlYm/041rlu6QuZwvUOaiKEO3XZe6fuBW/DL0ct5zflfs9+y49MXWH4Z7YiLyyakXWPb3rqZm+NUXzGU++0nM6Y8cb62DjkSTu/Hz3T5uF5+KhNhYez6/by6WOvlMxTr6slcUev7IHfo/Rlv3+aT2/VDPAL5UrCr4zMvoA3rJyQ6/uiQ4tm2rGnYiKGpdPVyZCfjyi7Dc8eGvN9d+sx+HPb0Nidhnu/mkzWjYNR/xnt3mP13EUfvDnrTi7a2vNfs7bNok7fm4asxGpo+/EHzu1z4S9JzPcPGYj8sqqMZez1wT0M2DJetZjTNau52ftwq/DrjC8LqszMMPPOrqxgd9tEL73D6lKwsl71Z2phXhksv5ea0p0Mm46twuuOtO/8t4ys7alYti1vRSfTduSqtEXrXjzer4TJ7wOHKJHwY7H/LJq3PrjFsX3IuPubWM36bZbWXJO99C636jeZZ4+6PpvvHvC2duOITWvHKXVLsR8cLNPvm7bvIkwiz4LT3dxw7frcaj2vVPzS3QyFuw+ge3JBfho8QHfmLn+m/W6gQrxfjji/bo5BaOWH8at53fFKoEMbkV/tzg2A8NvN5+tlZdldermFDx25RkAtMGORnhUVSGOZJfinp+2YOKTl+Ha3nw5CwD6frrKdJvVRCfk+vadVpH7nJVBjdhyNB8Dzu4szLQi2s/Jc/Qnfx/EbwI58MJPVgKARsY7ll+OnjoZ1ob8qi/TrD2cg7WHczByaTyu73OKxrHJH0dlSZK4+gH23VZ//crc3Rq7E1u+zwzhYQ7M3JqKT2vLUrP3LfLBke0oo5Yfxq+bU/DYFT0w+sG+AMwnFwiEW2tlJxFv/rkXH915nu3XfWjSVsR8OEjx2YT1RzHu8UuFv/HXiZZlU1IuXph9DBU1buz+aBA3WOfKr9Yqx6wo2Ir5W8/HymzmozvHbfZd93GBbZTlAQP7mBEf/HUAaw6J9SvsvBrLyPX/nb8Pi/akYwSzBpnVX8h2C/VcU1rtwlO1dg9eyUoeLk7Jysd/2Y75L10j/I1IHnxg4lb837W9cGbnurnsi6hDirKbf75wFbJ1sqXysrex85BRIgYjkvPK8dFfB/D1Q30Vn6tLg8rwsuvdMW4TTqj23/ll1eiks2ckTk4oAxbRqOhaW+Kq1ymtGAcsZT1ymRac0m1mSxDK2U30dNnyBsTIqUTO1tX39HbCY3hKWtZYqHYiMEKOdrnvEq3xP59xDLKiNGJp3qRu6hBFL+sRHuZQKMF5kWwJWfpR5CzndG2DP3fxlUkscqYwPeeJVfF8hxan24NTVUY+EW6PuFyh0+KGhlcmDNAats04X1lFr3wE4DUaGDk53Hp+nVGE966oP5mr45iyz6QxQ41IQStnlvo9xiuITt+SavncvwgcE9h3hCVW5SwpkyzIMAN4x1NaYaUlD36PJCElr+4diqk1Ps7f5XUEOJhRgiMmI7vMEB4WJiyjqIbNJJeoyiATyBaP7R+3R+LOm/IxPOcrQGwIUzPoPO2ao0aU+QgApggMV+zrlMGU0ZXbrXa401sbeM55PTu15Crr5chpTQlChaJN+d0BHcWiyJjndb7S55DJ2u8peeW6il2RsVhkjNOUIDQYjUZrv1GGuTM6KZ2uo2uVX1FMlgArrD3Ed0rgodc2M5v59rVyDS9TEesQbnSqh/udznW+AoDOTFm8/LIaX1RjaZVLmJadHfNWMybsSM43zGzHg5cBgHUGNnK+CoQcQXp2vUxVPDnGI0n4s9YgJ6+zY1Yn+L5njT16z7RdC61B/LtVdc5MagcWAApndTl71wOXacsVi5i44ShX3pcRKZF3phagUyut4kOv70Ql59QyhvqSiUxWJH5WCu/YlufH71YlaI7RY9a2Y5poSj0DNyBea3lOP3ocyiwxbWD7dZPWyYBFLuG2dB9/DpSNOP8Ivo8T7GlS8yvQXuXUx76XgWZEUWchZqmoceEBpvy23rKx+1ihIsMST3nMNlXtGCsKLvGXa8+qM4559zX8xndoaq7/jEoqWcn8qIbNHmAlkjuTkx1h+pZUS/K2nPXMqKQJAFysowtQY2T0kOcL0b6JF7hwOJMvX/XScT7m9cXq+GzT5Sr8xcgIJpLlWP7cKZbp7YjqZzlqkP1O73JTOXMjT4/QRCc4kHU8YIMy3B7JtjJsLOqMyDynBp7zlZ0YZUmTmbXtmNAIzqPIRMlqf8ryiN7p0ioXNiZ4ZXg2473Rc+Pt54DaspMCcVYvMMJsuTi3R/LN56sEgWB6yI7YrOGdzWrYEJENiFFxxvtYoM6B/bIz2hseK3rOczg6CV6wXkxKgW/8qMkqrhLOG+wYVme/CgRWVjA796id81vryKL704t9Oid2v3XHRaeavBZ/3hBlED6SXYrtyVp9i1GW2K1HrWXTBeBzjhQ5XwHWShxZ2YN6PBL6nt5e8zmb2VWhazMxX0jgZ6L5Kzbdb8O40dqvzpjMb5V1LujO3wMu3+/dk1gtXy/3pcj5Sg8zmU3NwssqZca5mUerZtr9ODtm1GYDo6B/M4SFASM58yIgHqOnd/AGe/y62St7sU7JdpV/DRTWTsezdfqDqOyvbgUIG+THf/Zl+mSbjKIqU89ddFVFEJNOu/0JNA8Fes5XgPKeOjMOOov2aO0KZvUX/7npLADaueYbJiC3hU4gDovHo91n70zVn4/0MnRP25KCPl1aC79fHZ+NxTo2FUBb2pSdZ9TjgGcfN8KMnVmmvFopX1zf5xSN8xXgrWJlFpFdkWh80JMkGhXyBOqdZL0zq4Q6Zyu2NCFPCDYrP8iCol593rpU1Prn+u+t5wAAurfj1wUH+AJGIHp0OZV+uJn83xaQDTOBGivCHEoFk1FddCM6tNKPglXTXMdYJypDoOdUpcYjKe+PxeqGRrSXY4Wzc7u1sXROu3B7JG6ZL/bZsX8blasC9A1I/mYJEaXftiNbgEiBL3rfA3l3rPzW5VFGIRmVbwyUJn6WvlHPn2aVvzzY/hF1lZFyxOxdRJjoT/3NrMkL1SIyfFp9J0RjSORspJdq3m7jla8tnH6bLoiK1muDqM9EGQp4G3UzTtj+oi156P23v/Ocv79TY2aead9CdsAyOlL/XHoKdrZ7w8IcijVPXb7R6Pdm8Pdp2hAYqBjHV/bqqPs9i2htEymdJPCj0NySeZlT753jvRPNIurkLb3Sl0Bdu/UyJ/DQcwQXtVcki4n6VJIkXxCI9lzqayj/zd6P3njxdyzxbt9IvhHNX0ZZP8yeh4dRFll5fIjWTp8MzpyG3feJluWm4WGa9UuUhcpfRG32SPp7SRZ1VClvz6EnV9iZAUt9fUkS74EEiTcsE8hp2Geo10dm1jcJkl9jwsxv1I6AehgZPeT33oo8KZrf9K4VaPSwv4j20fLzNTP3+LM2+ItRQJKeUz8vEI23jrduFm5K1mPP5xFkQ2IRORfrob7f+jB1WXmEVuQKM2PD5Ydjm+h4h4O//vubecKt88x1HVRNXk8dxNGplXZe08s+YUdGDR6B6BCMqAu8NdsW7/+NKioA4jnW7JLeLCIMNYL+dro9QuMd+xzs2kMCyrnLrIyoPsqsPKOQU0zOQqL32wGHbhZDqxjteXiYuW9r+kDzbXBL/HK16mNkzDxaSeLPBd7P/ZMtjK5rFABnNL+L5hFRthL5fGYz7sjo9TW7t+Fhru9Do3OWcXskrtzCBp+LyqEGgsutzcjDton7G537C5Z+0yo1jKOoWecY/68lfmfsKNvMjkWz87To/WB/r/cO1dfexV98exumv41KyJodq614pWBUvzcrI0swXifUGNmh9M7m1tE/yD9WB4CGM/ei1vfxgkXtRN1WUb9a6cJubc0lASEaPlSCkGhUyAtpE0UJQvhqR7MRPjwh+OlpMRhwdmfDzD7H8ysMU7P/vTcD53Vrq5vlBKibdOUNC08YzuV4o5tJoSziv/P3ITzMgfGcVOuBGI195UFUUWrPTI/BkKt64ubzjKNRZdhIN57i8UlVKSw9jnBKF+iht4iLxobLIxkKQTJuj4TkPH5UotXNWbwgWpktA8kr3WCGe3/a7IuuWPb69TifieyZaqK0RGJOGS6vzVjAwsq77HhbeTAb1S63wiCrFor0FNjzdvmXSeTKL9fi4MjBms/tyBawLZkf3SZ6ygWC0pRGFFc6FaUOjfB4JBxksgl88Nd+LNmbLsz8FCi88kVmGKq6p4Jy/yOh2Gw8T/3Knz/iM0rQ5ZzAhdjPBJFWLKIxcDCjWDjPSJI3MvON3/cqFKZOjwctoN18v79oP+7qy4/4nMWUfZUZySnVCgDHBOU7PZKEpJwyDPpeWw5WXY7ELnilp0RZC9mSc2qi9vOzpPwVy59HePXdwxwO4Zq5PbmAW/rWLD+sUWa5OZTpncf9mecqalyYsD6wLIiSJGHXsUK8M3+f4bHyfj3JIOPDiMX6/aOXdZDVKQyZukMRnd3fRGmAwWOjLZUU8nisKxQA4OW5e7ifRw6PMn2O3NJqX+ktXlY7UZaH3YKIM14JUABIzinjZir0SJJCKbpM8O4A3rHWNEJrbJu9/Zii7LMM65xrlCXR6fZg4oYkyyUAeSv5gfRiXHhaO6ECTiSLiZzXSqpcmtJIn/59EOd3b6sp9afOJPDr5mQ8/st2fH7fhbrKshUHszRl9PxFlJXJJ4MJmpHFyQjEY+HuNPwTlyHMwKFm7JoE7l6H5dOl8Rh2bS+hgbOgvAYtmoYrokALK5xIzStH5CmthEoup8ejUS5vPZqPZ6bHILO4ym8ZWkaSgA2C9dDNSdUvwuX2KPaIPKX35OhkXylxNXYH3fzDZGN0S3zDCgAcKPRed8UB40wo9+jsrd+Ztw9JN5bh1YFncb/Xm5/ZbEyio7Ym5Wn6ND5DO2dll1QrMpCaJdFgPQSsGXZ2HePP7zJy2VErRkxRZh+RgaWoogZunvE0AHebLUnKbAuibCSVAgcsjwSEO4C35xnLKqvjs/Hegn34+sG+cDgc2JlagPHrkvDJ3edrytHN2paKIf17mrwLLcMXxeHW87th+O3nYnV8Np6ftQvndmuDZa9fj/zyGnz41wHNb/TkhFXx2ZrvUwWyupoiJnvY1E0phtln9UpQsojKLKbmlQfdqMHDSlYrKw4mFTVuzNiSgp067+CDP29FlzbWnDW2HNVmGgG8sjSbdVTGX7unxyOea/TmUbMZ99nS0TO3HUNHjgPWwj1pGPPIxdzf9/10FXe8jFp+yFf6WlTaUA+XR7IcECa/Y9882Ff3OLnbZm8XZ2pnWXMoG8l5ZcgxIVPVuDxoGh6mKTOWkF2GyOFR+OuVa3DpGVp9m8z/Fu7Hyzf25n53OKuUm+EG8OrHZIZdE2nYTjM8P2sX0pk9yNvz9uG+S05DWJgDybll+HRpPNIKKnDrBd65EgCSckox6HtlSS4zGbMBbxlsmcOZYlmuosaFe37agqScMox+4CLuMZ/8fcCU08rO1AI8rCpRyYO35zEKxNXLcigjX/vw5/ySiSxWnMD6fLhc+F3k8CikjLoD65hs2wnZpZgcnYw3bu4j/F2l083VX0o6MqUR6gwyz0yPwaNX9ECT8DA8O5NfBpulXCBbyAiDOAXPTp5r91usLKInDxo7iQV2fiNk25oVPFJddQkWvRKEdnDXePG+4o8YfnaxxbHpwsyvRg588jFXjVqLgvIavDqwN/anl+D7Ry621YEzNa9O3rMzi+mMLSmaz95dEMc50svQX2Ow+u0bNPY/K2Qwds17ftoiPE4uy7Y4Nl1Yrl6SgC+j4iFJwNW9+WV+HY6GmwFLhPedlhT7MaOxyEtiwePblUd8WTlZKmrcGDY9Bjee3dlE5sC6do5cqtXvRg6Pwh8vXKX47I0/9mLfiWJM44w5Fj3ZM7e0WrcfZm8/prGXbmb2mer9bViYA/MtZLSyygd/KeU4kb3EUgCJzQF2RP1BGbCIRoW8kIaH1ZmKJEg4tdZwxWYOEKUy3JiQa2g0NHK+ArxK8I2JxgZoeR8l+RywtMfw0kmLDGhmefPPvdw0o4EEh8nexGqDy/ojuaY2PDIeSRnhU2axVJAaq+lr/Vl0XW4JTpNh3m6PhCYCT2+r6YmDCZva9o5xmxTfieoaq+EZvNowWU3UwsV8lXOBWijyJwrXDNM2awU/M0oOfxEpcKykMGVhyziZwe2RMELlFBUs56tAUCsHZm5LtXwOua/ZsSQyqA6bvlP/XJavrnMuwcme+EXsXOqRJMzbeQIrDmZhMaN81NtErrOwIRY5QBwUlBP0SBLX+SrUiDKIsKV6zVLFyXJ43VmnaMaiBONoIH+uLyI6AIe293QUJzJndhaXGAK8DinDF8YJnfFYZAPO6OX664TIQdUMrFFZ7dBiVo7hOXeL6NauOdfQHApGMf3IU96JFHpfChwQRc9F9P5LkqTwYnpl7h5h2WxRmVae8xUAbjkLES6PZNn5CuArdB+Z7DVQiJ4pTzFdXOEUOjNMidYaemdsTeW+e0dVJYXX1BosRiw+YOjk918TDpCBsHC313kp0Ax+/52/D+uP5BoGtMjwyk/ySCusEK7DY9ck4CuObHrjdxsAKMuWsizdl8HNPLT+SG7AzleA9/15RiBbWIlA79K2mWGksZ4S0u4MWCxuj2QYTfzSnN2G5xGViQS889O3K8Xvv1ljklD2mroDb/25V/FZniAo4pO/tc4ydhCMPaAZxy8jRMrvr5YdUmQvYOnOKWerh7zXVwdYiUotiTJgqcutGjFvV5pvv/vwpG2ITsjlyrUfLzkYUGae5NxyTNp4FFVON16ufRcOZ5ViQ0KOYo0PFKNMW4DSecGMnKqXGZxl9PK6ciVsK75decSWLAnBxEoGrNnbU/Hp0njDkuCicj4i3vqTv77/3wz++uGv0dUtSSgWlFPTG+Oid07NL6qSmf5kWuGVGJWdrwBrgZgygTgcqB3p1VjVGR0vqMCGI7mmnCZXx2cjPrNEUQaL5f6JW31/i0pRndNVnA1f5IDFYtd+Vr4XxfVrjaGvzN2D6IRcJOd550rZ+VbtfGUF9pl34DgCykzfkurT/w9XObrJrDyYbUo2NuN8JcKoLKFeqSY1ZkrXidZvfziaW66QN0YujUd0Qi4e/Hmrzq/4TgISxNldii3q9dcfycVLc/aYtkUYzeuiMSDaH8p9rJfVm3sdnWdjNAy7msiIEsia7M9cKkkS3vhjr63tCJT5ghKcq+KzcfuPm7jfmQlqWB2fjYJy7xo7Yf1RRCfkYoZOUKE/HMmu25/amZXr06XGQcQsNW4P3vhjr+Xf+YMc1Pimaq/GUlzpxC+bUjB1c4rvGaiRJP/LaNYXHknS2FhFASpyyXujUu0yFTVu4dqz4UiupWebU1olDBZ+bMp2zWdGzlcA8D0nAEEms7hKd11ezgn+YnU7Ggcsh0PocGhHIInIpqLGUgb5YHiuEvUCOWARjQpZ+GgS7lBkwKquNbINYjIwtQ1BJF5Ftb6iYszDF/sUZfLcH6y022YJ5Op2zf3qBaecMQraVeNaD7PCCovL4/EJ5IMMMn25PZIwOtisE1dDY83bN2Dfx7dqPuf5mTVhnCXUSjlZYJRRbyiMUi77S3GlE3cKMgUFA7s3m9kWM+I1dEW4iHQTjqftWzZRZF6Tb9XfVOYs8ng9u6u4Frnpcwk+15t/PBLfoVTv3iTJ2LnGXwLp0gu62+dMabaEk7/07txKYxj1SJKwpFVDw4wR6BIDRxi3R9I4joiQp3U264jd2KE4saKwatE0ot7kM/b58ZQtogxwIsxmMZJxeyRNFqmLBeMl32IWRyvKDDvmcBnZkChaC3nP2snIeWqMsjeZxWiIZagcmq4+kx/d6S+ltTJYQ5UQnG5JaMwtKK/RnetEBtL8shrY5W9/w9mdNZ/pTTNuSbwfUNMsItySQk7tmBkeRAWdx2NvBLYVetfKN2b7Rm/ezxco69WIHLN4nN6BX3KcB8//6qLT+M6u3uND0+elVXy5NLO4itufDjjwYL/TLV3DqtOnqNRwuR9BW2pnbKvlanhcGaktFyyfm113yqrdltdNPYJRZs3sOp1fVjf/stPN0dwybt+d2q45Bp6jnTPNYHdAlpXZsTCAbMz+IHJ88tdR2uORhFk+gyHmhnJleOyKHsLv7JQh1TSNCN76Wlzp5AYH8RDtrdsHSX9mB5W1c7laxyPKcmgFdq516zg4l5jU/QZ7yRUFHcuB41b2e0Um7ikQxw11VjSRM4A/6GXAqnbbdx1/EPWZqMxnjZ/9oqdzMJr72Sz5kZ1a+nV9PRwOh2XdoqjN7HMOhSNBoDKSvHaKSrcCfF1uTqm+7qVVAGUE67ssYmZxYIkhzGLGDsCu82I5x3zlmoaCRwLKqpXjSpThSqr9uD7GRU2IbZk1Lk9A67JaLhT1WY+OLfCQxX1tqAimfocILY3EtEQQXuQIg4jwMF+5FAl1Xq5sfVsz6UMDpaBCX6HWqll4XQlCjwS3R8KUaOPSbsEkECOSJGkdaPzBIylLcrAe2WGO4CgXA8Xllnwb3T4GzhlZJVUagbCkyol5O08Yjpn6ZPexQhSU1+AXzhjt2akV2nGUO7xscnml1YhLK4IkSRqBafn+LBzOqvMML1UZ8IPVP2FhDo0hY96uE5iwnl/KJVDsTnsrKkElItDsFvWFmY3E6R1aoFPruijHrJIqJOWUmt6E/BMnTrF7OKsUO1MLUFIpNvAc5JSs4RGXVmTqOJaMokokZGszcsSkFAgVy00jwmzRfvPm3UCMf3aV0gKgKFsaDGZvP6bJJCaXIAwlx/LNOUCpMZP5JImTFp4l9oT5rBLpRZW6hg5/DKSac9igmC+tcmHfiSJTMoXb41GUsggpTPN4Bgmr07lZQ46MR9K+r+uP8DPruT0e5JR651wzqNd4PcymUlejN95E68KB9GLNO+GRJFQL+s6O8QhoM4UdUP1b3V4z0fBW1nv5+g3VR3vviUJF6TuWfWnFwr1dTmmVUO5ye/wvdaIm9rh2ntSbX6woRytq3Ciz8L6onYaDuVy5JQm5ZeL9o51KYHaPAHgNHQnZpb5MckbsTC0IqbOYxyNhq6C0mBqXxwOX24M9xwvhdHuQmleOtEKxrLQoNl34XSB0bat03jsukNdKqlzCCHO7hptIlhA5pfgTYBKXVmRKLim0YQ+qdhyLPV5oa8nuYGzvzL6/cWnF2JiQi12pBYq10uWRuMb5iHAHDpiMBldje+CFhQGrzuATauQ1xd+ggNjjhYgX9HswDHai0qbBQK/9wSw5FEy1SnJuuek9s8jgbEc2z2Cx4UguDmeVaAziZjOu6VHN6MdEe4g18dlYfYifaVGNP0G6VhCttYk5Zah2uS29n+b2thKKKmqQU1KFpJwy7E8rRqFJR3S1vtvOd2D9kVyUC5ysN5vI2BZMRHsqUb9tTy7wOglYnFtrXB7hePNIEMpeALAztRCztx9DcaVTuE6IxpopJAlZFoN/xSWuxRnNg0F6USWSDXReesgyaWQnsQMab4w44MDR3DJhxtNA9Aj+6kfsIrvEniA0I6pdbuw+pl+xg936LtvP1xd4JHscfENJUk4ZThQoHdBEdtsNCTmYvPEoiurBrsjTgwST/enFft2nJEnYd6JIo9s9IpCVThRU6trbthlkr7RKSaUTaYUVOG4iS+qR7NIGaR8nrGMtTyZB1DNyRoQmjLGRVWq1YFKoh8IBa8Ri/RIF7Vo0RaXTu5B6JAmPTN5mOXW+3TwyeRtSR9/plyNW8ybh6PvpKuH3ZjeNHo+ewcihqBMdDPxJL+nySD6Bw4wX8sI9ytScev3WUNBLIS1yROBFictpPScNuUzznPenF+O2sZuQOvpOAMBPKgcof8oPmSHM4dC0Zda2Y0G5FmB/BiqrZTYbawYsURkrltS8CrRtXvcOXzt6HQBx+SE1r/0Wq/u9Xmr51Lxy3DnOuEQt4FVESJJkqlyIzCu1qZfV/Of3WDzZ/wzud5JkT2bFeZzymH5HX0v2ZkcKdgYsjwR8teyw5vNQR5wM+HaDX78z877HpRUjr6xaWM5OrzQmjz4fLhd+d/HIVYj7VJsxMdTcP3ELMourMPbRSwyPdbkl0++23cjvmdPt4T7LYDvUFlc6NXKXqAx286bhuPLLtabPbSb1uMxMP0ugqMvtsoiM+zwnH7dHQlx6Efd4o5IVZlErd+4av1nzvcNRZ+gw4wRqxej4T1wmnr/enFNifSAq0SQTk8pXzF755Vp8ft+F3O9aNA23VI5UD55Dod76uzg23bTR6vlZ5ku5A4BTtc8N5hMtrnTivglbhN8/N5svu/jDbWOVZUHyympw6w/mSxStis/GlE2hC3bKKqkyvX66PRI++yces7Ydw32XdFeUmubxTpBKkqrnlfVH+A5C+04UcT/3SGbzuhkjMtqJSlLoZTkR8dWyw1gcq9/XAHD1qHWmzylal/t9sUbx7+k2l6UJxtStZ+hlyS+vwdPTYjSfu9wefMYpYaI2Jlmho045MX+wIs2Hwkisxwd/7ceoB/r67Ug6bp04uCxYgWehQk/XaFQmN9DrBktumr39GGZvN6eTEs1/bHnQhsYfO09wyyvmllaje3vzGSR5sE5dIt3/cxZlq2Ci95z+O28fguFD2P+rtQoHjkvPaI9JQ/oZ/s5q2U2rPDCRr3d+e15wS7EbIcpYKXJoKq504v1F+y3r4r6IOoTTBOPfLUm47PPVwt9+vcI7jkYsPiA8hxW5WY0E6w6SogzF8h5VHVwRLK77ej0AYPdHg/z6vTynqMd/elGlr6/V2aoBoLTaiZvHaMtb28HmpPp1SgwVRRVOPPizfolXds4X9YtHkvDWvL12Ni3o3DFOWxIzWSCL8kp9horJ9ZBMxGyFBpYlezO4pSy3JYsdqfTK+j7+i7a8YiC8MHu3peM9EmChQjHRQKEMWESjwSPVRWxHhIf5In1Z5SBrgLcz7eTtF3bz63dX9uroU3JKEoTOV/+77VzNZ91M1PYOhEROlhUjenfRz/xkNvW3OgOWEkkYtWcXA/0oc+j2SD4lgZka78l+CAoNGdnn8av7LzL9m79i0xtMloUwR2Dl1GTuvEi/jOGZp3ijZdSZCUJNfZWKCQVl1S605KRxtqtElIgrIjtYdqC1M9J4rmBT4JakgB00nrqqJ3fT4ZYkwzHPbZPN4z/YDlg8moQ7EGYis1RDoNqkc8ExE1E2duDySMgrrf9sj5m1TkVqh2ge6ncolCVrZUSONMF2qOUpEkVcdkYH44P8ZImBM4I/WJmDXW7JLwd9O6modiucI8IcwNzn+uv+xmpk7Pbk/AZbgjAQRKVb+vfqGNTMGHpDbP7utKD1dZXquQdT7jMqCbs5yd7I0ECZttm842co8Uh1wR9Gzldmub7PKZZ/E2h2zxq3x7LcGYiYOviCrr6//V0P7c5qVF9zaCDy/lkCPU6gewinW8Law+Yy1PF45HJt2Y8bz+mMKyLtkzcaizwPAL/HeJ1VgjGlT9xw1P6ThhA9Jwd5nRc5JASCvu4yuHRvV6cTrm8Z1U7sKBnJOl0FK/j63ku6h0QP8U9cpiU5zux4VO8RYo8XGWZMG3hOZzRVOaA01uz6VjnqR/akhXvSLOv8UvLKNQ4k8j7GirNnMLIamrn8ud3amDqX3L4tId4npHKyyt9yvleWlPX1POTglibhDox//FLf50cYBzKeg7jdpYu7mAwsbmgMv11r1zTLhTol2a3gkYyzwctyp7wdaoi2k2DIMsFGVJ49lHRo2cSU7pcgQg05YBGNBnZNjAh3cCPZWKO8nZuwn01EifAID3P4sp/oCcctODWmg73B9keBaWRU523MeM5l3shZcakQMxuJlk3D8dcr1xgeZxcut8c3pvSE9pMVeRw/0f8MfHjHeQCA9pyShCx60YKhFnJ5GbD84erenXS/P71jSwDBTYNvhvquFR9sQl0aDgC6tm1uucSPHZmpjJAkCYH6O7VsGs5tq8cjoa0fa5HdSlCRYT2YuDwSrNprbrvAP2ftQNFTMgw6r87hOFj9KCu0WOzLjxEa1DLR+ae2Ddm15SuL1igj54dAsTKv2b12B9smKj9XI3kF8DoVhCJ7rlEb2Mx74WEOXHuWvoOFuuSVEY4AS31feFro3o1OrZqadjARjU2XRwqqU7zeOxFMWUx9brdkfc0yC++9COUcaZVQiohWspwGw4DJZv82S1iAokCV0209qCWAW//pict8f7vcwctEY4X6MkYHMpcN5+hkgMCDHAKdX285v5vmnXU4HBj1QN+Azqs4n21nsoeenVoaHnOy7eXNyGFG6OkvZd2L0V7n0jPaW76u2xOaPT2ProwDVk0965fsxI5gada5KFhlujq2aooONoxdGZEjLGDtnQ9kn20kK/Y9vb0mA1Bjza5vhot7tPf97X/298D7Z3CtHslKVwdjXjJzL6xcpoecmTDUchtPNr/xnM4A9N9Bucxrk/AwnN21zsmsWUS45hiWQOVqzfnqQddtBy9cf6bfv/VnP8PDzFgbenVk7bHefXx9rO83GSSFYPfeF59uj3NasPHHbmA3fbq2sbQ3bwyEN6IgEkIMlSAkGg2snNMkLIw7qTZjHJnqu1ayjGxI0RNk3ZK3/NPq+GyMe+xStGgaHnTFnj9KHadL/ze8c/LuY9j0ncJzrD+SKyyFwBIe5vBrIfJ4/ItgO5pXjr212dbqIxtLQ0RUNkLG7ZGwKZGfGtblkfD1Mn6N9GCw/kgODtqQWc1ozEXXlkS1I6ovEP4bpLIlDYX62JRKkvGYV3PORyuwZfhN2JyYi7WHcnC5jdHcMnakIRalE/ZIwO8x4nS8IuxWENfHnOvPOlFfm6OMYnEGI7Zk1l3jN+PPF64KRZMaTPZDAMJ1iMWoNGkwOZZfgRMFFdiXVsT9/qU51tJUW8XKWN+Rwi8B5y/BHCcutwf/xHmzzPBKx2mPlzBza/BKE5uFNUrxlLxqjKI81YQ5HAFlcjiQHpoyEoBXgW52XhUZh7Yk5ZnqR3/R209JErBgd2iiMD/860DQzj2JIyNENOBc+Nklwc2IymJlP233fLfneKFfmYcC9UdctCfd+jUDmHTYkWY2UCvYxB4vqpfrDvre/7JCTQSydKClpgJ93yRJQpjDoTSASZKtMnVDM2Zml1Tpfi9JEmb4WZa5odDnw2WKf1vdQ/PQc3iWDf1GpQh5WbSNePU3+8rsWiX2eBEih0ehZdNww7JgzSLCGowO3IgnftmBX5++PKBzjF+XhLJqF64+s1PQynT5qzsWoRfoYSVT44T1/meze+pXbSlZljCHA01UMt7Iv8Xl3hs77FKTmudftvBl+7MCboe8TFmRcYJRAcDMeI8wuT4vic3AukM5uKB7aIM2yqu1+349u1zk8Cj0Pb0d7qjN/N80IkzhXC479qYVVvhKQLLYneEry0BGaKgEkm1UrzycFXalGlesYB21iyudaOGHXBAoRuW/04sqcdf4TZjzbH/sSysOUasCY82h7PpuAtweCQfTG0d/Ef8uyIuAaDSwunOR0pf1TK9xWatbHSxkGUSSxBG5Ho+E9xbEYXV8NmZuSwUQ3DIvgH9RLDGp+oY3nr4jWJmAmoSH+aVMS84r80sJPGJxnWFDnZLZH9Sb2sbEioPmNphJOimcc0qr8GsIS4TY4XwF6EfMsJzMUWINgceu7BHya7o9kuVMIwBwy/cb8b+F+7EqPhtfLdNu2Bsy/o5jux0Q7Zhz/cHq7YeFOTDoPG02qGBTxlEyyaSrysu9+ede269/SmttmvQ4gTMRwef6b9YLncAKbTBa2UVjMggeyS7F2DWJAMwps51uj63ly+1gY4JxQII/NJZSIuFh5g3nonv6Jy4zqBmw9NY7f2SGhkg0Zxw+3E9bNozQRy8q259yIw9M3OqXM1J9OIsHEl3Otrdzm2a0x/KTJoLnzpunzgthhrtLerTXjOOyarciG2SgNDD/K13H6V6ntLJNb1GfsI7Pl/mRdYqH3rsvjyG3ge7xyf49bWlLqDFyvgIaTgCyWZ6duSvgc0zfkooXZgcvUMUtScix0cmlytkwbBR6hIdp7S2NxQHAH1jx5LN/4uuvIQ0EM3tEs3JkTGoB1h7Owbh1SYE2yxLjOdeTnYNEcnNcWrHP4T85txw9OtZlqpQd1d85yYOcTwbM2KrY4N4J65PqJbBDTu6gx4H0EoxZlYAeHRtfOcL6wuWRkG/g3NaYMJMxl2gckAMW0WhQOGCFObiKFNZIK29ApzzlX/nAQNn54SAAdelP3ZKEBy7lK6tZpWRhhXex6NrWvrrP3zykTeEeDCGDJ6xXB8kRLiLM4Vf0dXm129S9P3ddL2wZfhP3O1EEqRWaR1jzsueVeKoviivNGYPLq8XP3kyZH7ORNcHinou7az5r36IJWjfTTx4pSQ0jOvtkZsDZnUNynd+fvwof3OEt2eGv8ciMwrShITsa+qsktLuMV305YFlNlx7uAO67VDtvBBu9ZqqfRWax/RF1zSLCcJ2qTJq/454tmVjf7Pv4Vs1ndpUgfv3mPpZ/c0bHlpj1f1da/t2dtdGcMg1JnggmVrMeqR1pot8diDsuqp+yosHE4WcGrL71kP4+3OEwXVZPL+AjkAxYV0Z21P1ez2mvvkta8vZ/drDm7QG46kz9ktwnM/4qQ/Xeu3GPX+pna6wTeUorrP3vgJBdD/Df6fPqMzvB4XCgY6umALxGk4a0xzq9Q+MxikQIZOkzOirlmoHndMay16/jOtcHCqu/axYRhi3Db0KXts3RRxXg5JEkm0v62KNT+Piu8y0dv+btGzSfGcmRd/U9VbGuPHNtpKVrNkTeE5S/tIreuy/LcEYOmtf2NlfWuDFS37qzkxEzy8253doYH1RLY3CSczgc6N6+8axtANCmuf/FfRqKRBGIaNPLJv0EYM5OFKosuP6uf4XlNejXU5nQINxnlxP/Tr71i3u0Q9vmTXyOZvJP1IGNjQEr85MV2JKBL9/YG/s/1erN6gsj/Q0rD+eX19ga2DH/paux+i2t7GeWtqq5LL9c3wH4/67t5fe1GhMXdG+LSUOMS5+6OUF3bQzsdw2ZFW/4P5aIhgU5YBGNBlkP4XW+csDBUaSwSh15c9PbZMYau+lcG8kqC21Otwexx/npMNkot/jav+2sQ3xh93aKTUlKXjnm7Tph2/lleJH6wSrF1iQ8zK/IyPIal6mNb/uWTXCaYOMZaKp+wHp61lb1kBZVhMvkM9VLq2omTXj7lk1NtykYRHI2sg4H0MXAOfJkiFpt6ISqrnfPTi3RrraW+baj+bZGQDZk5A11Xpl/93s4y753wOEILJ11IJSYKFvGEuZwIMJei1HA6K13Z3S0L6JGrfjz10AqG1kbAu1aNsHlKuXdqe2b23Juf1LxeyQJN/jhfKpWvHVqQH0cTNZZLM3FyiydWjXFGZ1a4vo+5vu7sdi9DmeW+FUKqFk9lIINq93zmUEv25RZuZXHpT3b635frZPJJJilD80QLOeQs7q0Dpkc1hDx986PZJcKv5NlzVAQEeZAZCf7jHVm0HtP9GhVqzTvXOsM5PFIho6Np7QO3RrHGqAaOqJXVp2V+4Lu7eBwOHBON/t1aGxGQ1bX0kG155fLEtqFv/sZNVbL153VRWv4bGPwrrs8kkLHVR9l2O3GLscgPblOnheM9h92Og40NLmPsgPazz4TWUqsBCiwgawNac/LEuZw2JqB0CyRAWT60CtPaoTVgLtgEcg92Pm4zNhvQqXveufWc/z6XUmVE8fyleUkZbvcIZ1Snxm1DlZyZR1ZRolLK4IkSQGX8K4PRPJ+oPuOti3q7Iv9zuiANs2Dt4+x6mBo9JzYjLAeSUJSjnh/ZoV+PTvgisiO6NPVf6e3UzgZkfUye3aycc/jTzbmUDHwnC64zoRejheQd1ojCpZRUx/lMYng0Ph3c8S/Bnke1ds08xQ1dipv/EFe2+PSipGcV849Zum+DN/fmxK9jil2+i2FhzkUGUQGfrfBsmHKDLzSRi2aBsfb+LKeHfwyysdnlGD4wjjD4/T2YXYoW8xmkZJZvDfD+KAQ0a1d4Aboj5cctKElwYXnPS9J+mMDAO4avzlILSJCTUS4A4ezvBuysmoXZm07Vs8tCg37a+umT9+S6tfvtyTl29aW+lAA+sui2PSQGlHNoJdN066UxpIkaQz9k6OP+nkuO1oUOLICQi1ndG9nzwben1GdVuhf1GW4Sm5Wv1KBKHwbMuPWJlo6ni2FIitprcw/rYIk79rN/N1phiXFedSHw02Yw4HY40Wmjv1uVYLwu0CMkkYZa6v1MmDVc0nL4iCWL21ohudQEgyHiECyN1ilvNoV8ud36w/RSNRxQBMht1Nei50eCT+t1y9lE4zMTd7zao0ciTllQbmWWexwjO3SVrmv71q7zw+GDo11jimprHOaVa9JklQ/pTKNaN8ycBnf6LbcHklx7/tPgtJfeqXS7WJKdDIA4/XezmEdylKdRP1gJrDS32ynDdXYnZpXXi/Bb4GsOc4A5PyGksmyewBBXkYVGqyQqnJc4hGqbHv+ygHZJdUax2t5TOfqBNTO3u7V9cpjUb7+x0sOYsOR3KCWtA8WYuf7wORHVmcX7D2MVdnLSA5gM2AVVjjx4M/b/GqX5rw2vBdqvZzTLenej50yTUMONo8Id5iqisFzwg+FDEoQRpADFtFo8Dlg1XrbywsNu8bxFh+eE4WaEXedL0zdOPbRSwAAYx6+2HRbWfzdSPgbiXExJwInzAE0D2GEJvtMBpx9il+ZHowYfvu5fhnmmzcJR7mJ0khy7/MM1Lzsa3bx2sCzbDnPg5fxy136w2f3XqD491uDzrbt3P5ihwJUjzdu7sN9dyWAu/FS95HMb8/3t7tpQWXgOaEp7SfCTIrkf/5zXQha4qVJWBi2CLK1XdO7k6m57YUbzrS7WZa5+dyGU9aNZcFLVxse0xANMHpcdaa4XJXed1YxO8e/fYs4cvCTu/nzllUkAE9fE6n47ERBnbNQhyDP1/5yjk502j2XeEtJquWM9+84T5jx4s1B5ssKhjI4QKsMUv6bIua1yPOOlcf0YD/75C6ZhlROpj7aEh7mCDhzybnd2gSUiepUg6CD+i4zqMfxAmMjir/Ud4BTfaIu2WYHdjh1mZUxskuqQuJQySrKK51ubE+27pwvjzN5/vF4JPy6OcX3/agHLlIcP+i8rngoCHMxAPzPhjJqdpcKsZKRSfTEn7qqp+Lf9196GoDgy9+VOmXOPVLo5hgr5T/79Qxcjje6L7XxaOtR+4Ja6ovsEvvLn6tZfiALgHEGLDv1eDNNlgWXHW1+f/4q264t4rnr7C9HdFOI9AiThvQLyXXsRi+wVq9kUrDWqkCJPVHo1/wbaKmzQKb8QDLdjrznQuF3z3Lep4cDeG5X9uKvIbec3xX/9TPbE+DNXBlK1MFdwcKOyiMyVmxH8mVZMWhpXEaDKoEdKOrsp/7w+b0X4OmrewrHdaCc2dm733rAgm3rvFPbGpY9Z5N6HMvnJ8nwBzsybKqryLRsGq57P3YGK9vpyGk3TcLD0DQiDO8O1p8nee9ofhm/Ms+g8xqmjYQ4OSEHLKLRIM+j8qLmUH3+yOWn+50B69nreuHju8/nRjbeV6uE8tew4m/0iJFwd/6pbbkLxruDtcrBsDBHSFMXsh7lDocDXz/Y19bzx382GKe1b6GrGPz07vO5n5t1bJMPEykcrj6zk+9vOzfPdjkW9bfR0D/06kjFv9vVszG9Z6eWPuVwsHjrlrOFJRB5aU1FaXGv6tUJqaPvxJCrzrC1fcFi0lP1q/gy2ix9evf5uPA0r4Lh9gv1a7vbQUQ4v9wtANzZ91REvX49UkffqXuOhlBzvLNNEZZP9Ld3HF8eaTxPNTQHLKPnLTJqdmzVFBOftO/9GvOIOadwvTXFrnEhSfpO3p/fJ1Zsas4VYFuu6d3J+KBaztIpUS2nnlePv46tmuLQ57dxM529eENv09cOpe+CukyAJgNWQ0k71oBQR76aIRjZ784PQgCDv1jpCzMRisNUTps89C750xPmjObndGsTkGHG6F2tdhkHddQXwZxn/q0OWF6HF/vnzCY2lHP54wW+U/vXDyqdlORn9/TVPXmH20bCl7cHfA65W+T5R60fefxKpVw69enL0SwIQWc/PHqxLWU+PhboJ/zFqnHyurNO8f094OzOSB19J5o3UZ5DdjKvz3fcI0lBlf/lskIAcMt5XQ1lexk7HJGNzhAKA++dF50qzJDLC+as71JpPB3t7o8GcZ+bUYYSO4e12Wx7q98agNTRd+Jqk3sUtWOpFT6663zb5dEfagOSg82N9RwI6C+ivf+jl/fAbReeKvxdQygvys6FMuFhYX4Z9c3K5SICWXP8nTYfufx0XX0ILwjjWz8D8wHxGB/32KUBBcyHuoyinUE5t57fVfidnWKAFXHJlwmbbYDUMIPW1r9zo+73otcqUBnP4QCeujoSI++9MGhBHev+eyNSR9+JljrvRphDeY+ntW9unAGLea52vjqi0pw9OprPsqfew7RsGq57P3bK6iKbcUPI9ik/s1cHnoUrIjtovv/xsUsA8N9RUcDH1KevsK+BJvjhUf/XDqLxU/9WQYIwiSgDlkxEeBhXoWFFGAiGosefU0YOjzJ06vF2By9Dj3bBCXUJJ/X17IxcYM+n59wmeu5mZWa5H3mbC4dDOVbs3DzXR4kXq4RKISu6jCSFZkyLAhh4mRRExkZfyQxXw9usAd7IF/Z+7DAABUJCtn4pD/adD8UwjAgLE16HNwbV/Ql4yz3VN3YpC+pjdjpZjLxuj9TgyinaEfkG8OWO+sKKHGfmcYjkDJ6i00p/hjQDlqpd6lvKE0SF/ZsJ80W+1u8ztVt+DgQr8mmTcAeMks2a6S+999ls5pclAZbwNrrvb1YcCej8wSSY80w9i4v1RkSYQxOdbAehdJbzZREPsYP7CD/Kz1c5vc4UR3O9+4PdxwsNf9MkKPoccUBGfWLFCOpQGank+VU9PkSfhxJJCq7MnF5Ul6XViuxmR9YPo36dsTUVf+w8HvB19MgsrvS9W2p480Kgxv3ADZzaNvHkg5dm7xbel+9M9TGsLV4z0CnM7nsMVTDUybLnlzHaHzfUuy2pdPol4wX6/NIKK40Pshmj+cLujDAiXWugQz/UsVQiRxN/0Jtf7LSNWDmXPJbZMb0oNt22ttiJ0foskl0b0z7OaHg7mGPWHMoxPB/7XO3MFh2XVsT93Io8qw6K+D3mhO7xdi6borLmDSEeWpHkgzOmZQfWQILugk3T8NAlRSEaHo1oyiX+7cj2Y1lJohagmoQ5/Fp82jL1io3SwlvJrCCTXeJf6YwFBkZ7nqD1+s19kJKnTaEZHqavMrzhbP+ijfpyIuQA5QLdu3NrOG1eBGVloz+KObMKpFvP92bXCedIpj07tVSMNTOR/maxLWItiJswXq+f0VFbqjFQ/nMTvxzjSwN6KwSwYDHgHH72M167jJzwSqrEqcnrE7WzkB3GmGDqzthTh8JZMSLcIcz6xFMyOd2SJpIwmCWAzHLfJfZkjLvv0tMwwM/1wgy8vrZSs93u0i5q3rjZfIk5Na8O7I2Wzaxvus4UZNczi16ZPbsU6kbLqloCGXyBONIxUAWiFWOkGUWx6Hy8ZlrqTweCnslRRpMBCw50NyirFih6mdeCZcixUorJiMeu8M5FVpaZYIglDakEoRW785smSlXfbCLtu9472rJpaOLICoPgbBMqzEbT62UDVCOXKzvZDKU87rm4u+aziPAw0/KnlWwerQI08ull2r2+j7Id79WW0mtI84uIdYe9hpTSKq8s+POGo4a/CcYac0VkR8Rnlth+3kDJKDZf2u2szm0UY1fuJ9E8UZ/D49YLuqGVBZk5EFnZyngRvTNWjPRPXnUGXh2onzGVdQro3TmwfQCvbXuOFwnL5952gTbDdGGFsR6DV6pL5pIz2hv+XkT3ds0x8h5tyXTePLziYJbh+exypOzXU5uBQXhNi5cMVMfx+k3+71d5hCqAiPd+9Q9SaatQsD25QPf76/rUf8Yvng43vajSr3U00KBkvbK0wcIo6D1Q2UxN2xb88wX6it1/WWh0CjJ2yo/nBFi60gynd2iB+AzzMlxDcES3i2ev56/NLw/g21rM8sqN/N93a+vVMflrY+RhtA7wqgDpEaznKpKVrFzPqm1xzaFsS8fr8epA/jNtCO+BIliC0xw5ey8v8PzmEJVRNsKOEpVE44UcsIhGgy8DlqoEoUx4mFchamVt2PTeQGx7/2bfv++4SJwiGABmPHMl1v53AGb935WKz5e8ei1iPryZ+xuPIPPI9X1O4X4eCG8N6sMtjxYW5tDdRE17+nKseXsADowcbPpay9+4Hr078xX2YWEO7P34Fmx//+aglGSRlRL+eO2bSQRzSutmvrIvPPmnTfMmCiHEnywirwuci1iHQJbP7tUqnnSxaW0//Plt2lNzzn1XX/13xx9kI4+ax6/soenzFwecafv1eWUFHQCGXt0Tq9+6QfG5kcKhoZVRk2HTaqvraf/vtnMNUxqrueX8rlxnn7X/HYDLAlC++mAGXyg2AhFhDo3hitMUH13aNMOatwegUz2XamDZ8M6NuFKwaZU3yCxr3r6Bc6RXcXFFZEdMffpyXMmUDry4R3vd63927wVY/Oq1hu/AoPO64vN7L8Tqt25A9LsDdY7rglsEqcof7HeaptQOAOz8cJDutVlE9w94S5MCwN6Pb9E9B++9ebJ/TzQJD8OSV69VfM4rq8EySCctu5EBBwA66IzFiLAwzXsv4pIe7bH341u4G1h5Wf3ozvO4v5Ug4eDIwfjk7vPxxwtX4ecn+2Hpa9cJjw0Eo3HGOtGZyoDFHPTBHfrKHauRlc9fL163ePKYvCaafWYyaiWpwwGs/e+NmrFoFx/ecR4evaIH97tP7j4fG965UdcxkCXu01sx/Zkr8JyOYU/m9+evwsKXr+F+N+/FqzFt2OWaz1uoDM+yDCaXn1aPJ7b8NMv6d27UPH87ln2rxoxfhmrv0SxGz8SKHPOcQNnLItpDsOit82EOB35+8jLfv9vUPrsuOqVE5jzbX/gdr6w7UD8GIR7qsWoG9TNTy66Ad82Lev06PHK5uXLqr9fOoXbIYEZjTvRMQsXw27VzfoRBUBPL+SZLNpzbrU3A2e5EJT23Dr8J3VQOt7IjvZ0ZsJ7sfwauOrNONnzxBvv3ZSLUgTF2Zg6875Lu2DL8JnRv3wJVAc4Fe0boy47jHr8UYwSljba9fxP3c7NG0DVvD0C7lk0UY9cX0CY4R30ZCu67pDsuPK0dN9iKJ6PfdkE3LHvjesVn3z18MRablHH8yYrBcnnPDtj+wc3Y9P/s3XecXFX9//H3ndnZXpJN3U3vvffeE0iA0FuASK9SQpcmTYqKWFDsyvcnKopiiyBNmnQQRIMQ6Sg1gUDqZnd+f8zemTN37r1z7+zM7iS8no8HD7JTz9xy7jnnnvP5nOfddzEtHdlT5ywN3o5ra/q/x77gMUbpseJhuEu95ZamzOmoGf10z5q5OmleZt/Erb+Zzf4Te+muM+fq3rPna4XLOJN93J63h/u29Bp3CLq7nelNTb8+aYZ+fvz0YB+k9OPmouXufaU0bVyMcvSs/ml//+7UWXrg3Pl65IKFev6LS/Vto+0URNgx133GNequM+fqrjO9+9ROz1yyxPWa9H8+7bZi4rZft/iEgr395JmuY41S7uf8KfOzjwuYRjTUqtpj7DmXSXe5tFMLZd/xmRPoTS9euYfuO3te1kkiXpNrwy5k+tVJM/T0xYtVVuI14blt19vpA7u4jj+ZaSFrPPa1n+8dOUk3HZ5ZX7Sl/bjAsTihc6X/8X7v2fPS/v7XFcv0w9XB+7sPnDtf96yZpx0hggLY+6MtY/hh7k98ab8xvpOY/fhdLm4/eaYm9nWfLHzYVPexmmuzpMC9Z81c3bNmro7ySGN+/znz9eC5C7L2gZ7waJu46VNfqd6dvdshJ80bGDISfeCXSpLOXDwko0/6lSypSM3tG+Z8iUUjnvcK3fTq5B4I4cJx7ouY/RbCHuoxfudWPa3MUsfmm7mg1G1r2ukTm1vi6tclfZtMH9jFM7pXe/Lrsz3xhUX6xQnT9fD5qb7E4hHe+wq7no4/AoGA7HlFybCtjrrLvuAGjZ5QVxFTn/rKtFUN2QbsSksiGtStOuN1w3rWqHuNeyPcq9FW28aJSfF45oXQawApalm+26UkGtHg7tWhVu+NaKj17ChEI5Y6VZYmB3wLNVHCr2Po9VSQaCr9jQu2WwSsxOPmBKzwVanXe7yOl46ade6+KjazLIUIuOV1PFtW5oTCXAb2cpFI32BpiOOmUTE06HJh3tx1DprEopbnwJCXMb3qXLeFW72ZC3O3t8cZYVmW5wC12zlZFouoojSq/m2MWpRP/btWeTb23U6xugr3QRB7hWQsGtFAYzW2X2dYko6a0V/j+3TSJI/Ov1mWaCRxbvml+OjXpcpzACliWRrqckO3m88Neae+9dn3XbbIK51cru/2edG/S/rnZwvh3uwza7it4d+jESvwYGmvzhXqVFmqoT6rFP0GqarKSnT0rAGaPrCLIhFLYzwiaLb1YpJtoMyMzBTkumqe/2kDhG0spyX/srq1x+wIamEnfTu/x1JikMJ5LObLgK5VnikW7LZ30Bu7teUxLRjWPdDq2JKopUn9OruukqwuK1FteeZ56YzQuqk1yopb6gH7O9xUlkYz6tN8rJoOuwqyoQ2RzbJFQQrTDg1yQzvIoHb28zl1TtoRcvwGt7wmI0tSmUddmC09SXvJJbKAs/3ibLtK0uDuNSorifpO1jXZ9U8+5u74tR8Gdq0qWB0VlNuxVBKx1BxwsCHoOROmjeLFqz3gVickbyzlsW8Zi0Y0Y2BqcVmdTxTEQsvnopfailigySdBZLup3rWq1DN6ZLnHTdug11L7ODDrhGzbqaPGHvz6UIO7Z9ZhA7tVZYxXVMSiBYnO7VYn1FbEVF1Woj4Bv68kasmyrMCLdfz6AUF4je+FiTgbdMHC4O416lOfeb7kEnVqQJcqDetZk7yp5mTXX179mAFdPRaKBq2XfRbITO5fn3FN9vtY86kg13KvsYegnG2wqrKo+nWpUq9OFaotj2VddOwUti4oiVga1rMmVGQbr/qxrVGV2ovb2ERzi3f70e08seUa9c452TqbAV0rPdtyXhMGula3vb3SHob19J/8UR6LamCQhSAe2yFsOtr6qlJ1qS7zvGbn43rrNm5r9iOzTXRys3RUT03IxyJag7NOz9Zkc46rVZaWaFGIiQn9uiTaCGGahqkIWMHf4xR0sZkkDetZrVGNwRZtOPllePEby/fqq3fJco4P7l6jwd1rPN9fURpVX0fGGKfenSvUPeT9m/E+i34ty9LwLOe8KWw/oTyWuIaasl2bzO2z1WcyrlPEstQ7RPvVa6iop8dH+AXI8Lv/5tStna8FZt3pVky7n/Th5h16/cP0DCQt8Xi7RNrLxu+4615b3jpRLFU/7gqRqhHcrtGaBSS9u9V5AynYTRGviRFugxlBB7GcN7/sBrM9kGzm7fWqZNtalQYd5JESq5b8Onm5auzk3mj6yBF6M5fVFkH45gv3ePyGu19K+9ttpbzZAfK66JkPv/zep96F9HC3R6hQrwbRay6pJf0UIvKYza3BE48rbVJGoTlvGrR1cDIorzQN2SZCNDoG73OJmlYI5nZ0bsOgg3/mrrAkPf5qerh1ewC8d+e2D4Sb9X57tUe9riFu54F9HBTH3k3xGjxyrg6RvG/4m8fHL55M5aIP3DHI8jLzab+PjMe9B/IjLpMzwwry9my/2W1Qzl7Jbzk2b7by+g10ds3DTdsuWSJw2ezf7HbNtKsKr4E9t4kvXrrVtu03vZMlHY/l+He2CSt2+iMpfV+19eZIc0s8dMo8u77evD1cFI63Nm5N+9seRHEei/lSU16if/73Y9fn7Hoz7EDzB59mTwNn34RzXoOkRPve7ca2W5jyRPns/zv6GmEmyeehWRI2AklbBvDf3eR/7vz73U9y/mw3QSaX+a0YrSyNukbM81vh7DdY6rWava1Rb/IlaF1tCtMXcIug7MbeJ/lIA93g0Y+UpN71ldqSZdsXut8RiVgZN4WjUStwezZw86h1W3YOMGnJa7N71RVu+8m+lvXI4+KV7rVlab/3xf/lt77w45zIks8+1v899nry32297mdTWxHzrKNiHo9nu8lss68ND738QfKxbG3ZfE08swWNGPKwUUY3zkP6kf986PqaQvTF3NrsYfsd9nYPujCpVxv6z36LLIb2dJ984HYz162/6GRfG5w3viR57gy/befWlkv/vtb/e1SKpSVtG4PNdhPaaYDPhGFziwaZ7JzvYa22Tu4IO1m3WCO/F0o8Hnf9zX6pO/3GDnNtX3WpCnfMvvL+5owxSpvXPve7bpREIm1OpZcvXpOZQ3+ORzs67AIBu89jLxZxKtQpY577b2xwqZsDyPf53FiXfsxlO97buuDQ5rWw3v21iTI995b7eEYQYSa8WZb7OEUQXlHVpOzjCG7f+en27CmHg2ivyZp2RG2ve5NuwtaxnStj2uwI5BDLcl70MAJ0vP3RVp9Xpgub7jzs+VkTYlzW5vYN3ds4ZtuWMrjdC/Ab42mOx/MybtFWYRcftvc2RmExAQu7DLseev/T7a7PezWovDoVbpGQvFbsOzlDotuV/U+PmaoVYxr0m5NTIc89J2BZVtbQuH6+tN9o1wuhW389alm6ej/3UKJDe2Rf+eHl6FkDAr0uzGSxMJw3Zr52iBEGNMAFdvGIHrr1+GkZYc3Nt3qlnzEv4H9b/4Eu3HO4Tpw7MCPk997j3Pfx8y6N+Ql9O2lSv86urw/bEFuSh3CVl+/jnvbQbRAnrrh+tHpKm78zKOcEB7Mze9Ck3loxtsEzfG6Y8858ba9OFWk3XcyQoNkaU86Q4HYqM6fpA+v1lYPGeYbNP9vjfZK0YmxD1vzotvP2GKaDJ/fWNCOdkjPNjj34Z4autn390PHJf//fManQ8JGIpVcdkwV/cnTiuLjIIz1ZGGkRsAKc43Z6t/0nZqZFlKQVYxqy3hDwutHmPgGrfRr2P/BIMzV7cFedv4d/mjTbirENuuHg8WmPje5Vq7rKmGvKU6/7TkE7fdlelVbv+uzbuOL6eKv7wEA00vZBIq9BanMintekAHulm/M4GGtEe3L+Nq+BkWNnD9CaJUN1zOz+Gc/ZK8D2n+B+XIex19hg9aG9XQ+anBma2r5Z45WKNkzK5aNm9NfswbmnaP7X/zZ5pvKVpKjZfrOkP34+MxWiW6h9Kdix9YsTgqUk2bKjOXTbyP7+oBOORzTU6tcnzdCzb25Me9w+BN1+zYoxDaEjH5pWz+inqQPq9fB69xuo9vkVdgxkvTHRfWRDrZaP6ZnxGr+VzNFIIjJD0HQAqYlizs9x7yeURDIjzebj/pnfTbPTFmSGp49EpJ8dl56uxW8BhnnOvviO/4QJ15uqAXhNKgkSISdipS9qMY1qrHU9F8b17qT9J/bSARODpdSzHTvb/dgo1AT/5WN66u6z5ibTXWYTtM9l2nN0g1ZNS6RRypYea6fLxLUbDs5Mr2D3ld2qw/0m9NKfTp+trtVlGtOrLpl+aEr/9L7N1AH12mdco85dOlzfPCyzjSlJ5+8xTO+5TArca2xDou82pkE/Wj1FV6wcpdUz+uV9soiUuF7/8oTpaRFkYpGILtt7pOv17oI9h6dNCgs62Gu/6pcnztBSn7TDkjzT94aJMmvvO78UWya/9JSlJRHtN6GXjpk1IK1t9DeXSTHZfCdkWizbYdP6av+JvZLHUpibbL86aYbv82a97ja30+7jZOOVimXFmMQ5euzsARrVWOua5vbcZcM8oxgFTcPjdihmS4ly2sLBeUsx0lBXrq8fNsEzgsHpRnrop17f6Poam7Pd9tybH2W8JmKFb2eYZfBiWVbGPs/W93OmB7XrBbP9P8QnAuWle43MWi4vbimpbD87Nnt7tUtVqVaMbciaakdK9QWefC1z4pRlJVL4OPlFYvJqR9rs/pTX5vea5B30uDjUIz2T069OmqEVYxt03YFjA71+RZboU787dVbO6djNtJtrjDGjMH3j7xw+PuOxSMRKS/Warf9pft8ZLudV1xwmlAfVP8BkQUme6bNy5beNnW0gyT8iolt7LIg9RvfUFStHBY6G++I7n+jMxZlji3eeOcfz+uA3ocOZ5tbmNaYclHN887K9s9eJfhFvzXFM27nLMlOZnrV4qMZ5XLOu3tc/TZuT3ef36kt5tRe9vj+ooM2hLywf7hmxyavO/NVJMzLSCWZz2oLBOtMxnh2xLN12YmZbzP7efEVU9ZpM5yYfczXmDe3mWx+Z9xkilqX5Q3NLu96nvlKnzB/kmo4322KnrxyYeW33S50axkGTe3tG9QqynuFWx3iG12/5fuu4+Iku6Y/z4cBJvbX/xN4Zk6jc0mTPN86H4+cO0H4TeunmIyZ5frZXGzvM4Rd27Ntr8dL1Pm0Yt684cJJ3G+lkj3S4R07P/bprLoJxnp/nLB2qqjLviYgtLXHPtqJXGuu28LofE41Yrm3AGqOPZ+7PVdPy205Bx2ICFnYZO1v7IbMGJW7MOStdtxnIfpGX3G4wBV1pbg60TO2fatwP6latm1ZN1EijoeF388QtFYTTEo+B2DAhO6MRy3OVq1/5vrTfGL127YqMvNu2Qud5v2zvkb4hb80b2d9ZNVH7TQh3s2X24C4a3L0m42aruU2cDZqDp/RufU3qMcuydOK8Qbpw+Qhdtnd6B3NkQ23GwJub165dod+eMsuz8xU2fVtb8rLb5VntUW7XiX9x/5QBftwmAWZbaemcLGmek33qK3XT4RN16NS+roMbfqtEnHoZ6VGcjbPZg1OD5Nm2tzMVkVfagWv2H6sDJ/XWlz0GOj/vMzh80+ETNSFLmjfbKfMH6/oDx8m8Rexc2W3/6ZygsXxMT43t3Sn5t1+482kD6pM3xZ374rVrVyT/82NOXkmLthXgEH/q4iV67doVuv4A9w7FTasmas6QcAMHNre6M98rxLzyfg/sVuXaYfvGYRN0wCT3QdFbj091Ykf3qtVNh09UY6cKnWUMvJ29NHGMuw3AeKXcCboqNsxAht9Ny3hcGu4RQtiyrDavkvM6l4OUf0hrXeY8Nn5v3DB1HiNex8z5ewzX6YuGuNZX9oSEtqQ4++flyzy/38w9b7Pr2OqyEs8b+W4DEVK4VWYVsajrpE/7u01ug6XRiKVDPW4q33bijLQRn4hlqUt1WUYd5JyUbTOPLa9xo+mOm6crxze6DhjZN1fCnBf2ceUVtclp7emzNbl/5gC0vWrMeZx2qozpplUTNdC4ls8dmr1+NNs4l68cLcuysqabCbsKrcyYhPOVg8bp26sm6ccBb3xLqeP3wj1HBLqhbB8mmeer++sjEUstBZio47eZZrlMVIxaVsbjR03v7/kZ5qQVM2rMEdODTcwI4lRjoljYScpeKdSPnT1AlmVlpJCUpMqyEt1w8PiMyXZeE0GvWDlKr127wnPgLpeoN16TUU3fXjVJQ3rU6EefC3YcV/sMLHqJRhILcF67dkXWCZ9NjuO3riKW1p+1pVIQZu7Lrx0yXqMa6/TUxYv1h8/P1rCeNXrt2hX61Ukz0163YFh3feOwCaqrjHlez+urSjO+Y+7QbvrW4RM1c1BX3bRqovp3rdJRM/rr8pWjfX9briJWIi3yd45I9ROjEUtdq8v0LZeJuifNG5QWFSFo1BH7tBjao0bf85hgL0lfPnCsRvdyT98b5tyy69+gqZ3cJl7b9hrboK8dMr41vYvZfw5cnKQ9xzToC8uDLSIwlZVEdcPB45OLnsJEDpzico304hYZyCt1a42jvbJ4hPuNtZtWTdTV+43RJXuNTLRhHRtueM+aZB16+LT0enlEQ63nxCwn1wlYWY7PmvKYvn6oe3ssG+fh+MPVUzSlf70WDHPfDpM9FqBNH5i5f0Y11umZS5b4fr9fO8TrpuiIgOlJ5g/rriv3TdU52fp+btdq5/uOn+s9OTxMitIexmr5Ry5YmOyjuy1E8rqpbbbPxvXppJsOn6iGuuwTXO3Jym7HlSXpzMVDM9rbYdMsm5Ipojy2v9fYWdD2Z1lJVN/wmCBsmtK/XjcdPlE9A47NRiOW5/hHeSyicX065RQBq6asJG2C4+hewcajneYMzpwEKqWPSYzyuA7ZzGPbbXHp6hn9A5dHksZ5pa134XXj16kti00kpe2/bPsrbApOt/SZQS7x0Yilo2b0163HB1sMJLlHSh3YtdqzXsvW1nA7v7zGlIN+7i9PnKEnL1qc/DtIaje3z7ts75F67doVWjk+sz48dcHgtOv5yIZaneEyadSWa2SSsJMr3SZlhxGkvhvTq04nzB2kq/dzb0t7jfVN6V+vb6/ynlzi5hyXCeVxxTV1QL32c0zsbOs56hRmy+cjRXckYunmI923z+R+ndMimEasxOu9+kSS/+SV8/YYrlPmZy7MynaN9QpWkQ+15THPRTbZFjd1rynTTEfbqZdH2nr7HpSz3Z3NoVOyT7KORS195aBxikUjadfR2YO7uvY1pg1Ina+VpSX62iHjtcfozEWDtv09FosFbdtL4SLE1ZaXuB4T/75qDx3s0derKS9xbUN4LZCTpONmD3C9j33lvqNDLcw1mYtrnMU5beEQ3+3QEvduBzkXhnz/qMmeCx+CpDZfMKybZgxyr7dLIhHXPoH5mHnt8tvG2PWwN7HLaGodY7cHC53Vp9uNP7/OpttTQW+exxwRFHJheZTByS/1hXsquMzGTK6TcbJ1EAodxXHLjmbffZhLCsIg79+4JZXqxtl5a9qZ2CbbmlI3ffy+68NPt2v7zravIgg7AauQgh53Qb29MTMka7aPcx7T5t/mM267OE9RjNNk66Q5n/U6ru3jLddTK+zNzR07Uxvauc29bjrG4+m/1/xK53EQ9OaOH3Nbbd9pnnfBf6tfPZLPlCLtdZ62xKUPXVJytcTjnr81krbPUv82O4/2xEa3utFrOwWNDhJuf3k/F4/HPW+uRS0rp5t+QQTZt/Z29Q/Pb/n+bSt0+ga/z3c7hvx2cz6z8kQty7PecBbZbduVRCKev835eNgtbB4CgVO0yv2aaW/PMAN89jc2twRbGW0PunrtO+d+dqaPlrKHV5fc94NXGrhkBKysn5qu3JiImEubyuwjOLe520CUvc2C3rQqiVh5TxmTjVuaLbeBdr9j1XzGPD/yMfCc/A7jS8KmwXGLViylrltmGyb5XOvvcKYP9vpue+KcVx2fSxuhrel+3BQ4+1lGxIVoxHI9t5M3vdvwG9PajR6viVpWRt35P58UDoXok9r9BfPcyJZ23ixG0PZI0AkBftvcawJ0Pvgde+YxYu7XXOuQMNGrvBQqGq1be9fr5pYzUnOup69Z/zTtTD9HLRXX+IApI31v6/bwKm7YdLth+91p741YrhPZw2xL8xjLdrx5Pf3eJiOqfwHqd3Mb5Xo+Bp3wL0lNrWls3b7Lq45ry7lqf+amrV7thLafG/lsCwVhN+/bMq5mM29G5qNPmdZezPJxXuMMyedDlidM+zof15CwWuJx3+tk2Ek3ZS43XcPsw1wjaNlKSyKex35bF/nmQ5AyuLWXstUJZrTlbNeknNvAIU/ttlZjQUqZjIzt8Zv8jr181C1eC5jy3ZcKU6/mKwqU13nk7GMF+a1h20lS9nOl0OONXnX3zixjWW7bI9s2CvtbnNk/spUjPQCDe/aksOerVxsoTNsrzHkSibiPs/p+Rlx67cPNGQ/7TXjyGkOQck+xm7b9XWo2v/2fuEfi9bnpT/jtwyDX8ohleY4dRSOZYxt+5SnEeBI6TnH22AEX9hh7cgKWoy5yuxFhV8JuYd9PdFlp5hxE84pcZDZ+cm2zWJayphmQpIde9g+/7TTfZWWh3+DBcXO8V9xla6MW+npwx7NvJ1P62fvSDMNrXpDsotqzxYOkMPK6+JtpWJwXPTu6xQMvve/5ueZ+/cnfXtPPn3gza1myOcgn/UN7c2vwtGWcaLNPB8cZdtkO4Z2ZFih4A8+Zd97puNkDkv/ec3QqioFbJBFbtnrAWT6vxpQ9wcjvhp9bVC+7rgo7KHLgpNRxZXdK7VXI5qoFM9JMSzyedmPB/C3OvkLQsKl+dYm5Gu3S3/0z+e/n3/oo0Gdn+/wjPFYTZVt15XZsfdCaIjdIqqBgK1vcj4OWeNw1NUNteSzQBCyz7OaxaV/b3H6beT00O1S/efbtQCsRvbazverk0Cmplf1uv2FQa7jkfcY3et4kiVhWwQZe1/ik/7TZK7PCDFQ5IybZ/E7lI30i2gRllmOWx2pn0++f+2/y387V+LmmynATiXjf0HRGpnLbzp9u3+nZ5imJWGkl3TdkCscNm91TX9qf7eXspZnHjj3YGKbOvvOF/0mSVjiiEmZLPetMu/vYK4nUUF71ormN3vvEPe23yXmj2Y/9nc50zVm/wzgkclkRa+4f53Gzxm3/xN0jlB06pa9rlINoxMpY6bcgYGo5SaoqDRfdaOHw7q7Hv9tjfuUwt+UgI4WjvSLTXKXolTrKyU79Z0f6XDC8WzJa8JdaU0PbEYrN9pabF9/5xLV2sfenW5RcM1qfyate/v5Dr0pKv/nevaZMESsRfSbgfMc0YSKWSInoc9kEja5h8zpPzGPN3P7Owd7PLxzsej212wdtudSai1i8UgdalpWxz7wm5EnBo15I8kyJ4ZSaVJ3bjw2bgjBreXyK4TYOYtpnXPbIf25jI5L/TSvzsDH3zwebMxcJ+Dmmtd3svJaevjBzRX82YfeXWzRNN27ntdcNXWcZcu0nm+M0v3r6rbTnLCvE4kGXbRI0jfW8AJEwna5zRB7OFq3Ia595bbdsu3h8n06eUQ0Pn9rXdTJdmJubZjsz2019r33kvPnnllrZZvezlo3yHzs0x2jMr/XqGzqjqknp9WPQCf+SkmnPTnCpR7y2rF8bOEh0Ckm67s4XXR//ZJt3m70Q/K775QEXpNltT3syW1uYx7PbMXhQ6xiQGXWmvizu2cc2rwPRLMf8uv9tSv57RM/M623YG+VmP3NqlqiFQT/abIe0lVc9Zbebg0SAMtnt6GE9apL75/SF2VOk2vIR1carjvXq79rtcbc+rx97fMetL2YyI3W5Re1y6lqdeT6GmVCZ7RjN9R6QX9pVN0tHel8Xgvjfx6lU3uP7dHLtN9nHr9dv8mvLeh0PfeqDH4P25dgcl5akE3zuU0nhF/q63SfzcrujvZUrr6hN0YjlGiXHL4JyWyZjrHakXLXbG267b9agrnmcmOVeOdoZNk7x6LudsiDz8WxlCjqJvrK1H3znC+9kfa3X+FHEslzryDCThU+eP8j1Ny0d2SPwAmcpMTYeNK1vxLI8o5TanOdVXNIHLgu//fqdbn34VBkyHwsS6c8s9odGH9O+R+E3FtvSEvesx5zbw7IszfNIrXrpXtnT6R40ubfn/otGLP3p+f9lPG62ccztH3Y8CcWNCVjYZexsSVSMZckIWM6Zqm6zpBP//9Pps/VdI/zn/hN7uYZYdA4CeIUeNG8O5to4sSQN7h4s1HkYg7tX66HzFqTdeLDLeLojfdntJ8/UAS4hyW3ZLvuFnpH7ybad2mtso+5ZM08vXrmH7jt7nm47MRVS2W3bP/aFRXrovAXq37VKz39xqX7sk9rDLL8z5G3qNel/982SGk9SWrhyr9nrfuFgn7t0qX56zNTk3w115Z5hLDuCXzSPfLvtxOm67+x5+uUJ0/Xz46frZ8cl9n/GTHXPBlXmY9VGatK/nDVXvzxhuh7/wqLE8XL0FF20YkTy+dG96vSn02frnjXzMm4SWR4TWtxYlqUHzp2fKpfH7rc/xi2qg+2h8xboYqOM84d1S9ZVYVeSmseVvQ9/esxU/fWc+RpqTKpxdo68Vuw4B6CcIXdfuHyZrt1/jJ51pI5wmxT3+9Nm6bELF6mzx43JbY4oKJfvM0qPf2GRvuqSvtFv/4zr00m3nzxT3ztyku5ZM0/Pf3Gpvn/UZP3p9FTaOHN7Jz/T5bPsyWJeKcxMT1y0SA+eu8D3NV4Dem4T9OoqYr4DEeYmMPtLbqu43epWM1y7M695kBQNi0e6D3r8svUcNycJuF1b/nT6HP31nPma1K/es8MXiQQ/B3536iw98YVF+u0pqdRIl+/j3qm6bO+RnhOyzRSq9nXX73gzn/v6oeM9Qxl7fca9Z88LdHxlY9aZP/5c6npTX1Xqeu3fYUReKI9F9ddz5if/zvXGolsKmGgkMwVPn/oKPXDufI0zUp9GLPd9PaBrlecAovO49koL48U878zf/PD5C/Tspe7pcCKWpePnDNTdZ811/awwVba9GtM5EearB4/TPWvmeqbkcab/sCNIebXhzJsswwKk5HG7sevF/k639A9+zMXcnSqDDTKZoh4DaJL7TWh70zhfu2B4d913zjzXz3emaxvqkZpKktaePift7+e/uCyZFjSI7x45yXWg0Xk87TGqZ9q13Gls7zo9duEi/f3SJWmTgMb16aT7zp6n7x2ZSofmNYhsumfNXF1/YOLG+4PnLdBD5y3Q4O41+vHRU3TPmnk6cFJvPXTeAj124SJJ0heWj8g4NzK41C92H7BHbXlGe9quP5wpWr3OtY9ao96a+7qhrlx/PWeBfnXSjIzr7dQB9Xru0qX65QmZKV7+79ipeuKiRcnBXS/PXbo07e+zA0zwLc/ymWtPn6OfHTdNz126VA+cO19/PmOO6+vMdBgX7Jm6lps/8541c/W5mf19r6dt6QN2rUmdw1VlJXrg3Pn65QnTM26sZgyK+nzm4VP76p41c3WYRwpak9eN/amOyazRZJvI/XO6uwyMmkUOuo382gxfMdq0fp+X7cZDkAlYx84eoPvOnqd/X7WHSxnd32NGLthqLKjJlpL11yfNSPvbbmc769yzWs8Nt8Unf/z87IzHpPBRAsw0qX7KY5nnoN93PX1xKmVSrhPVD5qUnwVYbhNdnOldJLnexDnGmKj59UPH+37P6QsH689nzNEBjnLbbU6vOsVrO3pGyHP5nPVX76nrDxyrh89foO615a4To245ZqoWj+zhOj5jXksOnNQ7YxGY1/ebv6mLy3Fqfu7vTp3l+ZlX7TvG87nfnTZLfz1nftaUmWn1j9lX96gerlo5Oq2/e9neI9MmLoS5CWhfcxe7LDD1qj/8rjHORVzfXpWZ9tXP2BBp67yEucyVx6J68qLFGRPpzt9jeOBoXHZ7o7HOf8L1xStG6OYjJuo/X1ru+ZpYlvHqaw8Yq3vWzNUNB6euMfMaWhSJWHr64sW69fhpeuSChfq7S/8m20SWZqNB0dnlnAg7fG7OA/x/x03TvWdntsNtzqJ5pVLvWZe/G5st8Xja99555hx947AJyTGGvcY2ek5wfv6LSzMem9Svs/56znz97rRZ+spBiT7eamPhirMe/snRU9JS9Dnbv2E8d1miPN6LmdyP5V+dmLimnzxvUFq7fqHLIpA9RqXOkav3G6N71szVyfPcJ2LY4ySlJRE9edFiPXXxYt/xrj+clhi3rXBpM4c5n7Md427tMa9Umf2M8Q63eunxLyxK/ts8tpeP6el7HXLj7EvubInrxSv30PeOnKTfnjJTPz9+um4/eabrog5nW9ROH+d3vrq1Lcb36aRzlgab2C6l6j3nuIy5AH3dFXvoJ0dP0YtXptqnX3EZ8/UzuHu1JrpMQHPzic+CDyn7Yn+73qwsLXHt50Yjlvp0zhwHm2iM2Tj3kdv1uLY8/Vz/1xXL9MW9R+qeNfPS+pqX7T0qLSjFN1rTS7vtv/5dq3TR8syx71x4jRHOb53gcu6yYbr7rLka4QiY4ZZu0e04PG+P1HHmd1/2ugPG6IXLl+nh8xfoida6cvvOzEm4zgUHae0oRzSsbi6TPIOOid5x6iydt2yYa5m/e+SkUBGwxvWu06MXLtKPj56ScTw4RSyv++apx56+eLEePj91j8JrEY5f3zUa8ZuAlfn4rcdP00Pn+d8XMe//j2hIjW3Z98H8FoS2xL3rdGfzLGJZaYsSTUtG9tBD5y1wnchqmzW4q5p8olBu2eFft0Rb22BPXLTItd+JXVfuLTOgnW1rHdPzioDl1rG1LwqWZWmZ0dAf3rMm64SJ8ljEe5WeUbmHzenuLFtbeH13n/pKDe5erb+/+VHrdyUed16QnTflMmRpQRR6ApZ90bYnNQx0XAjN3WMXtbqsJHkTvLY85rvy3xlG1PU1OUywy5ZrO/G5kjwCP9VVxjIaf85UKsnPsQo3+cmL2+SPfEZAMZWVRDWwW3XGvnfuL6/95HaOmMet88bkApeVMaMasw/gBQlp3K9LKhpBtihFfo22qrKStEkbw3rUJH9/W1ar2Pu1qqwkY+AmbbKZ0ldOmD8lW6qe6rISHRrg5pgkjW2dbOG1rZz71l5dmMuqP2dd6IxkEnRST5g6sbK0RH275NYMc1uQnG2FhNdK6PQIWK0pCEOGeM4WecHvM+1zPK2sLtVdeSyq/q0RPbwG/yKWpXjAXVBfVaruteXqbgxueEXiGN6z1vOaPbBrtV5699Pk94fRo7ZcG0JGifDqEIZl1pnmQGZdRSxQfdbfiK6Sa+2fbQDA1rW6TP26VOnxVzakvddtBbZleV8PohGrTdEazfKag2C9XQbQUgVK1J9DHNca++1h2pBeh1csGlHvzpWe1w23lV2Jx90/z9xEQc7tMDe7c71CtTVVbNqkYccP97sxZm47O2pTZWlmvR02TY05cVNKHFtuN0y8jo9YNOKe1sVRjt5ZJk1FI5Z6tt7oc36Xs14OwlxYYrYlqspKkm35Pkb7JRLJPDecml32vfkze3eu0CsfpELj28esV7vZya3O2b6zJbngwvn9/eorVVcZ07SBXbR4RHfds+695HO15TF1ryl3vV5MH1ivx1rrsDrHxPJ89AnNCYDOzze5XfOl9DrN3o9+53Y++4D9ulSpX5cqjetTpydeS2yjeNx7taoby7I0uHuNJvbtpJ8/8UbG83UVMX28NRERxesa4Zw8kZqI6ZFmzvVz0gfog/B7ndnezyUKQRgtcffzPq5EHbfT5Vw0zw9zYUS2mweZ/YzE/52/w/7Nbn1rr4mOhUpB6NY28p6AHFcX4+aM2+YIUkz/Cf3Z3x+W26XWvP7WlqfqFsvKfP2QHjUZN9Ls10re9YbndvSKgGVlnmcl0YjrAkuTfR1yj4CVKoO9QOC51rG0zNe696PcbpbEjGtRZ48J5HHFfScV2H2gbP18c3+Y7RLPlf8RS8ONCEXOPnSYCVh+vD7G7/c4rz9Bot6YOuLGVbeaMvXvkh59MmhkCin4mJ5lWdpjtP9inGxppaMRy3MxcJfqMs2sdkY7Nt/rX75cJq/4Mb+7tCTi2xd2fnbPWvfxkVwiW/bvUqnXPtyS8bizjzK8Z23aeSWlR3Q3mXVq2ncZ/ezB3WvSIkw665EwkX38dKspS55nXvvI65y1609nn9f58j71FRrTu053/jMRfSYW9T4OpfRta491fbLN+wb2GJ+Jl2GOuqwRsFyeH9u7k5576+PM1/rUxRWxqHoYY1Hm8eA1LuUno22lRF24tPVeWHksqkn9Oqt7bZne2bQt7bXOn2RHkQzbRxnUrTrU+eVV75nfW1EazTjOg/bzTP27VumZNz4K/T6n7h71is1cLNbDZUJtNGLJMorvtol7da5I20duYyHOMYzK0hJ9ziUTQyRiaVD3av2rNTphtjHfto67pD7H/XH74+36wnlNCXrMpS0k9umzDupWnXaf0IvzvDf/di6wKSvJbGMEvSdmL6Z0q2csy8q6iMX5+ljU0oJh3VVTHtMmn/oxEQHL7TNS/64pj6nGqIdyORK8JnpJ7vWwZVlp40Pdasr0viMKf7b7tb4RsOJxnwAI6e/L1jfrU1+pKpexwNT7Lc+2czwed60bnadbF5fJfdj1EQELu4z/tvZ17BsEznrxvx9tzXiPV4Oivip7heY34GBWmtnaBrUV7pVzYYYGU8yw6/Z2CJJKxlTX2nD0GsAo0PhmUrYbR+bFMpcJQGZnyG0GuxRsPzlXppgdsr71lcmbdibn4Ew2XpO6OmJwye0mr1uY57bolyXSmHMltDm4ld44zv7eXJkr+sJO1PMaRLQ7ktn268vvfZr8t1c6ubCChjiNK+7ZwA0ycSM046vM7fbGhswBMCloar9wutW4rRLLfJ0ZIaQhy+rVILy2ZnnMZeJJ6/+9Op/mcWLWfWbH3d6v2cZM0kMwB6uHwhyb2QZtvCaF+OWbD1Ie7/s/3se1GRXRbeW7n8rSaEE7WNlWULtpifvfBHKTewSszOug24CvfWNuu3Fzt099pWsbrzQa8dymQUOTezGPGb+by14DpgONwXSvFHdBxdIWAqT/38n5HfafXoPrFcb5HOQmSQ+XVbRe15MnX9uY9fNs5rXa7fNqQtT1Zj3nPF7d6oLy1kE184aH34C/WxvA77QIOrDY0+ccdhv4c5YjW/1iDiBlSxdhfnKh2/8mt/5YWpvYURb7eHRuY3OilKmPSxRCMxW58/hOH4xN/46ymB2lOVOvTt7t2iBVqN9gXxhebaQeLjcT/K7bzutlmOtNpwr3a2VPIxpqSTSScZwF2U5eEfLM9mN9wCh6dv23xWMlfLa+StCbzM5JD3afpmt1qXwO9TTZ6hS3vqiTZxso7n0zxrzebTdSOtlphbw42412+b2OuSE9Mm9ee/3mXFNGujH7t26RXDwjN8X9/5baPokxl0WA2SZVux3TZp1h9r0GhBjLSKXzzH5T37wWNXmkwDO3nV90RufxZPezd7qMZaS1qyz/rWt+/2sfbnZ9jR0hz2x7eh2adRWxQBPesx0zH3yaGuszX/vXF92vf4nXeX++WTc5+zhhJjp6vdJv7MH5+WH7Gl6T3QrtH2+nT8DI5TyvzTLZzC06+ABHnZs2STHgvqryuUyY2z/bts32fWEndIQZX3KOsZltOLM+r68qTbYlg6Y27+dR5wW5V97W49HcYkEmnuTSTjev2177sH/INPDOPnHf+krfdrSTW6Rwv4WqfkJFwMphA8YVd41AE+aTzK99a+PWjMfC2tbkvuLbdRKE49FkMIOQ39m9tsx18YyXJ179MOQ3JLzz8bbsL3IIE7XbT5i08G7b76GXP0h73G7qmO0tZ3vMbbw1aN0luU9G9TrOw0549lLhMUacOVEw+1HmNqaRNqbts287uVwz/TIoJV9jfP5d/3w3+W/LslzHS2s8JtR68brHFyYClsleVF5f5V6OiGW5ti/86uGw9y2lxP781383pT2WzGQVoCJ2SyFtvs/t/POrs+urSrMGQPD6201jJ+/zP2JZnguE4nIf22vneBroIEzAwi6jc2ufJRmyz1ExvuDo7EqZF9AbDh6ngyb11r7js4fhb2r2rgbNAZJsbcts4Und0mUFZbYxbjo8PSy32dm0bzy98r77AJGXFa05yp0dJ7sh1ZYV29cfOFaHTumjm4/wDid+YYjQp34T5sz0kyaz+GaI2/TXZP+N5y7LDLG7oDWs6u0nz9R5Ls9fsXJ01s8NUg5nw2/F2AbdfvJM19fazMbJzBxSGzr7vAO6VukYl5UWQc0Y2EU/+lwizc2swV2019iGZAobL3s6Vv3Zx6qT23ZbPqZBh07poy9n+Y5sVoxp0CGTE5/jNgHtKEeudUn60n5jtGpaX80d4h4O3R7oHNqjWsfNHqAzjLShZkPzsVdSHVWz3e42IeFgj2Pb9pWDxmnvcY06KMuqYZsly3NQJq5E6hrJ/fe31R0+qRtso3vV6phZA3TZ3ukpZC9eMULHzxmgq/dLnHv/79hpgb936SiXdApGR/Gnx0zVPuMadf6yVDqf/zt2asZ7bN8x0ij8/Pjp2ntco77nqKf89tvAbtUZDXu7s+C1kjLt5rlxzLitHHJ2YOYP8w7HHItG1NipQifOG6hTF6SHj9/TSEHpPBf/7+jJ8uIWNt7kFbHGsjLL7pWixmvFkSuXy8s1+4/R4dP66oI9hidvbO7nk9LXdNneI3X0rP4a06tOK8Y0ZA0X7cdMt/TTY6ZqxdgGXXfAGK0Y06BbQhzjtnhc6u4y4dBv8C/XCIjX7D9Ge41t0G0nztBpCwbr3GXDXAcz7ONy45ZUZ/yyvd3TRXarKdNKjzbeoG5VbZokGvRmk5lC2Kwnvmqk+bBXtrl9op2Gy+8aZYbdT0W0yj75MvF3+v+dzDZftkGInrXlOnBSbx04qbduPGR88nGvst/21JvJf2ebZP8LI8XbMbMGaL8JvdLajFmjuBrMfbfdkb7W7aanfYPhfy6LO/IhYrkPuv3k6FTa7M6VMZ2xeEjGa2yuKTxb99d3Vk3U/hN66WgjZYkbc/LR8XMHas/RPQOllC10BNxsGnyO0WONdFlBHD/X//XO9GTpk5nTX2tHPHDbPhetGKG9xzW6tz2Meun0hanv+/5RqeukWzrQTpUxrRjboN+flr1tZBvTq861jXT6oiFaOb5RP1yd+k6/GxXOCYA3Hup/3Hy+9XeNaKjNSE9ts9uN/bpUug6WBqm+Fw3vrsOm9tW1+4/RhUaKRfO6sHSU+/c7P9/+9v953OS54eDxmju0m/rUV+jHreeuWeSgp8lZjhSUtx4/XSvGNOjnx09Pi74V5Ly79Tj36/7UAfVaPaOfrljpfu2U3K/9UuIab24aux0tpZ9vZl/8ttZ0RIdNde9buNVfkveEphNc0jd5bY2gURnNFCtmapZr9k+lgrtkr9Rr9hrbqEMcfaWg0QPc2h5eu/Pa1u832xJ+zNRW3ztykvYZ16gzPa4dD523UJK0nyP17h2nztKKsQ2u9f+kvp11+LS+umSvkXr2jdQk6i/t750yT5JOc0nt6JmSxKhqrtkv1X4w01p6fc4X9vQeL/r9abO0YkyD9p/YS6cvGpK8gec2bGROlLIs//PXbFM86xFN47etfVazjeF1Di8Z2TPQjWGz/3Xr8enn+mFT+6TdWDM/7r+OOswrsp79r1uPm6a9xzXqkr1S14mfO9LuPnnR4uQNNb/26pmLh3imRDt29gDdfvIM1+ecfT2vSaC/OcV93GvW4K46eHJvXbR8hKb0T7QXzTaWm1uOmar9J/ZKngdueyvbefnQyx+k/e13HP1w9eSMqPdSYnzuiOl9M9oYdRUx7Tu+UcuNca/ftZ67zrFg873ZJpN89aBxOnBiL03s6neRTT03b1g3HTG9b9q1wJQtG0Cpo442U3N+M0AbVJJnKrG5Q7pp1bS+Wji8u/Yd36iT5g3Slw8cq/0n9NJdZyZSM/fqVKGZg7rot6fO1IoxDfrR5/yPC9t1B4zVirENGSl0g/Qt3VLxhVFVVqKzFg/V6YuGBFpM+vvTZmvFmAbf49VeRHz7yTO1YmyDbjh4fNrzZhvKdtW+o7XPuEb9OMs2+/HRU7TPuEataU1FZ3/Hlw8cl1Z/mtfQU+anjyOtGNuQ1ne25RqZL8ykZa9zxi/tXTwu/eqkzPooTJfJrI/tCIw/WD1ZK8b6R7wLzaVQzofsfRO0/AdO6q2V4xt1yvxB2polzZbdRpS8F8hk43b/L5ug7cNsQz7OvqH5+iDjRc0tcdco22N61enoWf112d4jdfGK1PX3+DkDNMSIovfbUxLnU7a00KbPt/bz7PsuUnqbYtqA+uQY9b4TeumgSb31tUPSj/fvhEwF3LdLpU6aN0ifm9lfK8Y2aOX4Rq2e0S95TU6Ww9hkZvo704EuKbmzLUQ/f4/hOnHeQNcoe+6LaByTcTzT6GXeh5O8072bqYlvMepkZ8RYu48WdGzVOc5z/p7DtXxMT32jdb999cD0dnrEStx7C+L3pyXaFjcfkX6PYkr/zsn0ut09JtFXlEbTFrNJ0m9PSVznnfWJW19hW5P/JNtTFgzWvuMb08ZJ3Cbgff3Q8dp/Qi8dMb2fdyRYy/l34gFnm8p04Z6JMR23+z2WJU3s21mrprlnfbGztpgKEcMAxYcUhNhl2HWS18oTt8gGzgvm/hN7a/+J/pMRbH7RS7xSNrjxvKHb+vABk3pr1uCumn7NvYHK5fXZzka5WyUe5sbj3uMaPTsei0a0PczxwZP7ZA0THyaaiN+EuWWjeurq/Ubrot++kPa4+ftKo15RvoLMgM68ifjjo1MX474ux6zZWDln6dCM54MyO62LR/TwbSjYetSUJQfivnrwOM245r5Q3+k85m88ZHzWCRMLhnXT/f9+3/W5sX3qtHB4D7127YrAZXAem14TMtyO4WjE0rUHtG3ylf051/kMOLrlhj7coyHmZFmWLt5rpLbuaNbX731ZkvdNxWwrHK8/cJxue+otz++yb54H5TbJxRaPJ8Kkh9mX9mcG0SVAGH/LsnSp48aiJB03J3WDYtW0cJPDskXOmTe0W8YAqlc4dee2mTGoi2a0ToTsWVueDDXd2KkiI/SuKeNGobEN5w/rpr86zrf0dB3unVW74+K8oeS8UWM+bw+yXth6A+T7D72qHTsTnSavFAGHDmzW9IH1rs/Zykoi2r7TvfPlNbARsayMso/u5R6K3q1uDzOl4LCpfXVY67//8cVlGc/PG9pND7zkXucdbUxYjVrS819cpv4X/CnEt6dcs/+YtJuF9nF4yJRgdY2XkQ21yTDlWeXYaexeW65vtV6zpg7wPh7s+t0c6OhSVaq3NrpHwfMa+G9rmq+gk07MNBPmWyb0TQ02JVMQunzmPq0TBQ6a3EcX/fYF7Wid9WwGgjDbHdkmVDkjPcR9vtssWxCPfWGRpMwBaa8oYOap+90jJ2nFNx72/GwzRXBFaVRfMyZ4SeH2p1nPOcO6+92YiuWQ3kBKrLTza3JblqX9JvTSL40JaVJ6GpFvHT7Rc0Kt/Rle9hzToD09JqZL0pDu1bp7zby0x7rXlOs7R7gvWHBKnAsdN1pknuLOm4xhI8N2yRIVOTNiVOp3m3WC2a73ir7qdWPR3JIrxjbqG/etl5S4Se7Xnjpsal+dv0fmDTI/Xm2kmvKYvu6YRBVmol22CZVnLx2ms5dmLkgxxaKR0O1Hp0jESrsmXvPnFyUl9mO2z3YOeCej9njcsGnsVJE2kJ5RlgDb74erJ2esNB/ao0Y3td7k+IeRzibIHOCZg7sqGslMf2BZli73WfzjddNAkhRPb3OumtbPtR1trti2J7ok0rin13NlJRHP+succDZnSGoRW7bz1BR0srTZp9h/Yi/960+JNs8Yo91ofq/d7zPrbb8FKX5/S951+KFT+wZK126/fdW0fvrug69IkuYO7aalo3rqx4+86vqennXlrufB+D6dPMcQIhFLX9ovcU6d8Ytnk4831vmf8yfPH6Rv3b8+raxBIvGYq8P71ldm3MSR0s8Fv0iPoxrrkueSyW0yT1qkKsvyPX/T+07ur7PbQWa0Gq/2RtBoK+bLZg5KnR/7jm/UNfuP1d3/ujvQZ3pFurVPv5mDu2qmYxHpUEe64M5Vpfr3VXv6lvfUBYN05mLvca5EOqz65DE54pI7tbU1YktGBCyPz3CLwiolfv/1Bybapse7TOB0mtK/s+YO7aa5LhOibJ+b2d91wpTze8361+8ysGhEDy0a0SOjD2hZlq7ad4yu2ndM8rkbDxmvfSdkLvQZ53HupvX1s1yLDpjUW/uM7aG1a1/3fZ35eVftm6gTnOOrifL7vz+uxFi7PbnZjHC497hG3XT/+rTz3q09Pb5PZ9dUYpGIpav3S7/pfNDkPsmFhmb951U/eOlZV+66rYP0m8JGy3djL8p4+d3MOtFpdK/gv21Sv86ui1pOnDco2Yay1VXEAi3UWDCsuxYYfRrzO9LSwhsHy8Lh3fXtv/5HUiJamdc1Keeb1Vl2gTle7VX/j/NJcRhXYrFEbXlJWhqwMG1p8zCx2wgLh/fQwuE99KfncxsrcuNWImcx7XIHnbi2cHj35OTQbOeEOe6T66mRS5SyoNHQ/T571bS+aZOK5w3tpp8eMzVZVwf9DnN7299nWVbaIkOzvrr96dR4/oS+nXXT4ZnnrJ9a135e6t/fXjUx2Z6KRSP6cuvYzlm/fE6StHhEd9+xBS8XuEzkzGBsjN6d3RdouN7vtcznM/fZyY5JnWlcjlHnV3hdOyMuEbDqKmKekcNOmT9Ya/+RSLs6y2hbmcfZpH6dddSM/t7lNXj1Z3t1qtC3V01SU1OT1q6T9hnXoHF967X4hgcktUZ3DVgfje3t3rYwJ5kO61mTkWXJLfjFD46arJGNiclmzm8/ModF+9VlJRkLv9xO2ZXje2nl+F6ezyced0y6a/1zxdgG/ekfPZP7zdTZZ0xHSmznq/cbo589/kbGc15R4bD7IwIWdjl2heisP91DSObe0fFrdJkX4jDhVb3k2uj0+31uk63ChLKM+aWdaKeV72Ea1W6h5E1uZU6fuOL1vsBF8OS2L8zf1pY0gpG0Dmz492QbkHHjHLQMsp/8Gnr5CgXspj3T5Dhlm7kfhHnTxzx/vSbT5BqSOwzL8t6u+coXbzI/sqOjbpgKURTndt283X3lt+S/rbMNqpjb0ZyMYHdcnYOEznM8rbPr6Hyag85eNy2DHKV+R5LXwEbEshRtw8o2r3oql6O6iA7VUOz0Ms7f7Nd8KPQ0DHtClTlg61fX+W37tpQ1l33q9Ra/FIRmm8Ec3DEfN9+WHCD1KKDfBHW/snmVLwjPFYMuEz7bg9nWcbaF/doguaatTExPyrZAI6eP9hV0xWRb+y4dXb95tYFyWRUftl2R1iYxjmdzAPLDzTtCl8NmphjOtlK74LshxBcU5Hh2RhFqQw0e5J1eE9tzbXsG6R9l+2yzegpajFz6Pn51QtCt7tYudXuv1+R6Kb2uNutft23p1Q72WpTj5LXtzfMu18uUs2jOib+J78/ts232293OixwDhGRl/i639nbc49/JFJMe29y8wWveRPM6h8z2TtCIFia3Yydtv1v+51vaBCxH5Cwn58SutvC7GdhagkDf5XXstXWhQub3hPs8t6jMNq/zPV9jPW6TDJzFD5ImMkxqxjDC7pq0fn+em9u5THwwtbTEPdNlSpkTBN3quHy3Odqy31ri8XaNYJG3r+qgsBtmnZnexgk2rp3reGO2Pey1QDHtM/zGGFqL5SydXz241ZEiMG0btFM32e7LeE1ECHqumfulPQ6tXCY17nCMH3nGSvD50Vs8InPanNcJz/FFj/6kl0IcD2YZsrWdC7lPc61+zfHAsNclt5/jdQ5kvC6SmQrWa2J75ncEelnemMfj23mO7O52bLu1k7zuQ0jBhxqyvS5b+9U7U4DjdY5MH2Flu0a4n8eEwPosYAIWdhmpFfvp/7ft7bJysy2dQ7/3mhfbrgEisri95gAzEpdPMd2i3tihJu0w+GNcInwc5PKc2UBxS5snJdJ3SdKBWdKW5ZMz9KYtyKCNHa51RpZUettd8p9v3JK6QeIZEj9AGXLJkW1e2L0aa/ZqZDscs1suYfO7DwuwWlZKpW6qKS9Rp8rgUcZsznCtQTpldghOtxXy+VgRFtTiPERvC+qnf3utzZ9hDgaZkwzN9C3vbkqlFbjj2bddP2dYD/doTLmwLCst9Uy3mrLkfnWmhgzKmd7FDNl6/4upsNTmwPOCYf4rUAutEEftqUbqoSUje2i7zySTNY6UNWE6HeY595tnUseM3fF2diidA/7m+zc4bjSfbUT0W+aR5ifQjSGf1/jdbDHPGTMy5NmO7eWagtDjM4e7pH7Kxo4OYaeTywczGkShBYmYmWwvhIigl4vVMzNXRg3sWq1PjNWldjjtI6b3c71ue6VBysZMqxnmxpSdzsgZddVus9ir35znsSTNNlLUmu0Dr/PGrVRmeqfGTunRAbLtWbs9PbBrVXLVmBnVKwivttMlRjh98xwc35oGw3bivOzRCrxUubSVzDrLeWg72yBjjdXNVaW5B4teOtK9/rPZx4ZX/WI+fvyczL6AU3VZiToHbNOFmahkr/Y2o9a6TaDwixrRFme1Rs/43Mz+yUG9KUa92tYbxvaKzKDMGwxex/lPQrb/zGPSXJThjOY3zREpMNc2V1Bu55KXQkyQdx6mzpQfYTjPe7N/bfevDnVcJ+xjy6yfsg2wH97aF5vQt5PrIPvAbulRkc2Ubm7MevLp1zcmP9tPmDQ79m/zi0o9vGdNMlrzkdO9Vyq73RSdMziz3eJ3PXnJiOyRLY1VN4/UF9lupNufO2WAez1SbvRxcj2uP78w/Vh1jYCVp56EmTrS/m3ZovTkyoyUlm0Rl7nK245qbp7T5jnoFglCSh/b8Erh5RVt1499XTl0Suq4N6+fW3e0+F5bzDJmG29Mm2xgvNSZgieIaQO7yLISKbVNqbK6X5/GOdpYXlFyRzd6R3eRpL1CpsHy24bOc0RKn9SXsV09mi1B0rH5md1aRx3l0tcwI9dKwSZ3Om/YBTnP7XPhdJdtkqu+9ZWqiEXVtbo0L4sdzerd3K/mWOSswam+mOkYI/KzlGgv+i0OOXleou9ln59uXVK3sf+wx6fp4hXeqUyzaYlL01ojezvHUILwu6668Yoy7OWI6e7ne9hbvl7ppsLyioBlnvJ+7T331GGZxjqiVU3Pknor4lEuU0OWyI+SMjas130X1zIYX/vRlqa0547zyIbgl7llvsd4qfnzTmqNEOj8yW9tDDZZw96fE9MifQc/uq7ZP5VRwhl1308u4/q3OiLSXO+RFcPeJqcvykznvK31vpIdxcvOcGGPhzmjPrpFvOnVqSKtvxck88vUAYnjN1vbOIz6qlJVl5WotrzE9V6TlGqrBL3XlAv7Gmimiw/il0+mItKGvc65jXU6o2We7FEPRSwro6/hl9XGrLNyHbcIct/ZTVsnTPuxr13mmJX9+8zrlNn2P8oR8crcHnY73y1qmluUxjCcm8E+X/0m3b1j3KNaPKKH6+cuG5X+uHkcOuuPwd2qXa8thVo0g+JCCkLsMuw6ySsUqttNzraMBfsNKpmNc3OQzssD5y7QqMvukiQtGt5dF+81UgO6uqdSdFo1ra9++HAijPx+E3rplPmDkgNNs4d01f3nzM+4uSYlbu7df858zwa5M8e67dcnzdT/Pt7mWz7zovT3S5do09ad+tb9LyfTnL145R6+v+mJ1pQ1tt+ekvjOBV/5q+/73Dx64SJt3LxDfer9O2KdszRqPfe38XBtuXuVmW0w3q2RFbWyd/BuOHicTl80OLm/n7hosT7askNzrr8/ORBhNsAXeAxMmh48d4H6dqnUQ+ctUOeqUpWWRPTUxYslJRoLv37mLa3OEga0xpESJ8jg9KIRPXTf2fMUi0Y05/r7057LJQpXUGaki3vWzAvcYc/Fi1fuoT89/z+d/avnJEmbtjZleUd25rHTZPyWUcYNQ3MA64NP0yfDPP/FpZKkm1ZN0OIbHmxzeaTEKRGNWHr64sVqjsdVHovq7rPm6b1PtnmmiM1mREONXng7le7MTBdoTrIwD5Ufrp6igV9Ym9P35WLW4C56ZP2HOb//8wsH67jZ/pMKDp/aV2N7dVJ1eYkGdK1yjexnDxCeMHegXvtws37+RKLj6Ray3JS+8iT170+3p7av3ZF0TjpwdtzMv0Y5bl6fPG+QZg/uqtrymPp7XEeCjMn4RbowB7fP22OYrr/z38lymfXRKmOg4LSFg/XEaxv00MsfSAo38dMvvYmXJSN76N6z56mPRxhtp/VX76l71r2nslhEExw3Sl68cg899PIH7TqBNIgg7YV8VO9zhmQOHtZVxtRkTAL56TFT9ebGLRrUrdp1comdKiPs6r1zlg7TTfcn0iGEuVb95hT3beNssxw5vZ8u/8O/ks9fd8CYtPeYq8i8IlO5XYOPNerQSsf5nG1y3aR+nfXXc+arZ125ymPR5L+HX3Jn8jXzh3XLCGNvMk+vK/cdrUvuSKQo2Wtc6uaI+dsu3HO46qtKNbBbtV55/9OcbqjaLthzuC753T8lJSYqfNeRVs88PtwWAJghxYNEO3BjWYmJPacvGqJvtKYRtj17yRJJiYFbt3b6c5ct1ZYdO9PqnQv3HKGDJ/dRZVlJchKf031nzwscUTXMBKzbTpqhtzdu1UBjn3StLk22N/7v2Knq1aki2E2JHJy+aLCWj+mpQd2qdfbSodq0bWdaCs62RC347SkzQ9+8TY/KmfNXOz7TiHrnE03l/46dpjc3blFjXUWb2lxBZbvZ/OfPz9Se3/ybpMJEwDLrvHvWzG1TveBsU6wc35jsXz976ZKMY9xkpri6cuUo19fYFgzvrvvOnqdenSv0K5f03z9aPUXzjf5utujU5nXHjpTwixOma9jFd3q9JdS++OWJ031/u5RoA526YLCWjerpuw92utxQ79+1SiMaarXOSGnsdxNh287Ugikzvf3Olsz2sLM/anNO0r//nPla9NW/Jge4n75ksTZt25l2c8B8R60xoSDXw9q5gM6trmhz/dG6oytKo3riokUqiUSSbdvB3au1aHh33WssYskH8waI23FmPmT3FVviqYml5qS5C40bmyi+oQAAiDVJREFULOb7zOiYc4d2031nz9OO5hb1d9R3z16yRDuaW3JaCHfC3IFaNKK7BnRNHc/mtbU5HvfdP2YZs12DzHPY7E/98oQZ+utL76VNCvjqQeOS4whuBnSt0l/PmZ+xgM7+ihaP69PqGf205s2Pkn8vcowZPXfZUm3evtNzUqPtm4dN0H4TemlalokMtvF9Mid0PXfZUj37xsa0lMs2c0s6b6Z69QvLAozFemmsK9ePj56iNzZsca3betSW69cnzdCBNz8qKVg/IDP6SfZyXLR8hA6d0if0Ygc/NeUx3X/OfMWiVl4WO3pdqf52wUK9+sFmda0uU6fKmF7/cIuG9kj/HRevGKHDpvZRQ6cK13FbZz9mj9E9dfdZc5PjCG7fPb5PJy0e0UP3rHs3+di1HpMpglg9s79mDOqqO/7+tr7TmgbP5JUOT0q04Xp3rtTD5y/IqT66fJ9R+r/HXg/8+qqyEk3tX68nXtsQ6PVX7DNaq2f015KvpY8Fhj0q/nrufNfHve4reCnxiG5pHgd+k9JqymN6/AuLVBqN6Nk3N+qYnzzl+rqfHTdNb3+0Vb07V+qjLTs8U5ulvj/1b7P5e9zsAfpBa3vRTD3302OmavWPnjA+wY4YkHrk1uOnpaWLzcbcBhMdE0C/sHyE7n3xPb36wea0x39zysy0v+cN7aYHXkqkUhzc3X2Rj7nv7YW9zvNwy46dro87PXPpEn3i6JsFWcj31MWL9e93PklLyXbDweO019iGrJPlJGmIx28L6vMLB+ugyX3U2KlCq37weNpzdjCDsxYP0dwhXbVjZ4sOb32Nfcz+v2On6a2NW5Lt5+sOGKuT5g3MuJaYbaEpV98jKXFfz62N5KdXp4qc6xgv5bGo7jt7nizL8oz287Pjpqf9zkJYMaZBQ86sUf+u4e7VmOPYzuvckCzXU+cRunJ8oyb27ayHzlug2oqY3v9km2efJ2Klp/I7ad4g34Usdp2VywRd28PnL9SGzTvS6qAgco3mbtp/Qi/9xmWh/5KRiXt8nStLNeHKRApse6t0rSlLRtwyx51mDu6aNj5mVi/fXjVRb3+0VVWlJbrWkf62MeTE468fOj7tb+f9keta2wuZE7BSfw/vWaPHX01cZxd5jMPfdPhEvfbhFtVWlKT1w6RE/bH32AZ1rS7T9p0tqquM6b1Ptrl+DnZ/TMDCLsOusu2KMzNUYOZ72rIaN2hHNcgtDPMiGYtGMm7IuQ1Y2sxOyc6WuIY4Itn43fh0Pue1cslUHotmnRxmbptOlaXqVFma1iDza0AO71mj7rXpN5uCfKeX6rISVQdohLjdbDIHzLy2h3kMeQ305sI8vLxTIETSOk32b7WUOu7Czmjv2zoByRz46Grc5HOLuJZN0DIM7Fat9zZlNjjyuIgjg3lu5XNQy015LBpoElyuzMk43n3a1BPzh3VTbesxm89UT/a5Yt4criiNtulGoHMlj3luekWbaM/IaVLmJIawl5f+XapUV+lfh1iWpTHGaj23KCP2hE/Lsjw7hW5FMycte6Vftbe7M62I8xw394lzVZdlWRrbu5NruZLv9302wW+CgDm4bUZ3s6z0Y8eZ/mRI95rkBCy3QfR830AOc7O4JBpJi2xnKo9FtWSk+6qbjhTk2l3IcOVmGPnSkkhye7tVDfYxHLY4QdMhOHltG2ebxXluzRiYPkhr1t3pp4Tl+s9cyurGnDzpNpGyoa7CdwDQrGMqjTrC/D3mb4+VRJLtW2c7Nyzz2jBvaLeMNqeZastM92Yz67Tc+xGJ9zmjfnaqjKUtCHA7RuoqYhnbNhKxsm4X5+/045YOy0tZSTRj0NXcj3UVsbwOykas9GPdslK/vaY8lrkIIMeDvaasJCO6RRDmlitE1Cfz+uusP816rtCTr4IwJ6oUYluYP9/rJlLgz3JGvjPK63aMm8L2tQYmr0WZ73OuMM+2iMftu9sy4cDts4Kcv+Z56MUr4sGInjVpE7CCtgvS02UHe4+Uvs1GNtRqQNcqRSOWWlr7hG71iMm8QZJLWlMpc1zBfWFE/s4ZMwqWrW8BFh35RZN041zAYLbfvSZ4OifQeR2f2RbX+bEsK6NOMfsF8XjcP4WfUfRs9YP5WmfKoYXD09v2nauyjzW51f12Ecxz0K9czp/m1u5wf5+lRR5RANy4bcO6ipjr5Csn53FQiP5ENJq46ezXXzNv+gW5FORyszNIGy8XPX0i44Tltf2ryko02si4MMwlqqv5+9zGbZ2HifN643VtGeC4WZ/rogn7O4f1rPGclOR3PtnlyzbBx0su7dhskyWdn+92fIU9pZxjYTa3CD9+Yo50r6l/m2Pz/p9hT4z3u47WlMc0vGeiXgtyv8ArBaFbul0pc3F2MmOL8Vi2yVcZ97TMaJyOPmokYmlA16qMCVjOgABekYzSvzfzPojzV9qLfLPti9ryWHLM2Rbk2OpaXaaug9OP4zDXGLNcpSUR7fBJb+3GXoAzyyVSq/3ZlmVpsiPQg729Sksiae2TaCSzXWFztoXszw+7yDPXOsZPtvED5+8sBLv+DcvvHkdllnPeeVmxr5f2fTL/ca70v4d0r87apu8RYpzGTXksGnoSkpSftMh+16iB3aqTUeHS3mO8xdmXMqO4mp9cHotqULdq/TcPqRKdx4ZzAZ1dxzubbGYdbPZTvBZMJe7ZetyTcek7ux0nQSasYtdX1CkIm5ubdckll2jAgAGqqKjQoEGDdOWVV6YdnPF4XJdeeqkaGhpUUVGhxYsX6+WXX/b5VOyqnA1aZ7XldvFd/96nOX9f0JsTYS+kztQDkv9F0bwA/OG5/4b6rkJxi6oVNMxs3yyRqkxt6UQ7OTsFUvrFzzsFofn63L7b7YJqNmLqAwy2mcwLfCEGV8MK06ZzO0q65hBdxs8//5sa5G/v7WMeR92y1A1BBgJM5go/83z7/XOp1QjmZ5oNXXOiQk3I720Pzhv85nb0Ws0rpW5c9W+H/dzW2ihoZBKTW8rOIOVwq6vMS6R5Xelh3LSxOxl+KQel9IlhuUyeDXK58BsMN6/35nYtiUbSjh1nZ8+8drnV+WHPyd2Zc3WyX3h7U76iDNqRKfxSYHmlW/MbAPG63to3XP3KX5vHFYe2zJu06c+bbUbz31aWtolfypN8dPF//fSbvs+bZTKjSpinXZgIErlyq2vM9r1bhDrz5lmu+9wlG5AkZZ2cWijOqFnZou5k47ViPVdm32BYz3ApAZ8zono4+a00deuPBWGmYAn607NdW8y9YUb9aMtK2fZgdtMKcQY3tHGw2k+Y671ZPYU5ddyuN872VLZxhGhafzFYf8lt8n5YA1vbdmHqZq8oeM4bBr1c2rY289plnl9uk2W9mOeQHSU8Wz3VxYjKZU6Ka8pTXohuLn1dZxq5bJz1uDMCrVPPApw/6ROorIxUWNm2ljNyk82cGF2o9kA2zsllfuem2X7ZaKRid0bpktL7KdmOw1wjW9ifa96I92sL5yv9ZTZhFy+a555zIpNZZ/eozc/Ykdv+8hXgou/sR+RromU+o57koqosfxN/nbJtoX4e48fOSUj5WHBo1kVmJK/aCu82Q+9O7T8em4/JdUGidNup0Tr7LCKsD5kay6sPUVkWrP4y5XPsJj0dYurfXm1R53fbYydhznnnK823urWp3MZj/CK4BP1eN/Yxn0sN1h71lfk7g06+Mu+jmO8J08bMhyApB5GdX5XvNo5uyoiqGaK57zzH8jFGaLanvcY4c5GP62K2cWC3Ot3cQtWO/ouZ2s9tMUY+onY59695L81tAqotbQKW8bu8siGF5dbFIQXhZ0NRj+pdd911+s53vqNvfetbWrduna677jpdf/31+uY3v5l8zfXXX69vfOMbuvnmm/X444+rqqpKy5Yt07ZthHXb3aRSECb+72xX5ju37cYtO3yf/8FRk7VyfKNOW+idn9z5+r3GNuh4Iy2MrXttuU7zyi/cQYNQTrMGp8LAnjI/s6zZclH/4oTp2mtsg67ab3Sg7+tTX5FT2icvC10iE5kRhczNfOMh443H3S/AbWUpkWrosKl9tGSke9QTL987crJWjG3QHz8/W5fvM0p7j2vUrcdPy3jd1w8drwMn9dYhPuFQ88Gtk5kt5KvtoEm9dUBr/uV8eXj9B8l/33DwOK0Y25ARmrlQzGPk8x7ntO3XJ8/QijENumfNXB05vZ+u2tf/3Hjp3dSEUrONZqYgPMII122mkdu6I7Uq4bentm1bFKJKunjFyLS/o2mD4N6ree84ZZZWjGnQjz43Jf+Fcsg8zMNtiFyuUdfsP0Yrxjbo1yfNcC2I98TXzO9KH1RKPW6me0xGwHKU1S/lwoXLR3g+5yVIH+P7R03WijGJes7JXBXdtbpMZywaojVLhiYiBPqU9ZjWCH+9O1ek3RC5bO+ROnpWf413pP6TpJ8cXfhjq9BuO3GG9hrbkP2FSkUUu3rf0dprbEMyVdAdp84K9P4rVga7xmdzy7FTtWJMg359snd9dfi0vtp/Qi/ftBBSetqIvcc26uDJvfXVg8alveaOU2dpxdgG/dilLrly39E6cno/zRwULOVKWzjPvS8fmCrn945MpdKLZ7lZ6Tf26rXA4Eefmxy0mGnXHTdmfTOwW7VOmjdIF+w53HPie65t+BsOTmwfc9tkW0Ft1puX7p249swbmkpzGTNuAE7p3zn575M9Umxc4ZKSzP5aZx193rJhrp/RVtki5P36pJlaMSZVBwRdNOHFa0Jvrsx69mfHZbZnc+XWt/pd67n+rSz1hpdTjM8M+tt/ZV7DXZi7o6I0qnOWDtXnFw4OFdWsUL5x2AStHN+ofcc36muHpNeb5vlciLHD0xcP0crxjaHqJi/OxTD9u1Yl66Vs0n5niB+6dGRPHTa1j647YIxOnDdQF+45POOYOTBLH8h8/b7jG5P/nmGkZ7ls7/Q2dD788HNTtGJMg353WrBrvySdvXSo9hnXmNFuctadzja/F/Oy4FxBbNb5Tma0itMWDkk8luUas9fYRh0yuY++fODYtGuqWypwp6t9xjZuOnyi9p/QS0fOSPXPcq2DvrTfmLS/z1w0xPf1q2f2D9RGCqOytERnL0nUT12ry/TTY6amXVuyGde7TsfMGqBL90o/BswFE/ke08tFXHEdO3uA9pvQy/V5s4jmhMIvHzRWK8Y26PaTU3V+bXlMZy0eqtMXDckaCXli385aNa2v72vc2NWE10JHZ71VgICFab6490h9bmZ/TezbKdT7ehoTDpwLl6YOqE/We852ws+Om6a9xzXq6Fn9Jcl1XMz065MS/SKzje0l7LUtl36xny/tN0arpvXVXJd07O1pZEOtjp09QJfslZ/rjTmZPVu642sPGKu9xjZktKWOmtE/7e98VB3mufLz46cn/z3DJSWaPb59xb7+qYlt1x2QqMN/uLrtbZozcmgf3XXmXEmJbb/X2AZ9cZ/s5f7FCdO1YkyDfnliZjvWHmv2S73lxpwQYLZxBnWrTraVgppspMVtq4hHv/TgKX20cnxjRkqrIT1qdMLcgZrQt5P2GdeYvM5nOw7PXJy6djvbhOafbu3Dc5cN0z7jGnXxCqOecXxfrvePnMMDe49LtDlLohGdG7L/GqZdkKtc2grnLE39jo1bmpL//s3Jwdu6balnvnnYBO0/sZcOy+E6D+n6A8ZqRENq8YHfGPXlAeq3MB69cGHy33a/8Nr9x+iwqX0z0jqHcWtr+8Xsyy0b1VNjjawYbeGMJpqLk+YN0r7jGz37XlGXsTezbpvjiDL3jpEVx22yZreaMn1+4WCtntFPe41t0C9PmJ7xGjdHGX0tv/66XzYi80+zLs1XnVaIiOHYNRT1Uv+//e1vWrlypVasWCFJ6t+/v37+85/riScSeZbj8bhuvPFGXXzxxVq5cqUk6ZZbblGPHj10xx136NBDD+2wsiP/MlMQOm4Q53mwJlvqoMUje2hxiJRA2V5/zrJh+tb96zMe92tUtKfTFgzRI+s/lCTXvMNuEaZM0wd2CZTL2/bQeQuzvygEt47IDo9B1RnGTVZz8+cS8jPxGZnfHZd0yJS+OmRK+MZ3/65VaYOp3zxsguvrVo7vpZXje+niO/4R+juyWTaqh+76Z2IWuVsjYnL/zjpocm99ae2LGc+ZvnxQ9oGvbMwbp1J6XdC7c2VeB56zMb/bOdPfaXjPWt20KlG2K7NMvnLyalCaDVhzt5g3W9uaxqUQNVK9YxVQWhQjo+zOc2lkY2obFppf4zyIXKryhrqKjOPXKxJD9og45mek/jJXtNodNOeEDuf11QxB77ci0kuQVR79u1Z57ltzVUw0Ip21ZKjr69wmar927YqM1x09a4Dr+3t1qgiUJqPYTR1Qr6kD6vXM6/fqvx/7L1A4aX5iQl732vKcJigMzDGdsNOgbtVZz+3yWFQ3GBOmvawwJp+VRCO63uWGy4iGWs9rxZHGxFYnvwhdQZ25eIhuvCcRvddZz/SsK3c9Zs1rgFv71/lIXUVMH29NDDR6TZ5ypsJpC7NMpdGI6yQHs57JdTBi/4m9tf/E9AFqK+3fmZ9r/nw7AueFy4frgZfel5Qe4cOy3OsMW8TKvAGUeF/i/84tnWs7MptsfZZhPWt006qJ+tMFf5LU9ghYXmk6cjWwW7Xvds6V2V+xVz2P69Mpa7vQK6rmsB41aSveg/z0ZaN6pA0WB2FPGikG+4xr1D7jGl2fS0sRV4Dw+bXlMX39UPc+TlhuxQsy+Srjc0Lcjo9ELF2z/9i0xz5yLPDKtsrXPL/M4/mgyb316CuJfrmzDsyHAT5tMC+dKkv1DZc+qXPcwNnm9+IXpcdv0ql5bbGjRmUbT4lGLF134NiMx93qysHdq9OirK+a1k+vfbBZ33/o1YzXrhjbkNYGkYLVQW7MiEyzB3fNOkEzaBsprM8bE78Gd69Ou7ZkY1lWcuKzyZyAlY+V720Vjye239cOGa/fPvt25vPGv82UoG79NikxWSIIy7J09X5j9Pvn/qtPtu0MXF67f9zsUQ87Hy308OLnPPpV2filYbEsSz/3uAk3a3DXZBqpy/bOftN1cv/6jLRS+eKMbNLWTX14kdyotywrb5OvpET0oPc+2R7otT08+qTOSXr5iDZmHoNdqst826Zhx7eDjP2aCz/85NI+GtazJnRbe0iPGs+2gD3WHFaJx0QnSbpwz3ATGPOZytcsitlmqCwt8dzWX3CZcJmtTGcuHprq9zt+v9mudktRbbez1r/3ia7607rW70t/TZD5FtkWKEnpC+xPXTBYX77r35Kk6QOz153ZJlXmQy673ozcb75/ZGOt/nn5Mo267K6sn9GW+3N7j2tMTmxDeAdP6aMZg7pozvX3S/Ifg8iWZSVst9WMSGcf3odO7atDp4b7HKeZg7tqpmOCUjRi6ftHTda0L93btg9XfiZgVZWV6Eaf603EZUwvbfG3Yz81BVjccvbS8IsWr1g5Wrc8+nrW15l1tPMQMo8p81qVrzrNbcyTAFifDUU9AWvmzJn63ve+p5deeklDhw7Vc889p4cfflg33HCDJOnVV1/VO++8o8WLFyffU1dXp2nTpunRRx/1nIC1fft2bd+eauxv2pRIV9XU1KSmpibX96BjNTU1JWuleEuzmpqa1Nycnmc23rxTTU2ZVVfu+zReFMdDS3P64EtbytQST13own7Ozp2pcri9t7ml2ff5sNpj22/dvjP5PTuM70vUBYkOfbwltc1iUcu1XNnK2rwzcwAt8R3tM8AYNwY187VdzYHnluadGZ8bkdTcnHm87XC8Lj/lST9Xrbx9bngtxm/euTNzu7SV/XnOz7X/NuvFlpYWY7v7n7+hxAtfN8abm1O/qQDHb04cvbTmnc2hyhP29V5amlP7defO1P6Om/slnrnNzGPjvU+2JR9vMa+lzc1qirdkDIDb112beR7vdKnfsv6GeBv3pXG9cZbNtLPN27w42gH5Yvb3vH5X3Kg3ctG0M/w1MqiWltzaMAXdh1bbP98yzje366kbs06Pt563phbHeWGe0zs99nHY3+H3+rR2T9z9PIy3pF6Tz+ulWdfF45m/dWdzZnt1xw6jvC7b049XuZuamtTkqB+bd+5UU1P+73w693c2H21pW5/X/AVBj9lcteW4NPsm8RBtlxaP17Y4jqd/v/NJ1rJGA9QRbsfkrqC52WgX7Ej1nYrRzubw7QHXerKN7QpnmynbZ5njAM1GPZlWt7TslNfHFOPx5Hf9MfvdbvW3za/tafbF7G1mRu0Ls02278isK+MubWyzfRL2O4Iyf7OzLioWzTley7ftSL2npXmnmtT2NJpt0dzs304y+0GlHuNDbWF2wwJ9duvx0OzRTm52jCe25FAftoeWYunzG8z2rF+f09biGKMu1m3t5DXGVChu9Whb5eNzdrqMX7anSB76lcXOMur3fPch2vRZaeNfbRkDCn5sO/e3efz51R3Nxhhg4rqbes4K8P1u559znL6leaeaWlz6rG0YC87nvm4JOAaZNh6SNoaYfp0321h+4xLx3Wx8cFdjtmf86sts+8g53h2mnxhmTCFXYfuLbq9tampSJFri+lyun51Nc7JO966HtjcVftyj2Wd/mseNs31snvtWAdopO5szP6eljePv6FhB911RT8C64IILtGnTJg0fPlzRaFTNzc26+uqrtWrVKknSO++8I0nq0SN9BVyPHj2Sz7m55pprdPnll2c8/pe//EWVle2fvxvBtLRmzPznP/+ptR++oJfetiSlBnrvvuuu1pnI6Yf12rVrQ35T4v0bN2zM4b1tM64+ouc2pE/Kuf++e5NlilnxNpVpZMzS44pqSG1L6M/Z3KRkOdze+8J7qf2RexkTn9+nqm2/M9vn22Lvv6i1rRGaEn2dxPOPP3if7AUnd7+V+l0D4u8my7WkV0R3vx3Rwsbs2/ITY9vZ/vbXe+WyqKUg3ng9IjvjbL6263/eT/2eB/76V3VpXYTbsyKqd7Za6rblVUV3SJai6lud+t6dxnYe3yX8cWia2CWiZz6MaETE3i+Jz13Za1u7n7u2xLhh63H02GP6cF0+PjXxeZ1KU+fFlp2px+c3pLbjJ1tTj/ds+p/Wrv1vxutz3Ta9q6J6a7OlXk1vae3aN3P6DD/D6yJ68ePEcfrQfXcnV5Z0i0X1ybZE57+j9qsk9WtJv+Y888zTanot23qF1HkS7PXeyqJRbW+2tOPN57X2/eclSdEtqe/4+ONNye0zMJ4oa//q1DHzrnFsPPPGR8nHtxnHxp13/tm17L+7/3F9uC5V9mffya2+r41FtanJ0ujOcd19992B3+f04bZU+e67/wH1zGi6JZ57+5+Pa+1LuXxD4v1bt27t0GMu37ZujcqeOuH8XVErqua4pU3/eVZr33o25+8w940k7dG7bfW86V//DXPcpcpQyPZE886dbf78x19JXaPvufde1QUIDrJ+U6oMd/75z8bkusRjzz3/D1W9+3zy9dubUvt+TpctyTJXlkS1ZWfQ+jW1TbuW+bfTmlqk0khUcSXaVG6BwrY3pz7zoYce0itVWb4+oH+8mzpOSo12nu399zPbRN71oJfWbRF3bofE49u3JdohTY7zwby25Ufis//zn1e0dm1mFF2v10u5nhetdeOWzbKPp388/qBeyvu8mzDl9O73xY3rXlXzJ4E/a8vmLWmvHdM5on9sjGhyzaa0x597y+u7U4+/+87/tHZtZgQVU7i6rXg0m21eo+9UTDqVRvXRDktlH/xba9f+O8A7vI69xOMvvPCC1n6Qe2ThrUZdk/kdmTbtSL3+3nvvVW3r9eHvRr/7nr/8xbHtC339y0WiTCM6tbieJ/ZjsY9Tv6vrlje0du3rGZ9hvt6N2Rf7+6MPaF1UWtTD0m9ei2pqt2BtErtNtPHlZ7T2jfTnPv00sy1V+lGq3OPq89fuMZljMcOj7xfRvpWS2/vvf1ckhzbkK0ab5q477yxIuvtgEmVY/5//aO3al9Mek1L7+2XjOP3k4w153xdNTd7tdZM97tJ182tau/Y1jSu39HdFHeeZ9Nx76X3Y+++7T538g0N0iPGVll5QVCM7FeYcykWTMXZV+eFLWpulY7lhe+r1kvTss89Kb+468Q3a0j8PY1qdpVc/jGpsm+vL/F7vOn2S+Myu5YUaj3Y3pVtET74f0djSD4rm2C+UfxvXy7/ef38e6qL8HAP//W+qf/j2W29prfPiH9CCbpZu3xzVpK7ex/aM7hE9+l5ESxua0vstRvvl+cce0L89+lfvGf2bu//yFxkB7dVrR2L79qr0PoY3bsi8xrz5aeozJenPf07vDw+ti+iljyMaEQt2jI6tj+j5DRFN6dqiJz+IqHee7/F86nKPxY35nTuMsYdX//MfrW16Ofmc2XZ88qH79Zxj2/eqjOrtLZYat7+Z87GBtjPHtHdu/dS1r9avOvuxtmVL6hyQpFdeeVVr1/4ny7cnPv+tN9909E/yz7xvJuVWt6Wu5+mfs7yPpbVvRtMea7vEd7z5j8e18UVp4wbve5A9W/ehXx2Vq4gVVUvc0kfrn1H6LavUNihTc/J7nW225x9/SK+0JvioaL3XMrAmf+V0fp8kDYu+t9tf93dnW7ZsCfS6op6Addttt+lnP/uZbr31Vo0aNUp///vfdeaZZ6qxsVGrV6/O+XMvvPBCrVmzJvn3pk2b1KdPHy1dulS1teFSBKB9NDU16QcvJsIvjhkzWsun9NGbD76qP76RajCtWL6nIhFLZzz6l7T3Ll++PNR32e/v0qVey5dPaWPJw1m6rEWvb9iqPb7xSOqxJUt00VOJEJsrJ/TW8uWjcv785ZIOfX+z+tRX5BTefc6CbaqIRV3z9G5/9r/62X9eSHxPyG1uW7SkWQ++/KEWj+iW13DCNvPYuOPk6RrVmH6+z5y/XXGlhyt96d710puvSJJO2G+hutUkntszHtf69zdrUNeqQHnW587fpiN+9KTe2LBVkrTPXrlto1w88Yd10ruJ1keu+8bJ3JaLFi5IptVZuKRZ727arn6t6VsWLtiiLlWlaSlbZs7frlc+2KxJfTu3KXXNoqUtenPDlmRamalzt+vl9z7VjBChwAvhrMcS22ba9OmaNqDt4e3tbT2yTxctXz45+fi46Z/qn//dpJXjGpLny7amZl3990RdeeRe89SvPjUzZfZ87/M3iEVLmvW/TdvUv0ue7pK7fP5Tb3ykod2rk+eZJP1uw7N65d/vS8rf8ZuL5ZL2/2Czln49UT9PmjRJi0f4p6d7Kv6i/u+xNwK/3s/cRTv10ZYm9e6cnsLquucSx0enujotXz49WdYDPtisxk4VKmu9K/fah5v1pb+nri3mtpw1f5tKSyLqXJma+WGe49MmjdfycakUKh8+9ob06osZn5PN/MU79e5HW7TuqYe1ZMkSxWK5HYvbm5p1xbOJ43zOnLka0iM9/dasBU3asqNZDXX+6Vm82L+9oqJCy5fPzekzitFXXnxIG7YnrkHO/TZn4U59sq2pzSnS3ty4RVc8+7Ak6TcnTdPoxtq8Xc/f/dvruuP1xA30bMedefwWot6wP780FtPy5cva9FkP3/FP6d3EBI1Fixape032kejHX92gb/7zKUnSihWp32eXa/bUidpjVGqByoVP3yu1rsr/0tF7JPfJ1156WK99mOg0htmmF68cp+Vjevq+fsa87YrH42lpk0zbd7bovCfukSTNmTNHw3u2LT2ubfPTb+kXr/xLknT8QZm/6f/970lp00ZJ2etBL/a2iEQiafvffrzSqDsWLtiq5pa4qsui6pIlHH5Y9vcNHDhQy5e5p2J1e72U23lhv7+mulq/P2OKdrbEAx2vYS3bI657X3xPi4Z3z9pOzNbv+9LfE88P7d8nax8q9fuqtHz57OTjdv9sYNfKtPrM67u/uf4RrX9/sySpb5/eWr7cP830O4+8pjtef8m1/MWsqalJW3berblz56mhc2Hahm01f/FOffDpDvU12sN+vM6RZFt85Cgtn557SqhPtu3UBU/eJ0k6eFKvrMfkB59u1yVPPyBJWrJkcTK91SdPvSX9J1HP7dU6BpLtN3Qku0wnLh2fvHbYj8WiVrKc//t4m771rwclSccfsCSt/3jDvx/W6xuCXa9mzt+RVj/tGY/r+Pc3a0DXqkB9zzkLd2rTtib1cmkTfXP9I3p36+a0cozZuEXfWZdo+/zklMVp5c6n6XO36INPd2hCn04F+fxc2fty0sQJ2nO0f9vAzVOvb9TX//mkJGmvFR13zNq/Y4BxTbUfqyqLavnypZKUSP/5r6clST27d9Py5ZPyWo7zn7pHao1m5XesO8ddlks67P3N6usY69v89NvSf/6Zet+iheqZJYVlR1gu6QiX8ne0CTO3aOOWJo3rXZf1tW9/tFWXP/NQ6r0TJmRtLxeDpqYm3X333W3qn4exZzyuz32wRf3qK9qU2mfuop36+r3rdeLcAVlTTgW1YvEW9agty0hxWEiLd7bo9Q1bNKS7f0rx3UGXVzfo2+sSfdjFi4P1e/0s2yOue9a9p0XDu7XpWHrgNy/oyfcTi1f798veZ/CyZzyu47K0N5a1xPXqB5s1qFtVxjjJDEf7xc3rG7bo6r8n2hx7LFumCsdKp5UfblZDbbnKPI7hn/3vSf3nk/S+8PNvfSz94/Hka5zXnsVLW/TWxq0a2C1Ye9/sO72+YYtveXLx8dam5H0y08lzB+g7D6ZSQjt/x7lPJK7pgwYP1vLFg9OemzF/h+LxuGtdUuixcATz8nufSn//mySpX0M3LV+eSpE6d9FOPfPGR5o5sD5rXXDtvx6UdmxL/j1w4AAt38M/7Z3dHuzbN/f6IYyzH8+tP+e8ntvlXjG6p5YvH6s943Gd9v5mVZZGVVteoprytl/znePvv3z3Kb28aYNn2ffJUkflymtM2+wbd6mr1vLlsyQl+p2XP5Pod952/FRN6Nsp7X1LFmxR1+pSVeWpX2d+3wNnz9G2ppbAdSqKk51VL5uinoB17rnn6oILLkimEhwzZoxef/11XXPNNVq9erV69kx0ZN599101NKRuDL777rsaP3685+eWlZWprCzzghqLxdqls4G2iZWUKBaLKRpNVdSWJZWVud8wyXWfRiJWux8PsZg0vDH92CwrM8pgtb1Mwxo75fzePl28v7ukJLU/ci1jLBbT8nG9cnpvWOP7ZU7S6dk5s9xRI2dBSawk7beN7BUgTEWrvl1jqiqLSUrc/G7PY8syOn6F+N6y0tLk58ZiMdVUpgb0BvfIHKhq6BxTQ+e2Dy7EYtKIXqnzJV+fmy8lJSV53d6W4/wf2auzRvbqnPaaZqWO15jj+/3O3yBisZiGVBZusDYWi2n+8MwBSnNQoqOv0UMbOiX/HWT/ptUfbTweOsdi6lztPTnGeXyYZZUSE0VM5mt7Zzk2yksdZbeM4yzEb6qLxVRZWqJ1aluby4qkrjfOelmSuubpOHFu011d1OdaUB+Lqb6mbZOvJClWkl5HleaxUx2J5HbcFXIf5qOtWGK0Z4PWE5Gof5ur1HFemFHWS0tTbRcj20uo35FRJ7joVe//fCSa+vJoNH/Xy2iWbWOmtQ1TD7qxLPfvMOuOAd0LX4dEIpHQ268t29uyLPXoVLjBopikFeN65/Zer98Voj53ntdu/TO/7zbbLWUl0azfG4m0vQ/VUWpiUkPnqqItd10sprqq3K5tbr8pl3PNVGakcwlSj5aUpNLRlBrtJsu4HnqNgUjFdzxFopnnQ4mxTUtKUqkgEu3E1HCleYMx2+/q0Snz+REh+u1+bSK3fonZ9qkoK1WsQDfuB3av08Dc13IUnLPvGVTUSJFSDMes23leYbSrzPKWuBzTbRW0beYcd5Gk4S5jfVHHjchYSfGOe7uVv6MNchnP8lJSkp6KJBqgDVBM2vOeyPDG4HWyl86xmL64ckweSpMyuGfw/Z0vsZg0slcRhqUrgPLS1PFVmofjLSZpr/G59RlM5oSNaBvr9WztjZjPa9zaL05lRtkSY2Hpt3aH9Ozk+/6Iy5iQObZgPp76WxpWEfwYNftOQ3q2/Vx3Km12f7yzY/KU1360XMZwevps+0KPhSMY8zh1tr86x2JaNDJYn885NdKygvfv2toXDCoWtdSUCDed0/c5r+dmvzPMvcwgnOPvZrvTrezZ6qhcBRnTNsfvSmOpimRgj9qMsua7PWD2c2sqy9WvKv91I9pX4HqjwOVoky1btqTdbJESDaGW1tVAAwYMUM+ePXXvvfcmn9+0aZMef/xxzZgxo13LisKzxyHsC6W5UMC8sdSjNj8dFyvjktwxosYPLcQq83zpVLnrDCyEYU6gKG3jSrzmlpbsLyqA7jWF7Sh0XJqA4lZVmt85zg112TsTZr1YWoy5YHLQEi/OsP015eH2b9jXh9WnPktHow3XtBJHW8ycwNARzIlE5SWFW526u61wixQgsqRTmVHvtMPXdbgBXdt+jKx/75Pkv0sCXlCzXV9qHSvZvMppR00Iq1OAKFHZmD/VuXK3Leoq/MvWq3P+0s0P6uY+6bt/1/ZNad/eNXKxXpf9hClyvzbW/Q3GqsuSaPZzup7Bt11GfRsjbJjX4SDXZLPvaR5LLT7tsEGtK2mLsX9W47KC2Lw+mX2X6C7UiPistX281OYYZTleZNcUt/IMMK7rlUabxS1KWlsNzEPb0uRsF8XbvdXw2eEcfymyQxvocObkn7ZkQ8i32556K/nv3z7jnzq8o5n95lzG+Nzek8++eHvwakM7xy29dPBwJnJkjv326pT7fS5nXz/c4dA+9VY+xhlNn+X+SRBBx2HbwjzOdqV+LtquqCNg7b333rr66qvVt29fjRo1Ss8++6xuuOEGHXPMMZISq8/OPPNMXXXVVRoyZIgGDBigSy65RI2Njdp33307tvDIO7uishtaXpXVlStH64T/e7qdSlUYR83op1seTeQUjkYsff+oyfrT8//VKQsGZ3lnx5k/tLtWTeurUY3tv2IoqMOn9dWtj7+hv12wMPB7qo1JE2294bizg1r5x88ZqFc/2KxlowoT/rwQ6SJ3ZZfsNVJvb9yq0b3yk9L2/x07Tb986k19YfmIrK8tK4nq3GXDtHVHc6AJW7uCYuscX7lylNa/92no9JL5SEfp5ufHT9fPHn9dl+3tHwa5LadpzHEDubmDR5Mty9L5ewzXx1ub1DfHCSR+fn3SDP3kb6/p4hUj8/7ZHaodquruteX6/MLBKiuJqKyAk+OCOnJ6v4J87m9PmakfPPyqLtxzeJs/66nXNyb/HTRF3djedTp6Vv+MtFpXrhyll9/7VNMHptc3Nx8xSdfd9aJOmjso7fHrDxyrq/60TkfP7J/1O68/cKzO+/XzOnxa37zUZ5Zl6cI9h2vD5h15HWBaMrKHDpvaR+M9UjRdutdIxeNxHT4t9zRif/z8bH3ngf/ovGXpoepvP3mGfvTIa7p4RfbrdT4V283rYhTkhvNtJ87QLY++pkv3Clb3f2H5cH1p7YsZj5++cLAefCmROjnIjYCV4xv1+KsfatqAjk2hDW/XHTBGT7y6UXu0sS9ltsWCTMCqq4zpjEVDFLGstIm1fn3KH66eoi//5d86ed4gz9e0t2v2H6N/vP2x5g3tlnzsD6fN1s0P/kfnL0tdR7tWl+n0hYMVi0Z2qZuBdtunPBYtirZPe7ty39F66Z1PNHNQbnVYsV3BzEvqb06ZqR8+/GpaP3x8n04a2LVKr3ywWecs9U9Zk4vvHjlJ19+Vv3N46cgeaX+3x4KMz6ruNYm64Jv3rZdUfMc20NHSJ6J3YEF8bG3yCK9UJOy2UkmObSW3rsnwnvkZu24vXsdObDdZhAx3/btWaURDrdb9b5PWtKH99dWDx2nVDx7Xqx8kUoqHG0ppnyv7d4+crK/c9W+dPL94+nNBFds9wq7VZfrg0+0Zj5uLCiPtcEEyF1BFAyzSw+6jqCdgffOb39Qll1yiU045Re+9954aGxt14okn6tJLL02+5rzzztPmzZt1wgkn6KOPPtLs2bN15513qryc0JC7G7tetOtxc7WEmaO5a56iRHXk9cK8ERWxLC0Z2UNLHAMnxSYSsXT1fvkN/5xvX9pvjL4Usoz5vKnVUVFjKkqj+toh4wv2+cXace4ox84ekNfPmz2kq2YP6Rr49acW8UTNXBRbpI0jZ/TP6X2F6oTMGNRFMwLc8GhLh8L53o6OgCWpoB3Ryf3rNbl/YSbMdaT2uuFydgFuRuVq1uDCTGiY0Lezbjq8c/YXBpBLFWdZluukS6/6qW+XSt10+MSMxxvqKlwfd3Pw5D46eHKfUOXM5sQCTBCIRixds/9Yz+e71ZTpWwF/s5fRvepct9ukfvWa1K/96472rpI7/gqQgwCFnjqgXlNDTC70WnRiRoFxTmB2UxKN6PoDxwX+XrS/Q6b01SFTcp+0aTMvw0EDK5+1ZGjGY37nfP+uVYHr9fZy2NS+Oszx2Jje7vVoW26otAevplQxtX3aW6Emu3cU8/Sa2LezJjrae5Zl6b5z5hfs+/t1ye85HIlYOmHuQH3vwVckEQWh0M5eOiw1AavIxjGAjmYOK7XHDe/dVVvaSl5Rs24+YqJO+n/P5Py57clrXCvGMbXb+/MZc9r8GY2dKnT/OfPV/4I/SSrOyKADulbpplXF1Z/bVY1qrNUDrYvjTOa9pvaISGU2CYmA9dlS1BOwampqdOONN+rGG2/0fI1lWbriiit0xRVXtF/B0CGSKQhbKykzDL85gLk79HHNm9vFFJYXbVMMkxYKgWMUKH75PEv9Ut+geH0Wq+rdoU0IZNPux/kueF4Vosheg//m4yVtTF+O3Yt506st5y3tMOxOiq2tVmyLf/IhbPQ9ACiEsKmYkX9em313uPTR70Iuwh37u2a91Z6lLrYt5NWuNx9uj+uRWQ4uf58tXJmwy7DrKfsGolfDfXC36jZ9jx0toSNX8t334nvJf38Wb5gWk3wOwNkRW/Ya25C3zywGxRZeFLuXXXkQfJ/xjZKkgd3ym789F23pUIx2RPlYMioRkbFbniJOon0cP2egJGnxiOKOqOll/rDukqQ6I7qMF/twn9A3P1GqCun6A7yjNQF+BrZGzN1rXLB25XGtETpPXZBb5LHlYxLp106YOzCn9xdCtrKMakyk1DhwUu+8f7fXAgTzcVZi71pqywu7PtE8HO41+vthdXQq6M8yuy1V7NHJdyXDetZ0dBHS7I6n1/4TUtdAM50pCsOOfrk7RlQG2qJP50rFopY6VcZUTrq4DnFE670uZ9Tfif0S4ya7wvB+qWOiVUUsqq7VpWmpkA9y6fv1qa+QJO05um0pxQF4WzUtETU6TGTxQjrC4/6+eT+jtB2uRz1qU9nanHUYdm9FHQELMKUiYKX/X0q/sVxXGdOjFy7Uveve00GTww+2//hzU/Xmxi0a1MaJXG3x8dam5L+Z3LL7OHxqX00bUK/+XTp+MkZbHTd7gH7w8KuSmCSIwmpp6egS5G5i38766znz1bOu49Mim5eSqSEHg50TrYb3rNVD5y1Ql+rSfBQN7eTASb01oW9n9e9S2dFFycng7tV66LwFqq/Kftw9f9lSbdq2syjOvWwOntJHjZ0qNKKhuG5AovitPWOO3t20Tf0Ctiu/sHyEDpnSR4O759bH+cahE7RmyRYNKoJJxbbz9xieTKu0b+ukZ9PtJ8/U/z7elpbePV/McbOuxvUwSgSsXdbfL12qv/zrXS0c3r0gn2+OWWxvas75c3bXqMq7gl29LVWM6qtK9eiFC1VZWhzD07tj2rhhPWt0+8kz1bW6tF1uMn3WPXPJEm3atlO9OlV0dFGAolJXGdMD5y5QaUmENnIHWTaqp+49e576dE5vx/SoLdffLlio6gIvRsgHZ/rK+8+Zr1jUUpfqMj18/gK9/8l2je3dKeN9fzlznt77JHjfGZ8NYdp9u+ot2vYs91KPOqajLBvlPuGyPBbVExctUtSy2iWzT0Vp4vtKIhFS8H7GFP9VFWhlXw7tgUtzANNZUTbUVXjOcM2mtCTSoZOvJGln8+436LOryuf4m2VZGtx997jBWhZLdZYJHY1CKsZ87GH0L8BN31yYp6l5/uaqT31xdKYQXOIa1LHtm7YKetzVlMdUswut8J89pGtHFwG7oPJYNNQAciRiaUiP3NuhJdFI0dUhZh/QbdFKeSxakMlXUnr7tzwWNcqRek1JlDbyriQSsbRHAVfFm8dGrA2TIEhB2HF2h7ZUMWqoK56JKrvr2TWpX/FHhd1d7Gr9EKA9NTIxscN53fPaVfeNueiud+dK9faY+FFRGq7vjM+G3bXd15E6+r56UN1r2nfBbnt/H4oD082xy7AnwtiD6+ZwdnvMVG1P5Xm4OY78oCHmrlhWqGL3t6sOAhQb80Zx785sUwDA7sUM694ezBTJZhj59BSE9OmQYk4SbEsasM4BIkHubpj4j/ayGwbAAgBgt2JHGKwu494E2qZbdVn2F7XaVe8+M/EwoS/9SXQArlLYZSRTENr/N656u1sAnqE9avTcWx93dDEgBuC8dK5MDfxX0eFBAV28YqSamuM6ZHKfji7KLs28TJ40b1DW1w/vWaMX3/mkcAUCACAPfnDUZP3h+f/qtIWD2/V7t+5I5Ug2U/WaE7B2t0VCyJ8xvetyfu/Bk/vo2Tc+0tyhn53oiVfvN1plJZGco5wDQe3q0ZcBALk7a/HQji4CArjl2Km64S8vtXv/D7uPm4+YqLv++a6OmzMw8Ht2tfvP31k1UWtfeEdHzvhs959uO3GGbnn0NV2y18iOLgo+g7hrjl1IeupBcwVpdFe7AmbBkE/xYAAO6Fj1VaX65mETOroYuzzzmllRGvV5ZcL0gV2YgAUAKHqLR/bQ4pE92v17ze6nGWUyLc0cKQjhoS3jF6UlEX314HF5LE3x615Trm8dPrGji4HPADJ8AsBnV2MnUkTtCgZ1q9ZNq2gXInd7jG7QHqMbQr3H2sViYO05pkF7jgn3G3dHUwfUa+qA+o4uBj6j2hwTf9OmTbrjjju0bt26fJQH8GRHIrIXEu/OKQhbGPUpGkTAcrebzXkEdnvxkJVZC5UfAACevJrC5sSayG7WR0X+7G7jF8Dugi4QAHx2WQx2A/BA9QAgrNATsA4++GB961vfkiRt3bpVkydP1sEHH6yxY8fq9ttvz3sBAZud5MG+2JkrjSO72RXwgEm9JUmjGms7uCRYPCKxor5riJzQnwUzB3WRJFUGiKQDYNezz7hGSdLg7tUdXBIAAIqP1w2amvJY8t8bPt3RXsXBLoYJWEBxGdajRpK07/jGDi4JAKCjTCNKCgAHe1zcHicHgKBCpyB88MEHddFFF0mSfvvb3yoej+ujjz7ST3/6U1111VU64IAD8l5IwGQlUxCmHou0OZZbcZk1uKvuP2c+oW+LwLCeNXrw3AXqWlPa0UUpKv26VOmh8xaocxXbBdgVhF3JN7l/vf56znz1rOM6BACAk9dltbRkN+uYoiBKmIAFFJXfnTZL73y8Tf27VnV0UQAA7ai+qlQbNicWTfSpr+zg0gAoNn/8/GzaiAByEnp08OOPP1Z9fWI2+J133qkDDjhAlZWVWrFihV5++eW8FxCw2aHA7aFKM+pVdDeLgCVJA7pWqayE6ELFoG+XSlWWhp6vutvrU1+p6jK2C7ArCJuCUJL6d61SeYzrEAAAudgNu6jIE9JTAsWlPBblxhoAfAbRJAPghzYigFyFnoDVp08fPfroo9q8ebPuvPNOLV26VJK0ceNGlZcTJQGFY986jrhGwKK1DACAl5JoqslXGiU6BwAAbWEuQojLfZJzU3P4yc/4bNgdF5ABAADsagYwsQIAABRA6NAlZ555platWqXq6mr169dP8+fPl5RITThmzJh8lw9IsoN32OkGrd08AhYAAPlSVxHTWYuHqiUeV6dKUocCANAWoxprk/+25N4XJR0hvLCADAAAoOPdeOgEfWntOh07e0BHFwUAAOxGQk/AOuWUUzRt2jS98cYbWrJkiSKts2EGDhyoq6++Ou8FBGz2+mF7gNscsowwAQsAAF9nLB7S0UUAAGC3YC4GinjMs6oqJY0v3DF6AQAA0PF6darQTYdP7OhiAACA3UzoJZlXXHGFRowYof3220/V1dXJxxcuXKh77rknr4UDTMkJWK2jlZEAg94AAAAAABQKi4EAAAAAAAAASDlMwLr88sv16aefZjy+ZcsWXX755XkpFODGTkForzY2x7mjhPAHAAAAALSTGQO7SJJWTeuX9nhdRUySNGdot3YvE3YNTNoDAAAAAADYPYVOQRiPx9PC7duee+451dfX56VQgB97rhUpCAEAAAAAHeGnx0zVmxu3aFC36rTH/3bBQm3YvEN96is7qGQodgxfAAAAAAAA7J4CT8Dq3LmzLMuSZVkaOnRo2iSs5uZmffrppzrppJMKUkhAklpa/x9JRsAyUhAyggkAAAAAaCelJZGMyVeSVFVWoqqy0Gvd8BnC6AUAAAAAAMDuKfCo4I033qh4PK5jjjlGl19+uerq6pLPlZaWqn///poxY0ZBCglIRgrC1r9JQQgAAAAAAHYl9dWlHV0EAAAAAAAAFEDgCVirV6+WJA0YMECzZs1SSQkrOtEx7MhXESJgAQAAAACAXcCNh4zXw+s/0MGT+3R0UQAAAAAAAFAAkbBv2Lx5s+69996Mx++66y79+c9/zkuhADetAbCSka/MKVfR0EcyAAAAAABA+9h3Qi995aBxijGAAQAAAAAAsFsKPepzwQUXqLm5OePxeDyuCy64IC+FAtzYKQjtaFcR4+glAhYAAAAAAAAAAAAAAAA6QugJWC+//LJGjhyZ8fjw4cO1fv36vBQKcGNHwIokI2AZKQgjTMACAAAAAAAAAAAAAABA+ws9Aauurk6vvPJKxuPr169XVVVVXgoFuLEjYCVTEBpzrqJEwAIAAAAAAAAAAAAAAEAHCD0Ba+XKlTrzzDP1n//8J/nY+vXrdfbZZ2ufffbJa+EAkx0By2qdbGUZk66iRMACAAAAAAAAAAAAAABABwg9Aev6669XVVWVhg8frgEDBmjAgAEaMWKEunTpoq985SuFKCMgyZiA1fp/c84VAbAAAAAAAAAAAAAAAADQEUrCvqGurk5/+9vfdPfdd+u5555TRUWFxo4dq7lz5xaifECGiB0BS0YELGZgAQAAAAAAAAAAAAAAoAOEnoAlJVK/LV26VHPnzlVZWVlaKjigUFpaQ2DZE7DMCFikIAQAAAAAAAAAAAAAAEBHCJ2CsKWlRVdeeaV69eql6upqvfrqq5KkSy65RD/84Q/zXkDAlkxBaM+1SktByAQsAAAAAAAAAAAAAAAAtL/QE7Cuuuoq/eQnP9H111+v0tLS5OOjR4/WD37wg7wWDkjTOgPLnmtlpiAkABYAAAAAAAAAAAAAAAA6QugJWLfccou+973vadWqVYpGo8nHx40bpxdffDGvhQNMyQhYIgUhAAAAAAAAAAAAAAAAikPoCVhvv/22Bg8enPF4S0uLmpqa8lIowI09ASvSetSaaQcjpCAEAAAAAAAAAAAAAABABwg9AWvkyJF66KGHMh7/9a9/rQkTJuSlUICbeOsMLHuylRn0iglYAAAAAAAAAAAAAAAA6AglYd9w6aWXavXq1Xr77bfV0tKi3/zmN/r3v/+tW265RX/84x8LUUZAkpmCsPX/aROw2rs0AAAAAAAAAAAAAAAAQA4RsFauXKk//OEPuueee1RVVaVLL71U69at0x/+8ActWbKkEGUEJBkTsFpnXpkpCKPMwAIAAAAAAAAAAAAAAEAHCB0BS5LmzJmju+++O99lAXylUhAm/m9OubJIQQgAAAAAAAAAAAAAAIAOEDoCFtBRnBGwIsakKwJgAQAAAAAAAAAAAAAAoCMEioBVX1+vl156SV27dlXnzp19ow1VV1dr1KhRuu666zR27Ni8FRSwJ2DZk60ipCAEAAAAAAAAAAAAAABABws0AetrX/uaampqJEk33nij72u3b9+utWvX6uijj9bTTz/d5gICNjsFodWafNCcB0gKQgAAAAAAAAAAAAAAAHSEQBOwVq9e7fpvL3vuuacmTZqUe6kAH25zrf70/H+1ZsnQ9i8MAAAAAAAAAAAAAAAAPtMCTcBy89RTT2ndunWSpBEjRmjy5MnJ5/r06aP33nuv7aUDDMkIWFb635L0n/c3t3+BAAAAAAAAAAAAAAAA8JkXegLWW2+9pcMOO0yPPPKIOnXqJEn66KOPNHPmTP3iF79Q7969811GQJJkz7ey0w2SdRAAAAAAAAAAAAAAAAAdLRL2Dccdd5yampq0bt06bdiwQRs2bNC6devU0tKi4447rhBlBCSlJmBFmHgFAAAAAAAAAAAAAACAIhE6AtYDDzygv/3tbxo2bFjysWHDhumb3/ym5syZk9fCAaZkBCwxAwsAAAAAAAAAAAAAAADFIXQErD59+qipqSnj8ebmZjU2NualUICr1hlYpB4EAAAAAAAAAAAAAABAsQg9AevLX/6yPv/5z+upp55KPvbUU0/pjDPO0Fe+8pW8Fg4wJSNgMQELAAAAAAAAAAAAAAAARSJQCsLOnTvLMma9bN68WdOmTVNJSeLtO3fuVElJiY455hjtu+++BSkoEG9NPUgKQgAAAAAAAAAAAAAAABSLQBOwbrzxxgIXAwjOngvYEo8nH3vkgoUdVBoAAAAAAAAAAAAAAAB8lgWagLV69epClwPwFTcmW0VaZ2C1pB5SY115excJAAAAAAAAAAAAAAAACDYBy/T222/r9ttv10svvSRJGjZsmPbff3/16tUr74UDbOZkKyv5WOpBM0UmAAAAAAAAAAAAAAAA0F5CTcD69re/rTVr1mjHjh2qra2VJG3atEnnnnuubrjhBp1yyikFKSQQT5tslfj/oG7VHVQaAAAAAAAAAAAAAAAAICES9IV/+tOfdPrpp+u0007T22+/rY8++kgfffSR3n77bZ1yyik644wztHbt2kKWFZ9hRgCsZLSruoqYHrtwkf5+6ZKOKRQAAAAAAAAAAAAAAAA+8wJHwPryl7+sCy64QFdddVXa4w0NDbrhhhtUWVmp66+/XsuXL897IYG0FIRGtsGedeXtXxgAAAAAAAAAAAAAAACgVeAIWM8884yOPPJIz+ePPPJIPfPMM3kpFJDBTEHYgcUAAAAAAAAAAAAAAAAATIEnYDU3NysWi3k+H4vF1NzcnJdCAU5uKQgBAAAAAAAAAAAAAACAjhZ4AtaoUaP0u9/9zvP5O+64Q6NGjcpLoQAnIwCWIsy/AgAAAAAAAAAAAAAAQJEoCfrCU089VSeffLLKysp0wgknqKQk8dadO3fqu9/9ri6++GJ9+9vfLlhB8dnWkpaCkBlYAAAAAAAAAAAAAAAAKA6BJ2CtXr1a//jHP3Taaafpwgsv1KBBgxSPx/XKK6/o008/1emnn67Pfe5zBSwqPsvSUxB2WDEAAAAAAAAAAAAAAACANIEnYEnSV77yFR144IH6+c9/rpdfflmSNG/ePB166KGaPn16QQoISOkpCJmABQAAAAAAAAAAAAAAgGIRagKWJE2fPp3JVmh3cVIQAgAAAAAAAAAAAAAAoAhFOroA2bz99ts64ogj1KVLF1VUVGjMmDF66qmnks/H43FdeumlamhoUEVFhRYvXpyMzoXdBykIAQAAAAAAAAAAAAAAUIyKegLWxo0bNWvWLMViMf35z3/Wv/71L331q19V586dk6+5/vrr9Y1vfEM333yzHn/8cVVVVWnZsmXatm1bB5Yc+WamIIwwAwsAAAAAAAAAAAAAAABFInQKwvZ03XXXqU+fPvrxj3+cfGzAgAHJf8fjcd144426+OKLtXLlSknSLbfcoh49euiOO+7QoYce2u5lRmG0pKUgBAAAAAAAAAAAAAAAAIpDUU/A+v3vf69ly5bpoIMO0gMPPKBevXrplFNO0fHHHy9JevXVV/XOO+9o8eLFyffU1dVp2rRpevTRRz0nYG3fvl3bt29P/r1p0yZJUlNTk5qamgr4i5Arc7/s3NkkiyhYAADscuzrOe0tAAB2XVzPAQDY9XE9BwBg18f1HGg/Qc+zop6A9corr+g73/mO1qxZoy984Qt68skndfrpp6u0tFSrV6/WO++8I0nq0aNH2vt69OiRfM7NNddco8svvzzj8b/85S+qrKzM749AXnzSJNmH65///OcOLQsAAGibu+++u6OLAAAA2ojrOQAAuz6u5wAA7Pq4ngOFt2XLlkCvCzQBa8KECYEjDj3zzDOBXhdES0uLJk+erC996UvJcrzwwgu6+eabtXr16pw/98ILL9SaNWuSf2/atEl9+vTR0qVLVVtb2+ZyI//+u/FT6am/yZK0fPnyji4OAADIQVNTk+6++24tWbJEsViso4sDAABywPUcAIBdH9dzAAB2fVzPgfZjZ9XLJtAErH333Tf5723btunb3/62Ro4cqRkzZkiSHnvsMf3zn//UKaecEr6kPhoaGjRy5Mi0x0aMGKHbb79dktSzZ09J0rvvvquGhobka959912NHz/e83PLyspUVlaW8XgsFqNyKlIlJYn9YlliHwEAsIujzQUAwK6P6zkAALs+rucAAOz6uJ4DhRf0HAs0Aeuyyy5L/vu4447T6aefriuvvDLjNW+++WaIImY3a9Ys/fvf/0577KWXXlK/fv0kSQMGDFDPnj117733Jidcbdq0SY8//rhOPvnkvJYFHSsej0tS4EhsAAAAAAAAAAAAAAAAQHuIhH3Dr371Kx111FEZjx9xxBHJyFT5ctZZZ+mxxx7Tl770Ja1fv1633nqrvve97+nUU0+VlJiMc+aZZ+qqq67S73//e/3jH//QUUcdpcbGxrSoXdj1xVv/H2H+FQAAAAAAAAAAAAAAAIpIoAhYpoqKCj3yyCMaMmRI2uOPPPKIysvL81YwSZoyZYp++9vf6sILL9QVV1yhAQMG6MYbb9SqVauSrznvvPO0efNmnXDCCfroo480e/Zs3XnnnXkvCzpWPJ79NQAAAAAAAAAAAAAAAEB7Cz0B68wzz9TJJ5+sZ555RlOnTpUkPf744/rRj36kSy65JO8F3GuvvbTXXnt5Pm9Zlq644gpdccUVef9uFA9SEAIAAAAAAAAAAAAAAKAYhZ6AdcEFF2jgwIH6+te/rv/3//6fJGnEiBH68Y9/rIMPPjjvBQQkUhACAAAAAAAAAAAAAACgOIWegCVJBx98MJOt0K5a7AhYHVwOAAAAAAAAAAAAAAAAwBTJ5U0fffSRfvCDH+gLX/iCNmzYIEl65pln9Pbbb+e1cICtdf4VKQgBAAAAAAAAAAAAAABQVEJHwHr++ee1ePFi1dXV6bXXXtNxxx2n+vp6/eY3v9Ebb7yhW265pRDlxGecnYKQ+VcAAAAAAAAAAAAAAAAoJqEjYK1Zs0af+9zn9PLLL6u8vDz5+PLly/Xggw/mtXCALZ5MQcgMLAAAAAAAAAAAAAAAABSP0BOwnnzySZ144okZj/fq1UvvvPNOXgoFOKVSEHZsOQAAAAAAAAAAAAAAAABT6AlYZWVl2rRpU8bjL730krp165aXQgFOyQlYHVsMAAAAAAAAAAAAAAAAIE3oCVj77LOPrrjiCjU1NUmSLMvSG2+8ofPPP18HHHBA3gsISFJL6wysCCGwAAAAAAAAAAAAAAAAUERCT8D66le/qk8//VTdu3fX1q1bNW/ePA0ePFg1NTW6+uqrC1FGQK0BsEhBCAAAAAAAAAAAAAAAgKJSEvYNdXV1uvvuu/Xwww/r+eef16effqqJEydq8eLFhSgfkBDP/hIAAAAAAAAAAAAAAACgvYWegGWbPXu2Zs+enc+yAJ7iIgUhAAAAAAAAAAAAAAAAik9OE7Duvfde3XvvvXrvvffU0tKS9tyPfvSjvBQMMLW0RsBi/hUAAAAAAAAAAAAAAACKSegJWJdffrmuuOIKTZ48WQ0NDbKYEYN2ELcnYHVsMQAAAAAAAAAAAAAAAIA0oSdg3XzzzfrJT36iI488shDlAVyRghAAAAAAAAAAAAAAAADFKBL2DTt27NDMmTMLURbAkx0BixBYAAAAAAAAAAAAAAAAKCahJ2Add9xxuvXWWwtRFsATKQgBAAAAAAAAAAAAAABQjAKlIFyzZk3y3y0tLfre976ne+65R2PHjlUsFkt77Q033JDfEgIiBSEAAAAAAAAAAAAAAACKU6AJWM8++2za3+PHj5ckvfDCC2mPW0yOQYG02BGwOMQAAAAAAAAAAAAAAABQRAJNwLr//vsLXQ7AV7w1ByHzrwAAAAAAAAAAAAAAAFBMImHf8PHHH2vDhg0Zj2/YsEGbNm3KS6EAT4TAAgAAAAAAAAAAAAAAQBEJPQHr0EMP1S9+8YuMx2+77TYdeuiheSkU4BTv6AIAAAAAAAAAAAAAAAAALkJPwHr88ce1YMGCjMfnz5+vxx9/PC+FAjK0zsAi/hUAAAAAAAAAAAAAAACKSegJWNu3b9fOnTszHm9qatLWrVvzUijAyY6ARQZCAAAAAAAAAAAAAAAAFJPQE7CmTp2q733vexmP33zzzZo0aVJeCgU4xeOJKVgWMbAAAAAAAAAAAAAAAABQRErCvuGqq67S4sWL9dxzz2nRokWSpHvvvVdPPvmk/vKXv+S9gIBEBCwAAAAAAAAAAAAAAAAUp9ARsGbNmqVHH31Uffr00W233aY//OEPGjx4sJ5//nnNmTOnEGUE1BoAi/hXAAAAAAAAAAAAAAAAKCqhI2BJ0vjx4/Wzn/0s32UBsiICFgAAAAAAAAAAAAAAAIpJThOwbNu2bdOOHTvSHqutrW1TgQA38WQSQgAAAAAAAAAAAAAAAKB4hE5BuGXLFp122mnq3r27qqqq1Llz57T/gEKIJ+dfEQILAAAAAAAAAAAAAAAAxSP0BKxzzz1X9913n77zne+orKxMP/jBD3T55ZersbFRt9xySyHKCCSRghAAAAAAAAAAAAAAAADFJHQKwj/84Q+65ZZbNH/+fB199NGaM2eOBg8erH79+ulnP/uZVq1aVYhy4jPOjoDF/CsAAAAAAAAAAAAAAAAUk9ARsDZs2KCBAwdKkmpra7VhwwZJ0uzZs/Xggw/mt3RAq7gSM7CIgAUAAAAAAAAAAAAAAIBiEnoC1sCBA/Xqq69KkoYPH67bbrtNUiIyVqdOnfJaOMCWioDFDCwAAAAAAAAAAAAAAAAUj9ATsI4++mg999xzkqQLLrhAN910k8rLy3XWWWfp3HPPzXsBARMRsAAAAAAAAAAAAAAAAFBMSsK+4ayzzkr+e/HixXrxxRf19NNPa/DgwRo7dmxeCwfY4h1dAAAAAAAAAAAAAAAAAMBF6AlYTv369VO/fv3yURbAUyoFIQAAAAAAAAAAAAAAAFA8AqcgvO+++zRy5Eht2rQp47mPP/5Yo0aN0kMPPZTXwgG2uB0DixyEAAAAAAAAAAAAAAAAKCKBJ2DdeOONOv7441VbW5vxXF1dnU488UTdcMMNeS0ckEQELAAAAAAAAAAAAAAAABShwBOwnnvuOe2xxx6ezy9dulRPP/10XgoFOLXOvyIAFgAAAAAAAAAAAAAAAIpK4AlY7777rmKxmOfzJSUlev/99/NSKMApHk9MwWICFgAAAAAAAAAAAAAAAIpJ4AlYvXr10gsvvOD5/PPPP6+Ghoa8FArwYpGEEAAAAAAAAAAAAAAAAEUk8ASs5cuX65JLLtG2bdsyntu6dasuu+wy7bXXXnktHGCLZ38JAAAAAAAAAAAAAAAA0O5Kgr7w4osv1m9+8xsNHTpUp512moYNGyZJevHFF3XTTTepublZF110UcEKis+21gyEpCAEAAAAAAAAAAAAAABAUQk8AatHjx7629/+ppNPPlkXXnih4q0zYizL0rJly3TTTTepR48eBSsoPtvsCFjMvwIAAAAAAAAAAAAAAEAxCTwBS5L69euntWvXauPGjVq/fr3i8biGDBmizp07F6p8gCQlJ/wxAwsAAAAAAAAAAAAAAADFJNQELFvnzp01ZcqUfJcF8Jacf8UMLAAAAAAAAAAAAAAAABSPSEcXAAgimYKQ+VcAAAAAAAAAAAAAAAAoIkzAwi6F+VcAAAAAAAAAAAAAAAAoJkzAwi4hHs/+GgAAAAAAAAAAAAAAAKC9BZqANXHiRG3cuFGSdMUVV2jLli0FLRTgFG9NQmiRgxAAAAAAAAAAAAAAAABFJNAErHXr1mnz5s2SpMsvv1yffvppQQsFONkRsJh+BQAAAAAAAAAAAAAAgGJSEuRF48eP19FHH63Zs2crHo/rK1/5iqqrq11fe+mll+a1gIAk2RkICYAFAAAAAAAAAAAAAACAYhJoAtZPfvITXXbZZfrjH/8oy7L05z//WSUlmW+1LIsJWCiIuB0CCwAAAAAAAAAAAAAAACgigSZgDRs2TL/4xS8kSZFIRPfee6+6d+9e0IIBbixCYAEAAAAAAAAAAAAAAKCIBJqAZWppaSlEOYBAmH4FAAAAAAAAAAAAAACAYhJ6ApYk/ec//9GNN96odevWSZJGjhypM844Q4MGDcpr4QAbGQgBAAAAAAAAAAAAAABQjCJh33DXXXdp5MiReuKJJzR27FiNHTtWjz/+uEaNGqW77767EGUEZM+/IgMhAAAAAAAAAAAAAAAAiknoCFgXXHCBzjrrLF177bUZj59//vlasmRJ3goH2OKtIbCYfwUAAAAAAAAAAAAAAIBiEjoC1rp163TsscdmPH7MMcfoX//6V14KBTilImAxBQsAAAAAAAAAAAAAAADFI/QErG7duunvf/97xuN///vf1b1793yUydO1114ry7J05plnJh/btm2bTj31VHXp0kXV1dU64IAD9O677xa0HGh/rQGwiIAFAAAAAAAAAAAAAACAohI6BeHxxx+vE044Qa+88opmzpwpSXrkkUd03XXXac2aNXkvoO3JJ5/Ud7/7XY0dOzbt8bPOOkt/+tOf9Ktf/Up1dXU67bTTtP/+++uRRx4pWFnQ/uwIWMzAAgAAAAAAAAAAAAAAQDEJPQHrkksuUU1Njb761a/qwgsvlCQ1Njbqi1/8ok4//fS8F1CSPv30U61atUrf//73ddVVVyUf//jjj/XDH/5Qt956qxYuXChJ+vGPf6wRI0boscce0/Tp0wtSHnQcixlYAAAAAAAAAAAAAAAAKCKhJ2BZlqWzzjpLZ511lj755BNJUk1NTd4LZjr11FO1YsUKLV68OG0C1tNPP62mpiYtXrw4+djw4cPVt29fPfroo54TsLZv367t27cn/960aZMkqampSU1NTQX6FWiLnTt3SpLi8Rb2EQAAuyj7Gs61HACAXRfXcwAAdn1czwEA2PVxPQfaT9DzLPQELFOhJ15J0i9+8Qs988wzevLJJzOee+edd1RaWqpOnTqlPd6jRw+98847np95zTXX6PLLL894/C9/+YsqKyvbXGbk3wvvW5Ki2vDhh1q7dm1HFwcAALTB3Xff3dFFAAAAbcT1HACAXR/XcwAAdn1cz4HC27JlS6DXtWkCVqG9+eabOuOMM3T33XervLw8b5974YUXas2aNcm/N23apD59+mjp0qWqra3N2/cgf7Y89aa0fp26du2q5csnd3RxAABADpqamnT33XdryZIlisViHV0cAACQA67nAADs+rieAwCw6+N6DrQfO6teNkU9Aevpp5/We++9p4kTJyYfa25u1oMPPqhvfetbuuuuu7Rjxw599NFHaVGw3n33XfXs2dPzc8vKylRWVpbxeCwWo3IqUpFoJPH/iMU+AgBgF0ebCwCAXR/XcwAAdn1czwEA2PVxPQcKL+g5VtQTsBYtWqR//OMfaY8dffTRGj58uM4//3z16dNHsVhM9957rw444ABJ0r///W+98cYbmjFjRkcUGQUSjyf+b8nq2IIAAAAAAAAAAAAAAAAAhlATsJqamrTHHnvo5ptv1pAhQwpVpqSamhqNHj067bGqqip16dIl+fixxx6rNWvWqL6+XrW1tfr85z+vGTNmaPr06QUvH9pP3P4H868AAAAAAAAAAAAAAABQREJNwIrFYnr++ecLVZacfO1rX1MkEtEBBxyg7du3a9myZfr2t7/d0cVCgTD/CgAAAAAAAAAAAAAAAMUkdArCI444Qj/84Q917bXXFqI8Wf31r39N+7u8vFw33XSTbrrppg4pD9pHPJ79NQAAAAAAAAAAAAAAAEB7Cz0Ba+fOnfrRj36ke+65R5MmTVJVVVXa8zfccEPeCgekJGZgWYTAAgAAAAAAAAAAAAAAQBEJPQHrhRde0MSJEyVJL730UtpzFrNjUCB2BCyLJIQAAAAAAAAAAAAAAAAoIqEnYN1///2FKAfgy85AyBw/AAAAAAAAAAAAAAAAFJNIrm9cv3697rrrLm3dulWSFLdDFAEFkIqABQAAAAAAAAAAAAAAABSP0BOwPvzwQy1atEhDhw7V8uXL9b///U+SdOyxx+rss8/OewEBSYq3xsAizSUAAAAAAAAAAAAAAACKSegJWGeddZZisZjeeOMNVVZWJh8/5JBDdOedd+a1cAAAAAAAAAAAAAAAAABQzErCvuEvf/mL7rrrLvXu3Tvt8SFDhuj111/PW8EAExkuAQAAAAAAAAAAAAAAUIxCR8DavHlzWuQr24YNG1RWVpaXQgFO9vwrMhACAAAAAAAAAAAAAACgmISegDVnzhzdcsstyb8ty1JLS4uuv/56LViwIK+FA5JaQ2Ax/woAAAAAAAAAAAAAAADFJHQKwuuvv16LFi3SU089pR07dui8887TP//5T23YsEGPPPJIIcoIGBGwmIIFAAAAAAAAAAAAAACA4hE6Atbo0aP10ksvafbs2Vq5cqU2b96s/fffX88++6wGDRpUiDICdgAsImABAAAAAAAAAAAAAACgqISOgCVJdXV1uuiii/JdFgAAAAAAAAAAAAAAAADYpeQ0AWvjxo364Q9/qHXr1kmSRo4cqaOPPlr19fV5LRxgS6Ug7NBiAAAAAAAAAAAAAAAAAGlCpyB88MEH1b9/f33jG9/Qxo0btXHjRn3jG9/QgAED9OCDDxaijIDirTkILZIQAgAAAAAAAAAAAAAAoIiEjoB16qmn6pBDDtF3vvMdRaNRSVJzc7NOOeUUnXrqqfrHP/6R90ICdgQs5l8BAAAAAAAAAAAAAACgmISOgLV+/XqdffbZyclXkhSNRrVmzRqtX78+r4UDbK0BsJh/BQAAAAAAAAAAAAAAgKISegLWxIkTtW7duozH161bp3HjxuWlUAAAAAAAAAAAAAAAAACwKwiUgvD5559P/vv000/XGWecofXr12v69OmSpMcee0w33XSTrr322sKUEmhlEQILAAAAAAAAAAAAAAAARSTQBKzx48fLsizF7Txwks4777yM1x1++OE65JBD8lc6oJV97FkkIQQAAAAAAAAAAAAAAEARCTQB69VXXy10OQBf9tQ/ImABAAAAAAAAAAAAAACgmASagNWvX79ClwPwZQdfY/4VAAAAAAAAAAAAAAAAikmgCVhO//3vf/Xwww/rvffeU0tLS9pzp59+el4KBpjiimd/EQAAAAAAAAAAAAAAANDOQk/A+slPfqITTzxRpaWl6tKliywjJ5xlWUzAQkEkI2ARAgsAAAAAAAAAAAAAAABFJPQErEsuuUSXXnqpLrzwQkUikUKUCfDGDCwAAAAAAAAAAAAAAAAUkdAzqLZs2aJDDz2UyVdoV8kIWB1bDAAAAAAAAAAAAAAAACBN6FlUxx57rH71q18VoixAVgTAAgAAAAAAAAAAAAAAQDEJnYLwmmuu0V577aU777xTY8aMUSwWS3v+hhtuyFvhAFvcDoEFAAAAAAAAAAAAAAAAFJGcJmDdddddGjZsmCTJMkISWYQnQoHY068skhACAAAAAAAAAAAAAACgiISegPXVr35VP/rRj/S5z32uAMUB/DHHDwAAAAAAAAAAAAAAAMUkEvYNZWVlmjVrViHKAniyMxAy/woAAAAAAAAAAAAAAADFJPQErDPOOEPf/OY3C1EWwFMyBSEzsAAAAAAAAAAAAAAAAFBEQqcgfOKJJ3Tffffpj3/8o0aNGqVYLJb2/G9+85u8FQ6wxe0QWAAAAAAAAAAAAAAAAEARCT0Bq1OnTtp///0LURbAU2r6FSGwAAAAAAAAAAAAAAAAUDxCT8D68Y9/XIhyAP5aZ2CRghAAAAAAAAAAAAAAAADFJNLRBQDCYP4VAAAAAAAAAAAAAAAAiknoCFgDBgyQ5ROG6JVXXmlTgQA38dYQWETAAgAAAAAAAAAAAAAAQDEJPQHrzDPPTPu7qalJzz77rO68806de+65+SoXkCYe7+gSAAAAAAAAAAAAAAAAAJlCT8A644wzXB+/6aab9NRTT7W5QIAbe/6VRRJCAAAAAAAAAAAAAAAAFJFIvj5ozz331O23356vjwPS2BGwSEEIAAAAAAAAAAAAAACAYpK3CVi//vWvVV9fn6+PA1wx/wrA/2/v3qOsrOv9gb/3cL8NI3IZCC+YCOY9L0gXUkPAzCNFpeYy77YMNNQKzRQvR00tdWkiejqJnpVGtVIPihfyhhal0lFDjqQeQj2eQZRgQASGmf37o5ifE6A4Antvfb3WmuXs5/nuZ3+ePeBHtm8+XwAAAAAAAAAoJ+97C8K99torhXeMISoWi6mrq8uiRYsyadKkTVocrFVs3oQQAAAAAAAAAADKx/sOYI0ePbrF46qqqvTq1SsHHHBABg8evKnqgvWzByEAAAAAAAAAAGXkfQewJk6cuDnqgHdnABYAAAAAAAAAAGWoqtQFwPth/hUAAAAAAAAAAOVkoydgVVVVpfAe278VCoWsWbPmAxcF/8wALAAAAAAAAAAAytFGB7DuuOOODZ6bNWtWrr322jQ1NW2SomBD3iMDCAAAAAAAAAAAW9RGB7AOP/zwdY7NmzcvZ599dqZNm5ajjz46F1100SYtDtYqGoEFAAAAAAAAAEAZqmrNk1577bWcfPLJ2W233bJmzZo8/fTTueWWW7Lddttt6vogSVL8xyaEBmABAAAAAAAAAFBO3lcAa+nSpZkwYUJ23HHHPPfcc3nwwQczbdq07LrrrpurPmihYA9CAAAAAAAAAADKyEZvQXjFFVfk8ssvT21tbW6//fb1bkkIm4stCAEAAAAAAAAAKEcbHcA6++yz06lTp+y444655ZZbcsstt6x33W9+85tNVhz8M/OvAAAAAAAAAAAoJxsdwPrGN75h+zdKxgAsAAAAAAAAAADK0UYHsKZMmbIZy4CNIwMIAAAAAAAAAEA5qSp1AbAxikUzsAAAAAAAAAAAKD8CWAAAAAAAAAAAAK0kgAUAAAAAAAAAANBKAlhUlEKhUOoSAAAAAAAAAACgmQAWFaFYLHUFAAAAAAAAAACwLgEsKsLa/JX5VwAAAAAAAAAAlJOyDmBddtll2XfffdOtW7f07t07o0ePzrx581qsWblyZcaOHZutt946Xbt2zZgxY7Jw4cISVczmZgdCAAAAAAAAAADKSVkHsB599NGMHTs2f/jDHzJjxow0NDRkxIgReeutt5rXnHHGGZk2bVp+9atf5dFHH81rr72WL3/5yyWsms2haA9CAAAAAAAAAADKUNtSF/Bu7rvvvhaPp0yZkt69e2f27NkZNmxYli5dmn//93/PbbfdloMOOihJcvPNN2fnnXfOH/7wh+y///6lKJvNqGATQgAAAAAAAAAAykhZB7D+2dKlS5MkPXr0SJLMnj07DQ0NGT58ePOawYMHZ9ttt82sWbM2GMBatWpVVq1a1fy4vr4+SdLQ0JCGhobNVT4fQGNT0z/+2ehnBAAVam0P18sBoHLp5wBQ+fRzAKh8+jlsORv7+6xiAlhNTU0ZP358Pv3pT2fXXXdNktTV1aV9+/apqalpsbZPnz6pq6vb4LUuu+yyXHjhhescf+CBB9K5c+dNWjebxssLqpJU5a9//WumT/+fUpcDAHwAM2bMKHUJAMAHpJ8DQOXTzwGg8unnsPmtWLFio9ZVTABr7NixmTNnTh5//PEPfK1zzjknZ555ZvPj+vr6bLPNNhkxYkSqq6s/8PXZ9J6cNjepezUDtt8+Xxg1uNTlAACt0NDQkBkzZuTggw9Ou3btSl0OANAK+jkAVD79HAAqn34OW87aXfXeS0UEsMaNG5e77747M2fOTP/+/ZuP19bWZvXq1VmyZEmLKVgLFy5MbW3tBq/XoUOHdOjQYZ3j7dq18y+nMlVVVZUkadumjZ8RAFQ4/80FAJVPPweAyqefA0Dl089h89vY32NVm7mOD6RYLGbcuHG544478tBDD2XAgAEtzu+9995p165dHnzwweZj8+bNy8svv5yhQ4du6XLZjIqlLgAAAAAAAAAAANajrCdgjR07NrfddlvuuuuudOvWLXV1dUmS7t27p1OnTunevXtOPPHEnHnmmenRo0eqq6tz2mmnZejQodl///1LXD2bRaHUBQAAAAAAAAAAwP9X1gGsG264IUlywAEHtDh+880357jjjkuSXH311amqqsqYMWOyatWqjBw5MpMmTdrClbLZFc3AAgAAAAAAAACg/JR1AKu4EaGbjh075vrrr8/111+/BSqiVNb+SigYgQUAAAAAAAAAQBmpKnUB8H4U5K8AAAAAAAAAACgjAlhUBDsQAgAAAAAAAABQjgSwqCgGYAEAAAAAAAAAUE4EsKgIxRiBBQAAAAAAAABA+RHAoqIUjMACAAAAAAAAAKCMCGBREYoGYAEAAAAAAAAAUIYEsKgohRiBBQAAAAAAAABA+RDAoiIYgAUAAAAAAAAAQDkSwKKyGIAFAAAAAAAAAEAZEcCiIhSNwAIAAAAAAAAAoAwJYFEh/p7AMgALAAAAAAAAAIByIoBFRSkURLAAAAAAAAAAACgfAlhUBFsQAgAAAAAAAABQjgSwqCjmXwEAAAAAAAAAUE4EsKgIBmABAAAAAAAAAFCOBLCoKAUjsAAAAAAAAAAAKCMCWFSEohFYAAAAAAAAAACUIQEsKooBWAAAAAAAAAAAlBMBLCpCMUZgAQAAAAAAAABQfgSwqCiFghlYAAAAAAAAAACUDwEsKkLRACwAAAAAAAAAAMqQABYAAAAAAAAAAEArCWBREQzAAgAAAAAAAACgHAlgURn+sQdhoVDiOgAAAAAAAAAA4B0EsKgoAlgAAAAAAAAAAJQTASwqQtEehAAAAAAAAAAAlCEBLCpKIUZgAQAAAAAAAABQPgSwqAgGYAEAAAAAAAAAUI4EsKgoBQOwAAAAAAAAAAAoIwJYVISiEVgAAAAAAAAAAJQhASwqigFYAAAAAAAAAACUEwEsKkIxRmABAAAAAAAAAFB+BLCoKIWCGVgAAAAAAAAAAJQPASwqQtEALAAAAAAAAAAAypAAFhVB/goAAAAAAAAAgHIkgEVFsQMhAAAAAAAAAADlRACLymAEFgAAAAAAAAAAZUgAi4piABYAAAAAAAAAAOVEAIuKUDQCCwAAAAAAAACAMiSARUUpFMzAAgAAAAAAAACgfAhgURGKBmABAAAAAAAAAFCGBLCoKOZfAQAAAAAAAABQTgSwqAgGYAEAAAAAAAAAUI4EsKgoBSOwAAAAAAAAAAAoIwJYVIRi0QwsAAAAAAAAAADKjwAWFWFt/MoALAAAAAAAAAAAyokAFpXFHoQAAAAAAAAAAJQRASwqgh0IAQAAAAAAAAAoR21LXQC8H+ZfAQAAAAAAAEDlamxsTENDQ6nLgCRJmzZt0rZt2xQ+4I5sAlgAAAAAAAAAAGx2y5cvz6uvvpqibbAoI507d07fvn3Tvn37Vl9DAIuK8gEDhwAAAAAAAABACTQ2NubVV19N586d06tXrw88cQg+qGKxmNWrV2fRokWZP39+Bg4cmKqqqlZdSwCLiiD9CgAAAAAAAACVq6GhIcViMb169UqnTp1KXQ4kSTp16pR27dplwYIFWb16dTp27Niq67QutgUlUogELAAAAAAAAABUKpOvKDetnXrV4hqboA7Y7My/AgAAAAAAAACgHAlgUVEEYQEAAAAAAAAAKCcCWFSEohFYAAAAAAAAAEAZ23777XPNNdd84DVbWjnWtCHlWqsAFhWh+I9NCA3AAgAAAAAAAAC2pFdeeSUnnHBC+vXrl/bt22e77bbLt7/97bz55pvv+1pPPvlkTjnllE1W26YIJG2qml588cUcf/zx6d+/fzp06JABAwbkqKOOylNPPfWBr13uBLCoKLYgBAAAAAAAAAC2lP/5n//JPvvskxdeeCG33357XnzxxUyePDkPPvhghg4dmsWLF7+v6/Xq1SudO3feTNW2zqao6amnnsree++dv/zlL7nxxhszd+7c3HHHHRk8eHDOOuusTVRp+RLAoiLYghAAAAAAAAAAPjyKxWJWrF5Tkq/i+wghjB07Nu3bt88DDzyQz33uc9l2221zyCGH5Le//W3+93//N+eee26L9cuWLctRRx2VLl265GMf+1iuv/76Fuf/eWLVkiVLctJJJ6VXr16prq7OQQcdlGeeeabFc6ZNm5Z99903HTt2TM+ePfOlL30pSXLAAQdkwYIFOeOMM1IoFFL4x1SbBQsW5LDDDstWW22VLl26ZJdddsn06dM3eI//XFOhUMhPf/rTfOlLX0rnzp0zcODA/Od//ucGn18sFnPcccdl4MCBeeyxx3LooYfm4x//ePbcc89MnDgxd911V/PaCRMmZKeddkrnzp2zww475LzzzktDQ8NG3e9aK1asyAknnJBu3bpl2223zU033dTi/CuvvJKvfe1rqampSY8ePXL44Yfnr3/96wbr3xTabtarb0HXX399rrzyytTV1WWPPfbIddddl/3226/UZbHJGYEFAAAAAAAAAJXu7YbGfOL8+0vy2nMvGpnO7d87MrN48eLcf//9ueSSS9KpU6cW52pra3P00Udn6tSpmTRpUnP46corr8z3v//9XHjhhbn//vvz7W9/OzvttFMOPvjg9b7GV7/61XTq1Cn33ntvunfvnhtvvDGf//zn85e//CU9evTIPffcky996Us599xzc+utt2b16tXNYarf/OY32WOPPXLKKafk5JNPbr7m2LFjs3r16sycOTNdunTJ3Llz07Vr1/f1Hl144YW54oorcuWVV+a6667L0UcfnQULFqRHjx7rrH366afz3HPP5bbbbktV1bqzoGpqapq/79atW6ZMmZJ+/frlz3/+c04++eR069Yt3/ve95LkXe93rR//+Me5+OKL8/3vfz+//vWvc+qpp+Zzn/tcBg0alIaGhowcOTJDhw7NY489lrZt2+Zf//VfM2rUqDz77LNp3779+3ofNtaHIoA1derUnHnmmZk8eXKGDBmSa665JiNHjsy8efPSu3fvUpfHJmAAFgAAAAAAAACwJb3wwgspFovZeeed13t+5513zt/+9rcsWrSoOZ/y6U9/OmeffXaSZKeddsrvfve7XH311esNYD3++ON54okn8vrrr6dDhw5Jkh/96Ee588478+tf/zqnnHJKLrnkkhx55JG58MILm5+3xx57JEl69OiRNm3apFu3bqmtrW0+//LLL2fMmDHZbbfdkiQ77LDD+7734447LkcddVSS5NJLL821116bJ554IqNGjVrv+5QkgwcPfs/r/uAHP2j+fvvtt893vvOd/OIXv2gOYL3b/a71hS98Id/61reS/H2i1tVXX52HH344gwYNytSpU9PU1JSf/vSnzaG4m2++OTU1NXnkkUcyYsSI9/M2bLQPRQDrqquuysknn5zjjz8+STJ58uTcc889+dnPftb8i5oPh4IBWAAAAAAAAABQ8Tq1a5O5F40s2Wu/H+9ny8KhQ4eu8/id2/u90zPPPJPly5dn6623bnH87bffzksvvZTk79Ol3jndamOcfvrpOfXUU/PAAw9k+PDhGTNmTHbffff3dY13ru/SpUuqq6vz+uuvr3ft+3l/pk6dmmuvvTYvvfRSli9fnjVr1qS6urr5/Mbc7ztrKxQKqa2tba7tmWeeyYsvvphu3bq1eM7KlSub39PNoeIDWKtXr87s2bNzzjnnNB+rqqrK8OHDM2vWrPU+Z9WqVVm1alXz4/r6+iRJQ0PDOvtKUh6ampqSJI2NjX5GAFCh1vZwvRwAKpd+DgCVTz8HgMpXqf28oaEhxWIxTU1NzRmAjm3X3a5uSygWixsVGtphhx1SKBQyd+7cHH744eucnzt3brbaaqtsvfXWzfe09h7f+VpJ1jnW1NSUZcuWpW/fvnnooYfWuXZNTU2amprSqVOnFu/Zhu7nnedPOOGEHHzwwbnnnnsyY8aMXHbZZfnRj36UcePGbfQ12rRp0+JxoVDImjVr1lvHjjvu2Px+/PO0qneaNWtWjj766FxwwQUZMWJEunfvnqlTp+aqq65qvu7G3G/btm3Xqa2xsbH5Pd17773zH//xH+s8r1evXuu9blNTU4rFYhoaGtKmTctw3sb+Pqv4ANYbb7yRxsbG9OnTp8XxPn365Pnnn1/vcy677LIWo8rWeuCBB9K5c+fNUicfzBtvVCWpytznnsv0RXNKXQ4A8AHMmDGj1CUAAB+Qfg4AlU8/B4DKV2n9vG3btqmtrc3y5cuzevXqUpezUdq1a5cDDzwwkyZNygknnJBOnTo1n1u4cGFuu+22HHHEEVm2bFmSvwd5Hn/88eZBQEny2GOPZccdd2w+1tTUlJUrV6a+vj6DBg1KXV1dVq5cmW233Xad16+vr88nPvGJ3H///RkzZsx6a2zbtm3eeuutFq+ZJN27d8/Xv/71fP3rX8+FF16YG2+8Md/4xjfWe4131rTW22+/3eJxsVhcZ81aO+ywQwYPHpwf/ehHOeSQQ1JV1TJYt3Tp0nTv3j0PP/xwttlmmxZBsBdffDHFYrH5uu91v+urtbGxMatWrUp9fX123nnnTJ06NR07dmwxWWut9dW/evXqvP3225k5c2bWrFnT4tyKFSvWW8c/q/gAVmucc845OfPMM5sf19fXZ5tttsmIESPW++ZTev13W5wHH/9jvjbys/lYj66lLgcAaIWGhobMmDEjBx98cNq1a1fqcgCAVtDPAaDy6ecAUPkqtZ+vXLkyr7zySrp27ZqOHTuWupyNNmnSpHzmM5/JEUcckYsuuigDBgzIc889lwkTJuRjH/tYrrjiiuasSVVVVZ544onceOONOfzww/Pb3/42d911V6ZNm9Zizdpw0L/8y79k6NCh+cY3vpEf/vCH2WmnnfLaa69l+vTpGT16dPbZZ59ceOGFOfjggzN48OAcccQRWbNmTe69995873vfS5IMGDAgTzzxRJYtW5YOHTqkZ8+eOeOMMzJq1KjstNNO+dvf/pZZs2Zll1122WAm5p01rdWpU6cWjwuFwgZDTUly8803Z8SIETnssMNyzjnnZPDgwVm+fHnuvvvuzJgxIw8//HB23XXXvPrqq5k+fXr23XffTJ8+Pffcc08KhULzdd/rftdXa5s2bdKhQ4dUV1fnxBNPzPXXX59jjz02F1xwQfr3758FCxbkjjvuyHe/+930799/ndpXrlyZTp06ZdiwYev82lxfYGt9Kj6A1bNnz7Rp0yYLFy5scXzhwoWpra1d73M6dOiQDh06rHO8Xbt2FfUvp4+S3bfpkVe7F/OxHl39jACgwvlvLgCofPo5AFQ+/RwAKl+l9fPGxsYUCoVUVVWtMyGpnA0aNChPPfVUJk6cmCOPPDKLFy9ObW1tRo8enYkTJ2brrbdusf6ss87K7Nmzc9FFF6W6ujpXXXVVDjnkkBZr1r4PSTJ9+vSce+65OfHEE7No0aLU1tZm2LBh6du3b6qqqnLQQQflV7/6VS6++OJcfvnlqa6uzrBhw5qff/HFF+eb3/xmBg4cmFWrVjVvJXjaaafl1VdfTXV1dUaNGpWrr776Xd/3d9aUZL0/p3f72e2///556qmncskll+Sb3/xm3njjjfTt2zef+tSncs0116SqqiqjR4/OGWeckdNPPz2rVq3KoYcemvPOOy8XXHBB83Xf637XV+s7j3Xt2jUzZ87MhAkT8pWvfCXLli3Lxz72sXz+859PTU3NeuuvqqpKoVBY7++pjf09VihuzKaWZW7IkCHZb7/9ct111yX5+7ixbbfdNuPGjcvZZ5/9ns+vr69P9+7ds3TpUhOwylRDQ0OmT5+eL3zhCxXVQACA/08/B4DKp58DQOXTzwGg8lVqP1+5cmXmz5+fAQMGVNQErE2tb9++ufjii3PSSSeVuhT+4d1+bW5spqjiJ2AlyZlnnpljjz02++yzT/bbb79cc801eeutt3L88ceXujQAAAAAAAAAAD7iVqxYkd/97ndZuHBhdtlll1KXwyb2oQhgHXHEEVm0aFHOP//81NXVZc8998x9992XPn36lLo0AAAAAAAAAAA+4m666aZcfPHFGT9+fIYOHVrqctjEPhQBrCQZN25cxo0bV+oyAAAAAAAAAACghfHjx2f8+PGlLoPNpKrUBQAAAAAAAAAAAFQqASwAAAAAAAAAALaIYrFY6hKghU3xa1IACwAAAAAAAACAzapNmzZJktWrV5e4EmhpxYoVSZJ27dq1+hptN1UxAAAAAAAAAACwPm3btk3nzp2zaNGitGvXLlVVZgZRWsViMStWrMjrr7+empqa5pBgawhgAQAAAAAAAACwWRUKhfTt2zfz58/PggULSl0ONKupqUltbe0HuoYAFgAAAAAAAAAAm1379u0zcOBA2xBSNtq1a/eBJl+tJYAFAAAAAAAAAMAWUVVVlY4dO5a6DNikbKgJAAAAAAAAAADQSgJYAAAAAAAAAAAArSSABQAAAAAAAAAA0EptS11AOSgWi0mS+vr6ElfChjQ0NGTFihWpr69Pu3btSl0OANAK+jkAVD79HAAqn34OAJVPP4ctZ22WaG22aEMEsJIsW7YsSbLNNtuUuBIAAAAAAAAAAKCcLFu2LN27d9/g+ULxvSJaHwFNTU157bXX0q1btxQKhVKXw3rU19dnm222ySuvvJLq6upSlwMAtIJ+DgCVTz8HgMqnnwNA5dPPYcspFotZtmxZ+vXrl6qqqg2uMwErSVVVVfr371/qMtgI1dXVGggAVDj9HAAqn34OAJVPPweAyqefw5bxbpOv1tpwNAsAAAAAAAAAAIB3JYAFAAAAAAAAAADQSgJYVIQOHTpk4sSJ6dChQ6lLAQBaST8HgMqnnwNA5dPPAaDy6edQfgrFYrFY6iIAAAAAAAAAAAAqkQlYAAAAAAAAAAAArSSABQAAAAAAAAAA0EoCWAAAAAAAAAAAAK0kgAUAAAAAAAAAANBKAlhUhOuvvz7bb799OnbsmCFDhuSJJ54odUkAQJILLrgghUKhxdfgwYObz69cuTJjx47N1ltvna5du2bMmDFZuHBhi2u8/PLLOfTQQ9O5c+f07t073/3ud7NmzZotfSsA8JExc+bMHHbYYenXr18KhULuvPPOFueLxWLOP//89O3bN506dcrw4cPzwgsvtFizePHiHH300amurk5NTU1OPPHELF++vMWaZ599Np/97GfTsWPHbLPNNrniiis2960BwEfGe/Xz4447bp0/r48aNarFGv0cAErnsssuy7777ptu3bqld+/eGT16dObNm9dizab6fP2RRx7JJz/5yXTo0CE77rhjpkyZsrlvDz6SBLAoe1OnTs2ZZ56ZiRMn5k9/+lP22GOPjBw5Mq+//nqpSwMAkuyyyy75v//7v+avxx9/vPncGWeckWnTpuVXv/pVHn300bz22mv58pe/3Hy+sbExhx56aFavXp3f//73ueWWWzJlypScf/75pbgVAPhIeOutt7LHHnvk+uuvX+/5K664Itdee20mT56cP/7xj+nSpUtGjhyZlStXNq85+uij89xzz2XGjBm5++67M3PmzJxyyinN5+vr6zNixIhst912mT17dq688spccMEFuemmmzb7/QHAR8F79fMkGTVqVIs/r99+++0tzuvnAFA6jz76aMaOHZs//OEPmTFjRhoaGjJixIi89dZbzWs2xefr8+fPz6GHHpoDDzwwTz/9dMaPH5+TTjop999//xa9X/goKBSLxWKpi4B3M2TIkOy77775yU9+kiRpamrKNttsk9NOOy1nn312iasDgI+2Cy64IHfeeWeefvrpdc4tXbo0vXr1ym233ZavfOUrSZLnn38+O++8c2bNmpX9998/9957b774xS/mtddeS58+fZIkkydPzoQJE7Jo0aK0b99+S94OAHzkFAqF3HHHHRk9enSSv0+/6tevX84666x85zvfSfL3nt6nT59MmTIlRx55ZP77v/87n/jEJ/Lkk09mn332SZLcd999+cIXvpBXX301/fr1yw033JBzzz03dXV1zf387LPPzp133pnnn3++JPcKAB9W/9zPk79PwFqyZMk6k7HW0s8BoLwsWrQovXv3zqOPPpphw4Ztss/XJ0yYkHvuuSdz5sxpfq0jjzwyS5YsyX333VeSe4UPKxOwKGurV6/O7NmzM3z48OZjVVVVGT58eGbNmlXCygCAtV544YX069cvO+ywQ44++ui8/PLLSZLZs2enoaGhRR8fPHhwtt122+Y+PmvWrOy2227NfzhMkpEjR6a+vj7PPffclr0RACDz589PXV1di/7dvXv3DBkypEX/rqmpaf6ftUkyfPjwVFVV5Y9//GPzmmHDhrUIU48cOTLz5s3L3/72ty10NwDw0fbII4+kd+/eGTRoUE499dS8+eabzef0cwAoL0uXLk2S9OjRI8mm+3x91qxZLa6xdo3/1w6bngAWZe2NN95IY2Nji6aRJH369EldXV2JqgIA1hoyZEimTJmS++67LzfccEPmz5+fz372s1m2bFnz35Ctqalp8Zx39vG6urr19vm15wCALWtt/323P4fX1dWld+/eLc63bds2PXr00OMBoEyMGjUqt956ax588MFcfvnlefTRR3PIIYeksbExiX4OAOWkqakp48ePz6c//ensuuuuSbLJPl/f0Jr6+vq8/fbbm+N24COrbakLAACgch1yyCHN3+++++4ZMmRItttuu/zyl79Mp06dSlgZAAAAfHQdeeSRzd/vtttu2X333fPxj388jzzySD7/+c+XsDIA4J+NHTs2c+bMyeOPP17qUoAPwAQsylrPnj3Tpk2bLFy4sMXxhQsXpra2tkRVAQAbUlNTk5122ikvvvhiamtrs3r16ixZsqTFmnf28dra2vX2+bXnAIAta23/fbc/h9fW1ub1119vcX7NmjVZvHixHg8AZWqHHXZIz5498+KLLybRzwGgXIwbNy533313Hn744fTv37/5+Kb6fH1Da6qrq/0latjEBLAoa+3bt8/ee++dBx98sPlYU1NTHnzwwQwdOrSElQEA67N8+fK89NJL6du3b/bee++0a9euRR+fN29eXn755eY+PnTo0Pz5z39u8aHvjBkzUl1dnU984hNbvH4A+KgbMGBAamtrW/Tv+vr6/PGPf2zRv5csWZLZs2c3r3nooYfS1NSUIUOGNK+ZOXNmGhoamtfMmDEjgwYNylZbbbWF7gYAWOvVV1/Nm2++mb59+ybRzwGg1IrFYsaNG5c77rgjDz30UAYMGNDi/Kb6fH3o0KEtrrF2jf/XDpteoVgsFktdBLybqVOn5thjj82NN96Y/fbbL9dcc01++ctf5vnnn19nv1oAYMv6zne+k8MOOyzbbbddXnvttUycODFPP/105s6dm169euXUU0/N9OnTM2XKlFRXV+e0005Lkvz+979PkjQ2NmbPPfdMv379csUVV6Suri7HHHNMTjrppFx66aWlvDUA+NBavnx58/SLvfbaK1dddVUOPPDA9OjRI9tuu20uv/zy/PCHP8wtt9ySAQMG5Lzzzsuzzz6buXPnpmPHjkn+vg3xwoULM3ny5DQ0NOT444/PPvvsk9tuuy1JsnTp0gwaNCgjRozIhAkTMmfOnJxwwgm5+uqrc8opp5Ts3gHgw+Ld+nmPHj1y4YUXZsyYMamtrc1LL72U733ve1m2bFn+/Oc/p0OHDkn0cwAopW9961u57bbbctddd2XQoEHNx7t37948mWpTfL4+f/787Lrrrhk7dmxOOOGEPPTQQzn99NNzzz33ZOTIkVv4ruHDTQCLivCTn/wkV155Zerq6rLnnnvm2muvbf5bOABA6Rx55JGZOXNm3nzzzfTq1Suf+cxncskll+TjH/94kmTlypU566yzcvvtt2fVqlUZOXJkJk2a1GKrggULFuTUU0/NI488ki5duuTYY4/ND3/4w7Rt27ZUtwUAH2qPPPJIDjzwwHWOH3vssZkyZUqKxWImTpyYm266KUuWLMlnPvOZTJo0KTvttFPz2sWLF2fcuHGZNm1aqqqqMmbMmFx77bXp2rVr85pnn302Y8eOzZNPPpmePXvmtNNOy4QJE7bIPQLAh9279fMbbrgho0ePzn/9139lyZIl6devX0aMGJGLL764xV9q1s8BoHQKhcJ6j99888057rjjkmy6z9cfeeSRnHHGGZk7d2769++f8847r/k1gE1HAAsAAAAAAAAAAKCVqkpdAAAAAAAAAAAAQKUSwAIAAAAAAAAAAGglASwAAAAAAAAAAIBWEsACAAAAAAAAAABoJQEsAAAAAAAAAACAVhLAAgAAAAAAAAAAaCUBLAAAAAAAAAAAgFYSwAIAAAAAAAAAAGglASwAAAAAKt5xxx2X0aNHl+z1jznmmFx66aUbtfbII4/Mj3/8481cEQAAAABbSqFYLBZLXQQAAAAAbEihUHjX8xMnTswZZ5yRYrGYmpqaLVPUOzzzzDM56KCDsmDBgnTt2vU918+ZMyfDhg3L/Pnz07179y1QIQAAAACbkwAWAAAAAGWtrq6u+fupU6fm/PPPz7x585qPde3adaOCT5vLSSedlLZt22by5Mkb/Zx99903xx13XMaOHbsZKwMAAABgS7AFIQAAAABlrba2tvmre/fuKRQKLY517dp1nS0IDzjggJx22mkZP358ttpqq/Tp0yf/9m//lrfeeivHH398unXrlh133DH33ntvi9eaM2dODjnkkHTt2jV9+vTJMccckzfeeGODtTU2NubXv/51DjvssBbHJ02alIEDB6Zjx47p06dPvvKVr7Q4f9hhh+UXv/jFB39zAAAAACg5ASwAAAAAPpRuueWW9OzZM0888UROO+20nHrqqfnqV7+aT33qU/nTn/6UESNG5JhjjsmKFSuSJEuWLMlBBx2UvfbaK0899VTuu+++LFy4MF/72tc2+BrPPvtsli5dmn322af52FNPPZXTTz89F110UebNm5f77rsvw4YNa/G8/fbbL0888URWrVq1eW4eAAAAgC1GAAsAAACAD6U99tgjP/jBDzJw4MCcc8456dixY3r27JmTTz45AwcOzPnnn58333wzzz77bJLkJz/5Sfbaa69ceumlGTx4cPbaa6/87Gc/y8MPP5y//OUv632NBQsWpE2bNundu3fzsZdffjldunTJF7/4xWy33XbZa6+9cvrpp7d4Xr9+/bJ69eoW2ysCAAAAUJkEsAAAAAD4UNp9992bv2/Tpk223nrr7Lbbbs3H+vTpkyR5/fXXkyTPPPNMHn744XTt2rX5a/DgwUmSl156ab2v8fbbb6dDhw4pFArNxw4++OBst9122WGHHXLMMcfk5z//efOUrbU6deqUJOscBwAAAKDyCGABAAAA8KHUrl27Fo8LhUKLY2tDU01NTUmS5cuX57DDDsvTTz/d4uuFF15YZwvBtXr27JkVK1Zk9erVzce6deuWP/3pT7n99tvTt2/fnH/++dljjz2yZMmS5jWLFy9OkvTq1WuT3CsAAAAApSOABQAAAABJPvnJT+a5557L9ttvnx133LHFV5cuXdb7nD333DNJMnfu3BbH27Ztm+HDh+eKK67Is88+m7/+9a956KGHms/PmTMn/fv3T8+ePTfb/QAAAACwZQhgAQAAAECSsWPHZvHixTnqqKPy5JNP5qWXXsr999+f448/Po2Njet9Tq9evfLJT34yjz/+ePOxu+++O9dee22efvrpLFiwILfeemuampoyaNCg5jWPPfZYRowYsdnvCQAAAIDNTwALAAAAAJL069cvv/vd79LY2JgRI0Zkt912y/jx41NTU5Oqqg1/jHbSSSfl5z//efPjmpqa/OY3v8lBBx2UnXfeOZMnT87tt9+eXXbZJUmycuXK3HnnnTn55JM3+z0BAAAAsPkVisVisdRFAAAAAEClevvttzNo0KBMnTo1Q4cOfc/1N9xwQ+6444488MADW6A6AAAAADY3E7AAAAAA4APo1KlTbr311rzxxhsbtb5du3a57rrrNnNVAAAAAGwpJmABAAAAAAAAAAC0kglYAAAAAAAAAAAArSSABQAAAAAAAAAA0EoCWAAAAAAAAAAAAK0kgAUAAAAAAAAAANBKAlgAAAAAAAAAAACtJIAFAAAAAAAAAADQSgJYAAAAAAAAAAAArSSABQAAAAAAAAAA0EoCWAAAAAAAAAAAAK30/wBF0hX4glGKdwAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAACWAAAAHWCAYAAADzMbJhAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy80BEi2AAAACXBIWXMAAA9hAAAPYQGoP6dpAADNFklEQVR4nOzdd3wUdf7H8ffupvdGKoGE0HtTlK7SRFFsYO/lLKeep556NuxdrKfe2ctZUX82ECtWUJHeOwQIpPe2u78/NjPZlpDEhCTn6/l4+JDszs5+Z3bmO9/vdz7z+VqcTqdTAAAAAAAAAAAAAAAAAIBms7Z3AQAAAAAAAAAAAAAAAACgsyIACwAAAAAAAAAAAAAAAABaiAAsAAAAAAAAAAAAAAAAAGghArAAAAAAAAAAAAAAAAAAoIUIwAIAAAAAAAAAAAAAAACAFiIACwAAAAAAAAAAAAAAAABaiAAsAAAAAAAAAAAAAAAAAGghArAAAAAAAAAAAAAAAAAAoIUIwAIAAAAAAAAAAAAAAACAFiIACwAAAAAAoIm++eYbWSwWvfvuu+1dlCbJycnRySefrPj4eFksFs2dO7fV1r1t2zZZLBY99NBDB1z29ttvl8ViabXvPhgsFotuv/329i5Gq7BYLLriiivauxidWkZGhs4999z2LgYAAAAAAOigCMACAAAAAAAdyksvvSSLxaKQkBBlZ2f7vD9x4kQNHDiwHUrW+fztb3/TggULdOONN+rVV1/VtGnTGl2+rKxMd955pwYPHqywsDBFR0dr3LhxeuWVV+R0Og9SqZvv008/7TTBUt98841OPPFEJScnKygoSImJiZoxY4bmzZvX3kVrFTU1NXr88cd1yCGHKDIyUhERETrkkEP0+OOPq6ampr2LZzKCKZvyHwAAAAAAwIEEtHcBAAAAAAAA/KmqqtJ9992nJ554or2L0ml99dVXOv7443XttdcecNmcnBwdddRRWrt2rU499VRdccUVqqys1HvvvadzzjlHn376qV5//XXZbLZml+Pmm2/WDTfc0JJNaJJPP/1UTz31VKsGYVVUVCggoHWHzm677Tbdcccd6tWrly655BJ1795deXl5+vTTT3XSSSfp9ddf1+mnn96q33kwlZWV6ZhjjtG3336rY489Vueee66sVqvmz5+vq666SvPmzdMnn3yi8PDw9i6q+vXrp1dffdXjtRtvvFERERH65z//6bP8+vXrZbXyLCsAAAAAAPCPACwAAAAAANAhDR06VP/+97914403KjU1tb2Lc1CVlZW1SpDKvn37FBMT06RlzznnHK1du1bvv/++jjvuOPP1K6+8Utddd50eeughDRs2TP/4xz+aXY6AgIBWD2ZqayEhIa26vnfffVd33HGHTj75ZL3xxhsKDAw037vuuuu0YMGCDpUhqiWuueYaffvtt3riiSc8pjy89NJL9dRTT+mKK67Qtddeq3/9618HrUxOp1OVlZUKDQ31eD0pKUlnnnmmx2v33XefEhISfF6XpODg4DYtJwAAAAAA6Nx4bAsAAAAAAHRIN910k+x2u+67775Gl9u2bZssFoteeukln/csFotHVqTbb79dFotFGzZs0Jlnnqno6Gh16dJFt9xyi5xOp3bu3Knjjz9eUVFRSk5O1sMPP+z3O+12u2666SYlJycrPDxcxx13nHbu3Omz3OLFizVt2jRFR0crLCxMEyZM0A8//OCxjFGmNWvW6PTTT1dsbKzGjh3b6DZv2bJFp5xyiuLi4hQWFqbDDjtMn3zyifm+MY2j0+nUU089dcCp1H7++WctWLBA5557rkfwleHee+9Vr169dP/996uiosLn/UcffVTdu3dXaGioJkyYoFWrVvndRm+vvfaaRowYodDQUMXFxenUU09tcD9Onz5dsbGxCg8P1+DBg/XYY49Jks4991w99dRTkuR32rg333xTI0aMUGRkpKKiojRo0CDzs41p6NjZtGmTzj33XMXExCg6OlrnnXeeysvLD7i+W265RXFxcXrhhRc8gq8MU6dO1bHHHitJqq6u1q233qoRI0YoOjpa4eHhGjdunL7++mufzzkcDj322GMaNGiQQkJC1KVLF02bNk2//vqrz7IffPCBBg4cqODgYA0YMEDz58/3WSY7O1vnn3++kpKSzOVeeOGFA27frl279Pzzz+vII4/0CL4yXH755TriiCP0n//8R7t27ZIkDRw4UEcccYTfbUpLS9PJJ5/s8drcuXM1YMAAhYSEKCkpSZdccokKCgo8PpuRkaFjjz1WCxYs0MiRIxUaGqpnn332gOU/kIyMDJ177rnm38Y59v333+vKK69Uly5dFBMTo0suuUTV1dUqLCzU2WefrdjYWMXGxur666/3mcazqdsEAAAAAAA6PgKwAAAAAABAh5SZmamzzz5b//73v7V79+5WXffs2bPlcDh03333adSoUbrrrrs0d+5cTZ48WWlpabr//vvVs2dPXXvttVq0aJHP5++++2598skn+sc//qErr7xSCxcu1KRJkzyCk7766iuNHz9excXFuu2223TPPfeosLBQRx55pJYsWeKzzlNOOUXl5eW65557dNFFFzVY9pycHI0ePVoLFizQZZddprvvvluVlZU67rjj9P7770uSxo8fb06vNnnyZL366qs+0625++ijjyRJZ599tt/3AwICdPrpp6ugoMAngOyVV17R448/rssvv1w33nijVq1apSOPPFI5OTkNfp/k2odnn322evXqpUceeURXX321vvzyS40fP16FhYXmcgsXLtT48eO1Zs0aXXXVVXr44Yd1xBFH6OOPP5YkXXLJJZo8ebIkmdtpbOvChQt12mmnKTY2Vvfff7/uu+8+TZw40WcbmmPWrFkqKSnRvffeq1mzZumll17SnDlzGv3Mxo0btW7dOs2cOVORkZEH/I7i4mL95z//0cSJE3X//ffr9ttv1/79+zV16lQtW7bMY9kLLrhAV199tdLT03X//ffrhhtuUEhIiH7++WeP5b7//ntddtllOvXUU/XAAw+osrJSJ510kvLy8sxlcnJydNhhh+mLL77QFVdcoccee0w9e/bUBRdcoLlz5zZa5s8++0x2u73BY0hyHV+1tbVm4Nfs2bO1aNEi7d2716esu3fv1qmnnmq+dskll+i6667TmDFj9Nhjj+m8887T66+/rqlTp/pkDlu/fr1OO+00TZ48WY899piGDh3aaNn/iL/+9a/auHGj5syZo+OOO07PPfecbrnlFs2YMUN2u1333HOPxo4dqwcffNDnHGzONgEAAAAAgA7OCQAAAAAA0IG8+OKLTknOX375xbl582ZnQECA88orrzTfnzBhgnPAgAHm31u3bnVKcr744os+65LkvO2228y/b7vtNqck58UXX2y+Vltb6+zatavTYrE477vvPvP1goICZ2hoqPOcc84xX/v666+dkpxpaWnO4uJi8/W3337bKcn52GOPOZ1Op9PhcDh79erlnDp1qtPhcJjLlZeXOzMzM52TJ0/2KdNpp53WpP1z9dVXOyU5v/vuO/O1kpISZ2ZmpjMjI8Npt9s9tv/yyy8/4DpnzpzplOQsKChocJl58+Y5JTkff/xxp9NZv99DQ0Odu3btMpdbvHixU5Lzb3/7m882GrZt2+a02WzOu+++2+M7Vq5c6QwICDBfr62tdWZmZjq7d+/uUzb3/Xr55Zc7/Q1zXXXVVc6oqChnbW3tAfeBt4aOnfPPP99juRNOOMEZHx/f6Lo+/PBDpyTno48+2qTvrq2tdVZVVXm8VlBQ4ExKSvL4/q+++sopyeP8MLjvH0nOoKAg56ZNm8zXli9f7pTkfOKJJ8zXLrjgAmdKSoozNzfXY12nnnqqMzo62lleXt5gmY3j8vfff29wmaVLlzolOa+55hqn0+l0rl+/3qcMTqfTedlllzkjIiLM7/vuu++ckpyvv/66x3Lz58/3eb179+5OSc758+c3WI6GDBgwwDlhwgS/73Xv3t2jLjDqKe9z/PDDD3daLBbnX/7yF/M1o45xX3dztgkAAAAAAHR8ZMACAAAAAAAdVo8ePXTWWWfpueee0549e1ptvRdeeKH5b5vNppEjR8rpdOqCCy4wX4+JiVGfPn20ZcsWn8+fffbZHpmMTj75ZKWkpOjTTz+VJC1btkwbN27U6aefrry8POXm5io3N1dlZWU66qijtGjRIjkcDo91/uUvf2lS2T/99FMdeuihHtMURkRE6OKLL9a2bdu0Zs2apu0ENyUlJZLUaHYm473i4mKP12fOnKm0tDTz70MPPVSjRo0y94U/8+bNk8Ph0KxZs8x9k5ubq+TkZPXq1cucau/333/X1q1bdfXVVysmJsZjHY1NqWiIiYlRWVmZFi5ceMBlm8r7dxo3bpzy8vJ89os7472mZL+SXMdkUFCQJNc0dfn5+aqtrdXIkSO1dOlSc7n33ntPFotFt912m886vPfPpEmTlJWVZf49ePBgRUVFmce30+nUe++9pxkzZsjpdHr8LlOnTlVRUZHHd3tryTHUu3dvDR06VG+99Za5jN1u17vvvqsZM2YoNDRUkvTOO+8oOjpakydP9ijXiBEjFBER4TM1Y2ZmpqZOndpgOVrTBRdc4LGvR40a5VOXGHWMe13S3G0CAAAAAAAdW0B7FwAAAAAAAKAxN998s1599VXdd999euyxx1plnd26dfP4Ozo6WiEhIUpISPB53X2KNkOvXr08/rZYLOrZs6e2bdsmyTXlnCSdc845DZahqKhIsbGx5t+ZmZlNKvv27ds1atQon9f79etnvj9w4MAmrctgBMaUlJT4BDoZGgqw8d4Xkiuw5u23327w+zZu3Cin0+n3s5IUGBgoSdq8ebMkNXt7DJdddpnefvttHX300UpLS9OUKVM0a9YsTZs2rUXrk3yPHeM3LCgoUFRUlN/PGK8b+7ApXn75ZT388MNat26dx3R07sfJ5s2blZqaqri4uGaX2yh7QUGBJGn//v0qLCzUc889p+eee87vOvbt29fg+t2PoYb4O4Zmz56tm266SdnZ2UpLS9M333yjffv2afbs2eYyGzduVFFRkRITE5tUrqaeS63BX10iSenp6T6vG/taav42AQAAAACAjo0ALAAAAAAA0KH16NFDZ555pp577jndcMMNPu83lAnJbrc3uE6bzdak1yRXZqDmMrJbPfjggxo6dKjfZSIiIjz+NrL9tId+/frpgw8+0IoVKzR+/Hi/y6xYsUKS1L9//z/8fQ6HQxaLRZ999pnf/e69b1oqMTFRy5Yt04IFC/TZZ5/ps88+04svvqizzz5bL7/8covW2ZLjpG/fvpKklStXNuk7XnvtNZ177rmaOXOmrrvuOiUmJspms+nee+81g9Ka60DlNo7ZM888s8HAwcGDBze4fiMAcMWKFQ0e8/6OodmzZ+vGG2/UO++8o6uvvlpvv/22oqOjPYLkHA6HEhMT9frrr/tdb5cuXTz+PpjnUkP71d/r7sdIc7cJAAAAAAB0bARgAQAAAACADu/mm2/Wa6+9pvvvv9/nPSMDUWFhocfr27dvb7PyGBmuDE6nU5s2bTIDVIyp3qKiojRp0qRW/e7u3btr/fr1Pq+vW7fOfL+5jj32WN1777165ZVX/AZg2e12vfHGG4qNjdWYMWM83vPeF5K0YcMGZWRkNPh9WVlZcjqdyszMVO/evRtdTpJWrVrV6H5sbDrCoKAgzZgxQzNmzJDD4dBll12mZ599Vrfccot69uzZ4OdaU+/evdWnTx99+OGHeuyxxw4YYPbuu++qR48emjdvnse2eU81mJWVpQULFig/P79JWbAa06VLF0VGRsput7fomD366KNls9n06quv6uyzz/a7zCuvvKKAgACP4KrMzEwdeuiheuutt3TFFVdo3rx5mjlzpoKDg81lsrKy9MUXX2jMmDHtGqjYmv4XtwkAAAAAgD8za3sXAAAAAAAA4ECysrJ05pln6tlnn9XevXs93ouKilJCQoIWLVrk8frTTz/dZuV55ZVXPKZae/fdd7Vnzx4dffTRkqQRI0YoKytLDz30kEpLS30+v3///hZ/9/Tp07VkyRL99NNP5mtlZWV67rnnlJGR0aIMVaNHj9akSZP04osv6uOPP/Z5/5///Kc2bNig66+/3idY5IMPPlB2drb595IlS7R48WJzX/hz4oknymazac6cOT6Zo5xOpznt4/Dhw5WZmam5c+f6BNi5fy48PFySbxCe9/SRVqvVDJKrqqpqsHxtYc6cOcrLy9OFF16o2tpan/c///xzc98b2ZPct3Hx4sUev7kknXTSSXI6nZozZ47P+pqbuc1ms+mkk07Se++9p1WrVvm8f6BjNj09Xeedd56++OIL/etf//J5/5lnntFXX32lCy64QF27dvV4b/bs2fr555/1wgsvKDc312P6QUmaNWuW7Ha77rzzTp/11tbW+vzuncH/4jYBAAAAAPBnRgYsAAAAAADQKfzzn//Uq6++qvXr12vAgAEe71144YW67777dOGFF2rkyJFatGiRNmzY0GZliYuL09ixY3XeeecpJydHc+fOVc+ePXXRRRdJcgX6/Oc//9HRRx+tAQMG6LzzzlNaWpqys7P19ddfKyoqSh999FGLvvuGG27Qf//7Xx199NG68sorFRcXp5dffllbt27Ve++9J6u1Zc/bvfLKKzrqqKN0/PHH6/TTT9e4ceNUVVWlefPm6ZtvvtHs2bN13XXX+XyuZ8+eGjt2rC699FJVVVVp7ty5io+P1/XXX9/gd2VlZemuu+7SjTfeqG3btmnmzJmKjIzU1q1b9f777+viiy/WtddeK6vVqn/961+aMWOGhg4dqvPOO08pKSlat26dVq9erQULFkhyBbxJ0pVXXqmpU6fKZrPp1FNP1YUXXqj8/HwdeeSR6tq1q7Zv364nnnhCQ4cONafMO1hmz56tlStX6u6779bvv/+u0047Td27d1deXp7mz5+vL7/8Um+88YYkV0ayefPm6YQTTtAxxxyjrVu36plnnlH//v09AvqOOOIInXXWWXr88ce1ceNGTZs2TQ6HQ999952OOOIIXXHFFc0q43333aevv/5ao0aN0kUXXaT+/fsrPz9fS5cu1RdffKH8/PxGP//oo49q3bp1uuyyyzR//nwz09WCBQv04YcfasKECXr44Yd9Pjdr1ixde+21uvbaaxUXF+eTgWvChAm65JJLdO+992rZsmWaMmWKAgMDtXHjRr3zzjt67LHHdPLJJzdrW9vb/+I2AQAAAADwZ0YAFgAAAAAA6BR69uypM888Uy+//LLPe7feeqv279+vd999V2+//baOPvpoffbZZ0pMTGyTstx0001asWKF7r33XpWUlOioo47S008/rbCwMHOZiRMn6qefftKdd96pJ598UqWlpUpOTtaoUaN0ySWXtPi7k5KS9OOPP+of//iHnnjiCVVWVmrw4MH66KOPdMwxx7R4vSkpKVqyZIkefvhhvfPOO3rvvfcUEBCgwYMH66WXXtLZZ5/td6q/s88+W1arVXPnztW+fft06KGH6sknn1RKSkqj33fDDTeod+/eevTRR80MTunp6ZoyZYqOO+44c7mpU6fq66+/1pw5c/Twww/L4XAoKyvLDHaTXBm1/vrXv+rNN9/Ua6+9JqfTqVNPPVVnnnmmnnvuOT399NMqLCxUcnKyZs+erdtvv73FgWp/xF133aUjjzxSjz/+uP71r38pPz9fsbGxOuyww/Thhx+a233uuedq7969evbZZ7VgwQL1799fr732mt555x198803Hut88cUXNXjwYD3//PO67rrrFB0drZEjR2r06NHNLl9SUpKWLFmiO+64Q/PmzdPTTz+t+Ph4DRgwwO/0n94iIiL05Zdf6umnn9Zrr72m6667Tk6nU3379tXcuXN12WWXKTAw0OdzXbt21ejRo/XDDz/owgsv9LvMM888oxEjRujZZ5/VTTfdpICAAGVkZOjMM8/0mRazs/hf3CYAAAAAAP6sLM7m5iMHAAAAAAAAmuGWW27Rvffe63fqPQAAAAAAAKCzO/iP+gEAAAAAAOBPZc+ePUpISGjvYgAAAAAAAABtgikIAQAAAAAA0Ca2bNmi999/X++8846OPfbY9i4OAAAAAAAA0CbIgAUAAAAAAIA2sWjRIs2ZM0cTJkzQI4880t7FAQAAAAAAANqExel0Otu7EAAAAAAAAAAAAAAAAADQGZEBCwAAAAAAAAAAAAAAAABaiAAsAAAAAAAAAAAAAAAAAGihgPYuQEfgcDi0e/duRUZGymKxtHdxAAAAAAAAAAAAAAAAALQzp9OpkpISpaamymptOM8VAViSdu/erfT09PYuBgAAAAAAAAAAAAAAAIAOZufOneratWuD7xOAJSkyMlKSa2dFRUW1c2ngT01NjT7//HNNmTJFgYGB7V0cAEAnwfUDANBSXEMAAC3B9QMA0BJcPwAALcH1Azg4iouLlZ6ebsYWNYQALMmcdjAqKooArA6qpqZGYWFhioqK4uIBAGgyrh8AgJbiGgIAaAmuHwCAluD6AQBoCa4fwMFlxBY1pOHJCQEAAAAAAAAAAAAAAAAAjSIACwAAAAAAAAAAAAAAAABaiAAsAAAAAAAAAAAAAAAAAGghArAAAAAAAAAAAAAAAAAAoIUIwAIAAAAAAAAAAAAAAACAFiIACwAAAAAAAAAAAAAAAABaiAAsAAAAAAAAAAAAAAAAAGghArAAAAAAAAAAAAAAAAAAoIUIwAIAAAAAAAAAAAAAAACAFiIACwAAAAAAAAAAAAAAAABaqF0DsBYtWqQZM2YoNTVVFotFH3zwgcf7TqdTt956q1JSUhQaGqpJkyZp48aNHsvk5+frjDPOUFRUlGJiYnTBBReotLT0IG4FAAAAAAAAAAAAAAAAgD+rdg3AKisr05AhQ/TUU0/5ff+BBx7Q448/rmeeeUaLFy9WeHi4pk6dqsrKSnOZM844Q6tXr9bChQv18ccfa9GiRbr44osP1iYAAAAAAAAAAAAAAAAA+BMLaM8vP/roo3X00Uf7fc/pdGru3Lm6+eabdfzxx0uSXnnlFSUlJemDDz7QqaeeqrVr12r+/Pn65ZdfNHLkSEnSE088oenTp+uhhx5SamrqQdsWAAAAAAAAAAAAAAAAAH8+7RqA1ZitW7dq7969mjRpkvladHS0Ro0apZ9++kmnnnqqfvrpJ8XExJjBV5I0adIkWa1WLV68WCeccILfdVdVVamqqsr8u7i4WJJUU1OjmpqaNtoi/BHG7+Lv93E6nbr5wzVavqvIfC0k0Kabp/fR0PQYj2UfXrhRX6/f7/Ga1WLRBWMz5HA49cKP2+V0OhssR2RIgCwWi4or6ssRFx6kB08aqKSoEO0trtT1761Sfll1SzazSYamx+iQ7jF6/oftcjRS1rZisVh03uhuGto1Rv/8cLVKKms93l+f45oCtEdCuAJtFp/X+yRFKCM+TI/OGqxAm28Svo9W7NG/v9t2wG1LiAhWcWWNUqJDdO/MAbr2vZXaXVgpi8WiEd1itHpPsSqq7R7f2xQOp1Mb95Xpb0f11F/GZ+q691ZpfU5Jkz7rLjjAquun9tbm/WX675Kd8t4am9Wiyyf20JT+Sfps1V49s2irggOsun1GP/VPiaovj8Op6+et0rq9rjKEBdl0+4x+6pEQrqvfXqFdBRUNlqGwokY5xVXqkxShYwcla9bIrrrmnZXKLa3StrxyWSxS97iwZm+b5Nr/0wYk6b+/7JTd4ftblVXbFREcYJ5PCRHB+mFzniRp1a1HKTjQ5vOZnQXluu3/1urCsRkqqazV099u8bvu9uZ0Shv2lSotJkTvXjJKCRHBkqQv1u7TvxZt0XmHd9exg1MkSQ8s2KBFG3N91tErMUIPnTxINmv9OfLe0my99NMOnzpo8/4y1TqcjR7DRp2XV1qtJ77ZrFp70/ebRdIpI7tqf0mVT/1YUlmr2PBAVVQ7tCW3TFLTzyVJyuoSrgdOHKjr3ltlft5boM2qq47K0sTeXczXSqtqdfVbK7S3uNJj2fU5peoSEaT+KVGaO3uw7l+wQb/vKGzwPLdaLNqWV66YQJue2vyDLBbX/rZYLDp2ULJ+2Jyn6lqH7jy+v3YXVuipb7boLxN66Mg+XeSt1u7Qte+u0qb9ru+KDg3UzoIKRYV4NqV25JcrOjRQ0aGBPutYn1OqEd1i9Ncjs/Tcoq3Kc7tWBAdadeO0PhrZPVZS0+tCbzOHpuqQjFjd9ek6VVTbm/QZi8Wicw7vppOHp5mv2R1OXffeSm3I8Z3WuVtcmB49ZZBu/GC1Nu4r09mHddMpI9KUV1qla95dqbzS+u3alleuqlqHz28TExao+04YqK6xoQ2W665P1+nnLflN2obmyimuUmFFTYPHs81q0aUTemjagCSf9+75bL1+rKvPmiosyKbbju2nAamu+t3pdOof769WZnyYLp3Qw1zOeH3Nblfb1Di2eyWGy2qx+K7YS1RooO6dOUDd48P09q+79OrinT51ikXSaYem6/RD0/2uw+l06ob3V2u1Vxn6JEWoutahrXnligwJUEllrcf+s1osumR8po4ZlKwl2/J1/4INmti7i/56RJa5THZhhW6Yt0oJEcEKCrCa3+GtsLxGJVW1So8N1aEZsZo2MEn3L9igqhqH3+WLK2u1p6iy0frJXz0RGRKgu48foB5dwv1+psbu0N/eXqFteeUer1stFg3vFqPt+eW6eXpfZXl9fmNOqW75vzUqrfJsI0nS8G4xOmtUN01/8kdJ0sDUKF19VJYm9Patd178cbvmLc2Ws4HyN3U7GzM0PUZ3HtdP/7d8j0/b0ntdxt+9EyNkHI67CiqUHhem0qpajzbJ+F7xmjtriB5auEG/bS/0+d6M+DCN6B6r33cU6uFTBpltwts/Wqtftxc0qewH2uYThqXquMEpuvbdlcovr9G5h3fT0QOTdPXbK7Qzv0Kb9pd5tFeDA626YWofHZIRa65j494iPb6q/hoyKC1a98zsb15PjLoyOSpE10/t7bd8FdV2Xf32CmUX+m+z2awW2awWVdfWH9/+tqlbnKv9HBzg2leVNXZd9dYKZSaE6YZpfSRJT3+zRZ+u2uvzHf1TozTn2H762zuNtx29GeWYOSRFD5w00Nxuf7zrxv4pkbr3hIG6Yd4qrd3bcFvafVu7xobqsVmDFRxoU0F5ta55Z6X2l1RpfU6pwoJsmtIvUfefOFBWa+P14YLVOXr55x26aVofZRdW6Jb/WyOb1aL48CCfZfskRerBk1zrvG/+en2/yX/9PiozTrcc01eLt7rqt5XZxeqVGK4ukcF65ORBio8I1uKt+XpgwQZV1f2WTqcUFmxTRbVdoUE23XpMXw1Ki5Yk3b9gg77bmKv4iCA9fPIg5ZZW67aP1qrMrd5Yn1Mqi0U6YWhqg/WlITIkQHfM6K+5X23S9rxy87O9E33rgsiQAN0zc4AyE+rrrl+2Fei+BesbrGebYn1OqXonRmjDvlIF2izqkeC/bpWk+PAg3XZsP93z2XrtLa5UfHiQHjx5kIrKaxqsP5tqeLcYzZnRz+N4feSLjfpq3X6fZZOjQnRE3y5665ddGpIerRHdYvTCD9uVER+myJAALVy7TwXlNZrQO0Ebc0pVUWNXUmSwdhZWqGtMw20Y9/U/OmuwIuvai2VVtbrq7RXaW1Spcb0StGZ3sdkeNM6FrjEhCg/2HarrHh+m/LJqn/63JNU6nHI4nAoKqO9fRwQH6LZj++nZ77Zq075SBQdaNSg1Wmv2FOu6Kb3Num7Ox2tVVevQ3cf399hndodT1767Uhv3+bYFDbml1corq1bvxAjFhgeqW1yYVtSNy4QHB+iOGf3UJznS53OvL96hN3/Z5dFHjgkL1ITeCfpo+d5WG+fwd91yN2Nwii4Zn+nT526MxWLR8G7RWrunROUNtLVtVosuGdtdkucYVmNtSGMcwjCpbxfNnTVYm/aXac7Haxv8rj+qKe0Gi6TSarvCg3z78N7GZMVr475S7Sup8nkvKMCqv0/upTFZ8ZJk1plbcsuVGh3i8RsZdW52YYX+MW+VsgsqFBES2Oh4nSTFRwTp75N66YHPN6iwvEZTByQpNNCmD5btbvRzRh/fKGdmfJi5b4y/G2KRtLOgotF+jWFyv0RFhgRo3u8Nlyck0KYLx2bond92aWr/JH20Yo8Kyps2Vj2pX6KuPqqnvlq/X//8YLVyS6sVGxaoxMhgj+UqauzakV/h87vvKqxQWZXrWDuiT4Iqaxzm+GZUaKAcDmeT6+fYsEA9ePIglVbW6pb/W6PKGoeuPDJLR/Tpoke/2KQv1+3zWD4uPEgPnDRQyVEhevmn7Xr3t2yzjpg2IEnLdhVpb5FrfCCrS7iyCytVWWNXZkK47j6+v/7+7krtKapUUwUHWjU2K0GLNuaqxu669hVX1io+PMj8270tmdfAOO/6nFKlRIf4jAs0ZnyvBJ92Y25plf7u1pfuFhemubMGe9Tr7u74ZJ3Kq2t178wBHnX3Jyv36tlFW+VwOs1jWHKd43ll1cotrVZEcIDSYkIaLN/2/HJV1rUHQgKt5r+N9RxIdmGleiSE6dRDuur9ZXvMMfTm9lMM/VMidf+JA3Xv/A2N9sMtks4Y1U2nHtJVklRV42qD7yyoUGF5jXJKqpQRH6bqWodiwwPNcTPv/dQYm9WiYekxWpldpKpahxIigvXwKYP8tjEN3u1L9zahd9vRImnWiFTFS3rmm036eNU+/ys9AO993TspQg+eVD8G+Z/vt+n+BRskeY41GHVhQ/thav8kVdba9e2GXE3tn6S/Hpnl8X5xRY3+9s4K5RR7XgMCbVZdM6mnhqZH6+q3Xe9P6Z+oSyf08Nvfbk3rc0oVHx6khIggDUqL1p6iSp0wLFXHD0kxlymprNXf3q4fg/RuS9baHbrmnZUe45oWSSeNSNO5h3f3+L4Pl+3W8z9slyRdMKa7jh+aqpd+2q733Oo0b93rrjHb3fZDj4RwnX14N903f4MqazzbAEPTo3Xncf0b7Jt9uHyPnv9+m9buLVF6bKjC/Fy/1+eUNtjm9Hb80BSt3l2iTftKtb+0SvllNT73fRpjsVh07uHddJLbmKNha26ZbvrA9/5SUw1Nj9aW3HKPe3XeYsICdf2U3nr4i40edezfjuqp2z5eq+KKGsWEBeqyCT305DdbGl2X+zon9E7Qxyv2HvDexcZ9pXI4feuXsT3jzX685LoH9A+vvvOO/HJV1DgabMtKrv175qh0zR7Z1eN1436Td/mCAqy6bkovDU+P0cA7vpRUXzaLXGPyfZMjdduMfrph3mrllrrO5/U5pcqIDzPHIxqTHB2iWrvT/KxPmeUalwy0WfTKz65xS/fxzIb65UbddkhGrOYc20+PfrlJO/IPXH9YJE0flKxfthV4tFGbcl1y79O3VI3dqS25Zeb3GGOKK3cXqarGofjwIF08PlNPfLVZpVW1mtI/UTnFVR73u60Wiy4al6EZdfecft1eoAc/36jU6BBtzStTrd0pp9OpktL68av48CBNH5Ss//6y0+81r7Ftt0g6eUSaznGr4/YUVer691aqoLxGkSEBuvO4/urpNt5Qa3foktd/16KNeQqwWlTrcCo2LFBpMaG66qgsbc0tN8c4/wijzbh4a4Ge/77heydD06NltVi0dEdh/XZZLDr1kK76ev1+fbsh19wH63NKNSgtSvefMFB7iiv16BebzPag9zrPG52hm+vuiydFBWvurMGKDAnUsp2FuuvT9T519voc133EiLr6NikqWCO6xeqzVXsb3BcfXna4x31DdCxNjSOyOA/Uez1ILBaL3n//fc2cOVOS9OOPP2rMmDHavXu3UlLqG0SzZs2SxWLRW2+9pXvuuUcvv/yy1q9f77GuxMREzZkzR5deeqnf77r99ts1Z84cn9ffeOMNhYW1LBgB7Se/Spqz1LexODrJodk96ivJWof098X+G5Xp4U45nFJ2ecsqtVk97BqT5NT3ey16Z+uBB6X+qIhAp0pr2q8CTglzamicQ5/tavm2Xj2wVpm+Y7F6ZKVN20ubt21T0hz6PLv1Z1T9x5Ba3b+85XGqIxIc2lZiUV6V/+3pFeXQFQMcmrvKpq0lrmWOSHFoZkb9cbu3XLrXqwxHpDjUL9app9c0ff8HWZ2a1cOh1za1/fF5ICdl2DU+xffS88RqmzYVu/ZDzyiHNhW36yy5TXJall2HJbq25ZZfbSqusSjQ4tRDh9lVbZeuW9Lw8XP94Fqlud2XuneZTXsrWn5ej0lyKK9SWlfU/P0WEeBUaW3b1CmnZNoPWC/2j3Hokn71x/3KfIv+s77xzzRlvU01Jc2hxfstKqq2KCLQqbtH+naqdpZKD61snbj1hurwQ7s4dEZP135oSV0oSWEBTg2Pd+r7nOYdB8mhTt04tH67d5dJ969oeHvd939SqFM3DbVr8T6L3tjc9N9kZne7jkj13wwtq5Fu+rV9nxPIinTqyoGex0JFrXTDLy0r14QUh06sq9+3lkhzV7nW89jh9QNN+yqku5f9se2e0c2uSWlO3f27Tfsq/R9DccFO3Tbc/+DB/grprhaWISPCqb8Nsuu5dVatLnAdg3MPqzUHir7dY9G8bc0/b/vHOLSmsG2uCcek2zWlq//jcFuJ9OiqxvdFYohT/xzmuS8/2WFttF1yWKJDP++rf39ArEMX9/Xt2P/zV9tBae/NGV6rf6+3aVdZ635XU+vpM3vadUgXp4qrpVt+a73zPizAqeO7O/TfunopOdT197PrGi7TIV0cOrNn/W/x+S6LPtnpufwtw2qVUHfPanup9EjdteHBQ2vl7970ukKL/rW2da5Xfx1Qq551cfprCizmtjxwaK2CbdK1P9tU4/T/O/7R6+Y/h9YqsYF7y+W10o1+6sYL+tj1/AGu594u729X72infsu16JWNvp+9cUitkg/QZf/bTzY5ZFGvKIc2NqE9ecOQWsUFS9c30m6TpHtG1uq9bVb9luu5zjOy7Do00alXN1r1a27D3zcu2aGTMx0+bcQzsuzaW2HRl7v/WD3XnLpyerpdU93qvtc3WbVk/8Fte/eLcWitW3ln97CroMrSKv26O0bUKrruXqjdKf39Z5ucOnAd1xb97Av62DU4zrWvVxVY9O9G6qDW5r2PDd0jnLpmkF0lNdLNde2tW4fVKt7tfnx2mfRAI23Bpjgq1aHjuvte3+YstSm/gT7ywRRsc+qBQ+1++9x/VM8op/46oL590FA92ZjL+9u1usCib/Z0/H5xUw2Jc+j8Pq5j4kB15j0ja7Vor1XzdzVv+9PCnObYntXiVLBVqrC3//EmSRY5FRoglbdR39sipx45zNUW93fuH2ynZNpVUmMxf8N+Ma427zUN1Mmze9g1Oslpjq001dQ0hxa0wZhgWIBTx3Vz6M0trV9ve7cbf95nMdushisH1CorSj7c+8o3D61VF7f22aMrbdrWgnGEju6aQbVmm7sxCSFO3VLXN9tYZNGTzRg3bSmjL+NPld1/+3J8skMnZTr0ykbfdqXRV79hia1V6y73Mcgbl9hU3grrdh/LkKRleRa9uMH/Ph8U69DILk7zfatc4y1zD9DfbivuZV+Rb/Hps7i3Jd37fO6iAp2602v88MEV9f3qruFOXTfY3uw6zeB+PfN2+/BaxQb7fUsPrbBpZyv37f8o7zFHg7/+dlvoGu70Ge/wbie3x/02ox8v+b8H1FRdQpy62Wtc6vFVNm0u8b89w+Id6hXt1NuNXN8Gxzm0Ir/t2hLxwU4FWKUct3shx3aza3yy84D9cqltxwnbQ1OOv27hTv19sOt3bul9g+bwruO8731P6+rQ0en1fb2G6krJ9XvtLLOopJXOsVk97Popx9rqdV2/GIdsFmlVQdPHdM/vbdeQeKfe3mLVD828H9OQRw+rFfFXHVd5eblOP/10FRUVKSrKT2O9TofNgNWWbrzxRl1zzTXm38XFxUpPT9eUKVMa3VloPzU1NVq4cKEmT56swEDPrCJr95RIS39SdGiAHps9RAvX7NPrS3Yqtkuqpk8fbC6XX1YtLf5GkvTCOcNltVi0aV+p7vp0vazB4XI4HFJ5pW47tq/H08CGd3/L1scrXU+UR4UE6PFTh+g/32/T95vy1C2rr6aPz9SOb7dIWzdpfK94nT8mo9X3w1/fXK6SylrzYnzLMb5ZF9rSttwy3f7xOlkCQ5XcLUnatV3HDEzWKSPrn2A496XfJLmeMr1puiuKv7C8Rle/vcJjXQOHHeI328PcDd9LpeW66eg+6u0nAru4okZXvuW5rrCENCl7jwJtFtW4Zf4JCrCa2QReOndEk7bRKL8kDRpxmLT8VyVHBeu+Ewc26fOS9N3GXD3/w3ZFxiWqprRQUq3uPWGAUqJdI9ordxXp4S82KTA8WtOnH64nNv0glbieoumSmq7p0weY6/pte4G0/BclRQZrXK8Evbs0Wwmp6erXK0Fas9xjP7vLLqjQPz9cY/5d7bCoW6/+0ibPgNVTRqTpmEHJTd42SXrqmy36ZVt9doprJ/fSwDRX3VleZddl/11mvvfP6X1096ee35mW2VvTvZ6SkqR7V38ryfUUQmBYtFRc4rHujuKWD9doZ132iMze/TV9tOtJgKt++lySVOO0aPr06dpfUiUt+VYWi/TC2SPMAIQb31+tPUWVGjzyMI3KjDPXe8/qb6WKKt0+o58y6p5+2pBTqns+c+2/E4am6PihvlPrGnVeTGKqSvLLpaJiXX2U68myA8ktqdK1763yCL4y6sfL31imMj9Pd1gt0gvnHPh8uvmD1dpVWKmYtCxp6zZ1iwvVHcf191jmt+0FeuLrLQqNitP06Year1f+ni2tX61BaVH6++RekqTnv9+m79yefjHW6+6Fs4ebWTG27C/THZ+skySF2Jx68rShCggI0NbcMs35eJ3H55K6dldR9k5JUmmN6/fz9uPmPGnlbz6vd40J0V0zXefsiz9s17d1Gc/OODRdk/snmsu51y1GHT4mK14XjcvQN+v366Wfdig6IVnTpw+VJD16gLrQm1E3Vjmsik5MknL26vRDu2pKf98MTu6255Xrto/WyhkQounTJ5ivL9mWL63wrf/u+HittuSWe+x/47M5P26XNq/XYZmx+ktdVidju43MX5L06s879OW6/eqa2UvTj+rpt1w78sulX79XcIBVz5457IDb3xzfb8rTf753lX1K/0SfTFCrdxfrwc83KjAsUtOnj/Z4L7uwQvrlOwXaLPr3WcOb9H2frtyrt3/LVnxyV02f7tqXi7fmS6t+lSRNmjLNfLJ52c5CadkSJUQE6aGTB5n7L6tLuG45pm+j3/PGkp36fM0+pXbvqelTeumOFd9IqtZdx/c3n8jfW1SpG95frVpLoKZPn+p3PSuzi6RlixUXHqgLx2bogQUbJUmPzx7sc/09sk8XnX14N63fW6J752+QNSRC06eP0Rt7f5EKXNeJIydPVWjd3YVt32yRtm0yPx8bFqhHZw32WOdnq/bqrV+zPV5zBEdJKtV5o7trQu8EnzIb+8nf+iRXJquLXv1dknTxuAyNzorX64t3auHafereo5emT/J/HC7amCutWqrucWGac1w/Sa6nF92va/sqfeuMJR+tlbJ36vghKTphWH29ffl/l6msyi5rRIK0rz67m3cdKLkykV275AtJTj100kBd+94q17Ye3k0T/WTpk6Qv1+3Xqz/vkCQ9csogxTXyJLZU364cOXqc/r11mVRWYbYtl2wt0NPfbpEkPX/2cNmsFnM/j8qM1aUTeujW/1ujHfkNZ1My6onwYJueOm2o+fpt/7dW292eUkzv2U/Tx2Ro8/4y6bcfFB5k01OnD/VdoR+/7yjUY19tliT9+6xhCrRZVVReo6vedtWH3Xv1kTa7nu52Boaoz6De0rqVHut46dwR+nZDrl78cbui45M0fXp9nfP7J2ulnTs1rX+iFm8rUEF5jUYcNtbMZrd4a7600nUuj554lE+GCUlyrtwrrV2hvsmRumGaZ7aD81/+TcYDqReNzdCYnvH6v+V7zMwY950wQMnRIbrj43XaklumAUNG6qh+rmtLwJocad1ySdLhE45UbGigan5yPcH6zOlDFVJ33v39HVfWBuP36JMUoRuP9m07NrZvJemQw+u329uuAs+68bp3V2p/abWSs/pL69crMTJYD5zk25Y26lt3/YcM15T+SSr+ZZe0cY3PZ4YdOlrDusU0WnajTVbkDJXRtpSkk4en6djB9e3ef7y3SjklVRp6yOFKiw2VliySzWrR82d71u+XvPa7qmodGjVuohYUr5NyPbObZvTpr+mHd9cHry2VcnN1wZju+mTlXu2te/o/PMimsmq74pLSNH36INdTt0u+NT+f1XeAanNKpd27zCfyf9ycp+e+22Yu492edPfWL7v02eocVQdGSvLMOOpdb7796y59uipHKd16aLrbE9cfvf67tH9/g/VsY9zrWHcN9b/+/d02VxZSr/J279VXgYWVUvZOHTc4RScO9233HsgV/12u0qpajRw9Xr3qnsYtKK+W8+dvJHm2FR9YsEFr9nhmPGruTRejfvTnkS82asWuYvXqP1jT6574r162W1q3ymO5MVnxmtSvi0f79KGTBiqhrj5xOqXzXq5vRx4zKFmnjKjvf7/443bz6V2jbfnB77v1wfI9fo8JSSp2BGn69CO0ZX+Z9OsPkqSRh49Tv5T6J6QWb3W1BVOjQ3TPCQN81iF5tm/dHTMoWZ+s3Ksuad00fXp/n/f/ufQrSbW6/8QBSqrLdvP1+vrz6sZpvf1mzmouo3yT+nbRmYd1M18vrazVFW8uV5XdoqnTjna1v+r63Pf7qasMuwoqdLNbH3v2yDQdPdCzL70qu1gPLdwoW2ikpEJzDMu7nmyorO76Dxmuvev3S3t2t6jffiC7Cyt10werJbmydIzr5Xvu7ymq1I3vrzb/fvLUIYrwk+mnstquv7yxzPzbve0vST9vydczi7YqPCZB06e7ZjF4/9WlHvWpUYa/vP67KmscOnTcRG1eslPatd1c5o7j+qlbA1m8n120VT9tyVeJI1CS68a6w2lRRV2X9vHZgxXlJ0uxJD333Vb9uLm+bXbT0X3MfrjUcH3m3l7KiA/T7TP6+V3OqCedsqi87p7/3FmDFRPmWR6jb+9tQq8EnTemu8/rBrvDqQteWSqnLBp/5GS9nL1UKqzPmuBefmMcVJIGp0Xpmrr+tns70t34XvFyOmX2xbvGhuqu433Pa3cv/LBNizbmqXvPvtpfWiXtcq03JDJW444cLufPX0uqr0Of+XaLft5aoJ59XdfTf/z6hSSHz3hSclSweW11F1o3JjggNVLXTfGfkdSd0f82XDahh95YslOFdVlPzhyVrtcW76xvS27ZoNFZcbp4XKbHev729gozO1lTxhydTun8V36T0ymNPeIoM5u6JO39YZu0eYMO7xGnnOJKbckt18Bhh+gIP+3+7XmuvrIkjfRqnz2+6Qep1Lfef+ncER71TGPlbahul6RLJ2R6jGO5c+9nu5vSP1HHDU7RFW+62q3NGee79t2Vyi2tVkb/4dLKFQ3WobsLK3TTB2tkt7qub5IrI6rWLFevxHCPDIOGU0akKTMhzOzvSq4sdWeM8p8peu2eEjNrlLvMPgM03e0a425PUaVH+/KzVTl669ddZptw3qv1bcdeiRFmX93htJvBV43VXf4YfXPJVWf+69ut2lNUqaGHHK5DMmLlcDh19c8LzeUPyYjV5RM9x28kz2Okutahi1/zbetNnjrNY3aLst92SRvWuDJd1Y31GPVkaHS8evVPkTa4rqMOWdRjwHBp1YpG688/wrhv4497H75iqWsMcnBalLbklvu0Jb/blCutXKr02FDdeXx/5ZZW69p3V6rKafMZV3lw3XdSWV0fOShM06eP03W/uOq0h08epPgIzz66+xizUb8arxnXs7NGpZt9wCvfXK7iylodMnqceif5bys9vN6tDHKNzfdyy1JjtFElzzanN+/7OanRIdrtlmmwKfWeMeaoQM8xR8OK+eulnds1fWCSZnllcGqM9/2howckafYhvp9/5acd+mr9fpU5gyTV6JCMWOWVVmtLbplPO9noB0wbkGRm0vPHGNM03DCtt/o20G417hFJ0uyRXXX0QNcY7YWvLFWtw6nDJxyp5CjX/aKlOwql5Us8+s7GOdnQvSnj/o/dVl/3GZ7e8qNUUqrrpvQyrxM/bMrTv7/fpsi4LuqRFS9tcdUVrky40k0f1LdzAyLipPxCjeweo/yyGjMD3FOnDWk0c5rRx5akkd1jdMURnveAjLal3RqkgECrVFGlvsmRWre3RKnds3TYqG5+++Xr9pbovvn1dbDx+/VICNetxzY8XmqMgxqGd4vRlUdm6aMVe/TeUte4y4vn+O9nG/dwJPlkzmsq9/ozKSpYF4zJ8GhjGvz1Q2NCAzV39mDz/pA1JFzTp4+VJN2+/GtJ9Vl4rjoyS4NSI7T0t6UaPmK4XvxplzkbjfF+REiAz3067/pBklnHVcuzjjPufRuS0zM0fXr9vjfqSn9Co+JUWVIkydmk8cqGGG32zF799EvRLqnM/70To66UXJmhnzxtiN97Qt7214aoZ5dwqaBAl47P1Kge9W2eq95arqKKWp8x3Z79B2v6iDR99e5KKWePx7k+98tNWrbT1SZ/8KSBen3JTvNv47Uufurg0T3iGs1Aj/ZlzKp3IB02ACs52TWwkJOT45EBKycnR0OHDjWX2bfPMxVrbW2t8vPzzc/7ExwcrOBg34M6MDDQJ7gHHYu/3yivwlWRxoUHa2LfZO0rrdHrS3Zqe0G5vqwbxIuPCDbTY4YF2XRkP9cxlRxTLH263uMm0LjeSR6pEw2r95SaAVix4UGa2DdZ32zI0/eb8rR6T4m+XJ9rDpJnJUZqYt/WHRyTpNiwtR4pWcf1Tmywsd0WNu8vlT5ep91FlWbnoF9qlN9t7ZNS/7orRbnnTdvF2wqVmRilrC6e+3prXbrdsb0S1d/PTZ7yat91/bTVdcGLDw/2mLIsLizI/Lslv8e3G12NlC6RIc36fFm1U8//sF3ZhZVmevYj+yUrqa5BHRESJH2xSftLq/Xl+lzlu6WT/2V7oXmM5xRX6sctrhvYCZHBGpgWrXeXZuu9pdnKLnRtV1psqN+y7Soolz70vGn1q58pgAZ3jWn2vvl0VY5HANboXl00vJtrCotau0PSMvO9qQNSfRp2VQ6n9pbUaPXuIpVW2RUcYFWgzeIxkGak2z28ZxeN6B6rjiRt0Vbz+F+5u0Rfrs/zmK5Ikr5cn2umtI0IDtAR/er3cWLkJu0pqtRPWwtUWl3/lEBxXV02oU+SGQTaJapIqmuUD0jz/1vtK3HVeTvyK7S/xJVK+bCsBB3WI/6A25JfVi29V38TyL1+jAkLUlm17431QJu1ScdMYtRm7Sqs1IpsV4MkOcr3WLXZbNLXW7S3uMqsryXp952uz3SLCzc/882GPI8ArH/7Gdg7sn99eyEttkSqC8AKD3Dt18DAQHXdVyLJs7G9cb/nYJx7WQzujWPP7ayvH77blG8GYA3pFnvA/ZSVGKGJfZNVVGnXSz/t0Pb8cv37h+3qkRBuDuQ2VBd6M+pGu8PpCmKQNCT9wGXYllsmfbRWRZU1+nJ9rsKDA3R4j3gt2Vbks32S9Nx327Qlt9z8XSWpqML1WWOwNbOL7zUwNTbMfO3nrYX6ct1+rcsp9dnXxZW1CrBaPKa6aO3raUWN0yxr32Tfa1hUWLD0+UblllVr/pr9qqp1KKLukTRj30aFNL1cOwsq9fZv2dqaV98ucT+ePluz31z/2robwQkRwR7rz4gPP+D3Ld1RpM/X7NP6fa79arQXJvRJUnrdjaqc4krp/dUqrao1yxIVGqhRmfGyWS1avbtI321y1e/x4cEa2q2+ozllYKrkFYDVK9n1WydEhkrzNyi/vO66VlZ/XZu/dr85JceHK/Z4fD6urj3lbnt+pSTPAKx1dSmyh3ePa3Q/xPpZn6S66WpcAx5GXfpD3U22z1bn6Ih+SYoLD9LGuimHU2NCNbhrjFlHJ0fXnwdJ0cWSPK9rtU6rQoNscjic+mVbvjbVHScD0qI9yhMTGqSyqgqzrWPwrgMl13RSRlD5lEGpZl3dv4FrgSTtKa6fGuWo/il+p0J1Z7Qrv9mYr6K6OsdoWxZX1V+fjurvOcjUo+4cT/5ma6MBWEY9ERPq+bskfbvVo+39244idU/INaeeiAnz/zv64z5TwaT+KbJYLHVTuLnqwzeW7DLfL6qo0W87fOvyiX2TVVzl0Is/btfG/WVmO2zlriJtynWVqU9ypDbuL1NBeY3eX7ZHocFB2lNUodKq+kDlL9blKizIpuzCCmUmhJt9D+M7u/pps0UEB5iDQsPqju/NuRVmANaR/ZKVGBWi/3y/XVtyy7R4e6FktSo8OEDlNfUPHXy5LtdjEHTywFQzKCQ+Yr3yyqrN3yPNrT5uTK3Dc7Dns9X7FBEapJ6J9X2PgrJqLd6ab06vGF1XZ8dHbND+0mp9tGJvXRmC/X5ndF19K7mmcSgsr9FX6/N09KA0VTUwnfL3WwqUX1H/w1fVOhqcBsF7CqxBXu3ehMiNyimp0g9bCjQ03fV9kSEBvteF0EDXVM0b8rS70Hd6o3V7y2SX1QwgGd49Xku2FZpt27TYUG3IKdW2/Aotzy5RZIjnufntxjx9u8E1iD+w7hyvqHFK2mYu492edLd8V4k+W53jcUPEMMyr3lyRXaJPV+Vow74yfbk+T32SI7Uhp0SL69r23ss3hXsd666h9Xy1Plc/bM4zr6mG1btLlVfm2mfe9WdTxYS5pi/8dmO+tuRVKKe4SiGBruMjJNDq0VZ8bfFOnwCs5vKuH929s3S3Vuwq1u87ixUT7hp/WuqnPdkzMUKjeybKvX16VP8UxboNSocF2cwp6Pqneu6b7zflmwFYRtty475yfbB8j9/jVZIKyl1tN/epbr7dmKfuXSK1eEueHE6nOZVgl6jm9YVtVouGdYvVJyv3asv+cn2xLldbcssUExYop9M1/WRZtescPqJfshIjQ/TTlgKPAKwxvRI1MO3AD5M01aCunm3iqlq7JFcgQHG1Q2V19WlCpP+6yrAzv1xSfR/be72SFBkaLC3cqLyyai3Ps8i2IV8BATaz/x7djLbtnuJqLVjtGvNsSb/9gOsvqpDqArBGZsT7Xb9ryrf6m1aTB6YoOMA3W4Jreptl5t/dEzzbrrUOi7Roq/a4tXmyvY7P4d1dZYgKCVRlTZW+2ZCn7V7tjAl9ktQ93v9DiJ+v3a+ftuSb11Vvkwekmg8FeFuwZr9HANaYXl3MfrjUcH3mtFilugAs9/aiz3JOpwKsy1TrNg3QpAEp5lQkBmM801vPpAOPMQbZrKq2O7Rgba72eQUpuX82JaZEqhujSXfrY+SV1foNwMpKjPQIwEpuQp3w7cY8LdqYpzd/3aUCt6n79pVU6/O1rt8/KMBq1qEfrciRthao1mGR02Izp7ybNtBzPKlbXLjfACyjr5Aee+A+kySz/204tEe8PludYwZgje7ZRa8t3im7w6mftrquj1l++rgxYevMfntTz8+IoACVVNVqyfYihQTa1CsxQpv2lWrlbtf1qEeXCFksFm3JLddnq/epb0qMdhdVKDYsSKVVtXI6nfrdbSqd3LJaBQa6puf8bXuBeW2NDg1Ukds0Wt7la2l94qor/D/k5d7Pdtc3OcrVl6yrd4d0i9W4Xv4fKPGWELFBuaXV+r7u/GyoH+5qi67x6Of+WtcGT40J8xuANahrjAZ3jZHcArB6Jzd8rsWGh0huAVjGPl6RXawv1+cqq0uEermN0e8rrtRXdWUx2pfZRVV669dd2ppfoS/X55rX6REZ8a6xz7q++tLc+nb4lIGpCglseoYgo28uuerMd5fu1p6iSs1fs08OWZVXViX3+XAGpPpvc7m/5nQ6ZbMu85nK7LPV+xUebFNaTJhyy6r07+9dgSbd3eoWo57cW1xljvUZjN+1sfrzj/h6fW6DAVju95eM8zw9Plz55TVmW3JHQaW255Wb9xaMchaWV0taqapah+yyqqrWYbaf3Kd7Lyyv0edrc82Hwyf1T1G0V+Bt8jdbzDHmpLr61XjNuJ4N6VbfPo8NX6viylp9uylf/VJjZbVatDW3TOv31u9b72lrx/VOVN/k+nHFt37NNgOwjuyf0mAghPf9nMSo+gAsf2M5/mytG3PcW1wli9Umm9WiX7cXyGqR9pdUaUPdudk3pXltf9d0cPVla+jzP20t0Ffr95v7pFtcuIICrNqSW9ZgO7lviv97XQZjTNMwpmeiBnX1324tr3GaAViD0+vbchEhASosr9HCtbnqnxqlwvJqrambct57PFByjVE1dv+npNJV93WNDdPAtGg53aahHd2zi4bV3beprHWNpy/amCdZ6vvQE/sl1+WlrG/nGtO2ZSZEqNZRP23dlIGpHoGX3uIjNpoBWBkJET7lNtqWhRU1Ut3p0jMxQuv2lmh9TplPvWmIiwiRVF8HG8diQ/vGsK9uHNRgjK9u3FcuyTXu0lA/u0vdPRypvp/eXO595YjgAJ82pjEO4o9xniVGFUufrVd+WbV5jfM+zw/L6qKR3aJUttmpCX2StGhzoUcA1qisBMWGBcl7PPOwHl18jl9X222lKmscWrguVwFWiw7LijfvUxo+WL5Hf5viCsBavCVPW3Mbng5yd1GlOcbZlPHKhny+1tVm/78Ve82x1cOzfLfBqCsl1z6e2DfZ7z0h433jN8gtdU3XLEnDvdo8sWFrVVRR6zOmu2xXkUZlJaiyrq4f6NZve+e33eY9gCP7Jeu7Tfke9wSO7Jes+Aj/QbDouJoaR9RhA7AyMzOVnJysL7/80gy4Ki4u1uLFi82pBQ8//HAVFhbqt99+04gRrojrr776Sg6HQ6NGjWqvouMg+9c3riezQ+s6IzF1lfeq7GL95TXfiFv3ea9jQn0bmA1V/u5PphnLGP//bNVefbZqr/l+ZBPmz26JmLBA7agfE2rxhaql3L/vi7WugcDQIP/b2i2uPgd2uNs+N54A//d3W/Xqz9v1yz8nmTch1rvNcR0V6n+9oYE2c2DJYMwtHxMW6BGAlZEQ5vF3U/RPidKaPa4G77+/2yqp+fvZOFY27qtvnEa53Wgx3t9fUuVzjG7NLdO23DJlJITr1Od+dnVU6soQE+Y6Xh3Oumw8kkfGL3f+yvz5mhxJrmh7Y5815ymq+vJ7njfu3xVgs3rcIIgJD/TIRCZJX6/bp7d/2enTUPS/HR3vMtU7KVI/b3GdiB8t362Plu/2efLd/XeN8rrJFl23/576erP8cd+f7vu6od/K6LyvzK5vvHl/Z0MiQwJkscgcfHH/7ujQQPOGqruEJjYKjbIvrguQ9Fd+ow7OLqzwW19HhfqeN03lPqjhfhj5K4fxexr8laUhHmUM9b1OGOLCg8ygIvOzIZ7Xkg05pXpgvmdHyHtwpiGhgTYzC+C6urq0KXWXsUxljcPc7jMP66bX6gbfvddh/A7G7yq5bn6777NwPzc2jAyA7uv4Yu0+81pyoPK1Jvd96v+4dL2WW1qtv/7X94aypAZv3vj/Ptdx/vuOQr/H1rXvLPd5zbtcRgarpnzPN+v365v19YNB7uuKrAuEcjg9j/NHZw/RiG5xOubx7+vXFxqoyOD6z/ob9A0LDDCXlVwDjN7beP27K3w+5/4d3hrbtwe6ZjWUEcH9qSHjO42bh1tzy3TKMz/5fOazq8bpl22u49yj7ejnnLzn07W6c+ZAfbVuny585df68ob4nj/ZhRXmAI5hV4H/OlByZR0Md2trxTSyD9wDcLxv6PljtCsfXFBf7xj7xwgK9Mc4nw9UPxn1hPfv7F22z9fkmG0UqXltE/ffxvid3V/b4RboVVnj0OuLPW8sGhmrjHNje155XSBrqWY86Xk+BFhdg4wv/7RdL/+0Xd5u+7/VPq+587ddYUH1AVjGse++7402srGvX/xhm178YZvPdt7+0Rq3zwR4tEuMa615PfaTuaQp5X120RY9u2iLlt062bzGX/r6bx7XUOOYN8pmBHCENXBeu7dzusWFqbC8SO8t3aXxvRPqBtV9Pf7lRr+vN4V3/WKcz098Vf8UZ5ifui6mLgDrrk/W+l3ve0t3Kdarr+h+3HeLC9OGnFIt31mok5/5SYO9BgeN4Cvjs/7K2tj10NiOcj/7rKHr+Hcbc/XdRt+A89Bm3OAzNPfJzIbq+U9W1gfptvT6HxPmyjR0/3zfgVXvOtl4irulDlTPGvX1W7/u1Fu/+gZUGKJDA33OEe8MQzGhgebv631u+h2nqHutosb/eST5tncfXrhBc7/c6HNztbHfwmqRvBZXVEiAeW4v2ZbvyqragCivOq4p39kS7u1QydUGsFktsjucmvvFRsXVlbehusosVxPKafweuaXVemGDTS9s8GznNXSNS4gIVm6pZ2CJe53Tkn77gbifEw1lMnAflwmwWvwGX0muwLuokPprWkN1z9bcsgbbPMZnYsICta+BOrfRurCR94JsVjMY058ubhlJQgKtPmMeTfnOxspmsVgUExZo3tAJsFr89pka2oamnBNRoYHKLa3STe97Zvr0zsrhr85o7Du8X29KWYy2h3sgguTq9xvlc19PcN1vU13r0Jdr69uESVEh5rkquYIf/GlO/9ffct7XbffvWVR3jfZ3jnSPDzPH7JoqMsQVgHXVm8saLJvxG73/e7be/z3b73KGp7/ZpEn9k/Tj5jyd8Z/F5usp0SEeAViSlBARpNzSap86sTliG8lY0VDfICo00Mz4LDWtn2Kus+53efvXXR5/N7Rcjd3pU8dEhQYqMyHc57eKDg30OecaO4a83+sWF6aV2UX6cNlufbhstwJtFv1841HmjdQzn1+sDXUBEGb9VnduLN/pOTYQHRpo1skOp/TqJlf9EBxgbVbwlXc53Y/tV37arlf89GHSYurHGozxdu9sHBaLRdGhgT5jWn/3M5Yhed97cX3/jvxyj76ZVP+7NnUMs7ka+z3X7C5W/9QordhVqA+X7TaXb6wtWd9Xrj+G31i8Qz9uztMXbnWXobSqVpe/4fqdrRbf9p13GevvNzU87h4TGqjtkh6Yv169EyM1pmeCjn38O78zGPj7vOTqgxoaOx/Dg2wKsFrM4OHo0EDznsLwA2QkNrj3Pf+7ZIfS48J07ou/HLCMBxISaPW439DQ/QPfbbeZ56HRTna/T9KUsniPCTV0D0vyvK573BsKdQV83PGxb8Zn9+83zsk+bgF0/pZ1r/u+vnaiK+jIz/rcy77IrQ8aHmRTQANBVd7XyMaCr7y/w9++9Le/jOvStxv2m31jn7ak13lh9I0O9Ht5t6GNv72z0fnTlHbSgbj3lePCg3zamMlRIQ0GYBmJHYx9WlxZe8B2dGN/+xvP9Pd7uN8vuux11/elRIeYY5nGOVNYXqNr31muGrvDYxzaH+OzVkvz2gHejPGatXvqg079jS8YdaVUvy8a6k8ZY1E+3+U9JhMWJOWVm9ti7KO3f92lj5bvMbNJu48pua8jMsTzN7BY5PNwHv63tOud7dLSUm3aVD/YuXXrVi1btkxxcXHq1q2brr76at11113q1auXMjMzdcsttyg1NVUzZ86UJPXr10/Tpk3TRRddpGeeeUY1NTW64oordOqppyo1tfnp6tG5GSnqx/RM0DGDU5RTVxFuyS3z6CAc0ad+Sqjk6BBdNC7TDLSR5DflnyRN6Z+sb9fvV2FFjTm94MxhaVqxq1AllbUeN9SmDWx+OsqmuGxill74YZscDqeGd481MyodLP4CL/p5DeY8e9YIfbpyjy6bWD+dj8Vi0T+n99OGnBKdMCxNT369SUu25quyxqGc4irzQrM9r74z7N4BdGexWHT9tD6av2qvlu4o8Bjw7Z8aZQ68SNJTpw/X3Z+s1RF9E/2syb/bjxugWc+6bsSO7B6rAJtFF43v0eTPS9LIjFjNHJpqDjaN69XFoyGQ1SVCZx7WTevcnrjuFhemeXUDK9vzy9UtLkzb6vbHyO6xunh8Dw1Lj9WwbjEeT7u5B6K5iwwJ1JVH9dLynYWup+7r9kt4cID+emRPvfCD65if2Kfp+8Zw8oiuWr+3RGVVteqfGqUeXlN2/mNaX320fLdGZ8UrKiRQo7PiPRphEcEB5iCEYUjXaC3fVeTzmneGtI7g8iN66uctedqQU6oBqVFavbvY40bF8G4xstY1ri0WafYhnqnILxybqepau2r9BM8dmhnn8eRRanSILhibqeyCCk3q5/8pw7FedV6vpMgGUx97C7RZde2UPvp63T5ZLNIpI+pTrV9xZE+99MM2ZSWGa/qgFJ31/BJJ0i3HNj7dgOGCsZmqqLarxu5QoM2q88dm+CzTPzVKs0emu7LreQkNsumMUfX7bubQNC3fWah9JVUqKKs2n3Q567DuqnU4NKRrjMfnEyNDdMn4Hlq6o0ADg3I9Xj/78O4eA08ju8fK4XRq6Y5CDesWI1sDNxIDbBYdkhGn7zfl6vcdhUqJDtGFY+vrh+OHpun3nYUKDbJpbE/PKTzuPXGQHl24Qev2lmhk91hFhAToxLrpaA7rEa/jhqTq/5bv9ijTkPQYpTZxcNRisegf0/pqfl0wcFJUiMY24anS2PAgXX5ElhZvyTevY1+7Pcl14TjP+u/c0ZkqLK9Rda1DATaLKqrtCrRZlV9Wbd7InDKg/omgh08ZogWr9+r8MfXTNRw7OEW/bM33GRAurKjRprrA1QGpUQoPCtAZDaTy/yNGdo/TCcPSVFJZo2MG+16vMxPCdfbh3bV8V5GW7yyU5LomVdsdrqlFJTPrX1NM6N1F0wclm0+il1fbzUBfV3k812WzWnRJ3RSOL553iOYtzdY1kw88Xdj0Qcn6aXNe3dOYLodnxXt0usOCAnTN5N7mQMuO/HLtK6nS1txyxddl5wgLsmlQWrQuGtdDA9OidN6YDHWNdQU2PX7aML39y05ZLK6BoJPqpkDqGhuq88ZkaKVbPf7r9gIN7hqtILfBmV+31z8tNSozzuf4Mr7fn+OHpjY43cWTpw/Tu7/t0nVTG95Pd58wUKt3F2t83XkR5CdjToDVopBAm0qrarUjv9y8yeierSA5KkQXjs3UwrU5ZuYQ43ptDOrHhwdpZEasJntNAXr5ET310o+udtyv2ws0qV+SYsMCG71xM6l/kmxWi+47cZCW7yrUUQ1cCyRpcr8kzRiSqgGpUQ1OieXOvV0pyaNtObF3ok47tJuGuAWKPHPmCH22ao8urJt+5bwxGSqtrFV6XKiOH5qmp752PR3YPzVKxRU1qqi2y2qx6FyvablPPSRdX62rD750PwesFovOGe25fGPG9kzQ6aO6eUy94h0MkhwVomHdYszzNyTQpvG9E/T9pjxdVLct7tk2S6tqzd82PMimHuE1mtI/UQ8tbDzwx7st475dwYFWnXWY79RBk/onmgGvxiDN1AHJ+nrdfvVPjTLbj+eOzlBBWbX2lVSZ9aR7sI37dx3nNV3xJRN6yGJxZScJDrTq7Cbu30MyYtU1NtTn5unuwkpz0NA4dvunRCkiuL7OrqjxbJ8GNTBImxEfpnMO7y6nXOf4Sf9ytcG35Zarsta1fUcPTFaN3akau0OVNXaPNpd7nSLV74eSylqtzynRiO6xrum863i3FS4a10N2h9MjiMxf5pQrjuyp13/eIUddxPqW3DL1TIzQUX0Tde9nrpszS3fUf88hmbGyO3uo1uFQTGiQ/nlMPwUH2PTj5lwVlNd49AG8HVXXb3G/2ZbVJVyXuvWtvE0bmKzvN+WqoKxaQQFWXTguU+/9lq0Am8Wn3pw2IFnfbczVnqIKrcou9lmXMQ12c919wkB9+PtuTejTRauyizRzWFqDyxrBu4brpvbRr9vyzcyN8RFBmnSAKZQbcvnEnnrRrZ41HJIRq5NHeE4l4p4hpnt8mJKiQuRwOOsyXwbI7nTq0Iw4Pfn1JnNwdVyvBPVNjtSynYU6cXjj06Scdmg37cgv9wkmDA2yKTo0UHuLKhUZEqAThndVelyYxvfuokUb9uu6qX18bmxcPam33vltp2LDgjR1gOe+OW5ImpbuKJTD6dQJdft9Ur8kTRuQrNzSKgXYLLpwbA/93/Ld2ppbppXZRRrRPVZGTem+n4zzq09SpCJDAlx9Ya8pt9w9c+YIvfXLTp1V17YurqjRzGFpOqpvovn93ufpgNQohQbaNKF3F/M4nzE4Vb9tK1BRRY0GdY1uUuB5Uzwya4h+3JynE4b7Ho+96p60zy+tVpe6cY7KGv99a0NUSKCuPLKnftycp8SoYE3wMzVYj7p25OrsIuUXFCguNta8Llktlgbbtg+ePFj/+X6LdhVUKK+02rzhYmhJv/1AwoMDdPWkXtqeV+4xvYa7sKAA/W1Sb323cb+mD2p8nOvaqX30f8t2Kyw4QLMP8ZzCa0h6jE4a3tVjzEeSckurlBgZotSYEB2S6arDrziyl177abtZ57ofQ40FRp04vKvW7ClWaWWtokID1SspQr/VZfebNjC50WDRiydk6ZsN+7Vub4nmXTqmyX2wQWnROmVEV+0qqNB5Yxo+VyTpb5N76/2lrjGfKQOS/JbHGM/cXVih33cUqktksAalRev4oQce4/77lN6at3SX+XBVZa1d6bFhuuHovh7LJUWF6OLxPbR2T7FOP7T+eBzdM17HDk7Rx3UZawd3jVZ8eJBmDnWdP8t3FqqyxqELxja+nZI0c1iqHv2iPktFjy7h6pEQYfZTLBZ51KFGO6Habvd4UCEowKrrp/bRwjU5Cg2y6YKxmR595sdOHao3l+xUjd2hkEBbk/uORv97d13W0kFp0bp0Ypae/36ruseFaXBatKYOSHJNYVfHu+6VpOunuvat9/WlMVcc2csnSE6SeidFKDUmVCcO76r8smp9unKvn0+7xIYFmg80GseRe1DxeWMydPTAFD0wf51+3V6gx09zTa/92oWj9MSXm/S3yY1P0/jGhaN0+n8Wa0h6jG6Y1levLd6urjGhqqp1aFh6TIOfM/rZ2QUV2ldSqYSIYMWEBZp97ttm9Nf2vHINbWQd3ox+sd3hlNVi0emj/P/GEcEBuuqoXvphk2dweXCgVeeOdrXBn/12i47om6iPV+x2ZSPsnaio0ACdc3h3vfzTdo3v3UXHDG74XOseH6ZzR2doVXaR0uPCdOG4TD0wf73Kqmq1IrtI1bUO7S6sVHxEsJxOp9lOHpoeo7MPd5VhfO8EHTMoxZWZuk7X2FCNzIhVcIBN10zurW/X7zOvH9MbKU9DjL55WJBNMWFBunBcD4+g+4SIYGXEh6nW4XRds0bX91EemT1Er/+8Q+f7Oc+vmdxbH/yeLYtFHrMi+ON+zTLqSWN/hAbZ1C0uzHwIO9BmPWD92VInDO+qldlF6p0cqe5x4Xr/911m2bfllal/apRHX/z0Q7tpXM8Ev23Jw3vEm+NaATarQgNtqqixK6ekUltzfcc0Lxnfw6MfclS/JL999PPHZqqsLquyUb+ePzZDZVW1qrE7lBwdojE962c4uHRiT/3ltd/MbeidFKmyarusFs9xqqAAq2xWi/omRyol2rNddd6YDO0rqdRhPeL9josYjHswn6/OcbUnx2Uq0GbVC99v9bm2NMQ9s8vW3HJV1Xq2tYZ1i1FCRLCmeU3pfCAWi0XXT3XdH4oJC9LRDbRRZgxO9XjQNSzIphlDMlRQXq3qWodiwoJ06cQeevrrzSqqqHGt6wD39dzHNAemRTf4IKAkjciI1QnD0lRVa/doN155VC9d83Z9AGNMWKB6domQzWrRxRPqx8meOWu43v5ll648yn9f0Lj/8+OmXK3ZU6zyart25pdrt9sD1Zlu9238jWUO6Rpttq+untRLc7/wHPc4ZWS6SqtqZXc4zakwG3PR+B51Yw82zRrpO6VrWFCAzzX2pBFdtTW33KOdcNqhnvV9elyozh2dUTc+4VRheY2CAqwHHD8KCbSZ46DubdTjhqTqp815jc4gctG4Hqqxu/r0RzXj/qK3u2YO1Kcr9+iqo3qZ93qW7yxUakyoUmJCPO5nXjultx763NWGMjJ6u+4/ZLqmTa/jlPTb9gINTIvSoLQY9U2OlN1e3384YViax4Nm/ZKjZLFI54/JNO8LXjoxy29m2QCbVddN7aOv1u4zx1bc22dPnzFc5774i0oqa7Utt8xnfF9yjdPOW5qtSf2StHxnoXnvxxjjbCl/Y8b+Xrt0Yv39z3PrjpHEyBBdMqGHfttWoNAgm5xOKTUmRGcdlqEb5q3Q6t3FSowMNve7d2DXpROy9MIPW+VwOBUXHqTTR3XT899v1U+b81RRYzfHEd3Lc+6YDO0trq9vZx+Srq25ZaqotuuIvomN1sHo/CxOp9P3DvBB8s033+iII47wef2cc87RSy+9JKfTqdtuu03PPfecCgsLNXbsWD399NPq3bu+o5Cfn68rrrhCH330kaxWq0466SQ9/vjjioho+k374uJiRUdHq6ioSFFRTZuDHAdXTU2NPv30U02fPt0nvdvRj32ntXuK9fL5h2pCb98BsBveW6E3f6l/4vSzq8apX4rn7zzyri/Mpw233XdMi8r43yU7dOM8Vyd6673T/2fnaJ351A8eF/ufbzyqwafQGjPmvq+UXVih9y8bbaZB/XBZtq56c5lGZ8XrjYsOO+A6CsurNfSO+nnrnzx9mK54w5Wt5PIjsnTd1KZ1BjqKWc/+pCVb8/Xk6cM0vncXDb79c0nSujunmYPTpVW1GnjbAvMznWE7l2zNN4PaJNeNUO/MZKvmTNXmfaU6/qkfzNe+/PuEDhmA5W5XQbnG3v+1+fcxg1L01BnDG/kEWsO+kkodeveXkqSPrhjbYKpnyf/1w+l0KvPGTyVJ95wwqMFBvIMt44ZPJLk6ld9df+RB//6nv9mkB+avN28yju/dRa+cf2iTPvvZyj26tO6pmA13Hd2iDsSPm3J1et1Tu99df4Q5bV57Kauq1YC6+vbaKb1VVFFjBmy/dfFhGtWEaT792ZZbpokPfSPJNRj50V/Htkp5W+K+z9bpmW836/wxmRrRPVaXv7FUh2bE6e2/HN4m32cc46cdmq57Txzsd5n5q/aaA4ruWto+a8gz327WfZ95PtWaFhOqjIQw/bApT3NnD9WPm3P19q+uwK7Lj/Ad8Fq4JkcXvfKrhqTH6MPLx+iRz9fr8a826azDuuvOmQNbtbz/Sypr7Op7y3xJrhs8o70CVlvDiU//YKbM//a6iQ1OV+Su9z8/U7Xdoe//cYR+216gq95cpsMyY3Va8n5Nnz5d57z0m5mB1NvlR2Tp4nFZGnLH5+ZrTTlmN+aUaPKjiyQd+HomedaThsbOp9ZgnLcG9/qv/63zVV5t99nHd3+yxuMBl5uP6ec34NLbPZ+u1XOLtuiicZmqsTv10o/bGm3rupctMTJYS/45yWeZ/3y3xcyismrOVL9PWw6+fYEZeHXs4BQ9eXrT23JD5nyuoooas3376OwhOmGY/xuxf397ud5bWj8tpnHjxjC2Z4Jeu9CVyXvxljzNfu5nSdLaO6Y1K/NiU+wurNDo+77yef33WyY3mt2iNRh1p+G3mye1Sdp94/gY1i1G7182xuf9vrd8ZgbctPY1prO57cNVHpn9Prh8TLNukDfGuw754YYjG3zY6mD64PdsXf3WMo3pGa8+SVF64Yet+suErCbfUDyQxsawDuTnLXk6te78l5peh/6vOvKhb8zgkoN5rk559FvzwbE/ex3REnO/2GDexF1y01FKbOQB0ns/XatnF23RhWMzFRUaqEcWbmiwfeNep2y+Z/ofuonXmHV7izVt7nfm35vuPrrB7CDN1fvmzzyyxEvSvMtGe9wYf3PJDt0wzzdQS3IFfM0cmqYzn1+sPkmRWvC38WZf/qThXfXwrCGtUk403eRHvtXGfaVm38a9v7Py9inNynDxR64fDXn5x21mtt7zxmTothkD/tD6Rty5UHl1D7u7Z6kzuGfM7WjOf+kXfbVun+4/aZBmH9JNry/ern++v0qT+yfp32eP9Fh29rM/mVmEva8DRh13+qhu+mJNjsfU53+b1FtXTerVZttw8wcr9drPO3TlUb00pX+Sjn3i+wb7Qh3BU19v0oML1uuUEV2VkRDukYG7NevWhsxbussMdrp6Ui9dPanxINSD5blFm3XPp64xqROHpemR2UP/0PqMMZBnzhyhnfnluvvTtZo5NFVzTx3msZzR55ZcD1keN8Qz0PPCl381M7q9efFhjQYotdSOvHKNf7D+fsr6u6Y1mGX1f92C1Xt1yauuMVBj7NFo64zKjNNblzR9fNb7+uHeZmppW3bFrkId92T9/Tqjrly5q0gznvxeyVEhqnU4zCyvkitg98qj2qYONNo77lrzmvPElxv18EJXANz8q8d5TN/aEOM+t+Gl8w5pk4dn0HE0NaaoXTNgTZw4UY3Ff1ksFt1xxx264447GlwmLi5Ob7zxRlsUD52EkW4wsoHpNLxf9zfo3tqxUv+rwVeS7/5saL83dT0nPP2jJFdadCPa+0Cp/w3ev6WRvcP1XudL32ik5b3ijd/NDEauVPluaSu9Uk8H2Tp+49T7GPE3LWR4kM1MO9/Q5zoi70GUP5JCFU3nnra5JdVtR6+jG8oU0taM49lomrX0HGzp0xshHml52/9c8r4WuZ/vfyRFsPu2Bdja91g0yvLe0l36bNUej9fakvcArTvHQXo2JNjPcRoZEqDQuswsizbu17y6LAUN1e3G68t3FmryI9+ag9Ad4fjtyNz3fVs97eU+TUxTA1ciQwKUV1btEVjd9M8G+p1Soimfa853+at7QgMP7vH293eW+2TF8j5HvMvZ5KmR69bzzm/1GTzCGpjuvKncM9j5m+5JcpXXCMBqbv0eGRKgoooa5ZS42reRjfRBvOuGpKhgbcurn4qloeZJY9NmtVRD9VRLjuM/+t0H4zv9aexa9Gfjfdy35XUs4g+e063F2MbftheY2eA6yvW7tcZcgPbknlX6QNdWo2347tJd5ueacj1uq+Ar7+8Pa2RqppYIdps2y+A9RXRj7cLIkACzXtiSW6ppcxeZ46nUF+3DaMsYD0r0THQ9TGrxmk6+vbgfF5GtMG6Z75Z1OyU6xKdv0NC0th2BsS/+8d5K/eO9lT5T0rtraNYJ1/KuOuLj5bt9sla29Xlo3PN47eft+qBuNo32ak83hbE/3vltl897bR18JXn2VZt6z+lg8Bxj/OO/n9Fvdn+g0d+11H1/+Pte9/szbXUsex+v7TUO3hG418nebYE/ynjA+o9oqJ9o/H9fie99vrasA/1tT2s+rOZedu/M3U35jPTHx7Dwv+PPW7Phf0JVbf0Tw10aeGq2V2L9VFzRoYF+pxg0prnyl1K6qYzppuLb+Inh9ua+P1OjQ1rccDUyjhncU22GNvEiFWCzmtPfhQRa1Tc50rzgGZ3dzsT9BpGxP7K8tsNqtahHl/oMA81N0dseUmNC/TakjZtJPRLCZbFYPFIiRwQHKLaDPi3lLjI4QMluT3L2Sup8x11n5H7zvnsLp8pJqJvr3XuqwPZ0TF3K7MsamWaoLfXyqm96NiMD3fC6aZ9CA1ve6cmID1eQzar48KAOMQe6xWJRVl19O6pHvLl/Am2WP5S5ITq0fs73zIQDZ+VpS8Y2FVXUmOmk2/L6aWQqNaYy8WdQWrSsFtfUvLPr0pWf24wp6Zoqw8++75kYYbZrjOAryffcMLhfjzfuKzWnvO6MbZCDyT0ItldS06bMbS73QfCmDn509ZN1z/3mYWPTyzicTo+bgMY15kDiwoMUFRKg4ACrkqIOnAHI37Rc7sdhWxjhNU2q9w0WSR5TnUq+54x3e7YhRjuqsLzGTGPvPdW1uxPdprlraHqmQzJizfU0FIDt3n5r7vlrbKsxENjY7+HdTpw6wLMdf6LbNGl93KaTbovA8fCgAKV4ZTHuGhvqM/VdW8hMCDeDzbrFhbXZ087GNLDu00W7M6aOOudw3+lB/2zcj83wIJtH/+aPumSC5/7vKDcIs7pEyGJxTTto1Dcd5frdNSbMI/CyZ2LbXCs7i8vqspDOGNL8qbj+iEvGZ0n6Y+OEf2ZGVs/kqJADBhIb7fLC8hrzgYaG+qLDu8VIkgamte0MFvHhQeZN0dauG7xnZQgJtCrZa4qwxtqvPRMjlB4XpqAAq2rsTo/x1Ka2udC6duaXe/xtTBme1SVC1jYMFGwq92O4NY4R9xvg/rLjHIz2ZEt591OMzFX+znNjysFJfqZdM9ZTXFkrh9MVQGL81G3dnuhd127LL6vWjrpjrznjdwdbrwbaMf1TDs5MRO6/R4+EjrOf3I/F1jhm/AWh+Ftv7yT3/eHbd82sy2wdYLWoa0zbzEwQHRpo3kPN6tJwP/3PINNt/MCon4+om67yj07PeuWRrixUZ/+B/m5SVLBHkJhxTCVFhSgyJEAOp+T9XFNb1oED0zyzxidHhbRqAJ8xRhkaaFNCZNPG9dy312a1NDotKf5c2nUKwo6CKQg7vobS7+aVVmnEXV9Iajj1tNPp1PJdRSqtrFWvpAgl+RlMtDucWrGrUP1SojyyDTXXzvxyxYQFdogbx22lxu7Q0u0FqrE71S8lssXTRfztrWV6//dsv+/NHpmu+09u2lQqheXVWpVdrKzEcKVEh2pfSaX2l1Spf0pUp2u8fbk2Rxe8XD8dxz+n99OsQ9J9bmoVlddo9e4ipcWGNmlKnY7ASMNZU+vQroIKWSzS0PQYZRdWKCkyRNF1wQjb88q0MrtIh2bGKTGy9Qb+21JeaZXW7ilRaJBNw9JjOsTgyp9Bflm1auwOv3W6u4auHyWVNSosr2n3ae7c1dgd2p5XVndDqH2Oo3V7i5VbUq2QQKuGdYtt1lPF2YUViggO8KmzmmNXQblCAm1KaIOpiFqiqNyV1aR3UqScTqdW7y5WbHjQH546Z39JlTbtK9Xw7jHtmmbb2KbCcteNx6AAq4Z3i2mzpxDLq2uVXVBxwKCbHXnligoNUFhQgFbtLtKgtOhWH8R1Op1au6dE8RFB2lNUqfLqWg3vFqvb/2+1x9TVB5pO0H2Kq79P7qOo0AANSovudG2Qg62grFpVtY4WTWPdFMZUElLTp6cprqwxp382TOydoBPi92r69OkKCAjQ6t3Fio8I0uZ9Zbrz4zVan+O64WWk5i8sr9a6vSUa3DW6yYFf+0oqZXc4PQLRG7OroFxLtuarS2SwIoIDNDQ9pk2Pt1q7Q1+v36+U6BCVVNbqxR+26vM1Oeb7F4zN1C3H9vf4jFG3bM0tU++kSI9gosZ410kxYYEakNpwm76q1q7fthXIZrVoRPfYBuuujTklSnRrb3orr67Vsh2FCgmyaWjX5rXljM86nFJqTIh6NHLzw+FwavmuQpVV2ZUQGaQ+SZFas6dYZVV2hQXZfLZ1T1GFwgIDGiz3H2W0YZOjQ5RTXKn+KVFtPv2gYUdeuXbkl2tAatt9Z3WtQzvyyxsc1Hc6ndq0r1Q9ukS0aRaVzsDpdGpldpGKK2rNfnVrcTic2ry/VNGhgbJZLW0y3WRLbdlfqt2FrgD0A9U3zfVHp5DKLqzQ1v1l6hIZ3OQ69H+V0+k6hrrHhx/Um/rt9b3/K5xOV2BQUlSI4g5Qz7vXQZIrk8Dgrv7b06VVtVqxs1CDuka3+djrvuJKbcgp1eD06CZn82yK0qpaLd9ZqOToEO0prPRb736/MVdnPu/KppQQEazHTxsqq8WikECbBqdFy2q1aFdBubblluu8l5aoxu66vbPlnumMSbWDC1/+RV+s3Wf+nRIdogdPHqKBaVHNnhapLaYglFzt4coahwam/fFrndEHDrBatOaOaVq6o0BdIoMVHhSgkEBrh51+UHLdA/po+W5d/dYySdLMoak66/DuGpruf/xr075SdY8P87kOGOMJ3g9h5ZdVq19KZJv2z5xOp1bsKlJJXQZfq1Ualh7b6lOWtyZjGkLDySO66tYZ/Vu1bm3Mlv2lqqixd7j7Rev3lqi8ulZDmtkH9eeqN3/Xh8t2m38HWC3acNfRPus1+tzhwQF+HwqttTv0+85CpcaEtum04bmlVVq3p0SD0qLbrL/bWWzPK1N5td0M0Db6sc0NZPK+ftgdTq3eXaR+KVF/qC27t6hSm/aVKjTI6lFXGq9LMscUYsOC2rwOXLunWElRIcovq1ZceNAB25ktWX9sWFCTxysra+xauqNADofrAbNuLUwWgM6jU0xBCPxRxlQR4UG2BgdNLRaLhqbHNLoem9WiYd1iG12mKTrSjfy2EmizalQrzP3snRmgS2Sw9tc9ddKcDkNMWJDG9qrPYJMYGdJpAne8eXdQR/WI8xvIEB0WqNEdKGtPU7g32N2zjvT2ugnfPT680wSVGeIjgjW2V8e5kfBn8Ucb15EhHS9YNtBmbfcn3PsmR0ktTKzXGh3zrrEd6zoaHRZoDgRYLBafJ21aqktksN+MnAdba25TU4QFBTQp45F7Z3V4K7TP/LFYLOqf6uokuQdyerdBRmY07fv7Jkd5tEfQuLYO8ghxC2xsamCFv8Ff9ykx3c+XlOhQTezbxQzAMjKwxoQF+X0KvDHNbbd2jQ07qHVlgM1qZhKSpO837fcIwPKXTc7YV82tX5pbJwUH2JrUJj5QvRMWFNDitnVzPmv10+cckNrw9rZmEIw/7m3Yg535p1t82w9MBgVYG90ui8XSZln4OhuLxaLBXWPaZN1Wa8fdzz26RDQaNNme0tr4pldnYrFY2qWP1F7f+7/CYrH4ZHpqbNmm1kERwS2/ZjdXYlSIElsxI6AhIjhAY+q2IauBOsi9TzJ1QJJGZ/lus9EmDAsKMDP5EXzVPrxvbMeFB3W4vmFbXItTY0IVFGBtdv+nPdmsFk2syy4jufbLiO5xDS7fUFvSfTzBXVs9YOT93UMOcK+roxnplVV5Ur+kgxZ8JanDtvdaM8jee5aasb0S/F4TDtTnDrBZdUhGw+dEa0ngforJ+17YgfqxTWWztk4fLzk6xG/d5v36wRpTMNqXrR145b3+pgoJtPltpwE8woNO7ftNuZKaPmUdOg7vYKPubsFrbT1XekflHWx1MDsiAABAHqm1JSmqiRnd/E0Nh/YT18QpAA+ksUwt7u22P1ObLSbUc9/+kayHAAAA8OU+Lnqg/ghT3bS/VK+A2f/1AFqj/d/ZgoAMEW59fu+gFbQN7wxH7PfWF+E1lhX6B2b5AQD8cX/OKAf8z6iodmXAsjsc7VwSNNdxQ1L12/YCfbVun84bk6GTR3TVfZ+tk81q0QnD0tq7eO0iq0u4zjqsu9buKdbAtGh1J10lAAAH1QnDu2pFtmvq6tSYUB1+gKd5nz5juBauydEFYzMPUgnRFBN6ddEZo7o1+8m1B08erG837NchGXH6Zv0+/WVcptb9ssPvsjMGp+q3bQXqHh/+pwrAO2Zwir7blKtFG/br6IHJmtC7y4E/BAAAgCbrlRihM0Z1U3ZhhU4a3rXRZW85tr+e+GqjThmZfpBKB28XjsvUzvxyVdtd9yeumdK7nUvUtp48fZhe+3m7rp/ap72L0iIBNquun9ZHy3cWasaQ1PYuzp9Cb6+MkgRgtb5TRqbrhR+2ye5wZfF2z+YNADj4CMBCp2bMdU1jufNJjwvTC+ce4vHaqxeMaqfSdAwWi0V3zhzY3sUAAOBPKzMhXC+dd2iTl58+KEXTB6W0YYnQElarRXefMKjZnztlZLp58+qc0RmqqanRugaWTY8L0/Nebdk/g9SYUL1yftPPEQAAADSPxdL0tuyhmXF/+vHU9pYSHarnzh7Z3sU4aMb16qJxvTr3QxiXTezZ3kX4U7FaLRreLUZLdxRK8pxmFa2jd1KkVtw2RQNuWyBJGtTINIMAgLbHFITo1J74apOkP++UdQAAAAAAAAAAAEBHFBlSPw1hWBD38tqCe2YxEmABQPsiAAudVlWt3fx3WgxTtQEAAAAAAAAAAAAdRa/ECElSSKBViZHB7Vya/00Wi0VZXcIlSaN6xLdzaQDgz41QY3RapXXTD0rSrJFd27EkAAAAAAAAAAAAANz94+i+mjIgWd3iwhQezG3ptjLv0jHKKalU76TI9i4KAPypcaVDp1VSF4AVHmRTgI1kbgAAAAAAAAAAAEBHEWiz6tDMuPYuxv+86LBARYcFHnhBAECbImoFndb6nBJJUihzRgMAAAAAAAAAAAAAAKCdEICFTqui2i5JKq6oaeeSAAAAAAAAAAAAAAAA4M+KACx0WiWVrsCrI/smtnNJAAAAAAAAAAAAAAAA8GdFABY6rSXbCiRJESFMQQgAAAAAAAAAAAAAAID2QQAWOq1Am0WSVMQUhAAAAAAAAAAAAAAAAGgnBGCh06qssUuSRmfFt3NJAAAAAAAAAAAAAAAA8GdFABY6rfJqVwBWeDBTEAIAAAAAAAAAAAAAAKB9EICFTssIwAoLsrVzSQAAAAAAAAAAAAAAAPBnRQAWOq0KArAAAAAAAAAAAAAAAADQzgjAQqdVXl0rSQoNZApCAAAAAAAAAAAAAAAAtA8CsNAp7S6s0Ob9ZZLIgAUAAAAAAAAAAAAAAID2QwAWOqUv1uaY/+4aG9qOJQEAAAAAAAAAAAAAAMCfGQFY6JSKymskSeN6JSg+IridSwMAAAAAAAAAAAAAAIA/KwKw0CltzXVNP9g3ObKdSwIAAAAAAAAAAAAAAIA/MwKw0CnN+z1bkhQaaGvnkgAAAAAAAAAAAAAAAODPjAAsdEphQa7Aq0Mz49u5JAAAAAAAAAAAAAAAAPgzIwALnU6t3aHyarskqX9qVDuXBgAAAAAAAAAAAAAAAH9mBGCh0ymsqDH/HREc0I4lAQAAAAAAAAAAAAAAwJ8dAVjodLbnlZn/DgrgEAYAAAAAAAAAAAAAAED7IXoFnU5VrUOSlBgZ3M4lAQAAAAAAAAAAAAAAwJ8dAVjodKpqXAFYSVEh7VwSAAAAAAAAAAAAAAAA/NkRgIVOp7LGLkkKZvpBAAAAAAAAAAAAAAAAtDMiWNDpVNa6ArBCAm3tXBIAAAAAAAAAAAAAAAD82RGAhU7HmIIwJJDDFwAAAAAAAAAAAAAAAO2LCBZ0OuYUhGTAAgAAAAAAAAAAAAAAQDsjAAudTmWtKwNWcACHLwAAAAAAAAAAAAAAANoXESzodIwMWCFkwAIAAAAAAAAAAAAAAEA7IwALnU5VXQaskAACsAAAAAAAAAAAAAAAANC+CMBCp1OfAYvDFwAAAAAAAAAAAAAAAO2LCBZ0OpU1rgxYwWTAAgAAAAAAAAAAAAAAQDsjAAudThUZsAAAAAAAAAAAAAAAANBBEMGCTqeq1pUBKySQDFgAAAAAAAAAAAAAAABoXwRgodOpJAMWAAAAAAAAAAAAAAAAOggiWNDpVNa6ArCCA8iABQAAAAAAAAAAAAAAgPZFABY6nfV7SySRAQsAAAAAAAAAAAAAAADtjwgWdCqlVbXKLa2WJIUFBbRzaQAAAAAAAAAAAAAAAPBnRwAWOpXc0irz34dmxrVjSQAAAAAAAAAAAAAAAAACsNDJlFfbJUldIoMVEmhr59IAAAAAAAAAAAAAAADgz44ALHQqFXUBWGFBBF8BAAAAAAAAAAAAAACg/RGAhU6lvMYVgBVK9isAAAAAAAAAAAAAAAB0AARgoVMhAxYAAAAAAAAAAAAAAAA6EgKw0KmUVtVKksKCAtq5JAAAAAAAAAAAAAAAAAABWOhklu0skiQF2CztXBIAAAAAAAAAAAAAAACAACx0MlEhgZKk8ip7O5cEAAAAAAAAAAAAAAAAIAALnUytwyFJGtotpn0LAgAAAAAAAAAAAAAAAIgALHQyNXanJCnAyhSEAAAAAAAAAAAAAAAAaH8EYKFTsTvqArBsHLoAAAAAAAAAAAAAAABof0SxoFMxpiAMJAMWAAAAAAAAAAAAAAAAOgACsNCpmFMQkgELAAAAAAAAAAAAAAAAHUCHjmKx2+265ZZblJmZqdDQUGVlZenOO++U0+k0l3E6nbr11luVkpKi0NBQTZo0SRs3bmzHUqMt1dYFYAXayIAFAAAAAAAAAAAAAACA9tehA7Duv/9+/etf/9KTTz6ptWvX6v7779cDDzygJ554wlzmgQce0OOPP65nnnlGixcvVnh4uKZOnarKysp2LDnaijEFoY0pCAEAAAAAAAAAAAAAANABBLR3ARrz448/6vjjj9cxxxwjScrIyNB///tfLVmyRJIr+9XcuXN188036/jjj5ckvfLKK0pKStIHH3ygU089td3KjrbBFIQAAAAAAAAAAAAAAADoSDp0ANbo0aP13HPPacOGDerdu7eWL1+u77//Xo888ogkaevWrdq7d68mTZpkfiY6OlqjRo3STz/91GAAVlVVlaqqqsy/i4uLJUk1NTWqqalpwy1CSxm/S63dLkmyOh38VgCAAzKuFVwzAADNxTUEANASXD8AAC3B9QMA0BJcP4CDo6nnWIcOwLrhhhtUXFysvn37ymazyW636+6779YZZ5whSdq7d68kKSkpyeNzSUlJ5nv+3HvvvZozZ47P659//rnCwsJacQvQ2vbu2y/JqjWrVurTfSvauzgAgE5i4cKF7V0EAEAnxTUEANASXD8AAC3B9QMA0BJcP4C2VV5e3qTlOnQA1ttvv63XX39db7zxhgYMGKBly5bp6quvVmpqqs4555wWr/fGG2/UNddcY/5dXFys9PR0TZkyRVFRUa1RdLSympoaLVy4UHFx8VJhgYYNHaLpQ1Pbu1gAgA7OuH5MnjxZgYGB7V0cAEAnwjUEANASXD8AAC3B9QMA0BJcP4CDw5hV70A6dADWddddpxtuuMGcSnDQoEHavn277r33Xp1zzjlKTk6WJOXk5CglJcX8XE5OjoYOHdrgeoODgxUcHOzzemBgIBVTB+eURZIUGBjAbwUAaDKu8QCAluIaAgBoCa4fAICW4PoBAGgJrh9A22rq+WVt43L8IeXl5bJaPYtos9nkcDgkSZmZmUpOTtaXX35pvl9cXKzFixfr8MMPP6hlxcFhdzolSVaLpZ1LAgAAAAAAAAAAAAAAAHTwDFgzZszQ3XffrW7dumnAgAH6/fff9cgjj+j888+XJFksFl199dW666671KtXL2VmZuqWW25RamqqZs6c2b6FR5twuOKvZLMSgAUAAAAAAAAAAAAAAID216EDsJ544gndcsstuuyyy7Rv3z6lpqbqkksu0a233mouc/3116usrEwXX3yxCgsLNXbsWM2fP18hISHtWHK0FYfDyIDVzgUBAAAAAAAAAAAAAAAA1MEDsCIjIzV37lzNnTu3wWUsFovuuOMO3XHHHQevYGg3TEEIAAAAAAAAAAAAAACAjsTa3gUAmsNRF4DFFIQAAAAAAAAAAAAAAADoCAjAQqficLj+TwYsAAAAAAAAAAAAAAAAdAQEYKFTsTvqpiAkAxYAAAAAAAAAAAAAAAA6AAKw0Kk4jSkIyYAFAAAAAAAAAAAAAACADoAALHQq9roALBJgAQAAAAAAAAAAAAAAoCMgAAudit3h+j9TEAIAAAAAAAAAAAAAAKAj+MMBWMXFxfrggw+0du3a1igP0CiHMQUhAVgAAAAAAAAAAAAAAADoAJodgDVr1iw9+eSTkqSKigqNHDlSs2bN0uDBg/Xee++1egEBdw6mIAQAAAAAAAAAAAAAAEAH0uwArEWLFmncuHGSpPfff19Op1OFhYV6/PHHddddd7V6AQF3DocRgEUEFgAAAAAAAAAAAAAAANpfswOwioqKFBcXJ0maP3++TjrpJIWFhemYY47Rxo0bW72AgDu7K/6KKQgBAAAAAAAAAAAAAADQITQ7ACs9PV0//fSTysrKNH/+fE2ZMkWSVFBQoJCQkFYvIOCufgpCArAAAAAAAAAAAAAAAADQ/gKa+4Grr75aZ5xxhiIiItS9e3dNnDhRkmtqwkGDBrV2+QAPTEEIAAAAAAAAAAAAAACAjqTZAViXXXaZRo0apR07dmjy5MmyWl1JtHr06KG777671QsIuLPXZcBiCkIAAAAAAAAAAAAAAAB0BM2egvCOO+5Qv379dMIJJygiIsJ8/cgjj9QXX3zRqoUDvNXFX4n4KwAAAAAAAAAAAAAAAHQEzQ7AmjNnjkpLS31eLy8v15w5c1qlUEBD7MYUhERgAQAAAAAAAAAAAAAAoANodgCW0+mUxeIb/LJ8+XLFxcW1SqGAhphTEPo5BgEAAAAAAAAAAAAAAICDLaCpC8bGxspischisah3794eQVh2u12lpaX6y1/+0iaFBAz1UxASgAUAAAAAAAAAAAAAAID21+QArLlz58rpdOr888/XnDlzFB0dbb4XFBSkjIwMHX744W1SSMBQPwVhOxcEAAAAAAAAAAAAAAAAUDMCsM455xxJUmZmpsaMGaOAgCZ/FGg1DmMKQisZsAAAAAAAAAAAAAAAAND+mp1HqKysTF9++aXP6wsWLNBnn33WKoUCGuJgCkIAAAAAAAAAAAAAAAB0IM0OwLrhhhtkt9t9Xnc6nbrhhhtapVBAQ8wpCAnAAgAAAAAAAAAAAAAAQAfQ7ACsjRs3qn///j6v9+3bV5s2bWqVQgH+GNmvJKYgBAAAAAAAAAAAAAAAQMfQ7ACs6Ohobdmyxef1TZs2KTw8vFUKBfjjdAvAIv4KAAAAAAAAAAAAAAAAHUGzA7COP/54XX311dq8ebP52qZNm/T3v/9dxx13XKsWDnDnFn8lKxFYAAAAAAAAAAAAAAAA6ACaHYD1wAMPKDw8XH379lVmZqYyMzPVr18/xcfH66GHHmqLMgKSvKYgtBCABQAAAAAAAAAAAAAAgPYX0NwPREdH68cff9TChQu1fPlyhYaGavDgwRo/fnxblA8wOdz+bSMDFgAAAAAAAAAAAAAAADqAZgdgSZLFYtGUKVM0fvx4BQcHy0I2IhwETrcMWBxyAAAAAAAAAAAAAAAA6AiaPQWhw+HQnXfeqbS0NEVERGjr1q2SpFtuuUXPP/98qxcQMDAFIQAAAAAAAAAAAAAAADqaZgdg3XXXXXrppZf0wAMPKCgoyHx94MCB+s9//tOqhQPcucVfMQUhAAAAAAAAAAAAAAAAOoRmB2C98soreu6553TGGWfIZrOZrw8ZMkTr1q1r1cIB7hweUxASgAUAAAAAAAAAAAAAAID21+wArOzsbPXs2dPndYfDoZqamlYpFOCPEX9F9isAAAAAAAAAAAAAAAB0FM0OwOrfv7++++47n9ffffddDRs2rFUKBfhjZMCykf0KAAAAAAAAAAAAAAAAHURAcz9w66236pxzzlF2drYcDofmzZun9evX65VXXtHHH3/cFmUEJNVnwCL+CgAAAAAAAAAAAAAAAB1FszNgHX/88froo4/0xRdfKDw8XLfeeqvWrl2rjz76SJMnT26LMgKS3DJgMQUhAAAAAAAAAAAAAAAAOohmZ8CSpHHjxmnhwoWtXRagUUxBCAAAAAAAAAAAAAAAgI6m2RmwgPbCFIQAAAAAAAAAAAAAAADoaJqUASsuLk4bNmxQQkKCYmNjZWkkAiYiIkIDBgzQ/fffr8GDB7daQQEnUxACAAAAAAAAAAAAAACgg2lSANajjz6qyMhISdLcuXMbXbaqqkqffvqpzjvvPP32229/uICAwUEAFgAAAAAAAAAAAAAAADqYJgVgnXPOOX7/3ZCjjz5aI0aMaHmpAD/qpyAkAAsAAAAAAAAAAAAAAAAdQ5MCsPz59ddftXbtWklSv379NHLkSPO99PR07du374+XDnBjZsAiAAsAAAAAAAAAAAAAAAAdRLMDsHbt2qXTTjtNP/zwg2JiYiRJhYWFGj16tN5880117dq1tcsISJIcdf9nCkIAAAAAAAAAAAAAAAB0FNbmfuDCCy9UTU2N1q5dq/z8fOXn52vt2rVyOBy68MIL26KMgCTJWZcBiwRYAAAAAAAAAAAAAAAA6CianQHr22+/1Y8//qg+ffqYr/Xp00dPPPGExo0b16qFA9zVxV+RAQsAAAAAAAAAAAAAAAAdRrMzYKWnp6umpsbndbvdrtTU1FYpFOCPoy4Cy0YKLAAAAAAAAAAAAAAAAHQQzQ7AevDBB/XXv/5Vv/76q/nar7/+qquuukoPPfRQqxYOcOdwugKviL8CAAAAAAAAAAAAAABAR9GkKQhjY2NlcYt6KSsr06hRoxQQ4Pp4bW2tAgICdP7552vmzJltUlCAKQgBAAAAAAAAAAAAAADQ0TQpAGvu3LltXAzgwIwpCK2kwAIAAAAAAAAAAAAAAEAH0aQArHPOOaetywEckJMALAAAAAAAAAAAAAAAAHQwTQrAcpedna333ntPGzZskCT16dNHJ554otLS0lq9cIA7R93/mYIQAAAAAAAAAAAAAAAAHUWzArCefvppXXPNNaqurlZUVJQkqbi4WNddd50eeeQRXXbZZW1SSEByy4BFABYAAAAAAAAAAAAAAAA6CGtTF/zkk0905ZVX6oorrlB2drYKCwtVWFio7OxsXXbZZbrqqqv06aeftmVZ8SdnZMAi/goAAAAAAAAAAAAAAAAdRZMzYD344IO64YYbdNddd3m8npKSokceeURhYWF64IEHNH369FYvJCDVZ8CyWYjAAgAAAAAAAAAAAAAAQMfQ5AxYS5cu1VlnndXg+2eddZaWLl3aKoUC/DEzYJECCwAAAAAAAAAAAAAAAB1EkwOw7Ha7AgMDG3w/MDBQdru9VQoF+GNkwPr/9u48zMq67h/4ewaGfRNkVSRMFPd9Qc1MEVwfLSotM3e7DFTAx4RMDXctl0cD0UrN35NL9qiluRGaqA8qYopbqGlq+YAayogIDMz5/SFzZAJ0ZpxhztjrdV1zzTnf+z73fO6ZM3wu4e3nK38FAAAAAAAAAECpqHMAa9NNN83vfve71R6//fbbs+mmmzZKUbAq1TVbEEpgAQAAAAAAAABQIlrX9cSRI0fm+OOPT9u2bXPccceldeuPXrp06dJcddVV+dGPfpRJkyY1WaGwPH+V8jIBLAAAAAAAAAAASkOdA1iHH354nnnmmYwaNSrjx4/PF7/4xRQKhbzyyitZsGBBTjzxxBxxxBFNWCr/7qqLWxAKYAEAAAAAAAAAUBrqHMBKkp/+9Kf5+te/nhtvvDEvvfRSkuTLX/5yDjnkkOy0005NUiDUsAUhAAAAAAAAAAClpl4BrCTZaaedhK1oFrYgBAAAAAAAAACg1JQ3dwGf5h//+Ee+853vpEePHmnfvn0233zzPPHEE8XjhUIhZ5xxRvr27Zv27dtn6NChxelcfL58PAGreesAAAAAAAAAAIAaJR1leffdd7PLLrukoqIid999d55//vlcfPHFWWuttYrnXHTRRbn88sszefLkPPbYY+nYsWOGDx+eRYsWNWPlNAUTsAAAAAAAAAAAKDX13oJwTbrwwgvTv3//XHvttcW1gQMHFh8XCoVcdtll+dGPfpQDDzwwSXL99dend+/euf3223PIIYes8ZppOoXlCazycgEsAAAAAAAAAABKQ0kHsH7/+99n+PDh+cY3vpEHH3ww66yzTr7//e/n2GOPTZK8+uqrmTNnToYOHVp8TdeuXbPjjjtm+vTpqw1gLV68OIsXLy4+r6ysTJJUVVWlqqqqCe+Ihqqqqkr18sdlhYKfEwB1UtMv9A0A6ksPAaAh9A8AGkL/AKAh9A9YM+r6O1bSAaxXXnklV155ZcaOHZsf/vCHmTFjRk488cS0adMmhx9+eObMmZMk6d27d63X9e7du3hsVc4///xMmDBhpfX77rsvHTp0aNyboNFUFz6afPV///dm7rrr781cDQAtyZQpU5q7BABaKD0EgIbQPwBoCP0DgIbQP6BpLVy4sE7n1SmAtfXWW6esrG7bvj355JN1Oq8uqqurs9122+W8884r1vHss89m8uTJOfzwwxt83fHjx2fs2LHF55WVlenfv3+GDRuWLl26fOa6aXxVVVWZet0fkyTrrbtO9t1382auCICWoKqqKlOmTMlee+2VioqK5i4HgBZEDwGgIfQPABpC/wCgIfQPWDNqdtX7NHUKYB100EHFx4sWLcqkSZOyySabZMiQIUmSRx99NM8991y+//3v17/ST9C3b99ssskmtdY23njj/M///E+SpE+fPkmSuXPnpm/fvsVz5s6dm6222mq1123btm3atm270npFRYU/mEpYzRaErVu18nMCoF70eAAaSg8BoCH0DwAaQv8AoCH0D2hadf39qlMA68wzzyw+PuaYY3LiiSfm7LPPXumcN954ox4lfrpddtkls2fPrrX24osvZsCAAUmSgQMHpk+fPpk6dWoxcFVZWZnHHnssxx9/fKPWQvMrFD76XF7HaWwAAAAAAAAAANDUyuv7gltuuSXf/e53V1r/zne+U5xM1VjGjBmTRx99NOedd15efvnl3HDDDbn66qszcuTIJElZWVlGjx6dc845J7///e/zzDPP5Lvf/W769etXa2oXnw/L81cpLxfAAgAAAAAAAACgNNRpAtaK2rdvn0ceeSSDBg2qtf7II4+kXbt2jVZYkmy//fa57bbbMn78+Jx11lkZOHBgLrvsshx66KHFc37wgx/kgw8+yHHHHZf33nsvu+66a+65555Gr4XmV134KHjVqt6xQQAAAAAAAAAAaBr1DmCNHj06xx9/fJ588snssMMOSZLHHnss11xzTU4//fRGL3D//ffP/vvvv9rjZWVlOeuss3LWWWc1+temtFTbghAAAAAAAAAAgBJT7wDWuHHjsv766+e//uu/8t///d9Jko033jjXXnttvvnNbzZ6gVCjuAWhABYAAAAAAAAAACWi3gGsJPnmN78pbMUaVzMBq1W5ABYAAAAAAAAAAKWhvCEveu+99/KLX/wiP/zhDzNv3rwkyZNPPpl//OMfjVocrKhQ3IKweesAAAAAAAAAAIAa9Z6ANWvWrAwdOjRdu3bN3/72txxzzDHp3r17br311rz++uu5/vrrm6JOSPXyz+USWAAAAAAAAAAAlIh6T8AaO3ZsjjjiiLz00ktp165dcX3ffffNtGnTGrU4WFHNBKxWZQJYAAAAAAAAAACUhnoHsGbMmJHvfe97K62vs846mTNnTqMUBatSnIAlgAUAAAAAAAAAQImodwCrbdu2qaysXGn9xRdfTM+ePRulKFiV6uUTsGxBCAAAAAAAAABAqah3AOs//uM/ctZZZ6WqqipJUlZWltdffz2nnnpqRowY0egFQo3l+StbEAIAAAAAAAAAUDLqHcC6+OKLs2DBgvTq1SsffvhhvvzlL2eDDTZI586dc+655zZFjZAkKdRMwJK/AgAAAAAAAACgRLSu7wu6du2aKVOm5OGHH86sWbOyYMGCbLPNNhk6dGhT1AdFtiAEAAAAAAAAAKDU1DuAVWPXXXfNrrvu2pi1wCcqbkEogAUAAAAAAAAAQIloUABr6tSpmTp1at56661UV1fXOnbNNdc0SmHwr6ptQQgAAAAAAAAAQImpdwBrwoQJOeuss7Lddtulb9++KSuThmHN+DiA5T0HAAAAAAAAAEBpqHcAa/Lkybnuuuty2GGHNUU9sFq2IAQAAAAAAAAAoNSU1/cFS5Ysyc4779wUtcAnKpiABQAAAAAAAABAial3AOuYY47JDTfc0BS1wCeqXv653AQsAAAAAAAAAABKRJ22IBw7dmzxcXV1da6++ur88Y9/zBZbbJGKiopa515yySWNWyEsVzMBq5UJWAAAAAAAAAAAlIg6BbD+/Oc/13q+1VZbJUmeffbZWutlgjE0oeIELG8zAAAAAAAAAABKRJ0CWA888EBT1wGfqnr5BCxbEAIAAAAAAAAAUCrK6/uC+fPnZ968eSutz5s3L5WVlY1SFKyKLQgBAAAAAAAAACg19Q5gHXLIIbnppptWWv/Nb36TQw45pFGKglUpbkFY73ctAAAAAAAAAAA0jXpHWR577LF85StfWWl99913z2OPPdYoRcGq1EzAKjcBCwAAAAAAAACAElHvANbixYuzdOnSldarqqry4YcfNkpRsCqFfBS8alUugAUAAAAAAAAAQGmodwBrhx12yNVXX73S+uTJk7Pttts2SlGwKtXLJ2C1MgELAAAAAAAAAIAS0bq+LzjnnHMydOjQPP3009lzzz2TJFOnTs2MGTNy3333NXqBUKMmgFUmgAUAAAAAAAAAQImo9wSsXXbZJdOnT0///v3zm9/8JnfccUc22GCDzJo1K1/60peaokZIkizPX9mCEAAAAAAAAACAklHvCVhJstVWW+XXv/51Y9cCn6i4BWG9Y4MAAAAAAAAAANA0GhTAqrFo0aIsWbKk1lqXLl0+U0GwOjUTsGxBCAAAAAAAAABAqaj3LKGFCxdm1KhR6dWrVzp27Ji11lqr1gc0lcLyBFa5ABYAAAAAAAAAACWi3gGsU045Jffff3+uvPLKtG3bNr/4xS8yYcKE9OvXL9dff31T1AhJkurln8vlrwAAAAAAAAAAKBH13oLwjjvuyPXXX5/dd989Rx55ZL70pS9lgw02yIABA/LrX/86hx56aFPUCcU9CE3AAgAAAAAAAACgVNR7Ata8efOy/vrrJ0m6dOmSefPmJUl23XXXTJs2rXGrgxUsz19F/AoAAAAAAAAAgFJR7wDW+uuvn1dffTVJMnjw4PzmN79J8tFkrG7dujVqcbCiYgDLBCwAAAAAAAAAAEpEvQNYRx55ZJ5++ukkybhx4zJx4sS0a9cuY8aMySmnnNLoBUKNQnELwuatAwAAAAAAAAAAarSu7wvGjBlTfDx06ND85S9/ycyZM7PBBhtkiy22aNTiYFVMwAIAAAAAAAAAoFTUO4D1rwYMGJABAwY0Ri3wiaqXfzYBCwAAAAAAAACAUlHnLQjvv//+bLLJJqmsrFzp2Pz587PpppvmoYceatTiYEU1WxAagAUAAAAAAAAAQKmocwDrsssuy7HHHpsuXbqsdKxr16753ve+l0suuaRRi4NVsQUhAAAAAAAAAAClos4BrKeffjp77733ao8PGzYsM2fObJSiYFWWD8CK+BUAAAAAAAAAAKWizgGsuXPnpqKiYrXHW7dunbfffrtRioJVqdmCsNwELAAAAAAAAAAASkSdA1jrrLNOnn322dUenzVrVvr27dsoRcGq1EzAEsACAAAAAAAAAKBU1DmAte++++b000/PokWLVjr24Ycf5swzz8z+++/fqMXBiopbEMpfAQAAAAAAAABQIlrX9cQf/ehHufXWW7Phhhtm1KhR2WijjZIkf/nLXzJx4sQsW7Ysp512WpMVCjVbEApgAQAAAAAAAABQKuocwOrdu3f+93//N8cff3zGjx+fwvI0TFlZWYYPH56JEyemd+/eTVYo1CiLBBYAAAAAAAAAAKWhzgGsJBkwYEDuuuuuvPvuu3n55ZdTKBQyaNCgrLXWWk1VHxRVL/9cXueNMwEAAAAAAAAAoGnVK4BVY6211sr222/f2LXAJypuQWgCFgAAAAAAAAAAJcIsIVqccvkrAAAAAAAAAABKhAAWLUZxAlaZBBYAAAAAAAAAAKVBAIsWY3n+KvJXAAAAAAAAAACUijoFsLbZZpu8++67SZKzzjorCxcubNKiYFVqAljlElgAAAAAAAAAAJSIOgWwXnjhhXzwwQdJkgkTJmTBggVNWhSsSnECVrNWAQAAAAAAAAAAH2tdl5O22mqrHHnkkdl1111TKBTy05/+NJ06dVrluWeccUajFgg1CssTWCZgAQAAAAAAAABQKuoUwLruuuty5pln5s4770xZWVnuvvvutG698kvLysoEsGhy8lcAAAAAAAAAAJSKOgWwNtpoo9x0001JkvLy8kydOjW9evVq0sLgX9VMwBLAAgAAAAAAAACgVNQpgLWi6urqpqgDPtXy/JUtCAEAAAAAAAAAKBn1DmAlyV//+tdcdtlleeGFF5Ikm2yySU466aR88YtfbNTiYEU1ASz5KwAAAAAAAAAASkV5fV9w7733ZpNNNsnjjz+eLbbYIltssUUee+yxbLrpppkyZUpT1AhJPt6C0AQsAAAAAAAAAABKRb0nYI0bNy5jxozJBRdcsNL6qaeemr322qvRioMVFSdgNWsVAAAAAAAAAADwsXpPwHrhhRdy9NFHr7R+1FFH5fnnn2+UomBVCsujV2UmYAEAAAAAAAAAUCLqHcDq2bNnnnrqqZXWn3rqqfTq1asxalqtCy64IGVlZRk9enRxbdGiRRk5cmR69OiRTp06ZcSIEZk7d26T1sGaV6jZfzCJ/BUAAAAAAAAAAKWi3lsQHnvssTnuuOPyyiuvZOedd06SPPLII7nwwgszduzYRi+wxowZM3LVVVdliy22qLU+ZsyY/OEPf8gtt9ySrl27ZtSoUfna176WRx55pMlqYc1bIX+VcgksAAAAAAAAAABKRL0DWKeffno6d+6ciy++OOPHj0+S9OvXLz/+8Y9z4oknNnqBSbJgwYIceuih+fnPf55zzjmnuD5//vz88pe/zA033JA99tgjSXLttddm4403zqOPPpqddtqpSephzVshf5Vy+SsAAAAAAAAAAEpEvQNYZWVlGTNmTMaMGZP3338/SdK5c+dGL2xFI0eOzH777ZehQ4fWCmDNnDkzVVVVGTp0aHFt8ODBWW+99TJ9+vTVBrAWL16cxYsXF59XVlYmSaqqqlJVVdVEd8FnsXjJkuLjpUuXpqpKCguAT1fT1/V3AOpLDwGgIfQPABpC/wCgIfQPWDPq+jtW7wDWipo6eJUkN910U5588snMmDFjpWNz5sxJmzZt0q1bt1rrvXv3zpw5c1Z7zfPPPz8TJkxYaf2+++5Lhw4dPnPNNL6l1UnN2/WPU6ak/Wd65wLw72bKlCnNXQIALZQeAkBD6B8ANIT+AUBD6B/QtBYuXFin80o6xvLGG2/kpJNOypQpU9KuXbtGu+748eMzduzY4vPKysr0798/w4YNS5cuXRrt69B4Fny4KHlsWpJk2LBh6dyupN+6AJSIqqqqTJkyJXvttVcqKiqauxwAWhA9BICG0D8AaAj9A4CG0D9gzajZVe/TlHSKZebMmXnrrbeyzTbbFNeWLVuWadOm5Wc/+1nuvffeLFmyJO+9916tKVhz585Nnz59Vnvdtm3bpm3btiutV1RU+IOpRLVasqz4uG2bilRUlPRbF4ASo8cD0FB6CAANoX8A0BD6BwANoX9A06rr71dJp1j23HPPPPPMM7XWjjzyyAwePDinnnpq+vfvn4qKikydOjUjRoxIksyePTuvv/56hgwZ0hwl00QKKRQfl5U1YyEAAAAAAAAAALCCegWwqqqqsvfee2fy5MkZNGhQU9VU1Llz52y22Wa11jp27JgePXoU148++uiMHTs23bt3T5cuXXLCCSdkyJAh2WmnnZq8Ptac6o/zVymXwAIAAAAAAAAAoETUK4BVUVGRWbNmNVUtDXLppZemvLw8I0aMyOLFizN8+PBMmjSpucuikRVWCGDJXwEAAAAAAAAAUCrqvQXhd77znfzyl7/MBRdc0BT1fKo//elPtZ63a9cuEydOzMSJE5ulHtaMwgoJrLJIYAEAAAAAAAAAUBrqHcBaunRprrnmmvzxj3/Mtttum44dO9Y6fskllzRacVBjhQFYKZe/AgAAAAAAAACgRNQ7gPXss89mm222SZK8+OKLtY6V2RuOJlK94gQs7zMAAAAAAAAAAEpEvQNYDzzwQFPUAZ9ohfyVCVgAAAAAAAAAAJSM8oa+8OWXX869996bDz/8MElSWDEhA42sYAIWAAAAAAAAAAAlqN4BrH/+85/Zc889s+GGG2bffffN//3f/yVJjj766Jx88smNXiAkSfXy/JXsFQAAAAAAAAAApaTeAawxY8akoqIir7/+ejp06FBcP/jgg3PPPfc0anFQo2b+VbkEFgAAAAAAAAAAJaR1fV9w33335d577826665ba33QoEF57bXXGq0wWFH18i0Ixa8AAAAAAAAAACgl9Z6A9cEHH9SafFVj3rx5adu2baMUBf+qYAtCAAAAAAAAAABKUL0DWF/60pdy/fXXF5+XlZWluro6F110Ub7yla80anHwr8oksAAAAAAAAAAAKCH13oLwoosuyp577pknnngiS5YsyQ9+8IM899xzmTdvXh555JGmqBFsQQgAAAAAAAAAQEmq9wSszTbbLC+++GJ23XXXHHjggfnggw/yta99LX/+85/zxS9+sSlqBFsQAgAAAAAAAABQkuo9AStJunbtmtNOO62xa4HVKsQELAAAAAAAAAAASk+DAljvvvtufvnLX+aFF15IkmyyySY58sgj071790YtDmrUTMAqNwILAAAAAAAAAIASUu8tCKdNm5YvfOELufzyy/Puu+/m3XffzeWXX56BAwdm2rRpTVEjFANYRmABAAAAAAAAAFBK6j0Ba+TIkTn44INz5ZVXplWrVkmSZcuW5fvf/35GjhyZZ555ptGLhI+3IJTAAgAAAAAAAACgdNR7AtbLL7+ck08+uRi+SpJWrVpl7Nixefnllxu1OKhRMwHLDoQAAAAAAAAAAJSSegewttlmm7zwwgsrrb/wwgvZcsstG6Uo+FfFAFbzlgEAAAAAAAAAALXUaQvCWbNmFR+feOKJOemkk/Lyyy9np512SpI8+uijmThxYi644IKmqZJ/e8vzVyk3AgsAAAAAAAAAgBJSpwDWVlttlbKyshRqxhAl+cEPfrDSed/+9rdz8MEHN151sFz18vee/BUAAAAAAAAAAKWkTgGsV199tanrgE9W+PRTAAAAAAAAAABgTatTAGvAgAFNXQd8okJMwAIAAAAAAAAAoPTUKYD1r9588808/PDDeeutt1JdXV3r2IknntgohcGKana/LJfAAgAAAAAAAACghNQ7gHXdddfle9/7Xtq0aZMePXqkbIVATFlZmQAWTaJ6eQBL/AoAAAAAAAAAgFJS7wDW6aefnjPOOCPjx49PeXl5U9QEK/l4C0IRLAAAAAAAAAAASke9E1QLFy7MIYccInzFGlUwAQsAAAAAAAAAgBJU7xTV0UcfnVtuuaUpaoFPJ4EFAAAAAAAAAEAJqfcWhOeff37233//3HPPPdl8881TUVFR6/gll1zSaMVBjZoJWOW2IAQAAAAAAAAAoIQ0KIB17733ZqONNkqSlK0QiCkTjqGJVC9PYHmHAQAAAAAAAABQSuodwLr44otzzTXX5IgjjmiCcmDVlg/AiowfAAAAAAAAAAClpLy+L2jbtm122WWXpqgFVqtgAhYAAAAAAAAAACWo3gGsk046KVdccUVT1AKr9fEELBEsAAAAAAAAAABKR723IHz88cdz//33584778ymm26aioqKWsdvvfXWRisOaiwfgGULQgAAAAAAAAAASkq9A1jdunXL1772taaoBVbr4y0IJbAAAAAAAAAAACgd9Q5gXXvttU1RB3yij7cgbNYyAAAAAAAAAACglvLmLgDqorgFYfOWAQAAAAAAAAAAtdR7AtbAgQNT9gljiF555ZXPVBCsSmH5DKxPeu8BAAAAAAAAAMCaVu8A1ujRo2s9r6qqyp///Ofcc889OeWUUxqrLqilOAFL/goAAAAAAAAAgBJS7wDWSSedtMr1iRMn5oknnvjMBcGq2IIQAAAAAAAAAIBSVN5YF9pnn33yP//zP411Oajl4y0Im7kQAAAAAAAAAABYQaMFsH7729+me/fujXU5qKVmAla5BBYAAAAAAAAAACWk3lsQbr311ilbIQRTKBQyZ86cvP3225k0aVKjFgc1qm1BCAAAAAAAAABACap3AOuggw6q9by8vDw9e/bM7rvvnsGDBzdWXVBLzRaE9iAEAAAAAAAAAKCU1DuAdeaZZzZFHfDJTMACAAAAAAAAAKAElTd3AVAXy/NXBmABAAAAAAAAAFBS6jwBq7y8PGWfkn4pKyvL0qVLP3NR8K8KhY8iWOUSWAAAAAAAAAAAlJA6B7Buu+221R6bPn16Lr/88lRXVzdKUfCvqmu2IJS/AgAAAAAAAACghNQ5gHXggQeutDZ79uyMGzcud9xxRw499NCcddZZjVoc1ChuQdisVQAAAAAAAAAAQG3lDXnRm2++mWOPPTabb755li5dmqeeeiq/+tWvMmDAgMauD5J8vAWhBBYAAAAAAAAAAKWkXgGs+fPn59RTT80GG2yQ5557LlOnTs0dd9yRzTbbrKnqg48sz1+V24MQAAAAAAAAAIASUuctCC+66KJceOGF6dOnT2688cZVbkkITaXaACwAAAAAAAAAAEpQnQNY48aNS/v27bPBBhvkV7/6VX71q1+t8rxbb7210YqDGoXlI7DKTMACAAAAAAAAAKCE1DmA9d3vflf4hWZTMAELAAAAAAAAAIASVOcA1nXXXdeEZcAnW56/igwgAAAAAAAAAAClpLy5C4C6KBRsQQgAAAAAAAAAQOkRwKJFsAUhAAAAAAAAAAClSACLFsEWhAAAAAAAAAAAlCIBLFqE4haEzVwHAAAAAAAAAACsSACLFqFmAla5EVgAAAAAAAAAAJQQASxahOriHoTNWgYAAAAAAAAAANRS0gGs888/P9tvv306d+6cXr165aCDDsrs2bNrnbNo0aKMHDkyPXr0SKdOnTJixIjMnTu3mSqmyRS3IJTAAgAAAAAAAACgdJR0AOvBBx/MyJEj8+ijj2bKlCmpqqrKsGHD8sEHHxTPGTNmTO64447ccsstefDBB/Pmm2/ma1/7WjNWTVMoDsCSvwIAAAAAAAAAoIS0bu4CPsk999xT6/l1112XXr16ZebMmdltt90yf/78/PKXv8wNN9yQPfbYI0ly7bXXZuONN86jjz6anXbaqTnKpgksH4Bl/hUAAAAAAAAAACWlpANY/2r+/PlJku7duydJZs6cmaqqqgwdOrR4zuDBg7Peeutl+vTpqw1gLV68OIsXLy4+r6ysTJJUVVWlqqqqqcrnM1i6bOnyRwU/IwDqrKZn6B0A1JceAkBD6B8ANIT+AUBD6B+wZtT1d6zFBLCqq6szevTo7LLLLtlss82SJHPmzEmbNm3SrVu3Wuf27t07c+bMWe21zj///EyYMGGl9fvuuy8dOnRo1LppHM+8VZakVf75zju56667mrscAFqYKVOmNHcJALRQeggADaF/ANAQ+gcADaF/QNNauHBhnc5rMQGskSNH5tlnn83DDz/8ma81fvz4jB07tvi8srIy/fv3z7Bhw9KlS5fPfH0aX+Xjryd//Ut69uyZfffdtrnLAaCFqKqqypQpU7LXXnuloqKiucsBoAXRQwBoCP0DgIbQPwBoCP0D1oyaXfU+TYsIYI0aNSp33nlnpk2blnXXXbe43qdPnyxZsiTvvfderSlYc+fOTZ8+fVZ7vbZt26Zt27YrrVdUVPiDqUS1alWeJCkvL/MzAqDe9HgAGkoPAaAh9A8AGkL/AKAh9A9oWnX9/Spv4jo+k0KhkFGjRuW2227L/fffn4EDB9Y6vu2226aioiJTp04trs2ePTuvv/56hgwZsqbLpQkVCh99Li8ra95CAAAAAAAAAABgBSU9AWvkyJG54YYb8rvf/S6dO3fOnDlzkiRdu3ZN+/bt07Vr1xx99NEZO3Zsunfvni5duuSEE07IkCFDstNOOzVz9TSm6uUBLPErAAAAAAAAAABKSUkHsK688sokye67715r/dprr80RRxyRJLn00ktTXl6eESNGZPHixRk+fHgmTZq0hiulqRXyUQKrzAQsAAAAAAAAAABKSEkHsAo1+859gnbt2mXixImZOHHiGqiI5lKHtwIAAAAAAAAAAKxx5c1dANRFTf7KACwAAAAAAAAAAEqJABYtQnX1RxGsVhJYAAAAAAAAAACUEAEsWoTq5XsQlpcLYAEAAAAAAAAAUDoEsGgRlg/AivwVAAAAAAAAAAClRACLFqE4AcsWhAAAAAAAAAAAlBABLFqEZdW2IAQAAAAAAAAAoPQIYNEiFGxBCAAAAAAAAABACRLAokWomYDVyhaEAAAAAAAAAACUEAEsWoTq5SOwygSwAAAAAAAAAAAoIQJYtAg1ASxbEAIAAAAAAAAAUEoEsGgRlu9AmHITsAAAAAAAAAAAKCECWLQIJmABAAAAAAAAAFCKBLBoGZZPwIoJWAAAAAAAAAAAlBABLFqEYv6qWasAAAAAAAAAAIDaBLBoEZbvQGgAFgAAAAAAAAAAJUUAixahsHwGlvwVAAAAAAAAAAClRACLFuHjCVgiWAAAAAAAAAAAlA4BLFqE5fkrE7AAAAAAAAAAACgpAli0CIXlI7AMwAIAAAAAAAAAoJQIYAEAAAAAAAAAADSQABYtSpkRWAAAAAAAAAAAlBABLFqE5TsQRvwKAAAAAAAAAIBSIoBFi7A8fxUDsAAAAAAAAAAAKCUCWLQIheUjsMrMwAIAAAAAAAAAoIQIYNEimIAFAAAAAAAAAEApEsCiRVg+AMv8KwAAAAAAAAAASooAFi1CzQQsCSwAAAAAAAAAAEqJABYtw/IRWGUSWAAAAAAAAAAAlBABLFqEmglYZfJXAAAAAAAAAACUEAEsWoTlA7DMvwIAAAAAAAAAoKQIYNEiFJbPwDIBCwAAAAAAAACAUiKARYvw8QQsCSwAAAAAAAAAAEqHABYtQqHmgfwVAAAAAAAAAAAlRACLFuHjCVgAAAAAAAAAAFA6BLBoIT5KYJWViWABAAAAAAAAAFA6BLBoEUzAAgAAAAAAAACgFAlg0SIsz1/FACwAAAAAAAAAAEqJABYtgglYAAAAAAAAAACUIgEsWoRCcQYWAAAAAAAAAACUDgEsWoTiBCx7EAIAAAAAAAAAUEIEsGgRzL8CAAAAAAAAAKAUCWDRMiwfgWUAFgAAAAAAAAAApUQAixbh4y0Im7cOAAAAAAAAAABYkQAWLULNFoRlkcACAAAAAAAAAKB0CGDRIpiABQAAAAAAAABAKRLAokUoLJ+BJX8FAAAAAAAAAEApEcCiRfh4ApYIFgAAAAAAAAAApUMAixah0NwFAAAAAAAAAADAKrRu7gKgTooTsJq3DAAAAAAAAACg4ZYtW5aqqqrmLgOSJK1atUrr1q0/845sAli0CIXlCSz5KwAAAAAAAABomRYsWJC///3vKRTsg0Xp6NChQ/r27Zs2bdo0+BoCWLQIheIELBEsAAAAAAAAAGhpli1blr///e/p0KFDevbs6d//aXaFQiFLlizJ22+/nVdffTWDBg1KeXl5g64lgEWLUJN99ccvAAAAAAAAALQ8VVVVKRQK6dmzZ9q3b9/c5UCSpH379qmoqMhrr72WJUuWpF27dg26TsNiW7CG1YwfFIAFAAAAAAAAgJbL5CtKTUOnXtW6RiPUAU3OBCwAAAAAAAAAAEqRABYtQqGYwBLBAgAAAAAAAACgdAhg0aKIXwEAAAAAAAAApegLX/hCLrvsss98zppWijWtTqnWKoBFi2IAFgAAAAAAAACwJr3xxhs56qij0q9fv7Rp0yYDBgzISSedlH/+85/1vtaMGTNy3HHHNVptjRFIaqyaXn755Rx55JFZd91107Zt2wwcODDf+ta38sQTT3zma5c6ASxahMLyPQjLzMACAAAAAAAAANaQV155Jdttt11eeuml3HjjjXn55ZczefLkTJ06NUOGDMm8efPqdb2ePXumQ4cOTVRtwzRGTU888US23XbbvPjii7nqqqvy/PPP57bbbsvgwYNz8sknN1KlpUsAixahsPyzCVgAAAAAAAAA0PIVCoUsXLK0WT5qhsDUxciRI9OmTZvcd999+fKXv5z11lsv++yzT/74xz/mH//4R0477bRa57///vv51re+lY4dO2adddbJxIkTax3/14lV7733Xo455pj07NkzXbp0yR577JGnn3661mvuuOOObL/99mnXrl3WXnvtfPWrX02S7L777nnttdcyZsyYlJWVpWx5qOK1117LAQcckLXWWisdO3bMpptumrvuumu19/ivNZWVleUXv/hFvvrVr6ZDhw4ZNGhQfv/736/29YVCIUcccUQGDRqUhx56KPvtt1+++MUvZquttsqZZ56Z3/3ud8VzTz311Gy44Ybp0KFD1l9//Zx++umpqqqq0/3WWLhwYY466qh07tw56623Xq6++upax994441885vfTLdu3dK9e/cceOCB+dvf/rba+htD6ya9+ho0ceLE/OQnP8mcOXOy5ZZb5oorrsgOO+zQ3GXRSGr+7JO/AgAAAAAAAICW78OqZdnkjHub5Ws/f9bwdGjz6ZGZefPm5d577825556b9u3b1zrWp0+fHHroobn55pszadKkYvjpJz/5SX74wx9mwoQJuffee3PSSSdlww03zF577bXKr/GNb3wj7du3z913352uXbvmqquuyp577pkXX3wx3bt3zx/+8Id89atfzWmnnZbrr78+S5YsKYapbr311my55ZY57rjjcuyxxxavOXLkyCxZsiTTpk1Lx44d8/zzz6dTp071+h5NmDAhF110UX7yk5/kiiuuyKGHHprXXnst3bt3X+ncp556Ks8991xuuOGGlJevPAuqW7duxcedO3fOddddl379+uWZZ57Jsccem86dO+cHP/hBknzi/da4+OKLc/bZZ+eHP/xhfvvb3+b444/Pl7/85Wy00UapqqrK8OHDM2TIkDz00ENp3bp1zjnnnOy9996ZNWtW2rRpU6/vQ119LgJYN998c8aOHZvJkydnxx13zGWXXZbhw4dn9uzZ6dWrV3OXRyMoLJ+BZQIWAAAAAAAAALAmvPTSSykUCtl4441XeXzjjTfOu+++m7fffruYT9lll10ybty4JMmGG26YRx55JJdeeukqA1gPP/xwHn/88bz11ltp27ZtkuSnP/1pbr/99vz2t7/Ncccdl3PPPTeHHHJIJkyYUHzdlltumSTp3r17WrVqlc6dO6dPnz7F46+//npGjBiRzTffPEmy/vrr1/vejzjiiHzrW99Kkpx33nm5/PLL8/jjj2fvvfde5fcpSQYPHvyp1/3Rj35UfPyFL3wh//mf/5mbbrqpGMD6pPutse++++b73/9+ko8mal166aV54IEHstFGG+Xmm29OdXV1fvGLXxRDcddee226deuWP/3pTxk2bFh9vg119rkIYF1yySU59thjc+SRRyZJJk+enD/84Q+55pprim9qWraPp/9JYAEAAAAAAABAS9e+olWeP2t4s33t+qjPloVDhgxZ6fmK2/ut6Omnn86CBQvSo0ePWusffvhh/vrXvyb5aLrUitOt6uLEE0/M8ccfn/vuuy9Dhw7NiBEjssUWW9TrGiue37Fjx3Tp0iVvvfXWKs+tz/fn5ptvzuWXX56//vWvWbBgQZYuXZouXboUj9flflesraysLH369CnW9vTTT+fll19O586da71m0aJFxe9pU2jxAawlS5Zk5syZGT9+fHGtvLw8Q4cOzfTp01f5msWLF2fx4sXF55WVlUmSqqqqlfaVpDRUV1cv/7zMzwiAOqvpGXoHAPWlhwDQEPoHAA2hfwDQEC2xf1RVVaVQKKS6urqYAWjXeuXt6taEQqFQp9DQ+uuvn7Kysjz//PM58MADVzr+/PPPZ6211kqPHj2K91Rzjyt+rSQrrVVXV+f9999P3759c//996907W7duqW6ujrt27ev9T1b3f2sePyoo47KXnvtlT/84Q+ZMmVKzj///Pz0pz/NqFGj6nyNVq1a1XpeVlaWpUuXrrKODTbYoPj9+NdpVSuaPn16Dj300Pz4xz/OsGHD0rVr19x888255JJLitety/22bt16pdqWLVtW/J5uu+22+X//7/+t9LqePXuu8rrV1dUpFAqpqqpKq1a1w3l1/R1r8QGsd955J8uWLUvv3r1rrffu3Tt/+ctfVvma888/v9aoshr33XdfOnTo0CR18tm8/U55kvI8/9xzuevtZ5u7HABamClTpjR3CQC0UHoIAA2hfwDQEPoHAA3RkvpH69at06dPnyxYsCBLlixp7nLqpKKiIl/5ylcyadKkHHXUUWnfvn3x2Ny5c3PDDTfk4IMPzvvvv5/koyDPww8/XBwElCQPPfRQNthgg+JadXV1Fi1alMrKymy00UaZM2dOFi1alPXWW2+lr19ZWZlNNtkk9957b0aMGLHKGlu3bp0PPvig1tdMkq5du+bb3/52vv3tb2fChAm56qqr8t3vfneV11ixphoffvhhreeFQmGlc2qsv/76GTx4cH76059mn332SXl57WDd/Pnz07Vr1zzwwAPp379/rSDYyy+/nEKhULzup93vqmpdtmxZFi9enMrKymy88ca5+eab065du1qTtWqsqv4lS5bkww8/zLRp07J06dJaxxYuXLjKOv5Viw9gNcT48eMzduzY4vPKysr0798/w4YNW+U3n+a37ubzMvWhx/LNvb+Udbp3au5yAGghqqqqMmXKlOy1116pqKho7nIAaEH0EAAaQv8AoCH0DwAaoiX2j0WLFuWNN95Ip06d0q5du+Yup84mTZqUXXfdNQcffHDOOuusDBw4MM8991xOPfXUrLPOOrnooouKWZPy8vI8/vjjueqqq3LggQfmj3/8Y373u9/ljjvuqHVOTTjoP/7jPzJkyJB897vfzQUXXJANN9wwb775Zu66664cdNBB2W677TJhwoTstddeGTx4cA4++OAsXbo0d999d37wgx8kSQYOHJjHH38877//ftq2bZu11147Y8aMyd57750NN9ww7777bqZPn55NN910tZmYFWuq0b59+1rPy8rKVhtqSpJrr702w4YNywEHHJDx48dn8ODBWbBgQe68885MmTIlDzzwQDbbbLP8/e9/z1133ZXtt98+d911V/7whz+krKyseN1Pu99V1dqqVau0bds2Xbp0ydFHH52JEyfm8MMPz49//OOsu+66ee2113LbbbfllFNOybrrrrtS7YsWLUr79u2z2267rfTeXFVga1VafABr7bXXTqtWrTJ37txa63Pnzk2fPn1W+Zq2bdumbdu2K61XVFS0mD+Y/t1s0b97/t6tkHW6d/IzAqDe9HgAGkoPAaAh9A8AGkL/AKAhWlL/WLZsWcrKylJeXr7ShKRSttFGG+WJJ57ImWeemUMOOSTz5s1Lnz59ctBBB+XMM89Mjx49ap1/8sknZ+bMmTnrrLPSpUuXXHLJJdlnn31qnVPzfUiSu+66K6eddlqOPvrovP322+nTp09222239O3bN+Xl5dljjz1yyy235Oyzz86FF16YLl26ZLfddiu+/uyzz873vve9DBo0KIsXLy5uJXjCCSfk73//e7p06ZK99947l1566Sd+31esKckqf06f9LPbaaed8sQTT+Tcc8/N9773vbzzzjvp27dvdt5551x22WUpLy/PQQcdlDFjxuTEE0/M4sWLs99+++X000/Pj3/84+J1P+1+V1XrimudOnXKtGnTcuqpp+brX/963n///ayzzjrZc889061bt1XWX15enrKyslX+PtX196usUJdNLUvcjjvumB122CFXXHFFko/Gja233noZNWpUxo0b96mvr6ysTNeuXTN//nwTsEpUVVVV7rrrruy7774tpnkA0Pz0DwAaSg8BoCH0DwAaQv8AoCFaYv9YtGhRXn311QwcOLBFTcBqbH379s3ZZ5+dY445prlLYblPem/WNVPU4idgJcnYsWNz+OGHZ7vttssOO+yQyy67LB988EGOPPLI5i4NAAAAAAAAAIB/cwsXLswjjzySuXPnZtNNN23ucmhkn4sA1sEHH5y33347Z5xxRubMmZOtttoq99xzT3r37t3cpQEAAAAAAAAA8G/u6quvztlnn53Ro0dnyJAhzV0OjexzEcBKklGjRmXUqFHNXQYAAAAAAAAAANQyevTojB49urnLoImUN3cBAAAAAAAAAAAALZUAFgAAAAAAAAAAa0ShUGjuEqCWxnhPCmABAAAAAAAAANCkWrVqlSRZsmRJM1cCtS1cuDBJUlFR0eBrtG6sYgAAAAAAAAAAYFVat26dDh065O23305FRUXKy80MonkVCoUsXLgwb731Vrp161YMCTaEABYAAAAAAAAAAE2qrKwsffv2zauvvprXXnutucuBom7duqVPnz6f6RoCWAAAAAAAAAAANLk2bdpk0KBBtiGkZFRUVHymyVc1BLAAAAAAAAAAAFgjysvL065du+YuAxqVDTUBAAAAAAAAAAAaSAALAAAAAAAAAACggQSwAAAAAAAAAAAAGqh1cxdQCgqFQpKksrKymSthdaqqqrJw4cJUVlamoqKiucsBoIXQPwBoKD0EgIbQPwBoCP0DgIbQP2DNqMkS1WSLVkcAK8n777+fJOnfv38zVwIAAAAAAAAAAJSS999/P127dl3t8bLCp0W0/g1UV1fnzTffTOfOnVNWVtbc5bAKlZWV6d+/f95444106dKlucsBoIXQPwBoKD0EgIbQPwBoCP0DgIbQP2DNKBQKef/999OvX7+Ul5ev9jwTsJKUl5dn3XXXbe4yqIMuXbpoHgDUm/4BQEPpIQA0hP4BQEPoHwA0hP4BTe+TJl/VWH00CwAAAAAAAAAAgE8kgAUAAAAAAAAAANBAAli0CG3bts2ZZ56Ztm3bNncpALQg+gcADaWHANAQ+gcADaF/ANAQ+geUlrJCoVBo7iIAAAAAAAAAAABaIhOwAAAAAAAAAAAAGkgACwAAAAAAAAAAoIEEsAAAAAAAAAAAABpIAAsAAAAAAAAAAKCBBLBoESZOnJgvfOELadeuXXbcccc8/vjjzV0SAM3k/PPPz/bbb5/OnTunV69eOeiggzJ79uxa5yxatCgjR45Mjx490qlTp4wYMSJz586tdc7rr7+e/fbbLx06dEivXr1yyimnZOnSpWvyVgBoRhdccEHKysoyevTo4pr+AcDq/OMf/8h3vvOd9OjRI+3bt8/mm2+eJ554oni8UCjkjDPOSN++fdO+ffsMHTo0L730Uq1rzJs3L4ceemi6dOmSbt265eijj86CBQvW9K0AsIYsW7Ysp59+egYOHJj27dvni1/8Ys4+++wUCoXiOfoHANOmTcsBBxyQfv36paysLLfffnut443VK2bNmpUvfelLadeuXfr375+LLrqoqW8N/u0IYFHybr755owdOzZnnnlmnnzyyWy55ZYZPnx43nrrreYuDYBm8OCDD2bkyJF59NFHM2XKlFRVVWXYsGH54IMPiueMGTMmd9xxR2655ZY8+OCDefPNN/O1r32teHzZsmXZb7/9smTJkvzv//5vfvWrX+W6667LGWec0Ry3BMAaNmPGjFx11VXZYostaq3rHwCsyrvvvptddtklFRUVufvuu/P888/n4osvzlprrVU856KLLsrll1+eyZMn57HHHkvHjh0zfPjwLFq0qHjOoYcemueeey5TpkzJnXfemWnTpuW4445rjlsCYA248MILc+WVV+ZnP/tZXnjhhVx44YW56KKLcsUVVxTP0T8A+OCDD7Lllltm4sSJqzzeGL2isrIyw4YNy4ABAzJz5sz85Cc/yY9//ONcffXVTX5/8O+krLBi1B5K0I477pjtt98+P/vZz5Ik1dXV6d+/f0444YSMGzeumasDoLm9/fbb6dWrVx588MHstttumT9/fnr27JkbbrghX//615Mkf/nLX7Lxxhtn+vTp2WmnnXL33Xdn//33z5tvvpnevXsnSSZPnpxTTz01b7/9dtq0adOctwRAE1qwYEG22WabTJo0Keecc0622mqrXHbZZfoHAKs1bty4PPLII3nooYdWebxQKKRfv345+eST85//+Z9Jkvnz56d379657rrrcsghh+SFF17IJptskhkzZmS77bZLktxzzz3Zd9998/e//z39+vVbY/cDwJqx//77p3fv3vnlL39ZXBsxYkTat2+f//7v/9Y/AFhJWVlZbrvtthx00EFJGu+/Na688sqcdtppmTNnTvHvr8aNG5fbb789f/nLX5rlXuHzyAQsStqSJUsyc+bMDB06tLhWXl6eoUOHZvr06c1YGQClYv78+UmS7t27J0lmzpyZqqqqWr1j8ODBWW+99Yq9Y/r06dl8882L/3ieJMOHD09lZWWee+65NVg9AGvayJEjs99++9XqE4n+AcDq/f73v892222Xb3zjG+nVq1e23nrr/PznPy8ef/XVVzNnzpxaPaRr167Zcccda/WQbt26Ff9BJEmGDh2a8vLyPPbYY2vuZgBYY3beeedMnTo1L774YpLk6aefzsMPP5x99tknif4BwKdrrF4xffr07LbbbrX+58Hhw4dn9uzZeffdd9fQ3cDnX+vmLgA+yTvvvJNly5bV+geOJOndu7c0LgCprq7O6NGjs8suu2SzzTZLkuL/wdGtW7da5/bu3Ttz5swpnrOq3lJzDIDPp5tuuilPPvlkZsyYsdIx/QOA1XnllVdy5ZVXZuzYsfnhD3+YGTNm5MQTT0ybNm1y+OGHF3vAqnrEij2kV69etY63bt063bt310MAPqfGjRuXysrKDB48OK1atcqyZcty7rnn5tBDD00S/QOAT9VYvWLOnDkZOHDgSteoObbi9upAwwlgAQAt1siRI/Pss8/m4Ycfbu5SAChxb7zxRk466aRMmTIl7dq1a+5yAGhBqqurs9122+W8885Lkmy99dZ59tlnM3ny5Bx++OHNXB0Apeo3v/lNfv3rX+eGG27IpptumqeeeiqjR49Ov3799A8AgM8hWxBS0tZee+20atUqc+fOrbU+d+7c9OnTp5mqAqAUjBo1KnfeeWceeOCBrLvuusX1Pn36ZMmSJXnvvfdqnb9i7+jTp88qe0vNMQA+f2bOnJm33nor22yzTVq3bp3WrVvnwQcfzOWXX57WrVund+/e+gcAq9S3b99ssskmtdY23njjvP7660k+7gGf9PdXffr0yVtvvVXr+NKlSzNv3jw9BOBz6pRTTsm4ceNyyCGHZPPNN89hhx2WMWPG5Pzzz0+ifwDw6RqrV/g7LVgzBLAoaW3atMm2226bqVOnFteqq6szderUDBkypBkrA6C5FAqFjBo1Krfddlvuv//+lcbmbrvttqmoqKjVO2bPnp3XX3+92DuGDBmSZ555ptZ/lEyZMiVdunRZ6R9WAPh82HPPPfPMM8/kqaeeKn5st912OfTQQ4uP9Q8AVmWXXXbJ7Nmza629+OKLGTBgQJJk4MCB6dOnT60eUllZmccee6xWD3nvvfcyc+bM4jn3339/qqurs+OOO66BuwBgTVu4cGHKy2v/M1yrVq1SXV2dRP8A4NM1Vq8YMmRIpk2blqqqquI5U6ZMyUYbbWT7QWhEtiCk5I0dOzaHH354tttuu+ywww657LLL8sEHH+TII49s7tIAaAYjR47MDTfckN/97nfp3LlzcQ/zrl27pn379unatWuOPvrojB07Nt27d0+XLl1ywgknZMiQIdlpp52SJMOGDcsmm2ySww47LBdddFHmzJmTH/3oRxk5cmTatm3bnLcHQBPp3LlzNttss1prHTt2TI8ePYrr+gcAqzJmzJjsvPPOOe+88/LNb34zjz/+eK6++upcffXVSZKysrKMHj0655xzTgYNGpSBAwfm9NNPT79+/XLQQQcl+Whi1t57751jjz02kydPTlVVVUaNGpVDDjkk/fr1a8a7A6CpHHDAATn33HOz3nrrZdNNN82f//znXHLJJTnqqKOS6B8AfGTBggV5+eWXi89fffXVPPXUU+nevXvWW2+9RukV3/72tzNhwoQcffTROfXUU/Pss8/mv/7rv3LppZc2xy3D51ZZoVAoNHcR8Gl+9rOf5Sc/+UnmzJmTrbbaKpdffrn/uwPg31RZWdkq16+99tocccQRSZJFixbl5JNPzo033pjFixdn+PDhmTRpUq1Ruq+99lqOP/74/OlPf0rHjh1z+OGH54ILLkjr1vLpAP8udt9992y11Va57LLLkugfAKzenXfemfHjx+ell17KwIEDM3bs2Bx77LHF44VCIWeeeWauvvrqvPfee9l1110zadKkbLjhhsVz5s2bl1GjRuWOO+5IeXl5RowYkcsvvzydOnVqjlsCoIm9//77Of3003PbbbflrbfeSr9+/fKtb30rZ5xxRtq0aZNE/wAg+dOf/pSvfOUrK60ffvjhue666xqtV8yaNSsjR47MjBkzsvbaa+eEE07IqaeeukbuEf5dCGABAAAAAAAAAAA0UPmnnwIAAAAAAAAAAMCqCGABAAAAAAAAAAA0kAAWAAAAAAAAAABAAwlgAQAAAAAAAAAANJAAFgAAAAAAAAAAQAMJYAEAAAAAAAAAADSQABYAAAAAAAAAAEADCWABAAAAAAAAAAA0kAAWAAAAAC3eEUcckYMOOqjZvv5hhx2W8847r07nHnLIIbn44oubuCIAAAAA1pSyQqFQaO4iAAAAAGB1ysrKPvH4mWeemTFjxqRQKKRbt25rpqgVPP3009ljjz3y2muvpVOnTp96/rPPPpvddtstr776arp27boGKgQAAACgKQlgAQAAAFDS5syZU3x8880354wzzsjs2bOLa506dapT8KmpHHPMMWndunUmT55c59dsv/32OeKIIzJy5MgmrAwAAACANcEWhAAAAACUtD59+hQ/unbtmrKyslprnTp1WmkLwt133z0nnHBCRo8enbXWWiu9e/fOz3/+83zwwQc58sgj07lz52ywwQa5++67a32tZ599Nvvss086deqU3r1757DDDss777yz2tqWLVuW3/72tznggANqrU+aNCmDBg1Ku3bt0rt373z961+vdfyAAw7ITTfd9Nm/OQAAAAA0OwEsAAAAAD6XfvWrX2XttdfO448/nhNOOCHHH398vvGNb2TnnXfOk08+mWHDhuWwww7LwoULkyTvvfde9thjj2y99dZ54okncs8992Tu3Ln55je/udqvMWvWrMyfPz/bbbddce2JJ57IiSeemLPOOiuzZ8/OPffck912263W63bYYYc8/vjjWbx4cdPcPAAAAABrjAAWAAAAAJ9LW265ZX70ox9l0KBBGT9+fNq1a5e11147xx57bAYNGpQzzjgj//znPzNr1qwkyc9+9rNsvfXWOe+88zJ48OBsvfXWueaaa/LAAw/kxRdfXOXXeO2119KqVav06tWruPb666+nY8eO2X///TNgwIBsvfXWOfHEE2u9rl+/flmyZEmt7RUBAAAAaJkEsAAAAAD4XNpiiy2Kj1u1apUePXpk8803L6717t07SfLWW28lSZ5++uk88MAD6dSpU/Fj8ODBSZK//vWvq/waH374Ydq2bZuysrLi2l577ZUBAwZk/fXXz2GHHZZf//rXxSlbNdq3b58kK60DAAAA0PIIYAEAAADwuVRRUVHreVlZWa21mtBUdXV1kmTBggU54IAD8tRTT9X6eOmll1baQrDG2muvnYULF2bJkiXFtc6dO+fJJ5/MjTfemL59++aMM87Illtumffee694zrx585IkPXv2bJR7BQAAAKD5CGABAAAAQJJtttkmzz33XL7whS9kgw02qPXRsWPHVb5mq622SpI8//zztdZbt26doUOH5qKLLsqsWbPyt7/9Lffff3/x+LPPPpt11103a6+9dpPdDwAAAABrhgAWAAAAACQZOXJk5s2bl29961uZMWNG/vrXv+bee+/NkUcemWXLlq3yNT179sw222yThx9+uLh255135vLLL89TTz2V1157Lddff32qq6uz0UYbFc956KGHMmzYsCa/JwAAAACangAWAAAAACTp169fHnnkkSxbtizDhg3L5ptvntGjR6dbt24pL1/9X6Mdc8wx+fWvf1183q1bt9x6663ZY489svHGG2fy5Mm58cYbs+mmmyZJFi1alNtvvz3HHntsk98TAAAAAE2vrFAoFJq7CAAAAABoqT788MNstNFGufnmmzNkyJBPPf/KK6/Mbbfdlvvuu28NVAcAAABAUzMBCwAAAAA+g/bt2+f666/PO++8U6fzKyoqcsUVVzRxVQAAAACsKSZgAQAAAAAAAAAANJAJWAAAAAAAAAAAAA0kgAUAAAAAAAAAANBAAlgAAAAAAAAAAAANJIAFAAAAAAAAAADQQAJYAAAAAAAAAAAADSSABQAAAAAAAAAA0EACWAAAAAAAAAAAAA0kgAUAAAAAAAAAANBAAlgAAAAAAAAAAAAN9P8BvbqykyPNpZIAAAAASUVORK5CYII=", "text/plain": [ "