From 032251dd78415936ae0dd8aab9c899524d9d27e5 Mon Sep 17 00:00:00 2001 From: Tuan-Dat Tran Date: Thu, 5 Dec 2024 13:48:20 +0100 Subject: [PATCH] refactor/fix(simulation): Added expected hitrate for each objct and refactored Cache to handle TTL/non-TTL Cache-Types Signed-off-by: Tuan-Dat Tran --- .../.aoi_cache/lambda_distribution.pdf | Bin 11740 -> 11740 bytes .../.aoi_cache/lambda_vs_access_count.pdf | Bin 12996 -> 12443 bytes .../.aoi_cache/objects_in_cache_over_time.pdf | Bin 114269 -> 22233 bytes .../aoi_cache_simulation.ipynb | 1113 +++++------------ 4 files changed, 336 insertions(+), 777 deletions(-) diff --git a/00_aoi_caching_simulation/.aoi_cache/lambda_distribution.pdf b/00_aoi_caching_simulation/.aoi_cache/lambda_distribution.pdf index 8e8500db35f8a7732d58a69437bf9e84d3319973..36c3e49047ec90816777d92cc2b91833245b0f36 100644 GIT binary patch delta 19 acmcZ;eJ6SYlNOt)p|Odv;bso4E6e~#-UdDZ delta 19 acmcZ;eJ6SYlNOtap}C=f@n#OKE6e~#)&@NQ diff --git a/00_aoi_caching_simulation/.aoi_cache/lambda_vs_access_count.pdf b/00_aoi_caching_simulation/.aoi_cache/lambda_vs_access_count.pdf index 4a725ab1ec559e55c520532309d3ee04c866846b..824b4bd8030fb9a08d6fc6b1963f5a0b630b3886 100644 GIT binary patch delta 3142 zcmZWoc|4SB8#X9DF^n;ZvAp&rX5N{179*m_eq?L09%@FRi0sRmgqlNN8ZlguR;fF zxw}p`efYSjX*K%WQdh~)SZ&1dk~af0i`HWj0dZOx^6@EXrIBYbbX~s`wM)#;i>%MJ zZ3{&8r7sj&D>R)8B+CCxw_%T!>8UoB+^*2z{=^9Q`J#i$FFBhQtzIoCxi;2J>Km)^ zkByEV|FexdHi^s5=GU|gj17sexQtF`cQ9Cx4_HQRefJr_PU!W8#Qd-`V2OJ;X)Du><7dB=;`b7PokCA5)# zy>XN9DdzI-d31HA@4edrdY+ChE%tZQ<#PtLt8>Ms!a@qBGI;rWRI68pl)Gt z%sJtMD-X{M7JL8Tv6LX~&UVag^05joc(Q9Cw5aCY3Cpcr$I9%*``;< z0l3zDGydP|Ph8xY`1CIVU*!WK{VE)aOa8^XTi?mQTdJpl)l8~mzfa~6?>;K9z>{>~0)Bm#WSxWb z_V9-;%I{fQE03aww0~loD$~ao-MJgi9g)U(QgwVWH^a?~o(vDWd=^Uxgj=*tzcB48 z)xCXut1Bo#$vU&G&Dc2qMjIjNO~H9x7D3(H(!YVhh9T0a`z^ zVC$YdLG}%CwBJnyw)@7n`;}RSjKjt(sZmsBcRuEgpi0|(T3EQV^pd<_wAEwm_g7`Z zBe1CwB(7Rs!q`x3>X*GIx50VRe@`vhP}Aeo@ww}eL5~@)?_w5fs*(^>qHJz2Hc@OL z(U>xfch}lkQ{Z2HG_hesOOyM0-R^!3bynFF`u)?M1BFf-*>TzX!zW~f>al+jVjZc1 zN#?L&azhbeUz5eb++DDEkIW9$laEpEL3Y3B%nqgL9S7>M*x_=sM^~2qd_GET=LU+s zUUY+ex0uAG2hov5h&q-K!RDgaY4 zmURzjP#L9oTr}Pmy!zo&YhKoQgK}P7s6@UG#SGT-pb|*}S zR2``Cv0w9tJZjDQj+1r*DO^IhSGrtJ^$$D)PeMUydiS-O7%#VJjN8K?mE+UuRa5+m z=Tklhj~VUrWcN95w_$k>tTpba*o`|MdE#+urX}4tbGTc$Q`4mhk!FlYb4NK^TVEYJ zbb2zjEcYxP=RCuyYzSI-d#5vD+Og_D?PKfn>m`+@oD@w3Zbpz7!CA@fM0%@iT;pE( z^~JBpno4h^EX|KvB`@_z+nixcqGZugAD>P&^W>kfGjjjvpER#`>k#aJC1?Mj@Kko- ztlz|vLtNQO#m+mlQXy7R*;!CtSgmrUFszASe-x7}yY?RI0Oq>770%}(V<7=$omb%) zBfO0TUY=h(;#X57Ruu9`EZq$TzYO^JcR}}KGT)Fn@%VGQ^ZPibe|fJHRUN#Qd4aVK zqtxQT?&THzSBm!f?c_FvAiJJWeA;%7pUI3J^FpvKvz{e^3GVcIB_wq2Jr@&-bP4>_ zRAATRx}wdgOB;GT>lcQDsYG#(Tj=r6w@=g$$hqc&Yv*sCND^f{D7CixfWTi-k@gH@Z&yco$Y412V3NHbIK=n=Vz8B z<3@ui+}~s+?E{ktGX}|#NuR!a*_{0D37frmcLGu^o@UPDlI11CN!$E?nw}W{%b6I@ ze)oy=Aj!Ue$GR9}- ztll|>8^b6WtSlJ-frve!G9(6>#`pTqlr&#KiHL$1u~^sx2g6o4EPnw}7nh|`0pb>bMhA#C zGW=4#(`(qlA+aogOheRq0L0*km?(fu|CSsC$Y$T7aDdGC7DWIMxE#q4Bf?n#MEZsv z2B76}kp_oZv8-?ag1%=V@c=~m9v=$Yi|n9&%c243E2RvL7`;D=h5YzV8XbpFe5Z{8 zpzpM?0Ocz!KulysMF12Me{o}&IEoC15K`AtNe~4h!E*#P6a>o=K{nY8>Ak#wa6sm3 zKmzF$M3X2+N7RU53@Sn{iqR1nD=`w1ieLzWxQl$@W}>z@l?*>4>a&*}T3-JsA%V+Y zt-wGA1r)6V86*bc+{!vLI!$yh38YY0)sZ3kw>tJe#2}fvZ2roIWV2PafMf<;)IJb` zsH-s=UDQ$#V$fIE$6ltRkj+F@gA^LLN;L&}DWU?YAY;{DDuuj?m`bCHo)Ji8P?7mX zCZ>_VRW8t|q*Wv|+G<^DDAI^4Ts4yhqI*2qEGjnDy#292N#+I#2_MI^yWQb6TI1F8qwdfL=vP4`d zk*&lO+7waNxLu0$8#kZdy*Ph;-{(Bv_xV20dEb*wd*D`?$iobl(HFfpQ<0@4i=CeS znER2W!b8<>R(OlpE|K6Yu6JHXfbZ*4gI#;?O>DiLyzfYw-$nO`h-0BmE0=CIhRx3e z5CR$_zG^lsM%C`WcehT4*w8YMHxEk~d-Uh9a&8UZaQ{-XaqF8mkD7kx|M7HqrlMsw zq&7UhJoLq9x~lkXCIt!+i|A|l)g6jX9AWES2(Et*xr+3Ryz8}{Q>Kit+&tHyLOf64&%R<`Bz8^)f1{@goyO>GB11aDdzIO_;{(%j z)qk)$bI!7Q^p#1KPpWET^ZoWIu6%^Dg-ny?7mA#6G_9YyIu?cQT27{rf)qZUX|&Z4 z-dmdyV3DlfHO!1V?Im%xoo*yrr@xd#x#ClOyGZtyt;^%y`DP5WU!j zemi~-|84x+ms6dp{bcKj)=NfKbk>6;1wCHZoJig8A2M2*mtQ7^)1o7+jP)&fmt!pF zO(+Wf0|Eh!rxU)LU)&9GUVldxNo9$OUB2raQZ$wZS?IZvJ|v0<-_a%~DjAW>(!(1g zyPpZR!&Z8#hIC*>PYvp8+THVrBqm%J4$FkfB z^x7Khqbh63JgrA9y+x{|PZi8os-fZwJx1P(_-OdG#gCjf9mFKz44qT$aZ1iX5=Ac7 zSyerK?5P8jw$1n0Hcl!MMAuUFNS1`=+(dkyy6JYG1$Ot>53nDB=;_wU?aE!vZ6mX= z*efOiGj8_UNvX;?1f+s9=pEGdZV(bDBBcitR7 zQ8Nz{uQS{;Nso8Qq$1RMUole?cN`6UhWEMXn52|uui{c$2Yk<~GCpmrRqy=#runYx zHe|9LV2i!yCxYBtjL z;y2tKj7Hjg5BWNPF=z>&(J7U?l(-LwvhVMNBOgk}^}SnsmY4UZx{KUE5{3VGyrGn{ zN|%!kP1-ov*31yUwIli?RbTf0OWyOIPpghTF5Ag`8(c8|qW6ZP>C)F3@Nx}V0B_v5 zk1CQ{RUsoK9a%g_;Mq)t^*Lt(=H#)KyW z7bQcSpM*cxU$CQ<(@2@stk1~vLROAxfkw~Mr22^(?%WF@BNg@YkeBLI9>=F>idzhOjSW+!U5S6Gym<7t7ieU43XV|ve7(AR@TBJ zm_{PY{rd;sTd0`qAiFvBfe0ZtemXJbS+`lqcwynY!Bz=@FUy}*uNNoeS0TIwGTwQ% zd3RL0Wmmj#DJ&SI&u3Z9q=0teqKJtCmWA%QEeZ6KG6(9mm5e+xcqll?A~PNrL&aP3 zt2DU1gROAoz2qNFLK&c*o3X{XhIuEmpkChNSHDk0NGX`~rXlLbJhDPwnwE%3$>ZP$ z8h?mGM&ptn!M7BM(mWlP`P;m_4gi+u2pxB-%@!stFs*PK zIiDSHh4qZ{4Cw6@u1<#ok20phOyeepvmPJSX_bo>xa1F3MEnJ`}vx$6a}bwD$(@eq}XMny0WO4%mVA} zYDefl>C?BXSFQe&kV1Dz?{49eYM=Dl=HIdQD z?&0(3Gdnw&qgp&W(AAY)UqAbIe>vNjT>9&Sv+VqFTRdSPJmr{$>#k=g_UF z(~mFJjhZ-#2c2!NId;=Q^ID{agZ<@GiSLy*4eF>4$tNb-#<-Sd5?^4eqOn)c32D4t=#irAGy`vLi%@cT`}5NDpRtg$o#6^ z{WliV6APe#cff^WVHerIgl-Fv{SH0g{iL&nGMR2weks{w54=h8mB$HL=dq_%JU6AS zD6ELdM~S7~B^Mef544Y%eN$zbs@t^sTS^~aPQTC>$q+!4V&~H5o>;S=2p>InO8jrq z@}b2sj;})eet*u~xlwt{Lr|RA?QBAF&d+>r_;$$dq}WZly4r3=jC=+s(De31RNI#$ zD~uugu9FRP!2+F8Gu_$x?Kcf>J$L|WU%9w1yg;pT_wNk`m}Z)&7-ylSjc@mNdV?tT zx{u=Rql(#gPEanM_YKy%$ImgHc}U{4!0-FcT;b$bVK4}VGlO^Iy(e@+gxQVrfz?+J zV#W*nAT_uOTT~p$1C7Gr5ETwVC`mYb5l-NNWOhnGdXfXsK`A&Jxl@z}8kFKPq!OVZ zX*hdIDvk&GAq|J(q$8k288};fcL)#kPDTRCkuiWOW#P~lnR>|VS2(*x_B;=iDi3En z|BB*)5&#LPNPYy8QGi3)Kr|1?mQ@Jgg(Ka(JUkfy9tR+GVR!<7)C1U=N;v||pE!sI zPyiJ`x_gDV0U%**5pa?YfW)5*KL8~Cto#8CYPEtP0{{&ACl=uE24KLSbufUztW|Cy zZd^8YZRHgPU~p@7AkBr_fd?r6Y{URCYnlvCx*PY!nkXZbE3qbf62Sf=3m`)P?3!%2 z8$AHPg6#2qKD;~_$Vx5d7c829Mq!{KHCY}kw5W#iAfmY&tUiE00Q;vvqd@}K?*QGl<61XlmGPudF$512^$ThT%hawTs-0U`B zAc33UIt$Z6l9>-qedlf$Jh+ zuJ&Ltt7mHU`G4*xEFQZtV-ya(HuZmaIPB^HSl^4oqc*01!jV?b(|R5rO<->PXec}u zziz_S7Ce`^v6+AZH;E9?_)SI#INYXG33%)p#{AbYfr#5QArZuHa!16GHVsH5t{(mM z?uaDf#$nKC;(tFegHD5vqIO`h0FoLIzyQ{6ijluN_on>3m)hE}UmMQNLkZ~(#^?r-5)>pQ#^~qR2rn@05A=MRI>^IoLQK?+$M#p(t7kvB(! zE!WrE4%a{XjU;bY7sdS!4`(M)-bG(gt*911o
*JWRgezYt~P+tC=*C>vZ^!uPm4wETK2dAuljb9_wQV(shcbIs{WI4@fzx%{<8dA?Zgu5WQ{UhL`Pw3}u(`L~n2 zuP++%TfDB9XUB-~c-1fm0lq(^x1XQCH$twVt}jm%E_FZLd|YDptHzYo)QFsafivco zz%yE|_ckYuZa1^I<-+~d=xR-6Py6QNMDhdb`Rnsb$&8kZ;{2P7@v+7ChF1;GFk8#d zA5A1XWUH^RsbFFyH^TCeHHSLl7PTMje1}}CkB*=9*zb-^Z0Ig_XZ5Hh$1$RYNmYAL zWxMz6ex?dY*hqAL6=SR!Kia68s9*S1CL@V>B5_*4n40iL0L6U$-tUvJq=nYRS8-0{ zI`X7vdLiuNuv$u@n%EY;g_)^@v&BjbO$I;vxr>_8iuVBAeC_vBiVOCHqX>nor5w2v zg`^bm{+?6esuz)JkrJg#oZ8W;&g%9+R32Gw!eR)J4dNp(AHsw%?GM&0C^tGNk zKPGKJA7*tK-j)K>%%mZ*Y)CUOZ1~|PEYrn&-2$?t}&9n$EP>vV>dUAT2b$giHHQW%czbC zAL)I%!MSEN#+NR!nEi_Sy;`OAMTGOy6aS~YHp@O9VyuY|v%Xm9f`&O5bxsV3tJPOh zHY5V|^LdH5Tvt82oF}2sZJk8w$KT0zrpGdIkLs|xUSn5&;%;Hf%lc)3>fzkEY5SRN zyyqbj>NYsyPjY$63CC|9X7Xgtz2Bj6MA;#j#1Lb5z~b9chLLdHOCYSD0R}!rM)@yo zS8Lm5Qa1_L(mrYXIuhS(a<6o9cdD$Ix3jNf-IBetHU-jc_(?LQmn|HR``Y|hQc7-VAt(nogM&|z_y{ZU z?P!g^RA<2jMCwbqf1!>ag>BMI4vV*Fg1jOI>v^^ZFD&udRd1BIYxgm(=nMo+NeHx|CMS zJn`h`0{wQH%?-5dIr*%Iae`1SA2Osimsue3o{T6J?r{@asSACdQW$u6LfE*pbf$)- z8*4^0RN8J&qWVEA%KMY1L1=Vx{aG@x?IqD$egc~~i-iR}_l>0Ise2YC!=~yLd`#)r z#~&+Uw(WTt5kBMGop9G~81N&Z-DkJa0M&4>h6*m5oH~+{ld_91F^p>n$~SILrz&gb zj2hNmflUuI!bFX~Zk15i_PswwZbt!B>jkNXGNWTt-vM1gD3KBsjB!13V~qCa+FU6O z?AL-aItB=6j44YMv8iA!A5^$wKHQL8h%Qa&fgt;-Zu}NrW`9s z!=b8|p2(N=8>rkpk8G%)evjQzX3yS$L*@CTGZjzT_MzQtrb!(QU0e__d@$UMEXQ1H z{t*NxxAx@(Dg+@3+r-;d>Zhz9Y*XZz`MC*d&I*Br=$ZGtMAMKp&g5OVOKGgPhEB!o z=9sAetRC?k=s|EL>LWk*P;MTscpRJW+mb7U>c^q_?nmgpEhj*PO7UJ!*kOnaG_GIaqS}tXt zBESyFPVvXcVS@=X!$?>kfB6DybsRDXhV-6Iw#W%J3li8~a97BmN%;D9?sK7Hd>Sps z-L$?E*-Mg#ev22mt>Ab4_nscpUX&1?CpQRH7c5j$XRZg$F1N4QRw*g-9nN)SHOnhBVmSIh`9Twi~pU%_OxB_Zbv z-@%YLC}XgI-%4Vw8G}-pv+H7|MV>UI%1EGwDL0?mkoDHTtRc54*XfvP-;znq7KMYl ziR_4HBK+#<0wZX;QUeh(HpMfnczVBnJZy{x;*d+csB+M$X86_=+U5&;x!P$g;Z1)b zT+XGlUPBi&{h_N~#-?Jh2|VFVI-RuC{H>>yJ18@5{O!Z)@{4+}h=8tBo;%78maX`x zV!ZKJvga3Kdk4_3p}W91d>X0}t$>BS!3w;l(u*jN`?@+N3RK<0#aAX@i|>T)(q;A` zABw2WIhMsJLbs}dIo{^AUA-YOR*(6jX`?cu#1$pMMO%yGIu$09R-L#J1rn1fHQwJ& z9S!J(MJocYpL}9;r+biLqv!fy)bbR?rB6+XS6Eu3(uDP(ri3N?qbSZ6;~H znes7+IXH{v-LRtwYXNeAmTNyG;E}wo6;U+d{L6N*in|8d^`&#nJ*D{YHtk5%6%!*d zEyI=NM;k&CZ_EYEdLTqP1o>WZQ!g9RfglRn(&KHvTp;VF(RVfgQC52T6{`~HPy0N; zi8Oe(%3UP(;(8Ti-WW;698AMFpDGj5N=Y{ewfvBx(M-uo$`irEKHoQ5$L%W$lu{V} zUOTYR3E~y9oZ@7a^UsV76(L4-R(9{q@O{o4-orzPYmY_jWIm76UnT6MwRL}E_Xs`{ zDET7;+iDt~m_CGGQc@zbIQ$NnPSd#*>`h6$#~?v&%^u;_Q)Q_nQy$1p7c{Jw6)y@o z>wKt*i77)T25Nt!mY~FwR<_>;c|EO4?r#J8&+wM>*%sxJcap8>A?;BZkw(b~i2t~( zaVyJcCT=NGxoZRLomU+IiWQfSQfJ# zs0acS1Wx0qRcI;t^r&kmV>svo6eFKTd)=Q=O}Ww&qw1!f1HBs~D^@9KLiIhMH0Toi*7 zLt?3x!lI+<*h4c0_RKSHqW(Qdu(NXL8>Kr!|`6JNHQJOx;{2GVEKtxi!~9nn@9GT@n_i9kIY=h>!;yN z0;l~E2=&76Pfbt}DA$?HT@T}5TaD4^DyTRBj91%`CtLo*hSZ_nC9ltK*t2zuz=4Eg zF-F*#V8TsLfmOEe;Oi*#KIiK1PQDEv_9u5VWasQ;b+1SV+t(P&Wj1<_ z?UO(YzW1SZI_j*21V9USczZWN6fX)S>2(XO1u_{FJ!oUXZ2MNS=vDj#3gmn3xi`h4 zD1y946W)A51Vg^pMqnYF(Un=o{*i1wqY%*85Ix@Rh^h)r^qnrN?;zVMM<-wi!Zf!l z81HA<1?p^RDGD!)L)XM-*{O0zeJ35NB0Fra?E|`^+t^*zAsMK3G&T{l93x|eeu&u= zV?bH9(1rR+8S9A=zjer@DxliwUltr>8POv%DY!5Q?rTrWga%2v%keRbMm3QEv{wN0|$p_{ZvCfBo>2B>4*=#zSO6@Mo#7 zeD1SCCOzU9mg+-IK4pR{HJ{r-VEIUD!)9elILHK>0X~1{CC1O?hgNgj@)t;x9?+Po zw25fTZ!6OTHqED~HsEowgJq#5#u%c|+7R|1G`T}8jXVd@Si*K`emnYGy%^iCJW!IGZR-JMxlVT(kmry=rakOi;Yq&cPfJt zSg5`S#tk7z8~`DM5_WW~!_M1y&!`+!yrHqC&W)fxbPZM!pl{>KEyU5Qx|p z`A7lv?6>-c=eILe$H6*ln%pEZM4Ls~Mj+PL;oDK){ZUAr4)D}qkrvSBos5obvunT^ zB9PfGkc{f3pQzC4tFgS=6p*Lv*ru@-Hr4RGjRkciAn=!eodpLe8Effw(eMze!@S0h zEQmL+FL@n{aPH&BAi_uG9fM$JCld90L93hhU4uFZbsxN>#w8mtsgXy_k-gFG<*JA{ z|1|TC=Fy`_*%fDR>r}D*8E$@h8~SIJKmZwq^Gkgk0(jP48)2(ET-3oJHGu}Wff&^T zYb4goo=S!mX0-v+Ar} zcS;@5)BcD#lmlo2Q&nu|`DUk|{ip#_UYYm4 z^PV1<#5+)qOGIqSm8;_XTSIquHVk570?J{^%kjC_5ua)`i@EV(kqktjkmIqr>n!&` zAQC+CAK&x458D-wwVq5dEIBb`mFf?Wpll4LF-WO@&Qu6BS8{@$BQd=RcoPPOIGL zBqQ2JRLuxS}9tif*F;xPn-}u`taq%)E^W()_>Y4?z6$cdaRdcMHTw}AdQ4GWnz>&Egs}r zS8n^1gxR(mSC!Rf%O1NM$jq|P=`8PV*C#b?t#kllQzl3svj4c4J1|Ob0~Ytr!+Lox zG+`^$JzTVRzuXvT%%MEHo1)7t{Wjw?L;$z<{P>pH>SUeMbC}a$S^!fRb zxSOETuICeet4#AkcEo20!I{xeBD0L8oFq>_ z?cPC1Uwo6$@{Tc^zJ!oxTe-f;a-Nzlv|TseFs5eomp0@Af1YwKk)L7-#2#(7$~^Ng zZ({N(q*`-_*ffjcVQVD`ux2=vZuO1=m@-hMdCx%8K2D3f{*4FKcHwNVzr3hf2arCn zoyqRiOsnXCp81XCGL)p5Bf4<|ON$tALZc(nhr^JiIrOpoND^5tDumb)&Y~`S&(M;u zuTh%7l$({^w5{<2CG}Ll?M!b>lW?YbDl$q}E#Wz9+6hCGp)tuNk`vF7>umA#jy7t# zA*$GGpc!)|-y6xd@II8<-k?RQ$4Zs*CBw5HHYOsWrJ7g8L00aiQ|s}+*!77qTj6VC zJ;mn6?7MeHobCOVlIH}oLy_6zh`_I|ucMH&us}^&wq5&ZD-vbi{))SOLbfh^xs1)D z1H>wxRjfHx{0?&a)pRAKza+3m_f=8IJggM2k%8BAWX=98R*a4=jI*EFYVT`|9^H{v zt4hg)N+%rg^OldT`MCHaqSlS$F7!09xeXQWjM2ulg`{;c5X=yJxDEORVB5bJf7?hM zZRhku$g<0vFL^ukW}H}MZL{dC^Gjb{gZRO#)mcOnp`pu1@#a=|mW*wm6vPS@?q}!u zs=?-04S+zv0=;sVKtOO{!e4C^ex~V<)cTC7wex&KYz)5mrKfMDYfdjR_*LELl5N(qs9L_2O$gvR;2`ieeg!{s$U zjyi)UYLs9%VBMj;n6{KMo~-Cz$w8h1dPv(vXK`So$qjFQTIc72CxV>k_?9b;<=t_K z?)k?e){`1JL2b)5NM=@)sif!4`2|%tayEOLTtS{%yUGs&GUH$+#h&%`F1hqq|9EdA zDgUftCXU7@$YC=b@bYn^q$V$!&r{h^{0DOdvlStB3yra^ce2EeKf5dncp^i|jVGU;71J|gn_k+(_rI=CZa2FafSYwub}D9h>?#OF%tZKm zI1<>k8)vA`&<88rLLxKq%S_RD2$e7XmWr-uh*BvHi%;HSPkyP}VrbhdS3MluS2 z&a-_;a+~r5sbiC%s&>EX-2J9GL5xj(G@m%|;@KoQ+qX)AGUxKUo6{5Y{sG+jKki6F zi_YT`#j?-^$9HshTYF$_(W~w|uUJ)2U3FXXYCc|us)rRpY-alkSBIlSs>#=r^^O6c zy7#7M^uaXm*63=yIhbJjnt|nks^?PKE?>zOT%*wAs+j~&P$Bl|)X7o1R;c7Bnp%m= zyVOxHJ~pHp!z{=TZrGzzjhrAoA6Xh1$%;+Z8?g}2JR_w8Ut#@Lv>HPOVjm@g8-;Pq zrk)S9IcvPikrnfZ&^~6>ks+QMV*Z>WWLMnktEnYD@^Yz=$i29ike9<&o2V1)UKUr5 zdhF3b1-PEEL=|qn#t+(Z5)MGZKRsH&{^4R?ODkXwjO-9t_)%unUkTo)>C%yC1K>5i zjPcShmD6Ze0zRnJb{HTt)VaS0IPSz$3pm`1Ekn?oYzu8qB=0Hm@+_!iq&$b+mjQBo zE@G1b>eZxF$;XAIcJ~tSMHePR?wB$pIQ4dC#|bp-qwe}o&2+fqzpvNvdz}5Kme@T| z(7eaqdoB{3KveWh?*j(~&w^Kx`qb4@pSL(*blTprgQ7@&N)xVcW4*_vkvhh(5Ek7$^(Cw>S{*HabQ(kLU zLd7^X&PH|m#>~S!ERcqVa#tm_AWFy5hN@9%wguH0?^XZXdf<|>W-fi?MUsC?49SNR zJ>(j8HN&{H2t14C1+e%yrfEdSu*-NnSlT%RKr(BL|{zQPe@FFCb$GYgB-@~hPF6|52xvZ^7#eEsllY1k@SueL!4XZN<0fK=7$^2)#E&I zxwhYMMM4_yGbp&(wm*l{I`_F7AmmJ-S*TuDTrWX~-C?o^6>TP?3l5GubE3Av2mX(x zn`dJ_y<4RPx*>}tKnH+09DN?c_{9OdithFM`DRPEDhBUjJwk79dX1Sz6_iCcG6t31Z*x|x)Ck&73#b*L zRe~LrBxBPO`^dNfy<;*-sOKG;>z>|6SG!kvdG=i=mw4JH4C}78L0BoVWl%CbJ;K~T_ zkonOo73x%xHaG1xYjl(HAWsX$P8NDOq^Hh)lzQdX=`KZ0u|jJKO^Y0JDp%SdBK4&g zXU0AagJ2NMtv+p`N7!VT_0(!Kb|BD|_|E;{<`EIw z#F~ptxdBBH(C1InfztKU4GbYwuZ`M#OZPxQlT=UGdPLPytN4=>iBt>a;%d&52aqvm zLRoQU?4R*hSVBxnv&4Scu;aC{Qan5EZglH#uBG;L{_TnY5#_fjV^C62qb6%OY_fYZ z>AeLq&++5Q_FYqEVLFzyiDdBrUswWHxyVGy6MMe?qT&J4ed-<)w09=vzPEAB&sOpU z(ChaeZ#JYUqDSt(cTIWOeneqXk^5C6JXaSOop_@2z5S`6&E{d8RkGJ3f<2pOgwkX? z1}a$z?zlR$&8@f|?rC1gXu_n+dFmcWi`ISdrI~3PL$ETF=u1?u##%@s6W#mgqt8(I z#hN?QYazQs_ucuN(zJ~{aaN{G-Wtz3KG48Pvp|Ria#7|#m!}$wq}A(LH3l1K;e@iJ zCUZ}4Pa@+P_eM?+;%bhJH}Y8z$s(r*(T}=|h~f8em~fP1+t`HLR7xd1%JFCf5h=j$ zvcIOx*`A`G?2Dop<4)JA@2mirUJfN*Nz zRi=I0WuOy;x~iD>`uI>dk@9{}wpcV}7CiBMtR=;z92M>yV4XgoINnsDcO5Dxh)(DiEej;34B|GI$AnG4?)9&6(DG zZ)-Getd;Q8Nkjb8fz$B{u4tzxUE2_y!8YkvWck!QDh>Hsmso@cQYVbZ->vv^gSr-B zGuo2+ihPWc+S6Vnna4cTu=4J2T$u*7#mW-?S35bWWC@I+v2h-2dS5D3*7o#m7Cenl zn~8&uY|I07JX!i0!Of&?mCQPEP@VG)JdgRLZhkLrFG^9l4_sEbb<;AP37@Qt6_>pO zz*6qUDB$E_oA;gBEaN97(J3B~j&&r(5@Pkow z&EMEMt3xMTOSv#QIu^QVym+oXAC~W&KfxFGV@gVPUWIvrI0?CxW!VT6BR)%?z{XX0 zo@g%pE_l%PFxKqU+RG&$w4&J1AZ0sTrVz@tg(5g-_{p6^CK^hEd`v@?r`R;%Eaf;( zCnB>ziAOWGbJyh1`{H~g$tl2$MT)~l;YfglV=zDOq4FaKOnfe3sz6@-uLNupdizGR zIG&5c5^Z(f@Rf*8MokSMYxbE=}C^cvwORr?HLO4IOE zuObpkQ3L$}9sG1b`MPIw#5?i31&srv5^DBK2}0_ z>EeEbR;E76$6k|!bS2+h0w_!DBx?2SOybBbSclVmS=4oJzYecyCmiWeIF&swiG^9Q zTzT3Z;w^(-A4eINn}^*`aC?7&_*5?hPRSG|C+@axN;*=Hsvua6id?7QViTvEMNQXN z&{8>YmE3FKC3}!F+s>DTm1i&9*;=|SyOuSw4e4FIk`ls}WuIZ6AgH`A_&IskcFQF8 zxH4jVH{qE1v(AA(*ht9f@puE#OxTZcjaRRv&km?q!SIxEU0z7?xRushO6Egu9|PmC zqm#`gmm*O|oF+a?k`FWQ%moL-yHK8`N=Fk^Cp%8}S%2fYZ}@R%yq1dVuC$L!+);U~ zYZOmur!xEgV}ipcO7H!9epg#xg!3s@wOl9%dew+c?*~q~YwVSX5`Hx2{VoJv9LQog zYb&r0MGlNtAom`ZU_)gbLKw*O`p9Ln>8$lCjlct`R3T_7I^tF>&CV2o!guQ~CijhGodKVEG~v?C+p;g+4;bbOq1zy> z*0BeKGKc3-0%;*ucVN3xW;qJ5wvw@xxwKHLuREMjG7)2`7N9QWUB~j2r2Pe&z)Unp zZl-d8`nYsA!1p`7?fblDoUxIVfdY|$LZ*Q%0e0jF;o9()R;E>K={l@!>(%fnRR>G5 zua{I)>tNv0MQeggoVSW>I179r%VcxVuzqozx#ySGhOTmJF>V;JMgi4H)v*B=bhMuQ zLhBJwp+sLF3DUEe-`>;-5^_L2ByYWx3ImCmaPk}+wHt!iOQ~I?%2QyW6kPFGRs((k z04rF9nZStFsT&Et@=oAE_qX7KgGt<@J05~&RQXCn&I085Dlz*YN1reHss8cBkfGB1h|-ack78V!N~Ej~WWb4-S2{wj$G8+C zR<4B=cVb=+Xxg%>ovfxI&Hdwmv290v{T~b?G~nFUi8dV=rDQ>}p_P+)xzf<2w2p+7YS~_kOXx z_~NdNEi$eos=4P}l8dp7?;<-(I`azP60(qB1Tr|3hRRbDlnLy<1SXn2Pth}F@5TA8 zANtiN%u`cSh5G*TgBP~mI*YEAPiE^|Ytk9gP4c)Tp}cWf4V$q!?LS*dp{%UB{?LB* zgetBM__o*NZYAoh9e`j`QE_Pt0#K&T#if@9C7;BxBd5{H!mk>ja}*dlT*9c8oi|*mS8gIZNDU zv@mydq|Gadx=gRWIGe&Oz9)U%@)99wXmnwq=J2}M;n>_RZ)2ThF1_Z}$?5EFm|@G+ z#lr6T;>~e?+UJa$3!_77qpPEoK64!Y>a(9aMwizO4kz<-Mwdmm-g|2p8cAQXpnN{2 znrNbunlgQyLr4Dn+3)wMdf)4ulJ)R>JO7y9=z?;cWOcFmPNIWY zuF1H?;lbW2a(!0f^_8CJ34k%N<@}n&TEHrOz4rY407FfvbJDhduz6S)>I+nC-Z1N# z1o~Z_h&HEPCG7K~t_OalNJ?`Z((j&%>hJ{c4mIqyWOLj|ToyfVAx-P?YeX2z?QIlI zhMr^}VHO!t#A!{tSDQDt4`$zeM>CZJ$VvFX5U_)ZH4zj7gY(s8!~t@E=#US9c(l_8 z00o*e12BUIWdO+0piF=t8aMM66=VXwpc8LVoog0A2!KXp-I6UI0n_M`kGEuTHh>I( zPR_n1hjIYn=!TqIWR(jTKx^d!DA7uJfPS<<-tF4#`G9X|ihKY?-Ms=pFaUl12No6r z+yLmr+Z%{zXfZ$m%}{(B8C49ZM|&3EF0NYwfCA7@N^TFQmjYJMZ%S{`yE1@3I-u+p zCC39;>r_7hMDGv?z`(pNR-Q!YgbIKhKA6`I%xh0nw@?Ad#6>x{IfMCxZa4k{%xeke z6aIsUc&)(vkpFSkV1DTTkR6!+k3qL__F#Vg{~-r3KkRR0ZwBTU_=Aaf9TCoE_O@o` zu3&!n|Bn8}I9pj*-co}9qnyF~x3ao_)^h>#|E2p^mSEUl%0#>_jtHa~81}ciD;V~- zx~qo+81}cm8yNPtzB?H9mpYi&+syek0A7du3=jqY1kveV00EB#p!_g?C?6+;j|~E0 zV+Tt}5SiJV{wcPnvza*&1Pl{GOV7H)1WnNZc!>Ig;kQoxBN!^o&v)zN zzc?u0t#$w8gy4S+`Ul4c;TQT(97GuU9}da~6#}FFc`_8r5C4xa6#k#xK%s)d|90Yb zJ;DESFya3Q^9c(7zdNYEO917E2>-hTw>9PacL|{ULPGzEgF%G<;~cXFagNF z*F!;J@IRgP4-26%A=rOJ1fc)5RR9M4cP~K&1R?)%P(TQN+ui@vfJ20Cb^r4J{~Hks zzqR2%fdYR<<6kEW|2ILwTf6=pCkXp9)c-tJ5dLQ}|K=3_HvzZh{BMRrx3lv9fq%yd z@eBNW$9zx-KO7Bg2GGHTz`QRU99+SF54EDb`R%Cw?}BhUkuI(XXV<^xkq>&?;Y2Jf J@@h|r{tv)WsCxha delta 104677 zcmV)0K+eC}tpVNq2C#+!f5g2@&n-=Ioj3n}#Tk+Voz8n^3`N-{pn(lZ4QOC_V6~c( z2+;;b+x+{ECu;AiSVi~EaLW|Bb>7ukRav$3vT|j_%3u9=zx}`d^KX9pumAe5e*BAn z^UJTEzkc%%ztkUp>;L(WKgy54_5b|ikNV@U{XhTlm*Ri@-7l>!fBx}bu7C8!KfnL~ zfBNN@zxm}?|J)1zgBSVhU)uKn#eOcotlAjYzyHhU-*x>w+=eorf5-KI|Kq-_u08y( z{j>e}ufP5AZ-4x6KYsPk8#ix1{-syRtLK;fqyP7^Qf-xehCfx`rjPZr82|5Em5h8I z{L8=jwd zwfg_`bL`@EZpY5}zC}ji>tgE@qOXzk3asEzZYLG zeP8|iUfaC#f9SQ>e}mWdneN=L9e?}@ul>3B^V;95f6r_4ukwdp`~3M|yO;5dV%Hyk z{A+(NzFzyj`k%h`=s%rTF+TTF{_sdv-%|rO`Dfg&_03!q^McoBTMYWY`%eGk|M_?S z{A&)%%Y z7#@(n^)i849h1If!#~y+J8MEDGv*(Ud)d$Wy>dFU@^=<&oi@B~z4!yp2lE#nvnmG3 zZ|iQ1-A7gL0{&ZM#F$k5MY%^jfZpgoX7d+q_4A^WAKCw0KbrHsalV)hAJ?>;f9q=g ze_Hi>vtGQp`&-rX`M6+v)ctzE7%T4oy>1+DRzt5lWfk+UF{^*RFXnadmLiy)RlEVV z<&5dNpFe1x!jC-t!;CLxql}}N*UZdcYOn8$daE$+UjB^j|MRz;zk+pt#1Gf9n3*wHLO$W~Zg50Ji=AmSX863n|0zv=TWeWWWsGR&v{0r`mK>#X$C z_}3{m$9`eQdBQXO09Ajlc7hA`_Qj^ZvOLwXW0R(oE^Tejn%js&%aqUDtkcvFUwq z_aRMl{%l@n|B%mTcW7DfT57i1qIup;(J|{yMn}hX@hNKMX6%a~pSfwDpSJD`#p$b} zrWe|=R@PmJ(cTv_^bl_b>x20Oe^V#5@L~Ro@xd7`Gv;$htv$6?Ul0_Z`KmyhX~7Xz z3m?dwUyS*}Y?q#IwtXP?fokVw?z2akr4A|PFKM>4nExLBs`&}~r$5DCHg{mh%!^F9 z-B`n-!+j?K$9(KMXXMVc{d1kOo=@qM%qWLp`}veiJnKX^I-jZ2vFfu2e=YF&;T`iS zg?^N=*2$N_<$NYT1gum3L?cVK_c3r%K z=yk{2WZjDSz`f`l&yeBRUW=LF`EdU6tH08EVP^ydc;3~2OmC?%V|=UPkhNe13349d zKbYRF`RF*h6zjXK_IiN-e_o5(Ar%`;XH$zUZz1cMM9inW5tT?!JU&SGRM+J*whyz> z)xMJ!n6><)IN}6qFoR^Q^EG;^1lVvgkv}*X6{(8NHXs;szqyJGM?mIN*U-wX-UdB2 zW4nxQ_n-pc^q7v73;Dp)_v=kW(?Jf9`FkLcK1U-rZ## zn!&a5*YUo)ogJMt)H$}HNAhJM2r!t8IVC71h|lv3rvx#Zr18};|2nna{oR4FPOzLC zShUzYdV`%&qJyO;?)cHuh2Hf`*Qa@-E=)}sy@7Sz1DkXaI4R2IpCL_ngC;=H}vjKcu_`Ko9)y}3_#%kq%y*kSB8z0?-6+U zKC3=+dQ0!Y*q)m?Mu(F|>ll5+v|RND-{reHM(f^MZu-iOe|hVs9Sc&hgPz^vFPL+k zmf5sp&f5r%)8w3PTPZJ3D#}oX$r_EnmM#sXSrf& z*mP*l;9?na>cM1_E8+uW(6dx*ZR_i4f6hFdiADpze;mgU&*uwsUYGi#FJzsq4e4l( zIS=bgFZ8a`f0*L;54s6mI(Z!EqzLc*feb5)ye&yMU`I5ZKYTGgMUt+!>|DYqYQ~!CL0|qC4$~ksIRY{L< z(&O#0KD`OXvx7b6n{|hnTrxIBFH2@G$F`NZwcPGCf5>9Stom}bYejrvcQM1e!WJ?} z(7+EfbjTliz5jhX$GrWrJ((}{x#QT z)=myAUuRVLB94tU>+5Dabd+2Q)yIZn$EoL@`bdL@sQ;RJtLE`R}vtu!# z4}AoZmZjydSJM}AZD;n%CY?_QLyP(ReNndiJN3|^Z0n`7p7_D;_jkyg*&QvmR;z2h zFkiz@(?@JyVvnu&^R46?T#sN{_ei~+yR2!< zeD^Trn2)s=PrUEs*zQ)AV*ba)6Ysa0KCayC-pmKGqt!Tb?{m_v zoT!FKmoM{W|K6{9`7&?QBcDgYclMT9e`UjWEI4JxT6IpDhh8vW5#GxK{ysj*480B| z50d%(N>CdMl6iLmug|D!Ybk%rkP0)ly>0hA8Ev?Xd6Q4o@L_Ukhgyh&tH@8cL+#tr zsCEc+LmK2ppwoH6`H7QhnVcN+Wl*Ssg89cSrq{yHO4o7>?E6){WqqX2yF_+d`uX!0NW6oJ?eU4&bgn@>!ikib~{?8dm(Ykr-?jBW3*ZQUHysCyG2zAWYT15!aXCM^L%sIB-xXnh7zf~}> z#X>*51}td@>r9ZZq=Izb(wk#Ge>a8fnD2(77^L%l3&#$_xZKVs#2Q;S=~DkDbu}r5 z@HmD*-brhHUFn1KC0Qm6DfrM%gM zLV3^NU~9ltGc?Ol;Sp>&w={jgJSF&M#?Tbcl&7K}<|X54$bum=KHsv1-e-9-bqpnM z<>}+VU{)}qjQN`eM|{3-3+0YQ*Yk`XI^D?2@I$cB2{})&HDYt{sdN9yO1~a0hbm`z zn0L%ajUl?eV<>g&o@4=Re~tMnwAQ)U-~D18O>Xp)F7%loG{1bIcl}ZG-H-pI&tmKJ zQ0Of4Z!l~9oQM*9d8YKsk6YK zkh$2f)l1X5`M?#lGM7W_JYDaH?l(`W?`b87W`3z-t@WV~uy$J8e=p3x_A{d%g2{@i ziU%^}bToHc=RI{P9R-^$#K)&m!H>MBO~nu&XI8nve9W8uRnFE$ThlWT0Y=qwW1XO_ z`F>6;m8Cj{d}(=QXC^1XA#^@Zb*9utDdUBC zXSTe*=~(YI_-rnRe_FZnvVz%fY|}0dSK5}ve;|KCnF1YO;8|YZIOa?^xau>oI9c*x zKo**gp<+sxaIVzr(J{oy()KZPX}M8#RDl**kl1|XbRw`{PnbTzuROv#Q(8SZ?DN%~ z7wrOZd?C))DNf15#IXqIVj$)R2uRuwuu zB+#cC&VsxzwJpWQoWW}oG`*YZ%zHuz;GzM4f4 zSG?E#`e4Y!e@)9dZ|WtlX$&G`K`HMx?bt_7zJ@;j-c>iJ9h+reisg6A1oJ^iq*%vL zQ}QmIL)+I4^>yi4``WTj)j)NW`P7J7@%B3vLt&hGy#i*n-V1jB+rLA7rc(z-*_SMt zF7o@7lMDF|S8|L4(CMKzKA002_=}~80mqOGXP(HwfA+Zq^ZO+mGNQ@+3Fhl12^w(B zmsQrPmYY7_m7^Fk;=c892hb3A&45n}OFm%>QE}cx!kjPpk1NxpV?HDV6TE4)WB#KB z6Z|rAgBq>adU&xkR?Dxj2az}F zhw7n5f6DY?u%WY_4F!KUpGTK`e1~R;s`Bqyl(H4 ziV{qlq5iF`U^|BV7Xcv|n`h*BC5L)1K^=3k;Y>)Bd4me9Aws-kNPWQr)BW~x2K=gu zH;zya@88|0{e3Rhcfaj&x<7hT$l1rm@a~uOe`&v$_UyPhfF3xdW&0f}%hgoK>7M>5 zUcWgmCYP|~OJR{h97Fias|JUV@77GW_jVD?>-jv+0GtzwUlz^N_hl&gAbfb7)&=u^vhfd$WCl5=X>paLK}SE(Pwp5M$)QwNPK6dXPSkM zfAL&*h@P`8bv>c_$u6>EefCQUyqgNsx>?Qpyhd!Lvnx}~d(PRBs~rUw{GkOr4& zIix|^Tyt#nzWei@KE)TGcXPhdb5K=af75x` zQp_9B7613?u7Np}6%R0^j_yU@!g7bcmo6rT=2V4`(_ zkUW>^BdwJ&UXS!8Y@`N1*!F ^JhFV9hoK&-v=N@U3#gbC(jZm693T0(J(42zB( zmVH_d74n$g4|Q=p0|DtQ>mj!QK8Uq0;|X!WO(e*`4m2{?;)E7>e}-O*7PwD(z$~Ng zs)ZIAMQP(CuoE$)&sgWL)>r6-Pdym)=~;Q~v{3kljP;H=vFKB=v6m=;V9RHdEyIHm zdl<|#W5{_!2!Yd{?knTxW5RiMj>2*-9+8G8@yoz`oIDCe%+yHJS|xI~pS-&UHk_68 zw2umg)OL~%2xfKef2>sm=A-3EENxT*X?w_YPdSoieA1nYHK(yTh%zuI_T}bfBrl(S zQN{EC#J2ns0?jF#&0v!)fD{e_#&Fs4faw^@TGrzOn|2Y#jM)s%`0eGjg#xFKZK1$T zdHog&+>p0uC~&jqkrixgWtSBS<4khhpTq%L%}BuPb8PwXf8i>7+)Kg$e0`9`crd3Q zv8|k|dYZG(OkTij2K&tAtk?1UP(4JulRJlF%_)?;bq^hHq#@QJ)YP5_9x$_uc_z$< zww?kn1M;O--TDN=y=u*s?WlXbjND{;sC!wP2SeV=Yeg_$Wwtzv0r{_#D>5Q5@W_`O zq1&CRSa+7DfBkQSoF~-KF<+k4B9(L2v7A^+Un2&%2gOTOIo+90)k{(SrgSyfN$e#& zwIkrS2IPTQVET;*8`P2~4_)5xP z{?v1%$E*IC z`MDBF(6kz;fBR^4QU7uh92f$i_ErLXM<|Es3Fd^YHGKpd5qYUt$x|9zoBxie#T*3* zR()naQ?cG!5WA&1Z8{59Xv6v zP4BxLe<8YMK8v|}LTJpP%z@1l{Om3?@E(zF=w!ji!Zz~@93;h&gZ99-v!ATK2e#VC zTL6LC8G5(lJxSJM)d(`Y7@K{8vqGJ`0Yt|k1FK^`Vd)f0PSMJGC6JftvP1*h{_9mO zhdgQXh4}{(>gSk~Zl{%A)*(|NRo{BbVx$!nqp-!;Qy98-N0*zI3 zJak~EMc8G2tT&3-(9Y$CFSE;6R0Ci}%JF7kdysmT`h6qIeU*_uNh4ah1!2vv<>aB{ zf61%Wh=DYz26;`}@|GzWG0o#BHWwiodM#RK&YuHA?mP;y|2k8mtN*0l#aYe2FlUo= z`|lPNSc9JCWmzNtY3{rVYh*xKNSn_GXrWrJJZ3f`hr8@HgKYvIre15l;>u!XV7srA zJ6`K#7>7`K_gS!GOZstx4eg+#_c+v`e?x>w+zo(~rzx?If$cqQ>V*U*9@BEjmHP!* zpE)EI3fFuxTd=WIkW}*7gBNM|k8}0ADio%!nI7$XAZdUC0;vHAi0u zW?gA+TcJjt%*)#fK~mc`iBe7)f0vdsr~WeGfvsaQ;k6wy;@oNYAhl`P$QpJdbl88B zyr^k}3Aa!ipHXWQk7z}PnH}+nwiMg#%BRWqBT8guVW1J(>u);q&kol)d&{VLLK4h@ zSb^;(0%Id5`|NC=5ZLjdR%XFN;NosaE+vUFtP)Z&M9n21{)E;yhrR_le37Q}jbwD0WkRG$SH$il){q;tkET9BSOoRqlmQ!c0;+DbaZ7 zq;J>BG9rZd+q65LHl^Rmp8!5P_mu}lu)VspVaLu~u@`;+(49!xa*?+0tAlwD7x}u^ zP~LXp{y?V)dFnNEw^{W{e;-qVi{&Q_pVwN|YiIGPduTZlK5|$S*ly)wPxm(>%g9%8 zP0N{2vpxSZos1&?lv2NjMps2Y>|`08EB5dEwk>2k)4R1*%6UCuj8bOa#Byx4QiP0w z`OKSxior-v+v(LfQf|3)+=2A0SSS_5ec`j4wo0oW5nLzphGWQm%k)ZL|E!$D28P1Z zmR8s&h~QxlMpn@df6L0JRTD_tgNo&H=zYf&!;WfYj@g;>O?REaeDs=4pFvvdSXyp+ z!6swE43W>Iz0MH%Od%gzFLChhU^Dc*c~9Uy%uPp5rSZ>3v|bMO4#-Ej{)}_P%hr+e zXuweYEUiuY3We|CP7WaNt=ID+bu-f#FmGXFrwiA)vQ3`Ge?ai86BPLnY5?->4#`?A*xYW0}rcCsaaNQ*{!Ej&&KINg#qX=W>L*wo6UCzp!Kb zgqnDNI}7=54S`l^N9QL)#5;8=wyV!tGNV`sd$wNXPLu5-hnzcZ+2QII!rnB!osZG` z>9wPT)c5ob2fQ=xobDOeK3lrzz*lkYl7Fjl`SR_if7fmwh+1BfIEH{H%b7v6t1ri& z=*ob$bDNY<1%`e%r(*5esd%1%hiwT0moa})Rr(zBMmQvF1MFPurBu1)WIsm*gQ4Nw zIi&$OS$&o?4tVDn((Fe=zsnIDAZI1wH(CgIC$FCz^G?tu3}duV>t1&!@~*!w^+CD! zrk75lfA&r5;Vb%HyJ9GA@2ViV<@6aabhDf-Rs#Qm zcG88L$my1W?G>0>&4azb>$NQs=<^dve_ysBfKMYhA&P0kCU{r#KEO5+NzVv=LOB!F z0;ANrn`~}7W(1+gZ*HN3$)!eIUd^%fU`S)@yf9zntmo4j!FyFU$_A-7y~?JTW8niL zzc0bM^`BH^MYe`wn_bbo!~t_Uva(bX?#r|EyK(>#~o< zSPv}45Y=Q?c$N^=WL^S`h}2Z!N#@QKQ~DV^aC}`S*xtP&!|`>mi`v~+R$}o^Px&xl z$Y++@67H^b1wni6S3?+^X(f!|Yi}y4fnipB^wPsxq-j+SfdQ|_o(KZa`&n$!XAB$J zvQoNZKxCujwI-IavD=txO!Ci&e|_8p4WIf&@B_O7C7yR6WVVE6m#*CGUC3`p4$qmR zN!1Pk#7VaDI~3Yxo+siYjWO=X`v8bA%pD&)TI9r*3Jrv}tQAc7!x=I&P2yRL?%{%M z8JlO1$hqvE6PQnpqE3g~ZRtCARqSbrbV*qUfw5A}+afs1vPOEk)*xy2f1+sL`339P z9-E^1x&_lTedhj9rRNh7zS^2>DB%+OnZNI!V1zU$qz&iTm`?KRlkRh50~F_2yngb) z5^l1@!`^QNV>mTCQ-LAOJ*pXi&#ZYe!EY9w`n)hY%d1{18f3cHK}H>Vp#_++MXs!w z{GKb+yZzj35rk*ir7tj>f3{XC)Vo>EWCZj1z$CN@%*Py&z;UW&Ntrb%tZMr_EUNA< zMxbd8ww8+->j4=#-~s!R>F#pO?@n#*DR?q>`Pr1d#dI2RVQ^s>B&!fuwnaujQy(5bukoY2Z7wj9i=ZiC`1f9nO;&}-M|iBSP; zXHMs zYiR4W(9G=VXJq19myp^ShrNW@_Pi^hr}c7*xqllYw>4t(^1GT-j@I;kPAI!X2;wDM zt59>G)0;%!E+SX!f3@%VtqP{IY=Pv_4Kvw3TQ;8oo6d72{twJ&*X(ZywpzcoJ`={- zDEmow20~1OUww0y2QILj@s*2_plh*fdC!N7z*VPGCdGPjCY5{Us-cptEZ5-|+cZ%I zh=lE}PguPci4+HOHqc(zVp&wuWa27Vb*eMlkpG?eft@ZC#ww5Bk&gADJ>UA86(p?0;ma|_^K%A4HLogpn z=c~s1;P;!GXAkjAT4MKs2)q0jwsBKV9RRP|dF60CtrO<4BEjblNe^GzEAJxTZ=Dv* zEMwcsGn0f1e{Bg`_BAaU3k&=eQk-C;1y_5XNzx1)NXwzS*-;FUExAAiw5|+`1Uc84 z<8`Ievfy;7*s?OU%Z&(~vphv$GFwN;ZgL_3cVw6#Jm%VxiU z^>dN7jQNa^9cM;3(fY+p%XRi=^T^KY)K^jknEyDX>ivi_vsYc<^yely0IOZ9PAcS6 zlMcDgLCUHU)Qk1(JXNMEY-ZOAcK6g5OW9JgwP|4f3eyyuyOffD#2rf5ktVi73CkJ$ zV78_We|ZG4q}3#s1FUaV(XfC$)kTnrJ;fKJ`A1-OV7<$$>S%M$Wg*V%IEbfzO4sEhE< zy5`c`p@3yR2;@tO>g{^z$=yxEedMDp) zmypG_ltS!E=Al47_RVZ|9oYD!XnbF5bHvOHo$MYaHuS=VY$buMIV1oAmsu=3^J6iY zuR|6=V74{<%rRe1b<2beZ0SbVCTz2J+1Ujf-qP)b9sf>UZ|D5{aS9B;ILAaUoXzL? zf8698^MzfIzg&^eq9GUaM>fes-sIj)iPr*JwPhRbfyZp`E&E*uwn*H`wd155at^c{ z#+Nn!{6vrTposYqXlvPW0E|)+g#5XT4W zp{+^!BiP$vFY5T2e@}N0B~50m4G&o++rJymd*xx|szBIf`)c0)% zDqQTkCg|f@n=9gPzeNwkeb(FO-f|^++iY4l@9R5l2!oulySx>lpk+(EH)gZ#e}sDX ze00q7$1YvVA=9MBb#1byYh$UO3B|?*zYU2L#oM)%E^8++B!Qee zjJIoDIVA>bSD#^O&bq;})n`PRe9JHf)09EZ8a5Ie&ceq5H!9t zeVh-VO2@Eib^3gUmOJ=c<*y9!IKj}KR!h9+D3Y@Tc1n@NM=V+E%DxpKf3p<{0>q`Y zjndi+b53v64gb?=oJPOfK%e)l~IYT(-1Ia}%JiH88w9{OE^d}VsFI}I3daZDYl*qB!i z#N9XXab0ZMecuYeY-ihDe=yWL$%w+)m7vBvsAKJV_P!6S8yL2BXh<#uS@F>|H5i~h zm&gr{wXs(|B_goXg-Bxd>OZ?AXMkA^(wLq=2_9cz92pnJ;Nuew_J|M)rpBjBUG==W7!Cn&(CULXh)R zfiNF=sgnHBfXOpL3uXwza&e*&yz8i1ASX(|MA=K5vg zpCKc?wdz}#uiItQ>=4sBj;#B@b~%#hh&Aj!N3<4fV4-fN*RoY7+9fuy%SV&E!$Avi z&NH5G&S5}92_ufL{(&Td5Nx&edWT~tY-=8j6qj|;rMs(=<8qelJmdJfR!q@1`@-?n zn~Y^i8qAlGe_|p7wy%>(pP!7pmo>#i2Gdt7AtUB%&1pu>9UX4v#4;}q&I!pdtH?mJ zjO-y3maLpil0PtJ^=n8f6WF;jH*z^*=fn{T%s6^1_hc9pK3{r2UkUVe^nSi}>+AIl zmWSFiiBl!9Dq}ddCXaK_KLHjNWz9Qm8u9fq#Ur`)^%GtBB+75fXYJtT$?-`9$7e)|3KeVtd5 zN4nDAtK_p<0(0`Yre2DQDC;?FUdsxOn(wy{-qqiaiJ_}=Hp{;ZMy&^X-2BjrHW*rC z#vmd2f7l~1|Lub@-n|$ME7qge5-%rv(O~}7vvD)n=D_5<1T}JQ?MRwF9B89Y?g?OPQ}(;T)_j)X zc+{5K%Fw5w6lT-Xz?=kIQ;Yn ztFvpVH?tYeeot3Eq&S};O8>I*yU zQRIn)z}7OwZ2}kC-hwn{jGy3%bH`w|Udz7w2Y}F^+CJFCOxEY5n%2f(MB|;*+5+=6 z!%?UsVkQkMFmLqv&;>BUm-}~6e+s~7symPtz<rJn9+R<|EJ6LNFL&Z=jEj16YPo&PL8wWB@P4Wj2 zD&?5^P)=*g3p6mNHNpyK7|HtUTK)lANR64G2IgzFUGx1~h>clx3d~l?f7!}ly^Kq! zyr1h##)pp_kq$-xp~;6QA16-xdA<`S_|;DS0xi_VoN@(bby_|nH?XrUNhiK;Aj8&b zZo3`Zy^|MhVCaqSaz4xiqs*A!?TR%_*D{Q)t>ri+tI2nVyVyw!IUvNulfMX-_H*aF z$H0ycRW-jqNjrVdsn?p#f1NEoef@_NxqJR5gE+$7h8An}lMC_`Ly0tbhY_-477zlP z9B-d%JVJL|N6W3^omzf>sE$n=^4LT6?@7?aMsLn%cp&1o&MA+aq|<84B-dsRlW#Ob zIMmiZLpj`fH-y7^6x&9c?K3-pacE|ag`9Y|`VcC8bA_mPhus47e?GhX1bF0E*;xkj zx9lZJ*I>wXIa(?(I>S)xl*=;VzLbO+YdK00j03!KFb9~|tL~?|JJh-PD&$i@?TK)L z`TC;PCt50?wQJrP1M~Siw7ra>(w!8f71-G2$lVU+T_Zs!M7d$P9)!>Kko=wpoS$(- zp?o*TwlBFy{vb|5fA9ipS}p<^yOu+m%jt?>==u3X2Qaj`@k~?1)DFuF8?f!`+%~ns z`?L`H^371@Zb4(>)7rwv|Wc1Bjy{^Y4YDe`}TFcY(Y?ugo_C^AR~O zhrxQsDerrKfVI}W5(4lg?#jX<*s5pAL6h1JvS#lytV0LD?zn{7){}P$!1}V#1E29? zhWfX=f0py5;?CKVfmzRIw*c)mcYVDDr^VFQTb%A4aB8`TZ_n+XFx|S2eB>2MVa|XK z>=0O^SnGXt>GkVpgv(bg*L}@i<>L{P+gHv$4(!Znuje8So}=ZE0ryl48F1xSBLuh3 ztl|d-ZIyfNY|W4yGlouL`W6SGKT~TY$oI0`yjulHM6*}C;CdiLzAaTT5^HNd5E{&9;F?cd0UH>HHpL>j zf8u6706w!W8BGb^?ZGOak4~iSm4WhnJ0f*!$*qp`AS*cnf8v{38Macx2J^O*J*mMe z!AD0i@&iPiz&O>1vi`cC_eJZk`}vP!*}oTz<9~BlBG{~XGdhrSPWI&mTdT+sZ-IGz zv-$=Wr&{+Hw$2gR1$S2e1hS07iq%KxfBbtjyz|SEJ^|+IooqSP&RRJT49vgMD*5$WL?z}q6+_s%W zMu?R8c8id=shH1BGy72m#;?ERvE(?UI5;5UoMghsHnyBN4*vNhkTB<|@>6q&&rntx zRf{S@&{*1 z7Xiakf6RmH~5ygqVZ5Ccdt%+sr={c}y0>_qlYTAzB|&%tsY#e@CERs}=e2 zR>U!yjL6UNBWsuCNbCC+~lN?XpkKZ4Jy9V?uo! zzWepaud`4okM!M5%wq_b&o9kEK6Br@Yye1)!xG>iuo?o4d}j*M8+ z`molovRNJ&6F`0Fvn8w)v<(IK_Gc%NA5% zzFM65pa`&yuXv{PILh`qWDX?*Y7fy?FqHLG*{tcAw!IG0NnlWWaf{DGi6z#w8!*xdWv>9t*?ilI`SPO|`MHTFf9_p-juDvH&Uj(W z+ecr*jz1!Q%w9qa&Gx)tPFq{f1%0va`zjcnM216r#Jr+H5 zWQGsM`O$fb2ir3afWKcCYh1hzP0Jllc z=%Y^)$0qmeA`c_(f4G&c%Ho606XjCv!=m1uKfLldB=O?9Gr1+UaopGr*0>^7J&Iu;L&FJ`#1sHT4rO= zTlIlxq4uiSv9smZ!YqGXg6MraQmju%YHI}TT%{UAo!f;E)K?7iPB#N z*~>$SEw;9C$lb%Haj?a3IZt{x*y50!=wF!Cawu40m>AB&!%Z*Uajs6{N?@ew*B6GL zWu9Tean^sRf6TLRj*T-x@)swf_DYkb2~7@##CA@w(?6>oA}A%#PoFX9XjP~TBzZmohe4R$(A5{ z_YXx_E*8}S&G1G}zxoahGE+E=W3i@{5dt2tEhm`NjN;I-&XvX&59SMWpekW~3HzaE*+qWvi+pCq;klBiREGt%S!R+6FM1pQdZ zco}78e}`*qIFo1Ou-%_`k-*3ZlFrDfIP7C54BuGO+!nA#-b2@NhqBWre-u7+={f6ix54FI>mOg}J^eeE)1B+GFS z$p#4w{m-&!jYBLkTX|>z!}M&vFdsm2pd%Pxe^ORVVCTv+$(UEAWs~ZOSuDopc|nIU ztaq3c3!Cfyg} ze?adIK2sw6S|dOxx0(@}S@yIATTZiO<7<$9^J+8%v|bzg&yPGJr0z(gA%4}{Rt`PG zQ`HG|&WjAp+hAU21I6B*78|iIr;ixyx0zguy@L>1$Iyqiv?CI1d>oN3&YZrctf|4Q z&771!@m@tsmbX};U~TyVi$J@P{QD{D5JgZHhnEzx7K7K z(NrzBt>x3zX4tJ3+0(!=)mD?~0XI~C=$gAV{5b`Z@7II*y=2LG*kedY84FXS#vLY~a$*5e*;6B zoG)y*(x2W*hRlki)lz*e9;)@QbA%QR3mMC#-B{>Y@&=^VOcQkxbJn#jCu)LGFCF*| zfy&x50U2>{mQN@F^O@Z4_}u`^&TY;HfLJB_zF;hz@_Gvk*3r+-kMke=EUh}KlxQY{ zbew)h)q5G~u9;uq)ar~{R{oO|f1S(L(!PIpJ2{{|usydO#TvvccWxYBou|saH5e(j zTd(!*v-5G2fjI#fue$jtvv2?D0CtsVUR+?Epx;sZ0r1o2k16R$L11kV3Ox- zNk{|ObB&&Wu$0PMkdBRAFZ%VJg|LYoeXge1BIYayo#7MP`jj9p{9o4&fA#Fkps{}q zQ}P?YN8V@jJhp&s6i<>p@Hl$}>ZOSa#HZUFDvSH8PlXc5i~B2+jp@ytVYZxi0ya1R;auDKW7m}*fN-_+I-8OS5|Dpw z;gXYto>}k1M*{eSBHmRc!DrVpQW?J{j8UHFjgYSLfec{Y49m!y=9tZ1Bir5XIBaKL z0fy;HuSBU^vEyS51JZkZ5lV_3* zwB%enFmD7_U-v`)Iy*ho*O?)%-M|{_i0}?}p2KGN+efw2Ur+OO)5*T^6Z6@@Atbq- zkmob@miyyBTO<~75_!vsO8F%*xhEm_t_RV$WoOr@z}6=hC1ErTnQ6g}|0J0i;6K~e z+Epv!Gs4RGE?|cfe;Qk=2nL5TnQW9ZC9Pm*Es@9ZvTavNN-pQsm?DMaZ`A%LH~b9|g?Y-)u*(ord9*mUFTvTfIQ$OQ~0VPr>#`iXA8I+w>K@H)j8o zi8rp(I9dCFtu;gi#|Zbdeq=O(?`h%+kk3atGZXJy`r7(fe_wa>RrPkzr(ufieY$q5 z6TyW#$r9c>n#9siB793r{hOqs)8@*+mLphZ`0Vu~e z|Awj=g6)$u!$~U9s1n@)<|}1U&9TmHt;#9_Z2EGu=>zNv!M=-OlUw|qwqibzmTYSb zh9H<-vI29Cf0nZ`!NUGAO`bselzf^C7*=%oG?&19thP)h9NVp0@(K^gSztaa84T4i z*#-r)re)h8Foejlv?jKDPL;rO*U5?mEQ1}>{befNdq|V%QjA0Op+x##Nh{Ao;agXX z()|ip_0Mac_x>XAEem#g2PcD#sUePFr|xXbJ+aPRe^tXCvBc#J+59y*ve0>Ij_$%I z*H^AtxCin{!Hz)F`jSqH`>iijMT`Vnb4kZtL;!pBvPz62Zet%lw>qepO__5SuKRuF z^ieSXCNtZifcexsM5zJu5omSA&anuK{?ZE^a90gldnZlcVmoS=-6XKRyLOZjs$aIv z0`vOze>>edfZcww?qTaJ+SvSk*Sk6LZ#n;-wQ61tDi?T}MCfJm3j zhTef0i>Lcu1li6iG0b?}mMT`DV6&Kn9Aa`?cO9>4tl8^*t`WdqwTdnYcCDQ9b#VDI z6!Wf8a@YnwxIUTWlf(l%Gd5Z?h7vLJfDATwe~~C=Om9mqGSz|gU1Y|eg`xnA9 zw@eZ7!MvBrsu9!Nx@K!~srPeXdqC$%)b+B^EGIo&<)lP@mrhK5~@te}S!0 zr627YTI!Ry2GCbICjp3|5+t>22&qC@vCnPe;)&lkC;GM&*^I*$*ISx&a4?7Rxt4+L zX}0tc#Q#Y+6_~GZP9Bst=L?xV;Zy)tE&KI@O)~bHRs>7vl9>b8mB^Rxj|M7wD%iB( ziT3~pX7fnk2DZCv2YGxR+d~Hxf1MR<&m*}3Sn)Eh9xd1HN}Bn+YY%ZVuLE}vDN{0G z@ZoKJ-)e0k9WMNJ*Pi+1N648uR2az1NVGrpy0y-H@ z&`Y4^V~+?d816bNT3zqvZDC|b889}1WFHVG-C8Bpd#{i*^F}w2Rn21AFdk=|U5b4i z=)d6{+|&o!otF{updDoLUV`iuI;3osfvqjci<_JvYdRitgwSjfezIXeyXCz?hmak! z1dAoFV-i=mcPNp0!H7$5*;OPKuzzh;qHpo;owerq73gdYA>2D8%DnEu;n%6CWZvQD zTkCCL$ln;Z_t&kQ(@DxJZoa;#tj}n~u>i9asVS*N%d%%rVArVt85;e{UHL9!aO>T} zp3p#Cc)jK&({!-0jzpt?`B-8-UAXas%xW1{y*`nM;|Lhh)k`sR*7k(zVt>I~mJ&$p zc4s-#pA3odC_tFDv@ybCz2c_#;#6YEPs2%fj?1&@esk!KbHco~0du+_v4!ETTVe}6 zW27Ettr>IO$!Wal8-dwSo`~b_TFMi#$*pH5JMe(4%{R7%vLh*3PB_uun zR$w-UD3;jdLTi_nV+Zd(j(-vW*I3zP$JVx^SpPbt=>A#22$eU*oW%vT%hw{kt)tjjEi}7(ss*!i$#$unkE2cYz{32N zAjb65V{{A6KU&V&V{p5CKcCH;bhbm7s%$QT%n}qZ-wiqMylR4+w}10q33j+nGUd17 zSfNwLP|W9>n%s(kxPQ&lKA08VpT`cD)cw3r#t(NFi9E#pcAt{Z&jjrkpLi`QzvwdwfI)sA1aw002^-I0` zPEPpMmXAN>cmBhT)_;fJh-A6T%?SRp+=FMt{)zhy2DM8L9|h`r?~!xZ@TVQNMR&)H z7Hiw1*P^XS%oS#|oOM0*epav4jHm0(pRuo+sWr~CO_F^+ zyO||zFke?q>3I!b#T2bIat@h;H?1K6fEJVtczREfVJI?4IK}aC*gUdckXlYbBk3}stPKpEn!r#AI=*CFb;RD|)2 z^qPbaJ}R2ckisP50?bxS#Dfux_?Sx>Su>{k7A~+p zppT`P`IS!!5`ZJZI1K~)nzG%nfaRdH%$c!w-A*|3yl-T`T;VT>&V|do1I*`83BtvPwMbG0$mk=rDMDd68zcjm`^Z2IzkNy>VwPqcs$=~ThJWGX-fFh|aBy^SoChMtaK5o!gF-!Zz&XD6 zCpZ^iTM(!l@I`RXVYt|^F2=0fek}y3U8R_FnI>{Cm=Df*$9Cb)>T_Z~QZg_z3CRQV zm1WJtJy@^avS0V(w6kpJ05;dIc|-;CUY=#CfV$P(cLLiplOrHv@N$GgU>xbN<$rGe zMdGyA4`B-Evhn(oo`w7BwvxLOn17EezAj_O7lZQpHR9UxIt9$9I?ExmV2Dw}wA}Jm zJKC$9Fa5K%JeapiYeUNsFqSrs0`kGufN3Y6F`DbxEK_U_Ml4jejdJ_W7Py zCuipLTJ@pbJB~@GW}^1Bd()etN}cs8XD3OXAZSvVV1c1Ot=Ci0pEAJ$BSf}ux!pc1 zyTt&V)>;Zhy*YQ(&BT+SdIeV%}Qr48ZvNw9vPn&I-FYrPSQ1H!gL- zs=iDjuyq~sa1R<}-=HPrcPB=ZR+8(rBO=Uly@&@hz0MbDC;LMLw%NAG7%4i$O6Ko_ z2Yf%-vk=VtduUc)mJc?tppf65jGP(7>~2Xgjw^Q}U+R-`aJ5v7K!4eEXd=+Y&tl~l zBjZ*aV*(n)(%@L=D z{4S7+J-hragkN466;Hc0!pdfCFU)CWK61xrMI@_4vIFsH(Yj*JCq@ox4GgyYy0+CW z?yg|oCPzLT84RWO_J0ZjAj>76Rktu&EwlHuUJ7jQHxwuL<`0Zps*iy?_hhg&^CBGx zohl#d14cOX(2Dp(*>VaL7&I=&Z-XH>BG|vQKJ5dIG}J(Yq0Zm$Kf0 z{DYkP9LR;&Dr>krPlT~*+1kqCAT(KU8O| z$ysAzbLzaVOMk0@ig0XN{s|pBm|@DL2v0cz8mzZ5b2=p09A(}K4gj2B+_v6-w=!E* zj6{+0s+;XLwu}WURHtn06WAbqAyc)}XBVD-HQ0iA<2&*?!%zw)1vd#fJ&N-i(?GUSkm^p?D zHDn~%ArjG?@5L34qNmiUmzw`lnX6U2)=TK_2_hJZ{_~&u|H}NK%euN3_KQr zOY);|8h=Yy>Vrq9FOPcK0A4tK)+$s5$Z1nnRl%C`v>YV@#);f5?U8{IZ}I16u<67$55Pd?9OdZkmQ%jo6mtgKbNk0AlVh&xWU; z8-MV>JYC$0!A`Z>PC;qlW4U2%Q?|*y+ z7DqcOR^yDu+%*X?Y%^z(1$NouXNa>{vH@dYpM(3P9NyehvB?>8dBuahW?8|to-t>K zh&H=k>kM!7Jix*@oL3#KigB8j3{EFhG?M}Lgoda=~@aJXh%yCPbEtu+^4iu z8Et`$D+d4WQDCR#qk(`>wcv^OxB&JsW6rlD16rhN95`91R|bw9F(fMp7; zu$D{xA2ZFu0iaqAxoW&_XN15wGgLlzp!O1n>v6s(!KJWi=`%pjFV98$+*Lk>UQrP91r8!`stG!D?EJEzTUz78ntUnSW(>G9~=tk-r(7 zYWEz%2G*P1;WhDhH0}6PTg2$?6Ud zP#*xZk7{6%hmv2^G3zyZu7F{gk9hwo#pU0RPv0d69 z3A5CY|G*-yU9Uys6Mqg2wk)*3^jP~wOW(zay!44Sw`x*5h(3N5BZYq{hMp%39ZS+v zY;7%vP&efV;vdJx(Q?yUwrsd!Rr(3X%g@+op;Pa7e4Qa%U0`Qu!(Jij<-=bWZlyj* z$qeckMg*g4xi-cn2j2ICL!BVZ`C8)1k_RBrWSyQT-|#RkTYu&X9MIR6eW*@`N88y` zC9sGb&~k?a6jRJ%TRYeIgd&(@GeJgv5{9%h)=CkXD|0#_`22%@#aLW&E zguV?O6v+2jqkqeYXc54sJ(fI;s;=db9p?)=MSqR}0XzH-O>cK5YcIXl;?=aA ztrE&+zMlc+L3gxJEu~|Et!?LMx!NuEb)Wk+!rWw<7%jxjDIXc~<;*t!JS3V-E3YT` z{AWcP7)d2QteHM_vzUF=*sc(y=hBX0T*ND8tit#6JP8KzmKW=xjhaG8qq3g`26?*` z5ZqMDm4C;O3$efa#F)f6iGAmjSHUnM6Gb14F*s}KSg$gq<#h=9dizOXr0d)|O>)4C+;35(V~XU=mCY;#JoVhdF>kLUQYmOgW)P+&BXnjVV5T25^W z>~Q>O#-L4mWGlbGeDI1`ru%EoP*-!h6WEw_lz(SfnxUH7$Zs$ssO}tnC}v%O2ukW-Q_K^oYz`sdMp$@wl!afAxj=C_kj- zLwv0DS5<}&x$RXILg-H3uox?()BSqJnX@Lhp@8hlh)57(s>noGyOK4Wmy?dMI;i<> zq<^HC^3p*xYY)Ep)t7N`ExxMlawSUY*m~vMvkZ9!SkDfxgy$2Jy3$K)T8^MP3Aw-l zb{`W3cM$YCOk%CToJh-t8`xPU>rSj(Yv_Zp{N zTI$_d4UKf?7+^5;Q0<$>Ik0QJu0;~nzG)$U=JTY$%*kg?hh5mR+E}9DVw-x}%;B5wq(N*s#-c{(l4* zTq7T(7}#iCW+mKCz2mg}&@)fZCMSV;+s&SkPGUnd%xBVrAsR|Fg=6iCp3M;YV9w$O z^AB*v%H8iuUdX7~Jrc|-S7qA{dsAO9=F^-4+oNVzt%c>OFG!x9JKRm3ql>VJy{S1R zlaEP4NgUpBU*{9Zr3|KfN1OEJ@`uvR!jFGYS7F#^9*+Y+LOU4LnpllB54 zSbIpR#yK;29snD4=V%Q)P0w7Ss^V#i(P32#Sy4s@5>WQF^L_U%0#WM57_YM)T$Uxj3w{ffce+7Cq+M?-9w$s zmm(gXt=RVU9>c-+i1EN?4}aEo&yCod+P*}_`%7^|Ob?MUSH*~>pZVI258TM7sDh!L z+EA=n58`)!y&ZyLHZBRw`&G{81sgbxNcVxM*tPxs+>T(qlwupus!d0L9nzx&A!1(I zd&|d9G}QD1Z3g&n9v9SfLWO zGxb`e$GsIpdz?*cw^prv=rizVY+I`5AGo$E5TS%7KZJ#(n3YGM>7+p_XCWzO>WcFz zXG6(IMD~s^++?62d#9Hiv5xuam?e9%fMF+DUYAb0GD31q5EQj9lALo)f@H8UbtIch zEPPD8!abR}l^I+$w zq==EJ_v@V88<=@RetvBNbKA%#E`VWAnlm54eEuKV;bGxL+C~cKTBPBgKIDnS(GCsX z#+qx^S(0>^q=9Qe0Z-;YpkJ_Q_cL|kPtGd^NVxP3}zwun}2brjQ7B)*Dli1k}$AV2ybKQ zV^J`NK7r6z$w|a}v> zx$4scNv@eoIw02Rb?Mx&NpzheFycB|`qVLghc+j|2H2i+9I39a|EEp`8^un7p8X#_ zYhUc}OMmgeIO@=HYdb_gYI`OLXAVi{TJQyvZDfZKm}IUwA;d|d$l|uUi&zil97
aA|7_TgfBy6l=_Sn6NuBvKCKZz~a;yMz)qGk^a8+om)PC(}A>_P+z`zK)d0E-<9t z%(k#M?X^md3SOqA7g6CcF7;yj=(XMy%OjQmSiN}K7dWdI*$M+QD~|?`Iq9zD=|wvnR-zXA%{@Ww8k*e5iU{S47p#hL;!p0C_=|cUvXdUUe1?^MV*Eu{JGl%(-tGzD zOn=r@wNh5rnNurZ`y3G-F&v%cJojn@JDw^p1J&S6^;8JSZl{SL3`EP8*%H6dIfA6+ z=Pf(?b~OU<8D*X4=2&}{HS)4+lbUnoi99WfG@R?G&!;7jU$dt41+aCkcD{9mJ)9|; z`G!5LE5rZ(@VKJ4+2!}=44E^NVI&a8(tpd$1$Ney7)<`r+7$gHtU)m;w6t|>G|p5|45d%De8IevWRHF@1VEW>z-;vKs*5w_F4H4c zprv(@&G7;~E&9OIy6{_PFYs;vGgQLewNPIz8-W7(Wv%5HT(IpA=!!Yj4Ze4827iHh zb1GT;-7^%%v$Pxv+QK zilG)x`2s7{!l{stM4>!>J|_sSNj&ZKrsm_hY+~bH>Mh2yE`w94^Nf>k2jSU!=CR-q$heth zpV^o+roQh}?*L}AEh(QkmHMxhT~)yd-rLei$xpg+ZJy>~L=8^a>BcA2d4HF7EKXeM zQ{tS!d~|r?|1kvh7P+!KeoBaKbH1>B`6b*Bz$J9pkemRpGi4h9FDhJ^%9&rATfv-k+v)ACYSS$)Z5gT_0cC! zl_2C@-D@V?N^4gg5Vz7++keXa1GmyXpSHkvt#BNpq0K zJ5>ow)V|}Su6qguW6Qm2xsDC+OiDA@m?ig0TvF=}dYNy>AtmDl9e)ebneR580<@H> zh&8FVDxr#4lkR2`&WI0bky9!IIz{}B!3Y~TH;cuW)RwAt7?XNK%Kmy_KIlvMDZZrb zib=YEX*|!D3UsvVzP5NU?3o>&sGh)t=J>XLcGnIXFE=b;48jwvA&VN#0bt{A68 znS5{}WxZ*1#R$>K^AmogrwkGL@DTM`9{u2MM%b3476`P<#RbxZXN(Zep1Q3N$z;3_ zGtkl`ZUIA3r*k=OA84K6VEIyvn##~i(ar32J4CXhmkw)HQh!u14lN}lx96uJy=T-{ zv3*Jv&H0e=)2b+axQVu*+zO-6;uC{3FULl?Bscp24dpXy|5$)JVa_JSV04dcF$P9l zlqB5a0qU1ZMhWe#bdxP%ux=(>!nk{$evV9U9E@T?it_z@5D5m9vEFttpnNTw+L&5y z^cfT=V;p*v^M6bn+BQ{s!>O|dL%vB1(Acqc`fZ&+r-!7Li`8md#(1zfgWjY|5yp_z z?y=iAGG(rlM_ar#iwk{78JJIdFtSv=)2{T2&u8i(ZRJx)17paLACM@~ zS?+^41K71ZfvP-q*5D>jt(c9ih_@e@`C3%I(1=(ylMg;Z7keyWjI^3#`)DCVF;R#y z6?F!e&!qs{ZJC&nf%#%fSdtM(Iwa=+W7D3~ck7MP!mEpyIbkV+?A4h1&OPTuA~&`Q}k z0SsCxpVb5FJKvTD$FL(eT zTk|10FhBYBkz2$**(J^4`0=4Gf6gvxhbq)Kd-{0wddUzQqj84+F2OcmTV%CEXvvM$M~H*ng-ov;m@i z%TARMbCJCs0<&3@XWT|Dm6L|lKZ9Z#Q;I=Q)bB6@gsXm$wPL~?)vUD+26c3_0Vtt; zHHw%2So)~{Psah_CBJBe_Z{Ic>bpSIawJKuQ=4#;sN@S*urt?V#l0VJhEth*h8678 zlwYxeoyxg7!F&%4JMLSMR(~*0?~P{wei+Uc8`v7f_SGnw&}*j$jq{$2qD>Z2%Q1>z zkW7~6;|`8#%c$SMF|B%GxZ=#*j~%?zI9i{dEOut4!F-{4IIEwP3>FE9KP8zR`le-N z$ArMAl9@wMMn}3VJwSD^_04d030(|w&Vut~(Ap{-RX5QrA4K_y2;^cu@sVg@K z$CiWV19N*N2Ool+6Gx7(O}AJ26RPnQbIf;7nZSWezaa)G15$DaSAZ+hqa|`Sa&mDI@g1n+u7PiG8MGxWN5!BZ2KFMB5wZQrb>n}g+vu5nB&)RT{@Tw0-zN{>>5oYx>Qyb|G5Z1Cs znOY16@JJIg=)Szi0TJORZ)yhHx9q~s6C&|_o*4|_=zm(@LMOal*q*&j>9J48F54~g zs%7W=v_Q@Gqnx!1tdol-8(^rU`YfB@I*03MukW2IfExxiI|l_uBHFIC8(Cq~b4Cu= zp=I1ks`-}Hr;D#6PvpW^&N1?hzUDh}t96zfLKT?TmC3)r?1^v46MqF8#f{8tC|0~l$I04kV6b*M=fUIT7FA47{jsBgFa4r4o(M~k&!3&wgxwt$#}4h+GW#n=P%dD zixGaZTF$EmRwGeG{t|?cSQVoc9oo^dR6NkMRdZZB*qVNfe^)U8@*Hk0IfkWiEXNapHFCS;8QZWmj%9_Hz{ou!?-9FVtKo*~D_JVOcZ*kN-BU*C z2r6z~KZ1odi&BG~&`--hjD#}id*x?m5NK1TIG&ieY$~?@v|-*KJA)dtshD?VW`FNg zFsL#4{R@{dwW|_&N_`)kvX!D0T{Xs z=cGdTaoIO(cQ9pJ+9KTa^kumaA-ydDH6mB@k0Tyr%0()e*By3GuKgz+kdO)OQd9Lt z@Kv^|Q9eaR==;4!pk&i!nn;aVw|~q_b8Au0Y(Uz0id?_(GnH2(q@y@n3n9qwfwcNm`Q5KJb z^VF%b3E>MlOxQHXjKIaCec?)5mS$v0{Rhes8VyqTkNi8p;4r3^Ls|b@Uw;8+dswkl z2x=<}m;`p#BRBf9I(i9aD_;wNgtb9Ph zn5Q4rf|fe+U0P63a-o8@=zk1JrgvB)EsCd+bj~q1Q%aK-Ho)42 zHxOdcx}3+s;)J6ZE_||JBOqE^7DEllZL%y<7ue61&gDicEoaXNjHrmKzJ+O3727}K zB6r2=YO;!lG-#<=Aj{YAAeHixg<2?V;L8hzEazx!eIQM#IAc}63%ehvV5jNdXrNK6HUNDzuNM5M7Jqcq_q&LRs6i>^Ch+$<+2%l?vt+G@Kv=A#C&WPb9L{DhnEDF= z)wZA8$aeu_lRs)Cp~X4R%pa9FhCOxNCyt@dE}v$@3(a;EGv6JuDhSv)b;zYs*RO_zcBhmA1S$B+u*PY4+D$G&{X3a&7?ghvm`$AX8lJnHni7e41iU1=e-;36kAtit1U5?fQ~(; z++SU1k{&88Q>bgYMVWoDcc^QYEprl#+!4tY1a(ao^M9$u{L887g_LGnJBRClA(bYx z2#lMjJfOk0#RcTMj0~jB-PpRi46!6PDade6TjD7Ib{>EG4@2O5t(t5cWH<{Jofdme zR~dm}nli>QD{SV#>m8z-k6-@RIXo=e%yBnh_;AXxCp0!o5K7-S>p=>Mb%@5M@0dC8 zdWXj5a{;)wdQ1R#r%$`&X=}F{V#Df5l&DDDL)B$2k?pkba>r-YqsbfYWlmKk? z92N~0n|W2t&s6Q?E2l9DaBSW8`q;)5Iy&U9p#lT1@N&ZZfAknFMl-PDTI%uFFY*)*p@Qk-GC_TG3wq` z(*LEkQY}3f=1Z=~P3UuEOVjtp=6M8a`UzCnedMKO^G}zsh==EPBLg z^piDj!0-dhsiXqi+r%{oHBFy5a?3e(@Jv}VF0j*WR&8TFX)(VsjhS*x%vLa~mcqw? zAb+H?HdJ8v3O6YRAC*1hfYu`*m44Pad*?K48+pw#_ehFlfpNQ?8875D=iWtTjfF3m zd_F_;Y<(;n8k`+(4}A^>Ovw0wgt(tFTY8X_Nt%*IyyQH2fj{8^b_DUcGUd>O)Ml$w z9B`1<#J5_O*+ak^y8IT$Em3hblA#ACa@K;d;%SR^+Ox< zqehsA-%KLg%N#lDRAAe8i+oLr9%t=CPHJES3i&E$Q|~Zm2@kcC4ep7Zb8>tp5W12p z|9r5%`$seb?B3^9Kg`?bUxx;0n_cE2dY@%ByE+RWx39|Fa&0-CPGC00M_|@q>3`&c zXA%|4u{t+PcuALEUW1T3`OAPACpUf4e^eDWhsgsoU62B-T4hB*P*im{fsXIOIRkEB zzPk#ih@@yc;-`e7C~hF8#cJP0*bP)heft((5X`Fbf)gjtS!8!bj&%95lh-<=N9!*{ z;cuY;8@`-gUEVgbtQZiokL~KR1AnK!8y0|@QDXEWPwKl-k=N7-v((#9u-)vNl*pJC zU(<(H21%F`1_WkBNk^njNv@UF9-y-<$NhkDDw1<1*!qP*{4KhOnU2uH&&8kwh3yY5 z)3U|&2uV`BcJg@ytgoI0oZ&%30L0iPliwgeT6bWyt0V zw%ce+%h?ln^9>us(1%*HV1H++3*KBoSn6_s8u}8yb5uqdtogPZ%&qUEt-?84VxoZD z)Xpj21KX|bs2VI#rZRAPaqRbNHfiY`_Vu$>5roR=QNY1TDmM&|$L?Dp9 z!jAr4JN~aN7}2kdO)zT+&1MYFA`5PT4IfFPYJGD*Q5+dtB?N-5WRM?|@nF0Suky zk`^h7`H?;=VS;(*hB)qm*_MC;hfsi@Q45*&&s@L79nc^UuO&OF+>(uLRFyHUX)MvYINkgz+%M&;9{U$6i^LIj9G#Ykz^^cfbA4+y6MsJ^q*6(I`b|~rrcVxqzhPg8 ztOJAsEfYtmg;%V1Et{JNtnRTtYdZv1%N8#vFh3N((ZvAB+-G6hz~=ZuE<%EpwB!l+ z-N$^d3a{4^R&2)hw*B3eAinD7Z;97gGZ@&cWxqp^l`O%zGU9sNJWcjLs;q+yu>$%0 zTeazv+noSn@Ru>Ay^0Lxxp9`^63jVz4gUe5@ zAF;G>plyApzey7<0hnm47Ghj4Y~#6+eXKJd0|F8eE!{d-i{{MqhP0q zC&04cc6D>Z!ZLA#U1+wJCUI+EwjNqI^#r8mVTJ7bP^)+0+*|6|ik6qqkvJsb3k8~avU*K%B7$##5#{S{IO;nmWLtiBF)D-!wwwh^IL%xXzC zEq}oH$v*!T+DN?r^osv}7V@ke&EC`xKvit{ z>--`%0s1y!N>O4hXl^KB8 z$ZH``WZij}&pm^CoidbGP_0?}1k7L1X);*}9eRRKzFD$@9@W{jf*#%Z1hFw_ENImC zesg2Jm`NDsUcq~2ecX-4suc zS0L|aHVDXU!fXp#G3Vp~!wn&lA^?u?BM~jS@X^5R+*GHujWT05A)^^V|e#aFI;(Ek=0HnOUI>3?fd{ z2@o#bM=#b9DXnwrcqf!+t9j&DBwKr}MTASc?ny=@4?)PO3|_(~8$mY7h8jl8H-_0i zcNhN`$H;~u+&I{tVanuk&|Gp81@;JD{rZ9H@N5#6g^sDOaDQ3OIWV7avN;%=?`}={ zfd_ES+b0M)1BPO7Us;kF%)dz$Ph><;+g73r?6`p!Bp1@aYFZ-0?c?Y{t% z_eUU?S|a1hH#14rvbNmgA&pwv`uw;6x~-1@1bDIuehs3XT0ZSb0Qjtt{Z$b}^>2{N z_{Ur#on$!vj#W)DGK&d44aV)@NtMBFNz}ZZpt8iT(SJ^GSrQ?SkZN%wB+qX|Q_T(O z_g5pCO5Fd*z$qh3X@WszeRs?upjw99{GgUvN7zw<*%I3m0o5~xcu^vkiWl(IHes)< zY44A3VmtqGbXENjkTbjoHdYrd8q9pps`_m8cP0!OYOB88)u9+_Wa1HmvT9jP;_$(^ zp*@PhX@AKTHDvg-CgJp8h%H?8xlPx^O$5x}iip@C%vw#{$`64?tEOaz0dZHn^hvie zs!;Dpy7p0JV+)zrq7)hWtz}h-KL8u8if0*`uB6ax7dA_+S6@gXSf$5{OfGpV4q4YC zcHF^}cm(74#A>#GDc68d;D=>-Zj~^kXdbK z@9SA;tW0kM^}XlTVmLH^JRATDkonMr?CR_vC5Ggxk3iXB(Og|8c}SwUTIP}{eaGOn zW`8!gkzMt%E3z7BthTd+xCZm%r`!=aHhj@2Ej5Z?*ff@*om2J?yWh3BKx>Sl%L zXMmwqGIJq24?UKehxht?Ini=0bBd=kTCTndeNEfB}(3Nq+an8?mjc39>7%c42m!9LXH>@$uZ9q&DW+O}seJi0!?7jwAqX zKvdJ;fR|yt8pY4NT)zu)&7@HahHT`$9jxyvUZ<$R)*a;9_aksfeu8j*owFdwbbs5n zAjrgL6YT7w^UZ=Gn^hb2lUx~7G2_ga33PO1-CoGq5H^~zyPYgO4MtLHQP}|V0|uUYlj}XkEV5 znC_K0F^{ZwV+B*pEJvw=LDpqKUw<%&xoq_Y=6hh)$_dPOqbvgl_Lt=O*OP#j?Rj-& zwUQOQfMDmc;{{m6FkQW4>lv1t!2DWkNbiukZ>ulGD(+m#0uJn~^-_)i%?-`>)*2u( zQV(qrH<=;t2t&zcx@Qh3-^aQkg~Z;-$~6{JuqABPzg;)5{fog#Sg&o=lYieDrjCsq z!vHqdcns9vtO0}R+xdsLAo_Ct1u%%d%)EdZ1W2;#4c*uNi@AC0>p{)!s^xrHYWea8 zY&5qWcYXzE&ijZsxywBmx>su#fEdMhZx4X+Jo5nTLE_D$wMSxb`BgmdMCN=gk``vw zx)k%>A$tV|wA}2LL5}lmd4KMk-)2#TACf^kFh5!4>!QHi4md6Uj1eAqcC`VGcRh-{ zM~;FuG+{|)K66(l(ak4^!v$vjogPDJ$VDh30XnL;qK z5-htgU-a^Y6d0`F)xz?__~?qEE|N)1F#ougMbrZ8Poz)ABBpWVA%Be5Zr@qB8m#+d z(wVpr&D&)w22r?Wy;(sDE*SwUNWp1Wx&4d0N!Y>lQ>F=O_ET)lz)oHHsAwq7`d@Df zZ2;fAr{&MHgXtTxdbA)4k~hdZ<4^N z*+wCefis2)7(oHGYBuTaGp+rIT$O`_A zU;JZdo$@mAk9|_y{(V182vn%GHc}UtEyYe43x5Feu%vg*uYaTB2&)k@f#GDF*GI5} zKA2(=2K?^EXvUI+bZQ|#L6>fd`KT&aKL`hZy&M1*c^JDEf~U;)1z>2wzxlucASvh7 zpluDZ0XvoRcp6oR#**;v`$ZTgzYv?ZGQyvR?L=jP`Bb-N>22f0Iz%iau*lP{7@kBn zQ=8{6e|IW$9)BhO+}A^v>^!4t3y->!93jAV9WUD$fBT2b9z%geF4DJ94<^v^PsESZ z58ip*1G6@>2q;+lC06|EM^b*wz7^|{)=!`9k(w{{V~{j&X`>M>KD4rlL{e2OBFNKC z64>eXm}P(83IEceRvCh?WS&pAH(+iY^{vHPRvw3_Y}1 ze<@)S26LCjHtO?5Xu!b6YWYlLA;el*8pnk0_+B&<06mv&ICNCq?#j7K0wcMA%tB=5 z+r#Xo2In+k_AK;PQRmnCHW_qR>IaF_tJY;C3!I8U*zKnEpAa*D>%zsf1%vl~TwF{a z>iF#f9)G4qExn43upbNVdvfTN7!X|D*80~^8u%My7#BNix?BvU-6PNrvD`d%2<+M6 zL-%eSD7yL~C?~Wx)LW4%-HKI|71~E>g0B5&XU?fL}KcbhhPnPbHrJnnWHrWa|@v4 zAx5lC=%M9O1E=q%82Th*%ac}Smd5~WK$E`>X!}T%xqE_rJKthK5X}sG>wOSeS0797 z#TEd!xif#=qJWVMI^P)wMhcCS9_$1GZ!JUsz1Uk|)1S-B2db?I(5+M%)Lh={fe7Us zsSNB|&a)60A%tBqvl;Z=yXhgr8qr$0ff_8_8~p*$BEl#QA22_5$Zm-YYu!0_MnLly zh>?m7qCJjc5N;>Q#)A1YDKg%{!u?+{<5IF~eGq?hDVKdf+~cQ7hJnr=v*;6|@eSqLD%QnmT5c zpO0&5QJb?7=Ir+6)@Pyp*3ok0!x$s=1Sx;|G3r%p2cMIt^9&!o93%~9W_@+34$l{v zxf6H1AOiD~hr@d^LQu5z{a46`kg6@s9+s zy>s-8;X7MRCm~TXLK=XaCm17_!l{2SN0@-2b+*4f-~=fsbOzY|MQkK&{M^9aUvO|n z{BE%UcImrZ4dNwexezSh%tu9Jc)h8-y8=P!XFCy$d7G_$lzIDHSv)(i?bgMT>U>=Y zZZQ{QWMlnc4*Wq8;rD>3{5McFYr3+*0n$nFW=>=5lk_v>ao8Hf?`5q{Z^_ zuM@#TKHRjffSq3;NGitym%l1%ziyH4yssebTlSE92QX-bqgX%lQ3?ASn5g^i*=1uz z-Iv42xiCL0e3u;n*85so2!%A+@;e6BR_+nO-&w=PeaB%(BY!H-hzM}6?Ukno7;dYL zmI0shvX6u9`6@c|H>zJ^d4qq=84PB|Vyzh3d#;~k9q5SW*P2tsgVolnu>1%DcRBW> z^Sfu+Q%gYR^IYtvHr)m*^{U^>F6HVQ3!`1X0RGUv z*FAzfT+)dV{GpJMV8^G7e01D^9i6GN?z>XtiTFFZgAMe|U+*3uJR^TkK7E7DVJ2$` zcG(JJ`J1F8ILoX+0)~)VAE_U13j|~N{QwN4wXh!+q=&3JC;*nd7knoAg49*^(P>heBB}+bCdXtgL8hs0SCQyi^-G0mft9zRTYV zYSW~N71X9F)XAliPbPn03+vnAU;<=YoY_e-ux{cc8Q30G?j_I^#u#e)GuWH5<8@%CRGpc)D333v zI{^HrHhO{p9rD86_Hlc;i!FjZWF0g)g`2;Ue6t1S?=8!L7+S%8 zR?IG5f$e>AiaviZXiPa&g8598JNJRpam~K?0bw7Gs~Dmoi8@4ixE&L=25e2s(VbwB zo#W~WevWTsJ%Af^CKoJV=3mtm!`m@?cm;NR6|JeVv(C<;(1t#-kGGizA=uC8O~o)& zWK#qiXLr*_eNo%ll?|-7v&;9RYIsCuO`*VcU)g08%vXOyS^9viuI~nFkPM-&>_t*Qni%EM(!)|0^Y^(H%n z=n(&tfl;#`2gtu3_h36^nBwv~A4W9Q=6gfW(aKU1p_>!2HxVuXcT| znv7xmdWUs+Rf`~A`>qZ{b-3&!Ll_%m?V}LvrQAuNGwk+zirX|~hRtoxY(gP3yvmjv zIk2tY0G@3?85<#z~H0oS(&6Fz)?+#y*fw3yiu1!8gWDV5-em;J6FV zy(58OW=LttEd{yI26Nl5S1E?9aFuV3TW=dlU>ykF!t$Pv+^`>mVcL%&_tuABZ?`J#wjdMF^(^F>+!G@8TY4633#gx+Wi zSI%+?M$}HJ+B-PGEY}`bKgvadK__;tZ;vgD2CL%v#m&4Qr{l9Y<>~^JT|bp(1)aeB z%p%(;m=C)gn*-(+=+Nm&Is`u|HpPfDj%oK!*%7XWXQ!!%Q}BG4!gm%AJPm)lKsfeR zwHYUV!o823TgCX<{p0s0QBb{q4mSW(qyz#wv%jM408oo3pPJF@C1dDJg8MoTXWk<%^Ba{MWnZ%HODpkUU-%NI>uA5c0eEeJy0m5hJL=$%ty1xA`$ z({kHLLH&MJWO2)LP5wT3$h@*-cQ`=?&Y{I>ePUa3Ir12^e0B`|+_JJ78yI;omaNox z^^T7lMFY2&*+v3Ll##=~1KVQ=Rgd0nEz13YjTLs{`z(65m9&al4yrFJFo3nyhTOP= z9SeK%{eEcW_7MhU#{7SDJ#vaDFm@I3np`;THo4UX>Xt2b#BJ+O>-g_YB4kUF;cR1q z9Tbt|QUAw%lJMT02WngYR5Gw6?V{0RQF!(23>#oqx#Fme#UVNMHmvEXDj- zBxE6w&yHR7CqV9rzZmMYZh6Qh7{asO>drrvh@w@#frP-U+pB*=zKdgfl$`Aoj4T)8 zYXWAzf9A=C$gHo8OpteHLu9su7o0$ZY~=ZY%&ZSq`KY7{aPv_{QiruWRX!K4!Tn@) zAF$=?>K@tzH#OgK&pTb!q({9>XU5dW_kzW0A-h38v20>V^?`uf2mI+)aD8%M);&n%zEVgrG;F){na1Aq&9G zhtFFKeOf=lN#qO|VN-dJLZH@-j5!n|Yjh+T{TZ+b&F)=w7eSrhO|HDFg1On*w_>NA zG@9`Tu2p|R0>JvNx`SA-en-Y7*26Do<*%}iZb?gko699fPlNe}T6#VSAOhRUIkGWW z5Po99A>>+Dm|@?dcL>ov`5=I{t1o)kT<<%>%NJo-fjE*`rcT!hdM=C9gW()7O|i%! zbv;YAn6?$O-IU2&`1+PD3^+2dvxU|54qaqmSJ{6#=LA?EWlMz1F5wh-G9eW@uq8OU zci4kXE|Jp^2RmE`Yq_-|EbVX9Bk1aOs9aTn`NYk_@_|`dIgt$5@l$SHTJGms@ikh5 z^E-JygAoZRkD{XA<~~}kF0NCwKDfcPwcKb$ZW(|MJbM~ssK0LLUBx2PS2mu(W*g!v zi2#3W8zU#N4s4YnkvL#y4LK8{_FA6^nD5)R;NRq&6e_R}fsvoZUrFw)P<$<=XU9k& zw*tFqb<2D@zDq*Ly>fccy3YEA#k?4qiR|$xd@Cb52@_8-th9X52Xva=^KPsXYdNtm z7{uI`*VKcAlK@f2AmJoP2h4Xg3DR*4uRVV`7x8=C&d8E(Zr%jtX7VYR(^kaY0?d9f zGH-ppFikfGWrU94=5nM!2*~nz^57;t5wAYapAk%)gb#q>EL0V9V@7Vt5sU3lyvsKj zQPiL36`}(;V;}K?L@Ac)6DJLHs!8A|vao$V*_zU$kaglV1-6fUJ{E|=PPY$N0w#Yl zQZl@-T#nw~?itjb#0G%*{{ESS2**~pgNGJ^xm#Cd;a(-<7b9iwzAtR`E&f$t{!NmQ zDNyZCWKDvg?u4P=#3juz`o5mHRZ*+l!~%`I(yT;6-v>uNQfz{k&dM@fV5jZ*`A7l4 z^h<*nBzuZ^3bs#Jir?47eYXaa_p5&lA^bYBpjKdugldZU7C%hh?G74m%X{2G93YZPJIv4i4!_fZSazf-jZ=sKJFs2dGoFXkS@*v(uWlK6g5&TKK5ZM}a>Mih5# z;m;Ak^^@J&iVgod;@*kc?dmmOJE2Znwo-Rsqf5FtHw1htMSRiQ5r=$#6Y>sm+Pu!7 zP0KQq?Qk%{>GNsAN|0~DXn-9%;*^h$Z69Y`&vK{Tn>0(398oa<^KY2^d!7M6eIGrf!urWG2qFVN=*BJZ_5QN;BVxOi2demi{Oy2=@n z19_80*49nH9NLbmt*?0!ARWTCzj&9o38IkJ67CVqtpYJ+QM*OeAWu~zdyoJ2s@NQD z$+fh#AmCQMVL;io`(e_wTx2E9ON5b#XXO;CK+tHP>lA=*L|-tQ;q8CghAh3v+}cum z4M|%+Qhe?c0Mmwe9HD2sP(Dd7w})4qOcwNKx!uf1F0f-=*a$Rf`{+4MQDD0~eBAi~ z-FK&)13NI^D?V2~6l(pf{P}e_0GqbDb}O>A=7SU}wbjzat6>IMaA|+XD8uD+R2l1N z$ge6VCd6%V`^^VP#BG1i6A6-P+qIOesR{;5Hm)Xoww9dz+EA4>0ul4*A&TY%CH8(3 zqGNhkJbx>x5mWqJ<0S|`^mA1PueI|Ify``~CZ2a-qndc$p))&o&|BXt-$7oTWHO*L zyRPsGbY_c&-vIT!bJ`Fvn5rr3!Va=ZLRpcXwWIb7(zB~>F}8oe&fXFuf*ft{J12Dy zY>9npMA5jhC8ODb*qV8Ake4RTykA`wRF?#2B2U}BciEr@BcE?q3|>nDk5Qxbjbmo| z2j$r^rv!X3Op!6kggaWZYYqv@LR;3pBwqYIFd=0bIM7SubLT-Yw)=Lw60k=N0xCb{ zgF38__njdQ>nnen_@yEa`!h!W9z_in?}hv#58)s_#GQSYPgk2z!cco z<-3za;irRTg1M?;6%^4fO-bJUFkj6@PXi&>HkK$YK{ArWJ8uGD%T~>=1i{y`ij1QXPG=HJ zkKikBPF@L$@?**!Y>2>?DSR>5d?FljInqguCS7sceCAYFU=UTpt%3RWe)Lgzs!Tor zofY?$A4b^87+Grr-BU4iC2KywA)o8K$FBn&=1j%&y`M7m{ zw@#tXT9TE6rYd>V^I7PuV3~4|F0!g_1j@hSRr zZEF8~n_2l1^dN&e`plsSV6D!X&%J?>fcR@RARi%l;{wA2Ez?h65vTU|(g7wE)zCt# z*7=@C0vNxjgH-!=iz7$Og25FfSDJwQV2~169W+thmdkMsVC~0>{RSTp1W?|20$YE( z=QwmQSfP9<4-DVPG@k?WU!D~+z+jKY*7_iY>eBjf+B)(ou{!qWHx|J558ZO17Ua=d z7e=1?WPO8GKNJqra;?`eB;QwulV)!@un27W9DUu@0`Qd~?_pptOgShouycfo0^2@E zGMOFNuJz@S0gSA`*AF-qDZo5LdT@VJr{{8n(Vmh|UV)vNuPJ~kqJKjlh1bfPSYUgW zk>3%XoVARrRo_ZWwsFB`+hH|k3?55oATF95$Mb9IL0aV~doY|kd((Cgx$mUQNZGqh zC^Mf3mUfcJVL-mDmYUznATNiVsTgFIHEjaPzGP1VL2<32#r%ER+*%#KKdXO3flXNE zF4av07q!D{_^TXRn=kQJOp5I~!Z=M3O1#+#HZYV?lT~p-XSVFDKNXm7BhzxZ8C+XV zG8Wh`yLT?vNSZVAJ3&Z)t&?9JF*Yq{-vyeHYBzuXNgmqOWbBaR=LyC5#u(0?BqPmh z(+s99$K#)}@OGQ~C{~f@m#=?_{pFVDRgSRMGV>a?f^hp5bsRy*$m$wk7Af0OA=~4% z{`i{^<0^9%!;5@k`G?~zTDngC9qik?Zv#NREz3aUugX6K&HL78Dl^ENG_?n-m#*zY zv+b$vTO__oRTW^_@k$@#PN%YKWI@?i)En?z=;oD|MvDtr19W#$b!?~^Y zypWOO$Hbro+h|^;qaBzxP}0#3=!8;w-eNJOtSo62kI?blqW(RKN2ninWb)wsSxQb@ z5*SJ8reYldYT4OOxVN3H<)8~sy|9p0&M%aJmwootE+pc*pwRu*M-hB!vW^{JXXa^5 zyGPh_T^IHfm`zO_)Lws6gw8=Z78!tkVNV?WTN`4sp&Ocd0>)ig(?=17>r2Z)Hs;i+ zV7~C=%K)GqDtze$pbYybua~iP6avF-EXkfWfNXjhR7FcL9C`Kmge8~#7x-W&<6a(`Gy60sLIoqES!1n6_@6w5;?K)w} z{;hw=)#AaQXYdGqF-JunbZ1HElgt>DXWJ7Y@lEO(4sn(jVx(t>8@%~U0Jc}o`UNz9 zE}Gx($EoxQn#kpRW~n_1_UC|@%2{~gBzj+RdP6OV1A6+RWbO)k!#<} zUS^KJjZ|OPLvCUfv6Yd6tw(&{z<{#O7g&Q(Iv2M6O=L>}=~v&%M%8j-)-b(tIiJTT z3r&DQ3TD+6u+7=+X#cEMySjIXq+Iz?3;{QozZXvC8#k)uw_+I_k?IDkyY8Gy8H^=G zHWh!ceex9}5RBr;;~vcS+L2GV$icFSW_u58ZLugDroo9jUWZvKI}AuF5& z`mvMrx%p$@V_LKK8j$%U&v|FTkaCud6$O7;U-h#fePF)gq^U{>%pCcKAuvA;&!(8~ z7h!#U1DimY{>XN|1DimY69(8fVo}s5TceiqG2C;wI+)wPJ>OUacB(R*sKsv5&1wJq z{Q9LL4q)`>w)+8Q(2@BL0u1Ug-z@~@8_<&JI)jf~TFlMoCWkS^W5;e?z5)XLy|sU% z*gQ2SegRtEk1U}Pm>(WbQ;cQ*y%Gn2keoy7cT=p6@3#~3vTJgU18Sw$G6fobPMRrr z4s4zichlb(M<4%*x%lP>j;MZK&!@jec*`k8#xqW)GC3AusVC(!0`jSPvj1OTem=@^ z_6OD2(sa!4U=xST4O~&jb77q@)X0Bw2z_8~+hjRzFet$-E6@&3aO8$*}2sNIM(t)J&g)84`^X4gZoRfm`>K=wqMN z{8z4ZHH%VMzO)Q%kJZE&!TGhs)%-WL;K#Qs^`D8RPWvIk3G{%Ka` zxWJCJ)wP_Puq}J01cqUh*HDyVtA>>XHcQyQxjqDuYu9prcGda)jVxS0T82-WvsZ#) zd*#IN2k}_nK4ngT`C(0LZUkkKG0cMwLD@QrOaQQ1icA1RX5H8ydFy}bSY%e}RnG0U zlEnzY!ZsZGES%x&+Gj|^9G`rUksbBOEdi3Tz7(CjmmmgPsxA2zx+apoQ}?(mSU`wcV(80D-Z-5{dI zZBI*ujLb_@D#xzLNuqxP8$$V_)Y|HleG1I~u~Rf2SoNJSt1^LgA4o#ygN-?LI$)uk znJ?wgaP?(aN8t?aPA=e3Y%Mc8J^|S{ISnU}@9$a4?jX+E&d9FsVE7{DD=D;D3;Eyk z&mu|C?85n@#cJM;^o9+$}9uO%d9KBinM2frtzJyNPZm~x)Hz)S-!z(_#4OtIbc(iezC zVad?~)zmRgl_7s|!V%D9q~mY<1X6r0oS^N5z3M2?`%Wke+6gL84rhq2BFs9qJ|s1J z{@!fzW^D;HryF!zpG3J?Y}Zg?EjuU73(U`5dnpD_Cr38aS>3`P+AOL`vNH`_fXf!D z1nexe)(~;+ZmpSOPug3TwY<(YV>uKJ*B zS3eloJa?0PaVPDb`U1saZ7{`6>~_BF)$1k9I> zbv?TnHA68@j$NyR9hA9*e5%`I*-0AA7k#A+(N85yUYaBWCHWG@*4G4L^6Oy?6Na;5 zK70YWX(@ll8&p7%tTrn`bAYW;vQ8gZ^UYf*4KT#5mX?Df zw4vB+{bb*Ku!Rm*+N^-qK5|S!Qnl8TeJca=GlYK}KL*Cd33@R<3vZZ}k`7X<8&Sje zQxI#j?Q=swWOYW~)3;xfR1?9!esxd026t8s4y?lqYkO>RIg?jl)`K6+n9Ug;jJXZp zTX&Y21v|_4Iaya`kbJMm*g=OC_D$Y5;_y{mAHksgEIkM1_xW)E;B+cIKv90KSEM2U z7UzGXHT&dVpL+>_TWh^009VA5tqCwcrkh=ue;vy-B*LxrOqrc4SVK7-q2=nUyxgfF z=34e_>%x3v%K7`iymwPPJ`iq2BRq3w2)Ft{U{-w=_HRtZ5ZW!7>_xh@&u&+{Fnz*j zj2*;Y4)P5QKi_N?q48>=DE7V;+=2VU8>W9!{@QzX@Iv6V*Is40H%P%=juh*q_tFJ| z#2YddQH}S-Q?@Wv<9(_81`R<(z67oW_$Lsv5y)RgcK1IBul6Sy=UX@S%&A#JGq63Y zTrs1&YQ0vOvcw-9wK%~}Eyomt0F)a=q*wjqy6T0Et`;Y9taX;rwVcgb;C1l8>xk}!Ecg03< zwUIO^&2_|8M@w#n0Q-|N<8ORZv+F+?IV+2F3A0ABX91CxV;o0hz+(GY5$b;&k<^B2bDmK6(zYV3Aee7(S&sz_)-CNwh^Ll$whVX# z=X+dcf31@7W}mz@I^-7aDc`4Bq=qoLEkkD2H-aNm9dFxe+tP#3azg0M6||hVJ)yJe z3$>V$=&a7Y#T6KgJHbqTqO*$hYTjqT*4*Oe>sTj%=Ib2sPl&o{1H*s!hQ2P$ei1Z( z56+58nie7<(7AfcjlsEkizA<14Z!}1*CLqB_2wZtXtBCY(B*v_WJe z9(l4CIzbZVG<<=rIc9&}_)w&;BZr0twtulVUopJ)>kx=@!Afp%6SvzLmSl!T4RZ0@ z&2hV(Vm2c8N)nd5j-%S@XX1RR0OZHhEEfpYe6-~xKY`f^5;9}65QCRKA=n^3?(4}S zuBlhyE5MAPFvSdg;Y=$dE$0s~;!M&!MW5AI`;$+-Gi zkC{-_hN1g|#)-RQDP~V3%iqCsp#)FjW-Z293u}*n%BLs97@@=V{sd&;pGcIiySTq1 z>zfL}?^)h+5ofK$o25e2Pvn`8M2K|_%Lxp?NUM`mE`X5?r0feD!?L1!U{-cYesIuh zJx}b%yMQ3hx^REeP>j3kn$I_2HnwbaizuNd_T%@ndQfrVyuW%-al%F-*V@-wSEG1K zeET8#t;NEq%MWfV!dUWy$tiSUJ}B3>3n9=to{O6ArHvryBqjx!)^=S)Aj!JM%t~=5 zBw5SMDlvii+$%%NxdAw`6#?Y`(8)4=F0W84`KrTVwyA%K2WHSfS`IpHW>zV*R7=l9 z1-hwiJc-p)F}SzWwL1S;O`^BZO&z5z8Pa&Ox}BCcGL%k{_dbgKvN^r)1b@^~Un#Hv zeC&#~xK{9SGC}YnElS%h-~8Rg$*D;Lo2v+6zldRe-pH>_d`L%WTPqutMsq)QkY^Gs zxd==?VG4h}OUi~jJK2E=Nz-~x&M_R=oa)sF<^`+F1vc!RtSEqU)QWN}l44cG{0Yk{ zM_}-5a;v%sI6jZ2_B*%?pF0x=qeYaB+q_qOZjt7|-hg~m>d-;*^cGN$2c*&ub= zYnOjO!(D^w%C}2EXV*YN02&DQVAz>T{ zr1n{}Kl&!xWmob20~>`0!sH>J9)>+2f za6CCvBN)oOS+)Z#Qt{1MEQ$z}uC!@j5~Bvq|t-3cIHRwUgM7#?d`F&Yd4OlSzCQqS0OF^mlA9$|lp zeZL#s_43@6o*%%R5@pWVo${M`b_v;rfVG@F}SCCx86eB9DUe&==nLLZJfQH1| zj~&$2oEh+4aY*m+`t(IhCMb&NOYDCuplv-%m4Ws8#8zaC^s?uAmNcO{BzN#&-=z`y zqlI{BeQ=8GJ9fV_(moQoQ1?@@t(-*JXqX*ue@ z3^u0Pc1GHlIV7we?CfztWGNNWz{mzON2ywlk+-!cex&PJAr|cT5+;8W63nNDxCtSC zx_fVVQ1*X+DR0m3@7~;C%WEH)f21!M5#T@$tbh_O#%N`SGo!Sh0D>vXMCc+OvIpAM{a-6N?mqD6b7wSpV!$x z2&q&XN8I@g)pS`PL3~z=ySHIvSeRU?GT5$c3!L zGP!Rn{L#dX2yEGwIA22|-G7oywG|B5{6^&>=5*)u@qx`>{6l}j<{G=D=lq8+xj8jL zRmRG)Pe8sb&3p<%!nH@fgO{QQ@|V{0Iok+m8B3Hfz=oSU`Gs#{Rf8tW#bCwcdKLB8 zx#C7NJvtiFo7xkIGLf4>>6HWd)jLuWUq50EUvq~RBd{@B3uwBwF~vPEbY9(X%=Cs? z@M*HOkSWI0a0GudxTy5IP*!iFNq`^ARmx z{f0AY3CZyfJK+X*qzOzMYq|@aVB$=R)w$Xpib2lhTp?hPb3>*Ld1Y1;_dYO&gR+~+pawc2Z}6@^Xw14{ z(KGRco~-W;t;&-)%YDQ;GO_cR=(wQ(yY^!{{uP4UA5{zaY1D*X0DB0m_c=Q?1wy0# zx~qoOqSk*(;`eM-98$jYu>RiB2!_~ovc!PS+#aYHnI1Pc3gm6iZ4?JByJtGq9Lq+@?5Q!xsE_0y=1LuSh zn=w-C$!_Wx!E+)*fl#a$lbHdwYgm05gO^K55(9towI{2J2IhO6Oc#V*`{^J1j)JS7 zOY+WhM(}UqX$R&ud_RgsTwj+*m+wV6zarS~ZY1T^2%%Ru4Mial%q`io6oaUfbJ>}} z%B6u%Ad6es`Jjd#>`E8!h{2Zr(0gy?6WXq|yv3jfJD)gjfh? zmd$_eoyjvOIq~EJBV9>V?6fZNMnLn_B0a_h73J#uIu= zi=*f;oo#5<7n8dq#A&@}%d|d-xs~@Y#A$!~@5K6Ls;Loml2WQe2>APR!2PIiw3gF_u+EAB`3{G#5BjU0?-O85Q@Lhv? zz+HI!utAoOuC-0FWMmo<%+DXwv>eReSkeS4fWpNiGW$#N`K>D!&Tom10dXrmTaAAx z(MHY(z%DJRXp&EmMS+kgP>~C?CJT<`bUr zn^ru?_V;;))co&3Fh&E49Xp-z3Z<|fr>S5J?dm3g>Ml^qOyXqwBH9OEh;CX^Vb^iI#iYRP7+GjW z%brIMNQ&Gv%K{{BI@2`|=v~Uu8v(Y+ck#W<06Q_E^#X~zp87h;N#oo2yh?8L_5b*_ zK=7!`C&d5{p;b~J68NR$jqw4A?(WiYyiZF>;+_w-p7@XSvs)04XKKMkBCLOOo%VpJ z1+NP<l4E@2YnMI0`d4Zek z8B2aPGWj!ejt>^fY#BomzluHifJ8&q3xoq)Ix3K??<@Q6Jzyv;$%rPvCLGw(d?3Ka zXH)$~$_W3p?7sJaqs}+^Lm+=}f!Qt$@PyvVR}39{C?)wF_>{ilbn!O~Uv{kv5I%3{ zh{b`lj;^iZLE1-F*?mCL-W(a+_?6b+4W%T}%;oN);YK>IlJJDt7mBnK__FnU_w|5% z=ZxWj5fPvL@d9jI7x$}VvtRHQpm?i^n1#5V8#t<~qTaGjgaG!rC81A?4kpRfM zep*Rib%$5mk%o70f?MA?E~LHYlx+d}YG0elEW!vOs^bEEl+=3l28D;Lu^Av7;<-z1 z)RNCtB`jig&Z262>GN)AiWJJcylCR<(kT@#)-kOEeTvmn(u#YFW zLYjtP%r|lY!Y~dU{@8yrIALCoBZBZo*$0BYvdMyC!6+`>d$3EE*n$E2K(W5_(iw03j@3AJka{Gi&i{P%Pi*t+mDR><_vPH{`*#*2w*`;UImA**)fTKX88kBw5EL& z3@&h9RkA#{mKP+{S?iMh4QRHJ4}Jks;c4Q!te6j|fo zCEtv2nAT+eqso8EsbyRRQ6*pX0%zFO-w0|!9gcn#TUe^Hc7%RwX+1x>!>GGD4Fzbj z)C2xmBOi!z{;EsgSog_Vf-U@(N7PwahhI_)m$JJNr-8XpAAhOzhOdKRFYL6#ZH z2lVwjhY(|=1S4oV#%FMSV%MS7>IdVoFOZ*;@{k7R*6i9n4`-C#>vIA8V#K1%)pf!m z^`=M?J&vD7(*-+Mr}!mmN@R>kUa zBOIV_&QpIo33F%CaROcDFxlBFw#FGbeaZu#P;>qpdkDwZF-Aswz>l~v`@ZN7K98^W z=d&1~xgpebJt4$o2c`F8x*WqwI6>*9DlMqFGcV9bSj+b_0U~nT2q!$!G&_v5qj9bH4ewZtXxH`xKl3WM!?wgw58qu&Gk(-nJ{53obthpXV&M4i7Q z1+mulgh#xe8f@ZmFJBdx)n6>cyYc|CTGtCiy-Zho#8_9GI&B)e{hIqbxQ6hmk49O_ z0KE~}>QPy3?J~sBSzYTfufE@m2Wp!oui$@R-NxC9`A{57b}kfD+Zsa-n}BXB46z{r zkBvSru;Q88uE%k~OJ@%d@8GE!nadYt+49g!^#gV?M?kDyHWV7FQ^P6(#Awc8O($UXp5v-RI6b||;Y;wo|^Qk5q3{tACwWi;SyfxOUT_sN+aZF8<&G+v^P>f828GL`# zm=`!}$rSK|Su0tLC_oMdCZ8YA(RxyDoxpqGK?i;z9*3|e`C@gxvf-b{-#&xzRm$U{z3CHbuB%4}M{j*Ycy{)24ZsuZ zkaA0aCizVRBTw(#S3ww~SuYR`Mm6~X_wMZ~xW?(lu7bPOrl)bh)0?HW1%-d~**^Li zAx*2|BoZJ21x-2)NHShI`vBT$!U1>0)F00*snWk_EA0Y(U8q}r37{__N|FI?pAGXW zxmry}A0#_{-%2(Uf}N$-a<1phr&eOuKoCojA<}Uioy9)$77b4mC$zv|qI4re#B-g} zWR2-KfcB!tZ9un-j?9c+gLi+jb(Ms7+WJ~6@tt9-N$a@E4%rsa__UIp>H<4;9bLl_ z^gK`8LV6bjo-CW|D(P08>1hPekFGikI^LtjbYgY@q|=eV6J-D_q5Q$aQ~J$l0;j4VsCE zTYz|$+5KzGmnge`4Xjko;}{^UlWa9BRHukt2Lm{kFm61txZn~V8i6T^8szl zw)J6XDxF;ToBFD!XFvJ0jD)C-k|Qg~-0icXl`8fDVxa!6^|}Q) zP(PM$o%lFbk~~aa8g7*R=!7P-8!6hZg1Cj9brn2SZ89W5R~LUVAO{H^nU_(9D5#Ns zE!$eCeYz2S(q3o551kAw-)XXP{sTS{Q&QJ5!UwN{zHo27L`Utj&s}e9*PTc42_LVc z8y^``_F8f*LD|!nkU4Jf%qL~w_qwn&_R@O^)IIxIO+PfAmv!mo37|c(2vR3}ldY@d z_H*f$odiq6yHtO##$mA3ZbRj>>^XF;BNQbB2HzS{`J8oDQw$O+r_uEvj#y{gqsmVPJWm9}R}5lGr@$ydOsQQraKv=8Q1(+KJKYj*vJF6k_ynrs zdfeY@FL#}2)yo|{n7Lhdt|~*nx?fL^`9wWPNf@x~rSpG)WN(y(5aG|VTfghvqqnxN zUuo0ryZdpR&19w{61w(f-VL(4%sOS5A`@Cq)f*VVIfE+`(2oM;$lielD8|6I=YaST zdbg{Xw;cAHfCx-Cv9*v3_3cB9cE>^>T-adbL48XZGP?nfozbo;M<1uJt4^e>iK{Wk`qCVtrpA)L{`*22s$q>?#NAWcw;N#uK@a+8#kg>8T3& z&>HhI{YI>WwYyyfS^lo^kHq*|deR#6UudxFZ^T`5tZPc5GrrcC7ufo^Y&gJObjg_E zl@dX^Hq+BK0HPnCtJl3182B>dFYL)M`VO?0$E5uOWjOc+}4z6kUs~lw0 zO6#v9K5wR+{X)32G_^ekLgk~W582q^a+N$}K+Y3WAjL?Xu)j?jJVyzsFfS1C6k zO1BHNK7v{M=t#g_!U#<7h6s^`#t@gcHwN&#|8lU}3wp!)>i+?UrF;OY5~D0u+a!`_9ys2KtK7+cGu}g_gR01 zpa2|amb*@9x^pfNXEEIi0ln)wsb>vB@A^e82tD!3M8wl-Fn_5^1ju_gS=0g76W5Sl zXAAC5=PPoawf8A|E}-{()(hNzmQ&}sNeD?~6#Xm)oS`_NPI$^&-JLk#+t5)Cc!4B zD(wJhwd!RHQlOOp2q}qUX0PgoGm%2Cmt}}*=z5&qQ-8>lGRs<5Lw)1=eU+SK`qqy< z!U61<{BQzI#&welNK){9J$}&S)wPOTD&q|8C-Ei-8A(59@M~MF0)#&s&Q5>d8zxH% zZf;jAyWlxeJoNSlbjE#gx_n8>8#3 z6`G&Zm$IwE?V}-G%Ocx3tcfdI=yqNa1qgCBYgfAjj0|N{km)Q>l!1SMxDph7t0EHe_KEFwc52u=SK&KUD`jPu=7Dnnf-~s(Z zZ`qp>{PfeK{6xq4!XK3b5BM}H=v zCH1;(Ms>9GrTZ!1o=XNMYNWNUId0JUb+L>{soNUrc!5gk>KA`+33z-UjSGZ%JVIjt z;*a$$+m66R>OC9crL)eZ6Mz_&{TRI8R6$Yw3968i-o_kq#s)lOSi4H%8mEjap!G0g z|2l~^c7~oB0p}d*DT}h{ImsOl71QlgLMrp!`l38hF|BUD>h~MrWtSYwLCDTluVQ}g z?OR{W2zGPIAsK&ghmgG#?8x)mRj?aYX)+(sMt!oteRljJLS{BQxrZ>5as+V9_oLQ@ zC_o356aZrLAbQ$QQ@=t7-JX5YhktcW0$(31H-j*fYhI54Y(SI0FE?=7XXS$UIU@zx zpnAI8$P`u^*;5h{=t@YSN-s@66n>^tFE|lHZBHb`w`{E-AZ5RQ^?#Y$Pj}fl7DZGa zmBX&?kcO=5qD6eJA1S)lXln&|nU<0r?4z7Kz|3EtkctcQ$PKW}CaoQWqy}LCt}8wQ zsa4YbjjP}&%c`6o0NtD{>n^!{a-0h!i;P|Ez+I{nIQp#(DbWkGZd>od0e$)II*ssY z9ny*gN4e7ICJ5JmmWC-Iocf5hNo6=|mwgpny{sY!&t>68r(7l=G5_m&+-lLYESR-9 zb(KZ$yiIi!T-Zo!>WLC?n=*I{6Up~Xu~QZ?E^TC0rU#rB_sjyWZgF#)x_%Ia1>84yh0j zgJfP{Z%sWZb_p`{WbQfyTJNw46k6wKiAO?<)rXH#Mu3jhor|4KsOX2(;5_xn3Fu4F zvI|65?dmcSE`B1E4GeG-r*@Ux?H3>M)kz|jRm9Z;!PL1!2PHk-$i@&BWiALwsT2eXf$L%&B*NfWG>#yCFX&%skyDF{wdvrk>9rB-0HA(yQeO%SgYPIG8^40Ei~* z+1bQHebx8DbQyv6s_!lu-vl`7ND+%5n_GvBxT)Vw>^PKHNl2tGpIF<|yUyH&Z(*g5~Y@^iT?@PM3i?#4%%ZRrBD@GWe*jX4P2saJ%6Hm{rS zO{7h4^{$hQoYxdw;dl7I&J)XGau2dsu%0`8z#T-U@o4@y4 zw%_w|q+$1MXP29u;e`@K<+XVm!jhr$N>M7^z6blxk#N9vNJ1?KT zuV{q#wqjiZ?sGK15M9_|KkM=Z*F5`{zNxpkd%5Mdw$m67oI|8H-js#}K)rT#Zbho`N7Zi=x#x)`wZCL6xfzK!O~P`JuidfwXiMUi$IxZQMiRBpnXD0ith|QO zOi0tldhSBjpiSFyxBMN9T-n>?9lee36*}n9BX2J{uc}$^)eQ zY-_th%RJ26q#}!dAv%x=@-3(1wek z7BArLS7io}r46r5k6!?{U$OGR!a$rAjA4HzD*`MmHMN5gtc{hu4CtNQr^9QOt(;)fY;X}&udC6F9xX-9dby?h z9^yA3QcKbMS-}`hY6+u%Qya_m{#*xSYS$g98}g6TG%Tt6Gj9JigXTP9djQ4)p!5(r zwfoK40U&v`KAmm<(WdXEMvY;8U7kUiY7rt!OMO_KRvs%Q3ws5LPk$DBBBpoYSka|z zx7ACbM6cKlghu0w$a^3Ry1AZuI70i)^(Yb0%Jvo*B!Z7}HT0){yjieV=+%fuRW>%1 zXR0_ge^xn91>DW*r6xx$R|XBmfF(0vJK6~+gC9> z0m+`0lo}@iDy&g|(_1d2*+;pWP)-SpL!34|se8*EZZ_eeN~)|5AX2ftfGg`OmCN^C5<}_)LH{M|d@l#Phsr($ zyfK4ib3)5DE5DRpoNC89Ysi0EqYK3WNFfl}pL}IVr;h@EuK!9iy!YH$%0PNYU%&M( z^c0Gg-*v-E$+%AfMQM-rUE zx|#)aJUCf%5r?Iiw^&SoDMBiPlx!%M(-Q<@sTDHH9icJTE_YlUH!i(8+`qzi0-{-X zO2c3Ikr#r0p4|1Zp(pn!pi|Mo%5RAsJWtNQTcU}-uWAz@DSKz(G0~4rnJ>K>9`fpt zK-~UMsObeyY7EKGM$5jR+K|XfIru{`cHjN@LLlf)e-0gTu_^i@Uj@VAZjC~QA*1&FqTRdAP3v$(v$^2+y8?ZS_1li9z3~6J%R=#FWw8d+AqQ8`7)mL zpHd`%@sK7T+mjL$fdPbCGa*xcBUXS9jqyZ=HAaudbE3mapwB7~q-OH%Mn z14`^KYfc(M3*Ofa1RTU|ys3|XaD@^Dli-aZ^e!NPM7KZs+dqtqpI$oO`*v}~67<ND`O$O))y~Z;9O7tc;+VZ!u z!w)3%e3zDCNxLL(BnYQ;-nT>E)p2pS01w59raU@g`eE}O0WnpG-;?(^G6vFK*DS&F zDF-L8$pbX$84H5=6?tw%U7MP1Jw;uKSdhnmnPd~6w`|=HBwc5JUC*QtC4C!ka4f2$ znY^c?#3JC%!?Dr}grD#QfR~kXmCJ9Q%M{S_7~q-Q3Em^Q(Y>wY@qEi0Um4(7CfG`H z&t_=}Klh4UCkQ|Hs9gWBl>%A+GS3rB=B!-2lfu%A(M)NxJkKE%?v&@bzn~XsXvqS9 z$O~G@y@}`Zh1FIz_u>o(tvZ1EJFUQ zH7A)n*B^M2x;r|*2r~YAId4lNV$;8W=bMLusDv zlE#-Htj&E_G?KM`RleVLVYR!ciY9oj6faLOwUA~7!yIe9Tz-hR+NC9noYi~s!|#!g zO}5vT6U)S6n>?$4P6(GSK}O+Rdxikkj$7BUW61-S6~K}Rl+yvg*mmz*y(qzdMf&uS zHGmAQ{i6)O8Ef!+YF+}~L6Q2>``@RP&f)h=H+{mI=aDeH1Y-;g-PW9##Un%rAll1i zt0a|crhzHH8AF&_HATnUWy^2FoY1R)Dj2-PXXu zQ4<;x5bEv=Y5|E?GoL*TZP>nl=aQ`k(C&N|GlXF=avp!9qYE2GlNhUj1Q~u|l^{@T zqSp(^#1gwQLGME{mjF{fY`ixNV`hBr9>^vLag_^WqaRaTsb zxk|$@&D%@ZCl-s75cYt``j`#}LVl4nm#4(;F&A|Rz&W!Rgj`K{OsltKy;JM6lUz0Q za2fDYg`@Ukle)A8bQ>Aq_*_mZRZPE8!M(1@d&59Fc{KgJ4s0Q0Q3|;F`by&b5IeW) ze5Ux1y~(FQ#3<_O4H*A_nd}ls%A#?%-#+5uj&7_0l7uU&r3o76uH}Yo5fX_UgZckb zG*4e6CXbzW-VhEvl7f_LVfUD<|3xt;7XIFJ#m-&H41Tw}qLvAS~%q}D#0-GuMWg`m$5*9t9gkw?K)Ez9;}@+ zo0qGdaAzIxH_5pp4Y5sPWY>o1T}etF;3Qaje!q}l;4%6OYy?k7x!Kuaa9$Z7H|aac z3IK$@D|-^whIL5*0OYuQ>OeG@zGVNN-$x{HYh{*_7d6^`Q(yp>m0TOZ-NQb$0vHfPF|Z-REVc@strQ?2>cg^ifX(~r-T-0WwKsMjkWfM|_k-56 zm+46`Jke_fq`H$x1OwXWM}+4S-1kV@4j^SGns!7ExNk{+L`~2#b?o~&VT<&zpJj6d zv|mPxTs&hR9bUjNp|c4Y=n+4icBsf|HgfwG0HpCA3j4He`Riw1nH+ z{e9`w%(=gRaG~$5k%bgyoyoT)3(0>R;&XNPJGy?_3Ewx~^WwzLF9q=VwlkSMrB~3Y z#T6+JiG3^4Sb#+1D9wO;?aaMi9vpto^n1@F=&snCsMn6&bZY@5f=0F$K>wx9NK5!V z37ZCtwX?0#aI9X;z_F6G6B$Ur9Rv8G*am4vF{EXGg9y-KI!LTjg5kAFTqGc_S`&A4 z>}330tQ?ec`!7f4`8w3-Stf#$fcuV2#{3r5v6JAlQ^2qq?x`JN(d>FTrEWyeAxuE1 zz$*%?fSoehvW+6M>!Xl{=w{0n(5YGae zx99VJ%}5wpyX#9QmUYP)Dp<_gB;&qI(Nh^>wWr8!n`J#`?+&|2rky22CZfH7Fl18x zD#5encD)*JUAG}bZd=l8a>p=Prt${??$d_r9!Pf38MX^ZNZ!@&V#%i6p`D|BeNMSL zcB~=k*nrS(O9wBZuxrd+-X;EO*L#waZ9_+Yk7p>IIxC3jhFvC!E`Z_e_p)aZGuyg^ zJ^;o#tBEKH#>nlu6_H1D(lYyAhiA~8&(hCb)~xn(ZM^{iK&fo4V~EtE(_U5Nj>_&@ zY1Dm#H>G!5`vUkuq&DdfA*F2=5Z3O<){U0#x*6*Cky3y*eLN@3U^fg$-6#RQr%m^N z?RALij+^wJfIfdUp1*ekc)Ll)Sx0R5FZ1rj!k+(?Y5#r?VX!3DmzH5)+*>b)Pg9Bl zwcInsszWPx?mOzme(_P>fr40Wm{6jM0tm-;#mYoMH-^ubLjw|q%@N-Sq1^C=BqA7a z?-&zu>Gr-qZA%bB>XcdlJn^=7=>iUa?vud;2|HPHwE%AfZO#b7%*OH*_Y?c5IxsVggFx?J{s!?tyb9@h0Xc7{xDF0pqjikuhL+ziID({i{-u z;P$llz7wQLxa$5{XWwIzFXS13Cm=kTlx+lrDAR-F0HJEtzCs#z_NKQCJApIUXJBAC z+$I`b3EFT!Z?h40>eVTJk|WatDI{=j7+3aQo3yb`Q55@IA>!uA;5NzX1hn?c^7w9O z_c!kT0hA|N+5?$5BO~Sh(K=v%ZYFA0fP~SzuH(d?wkt8{fOCzv5cChbzvK{U2(_kX zRFeqQu-v>nC48Im;wbsf_Woj||NrV)zpcpildLsB7&H6W6tsC`mK=RKr17jD+xC4= zWd12D`(8U*ELL*25r)Rt<-&L?r+eul4*}+TE#Y>)1c`;vOkSQPAE(5B9a_KlFB#?E zjJKrZ)>16Im)&(?p_C7mmXu!Z zt2_|pDm3^4S>ISha%z8@J*JFJJ*!Gx-vndKhd|QK5hwFLZrOvVTq&0Ubb?KKBaV)t+@I#eQ3>kGRPCuRjJpP|pki{ZF|4 z-~HkMvRQe=8W;zwuo}Mkv95eGBV|Ang-R9c<9HlQ}Z>NsAk#wU;2ORS%If68BM_E+{*Psqc+NA=< zOEIa1*VjxA(ZqHDyt5dqNDDU?UlIsm2C6uYr`>bV(U_&Q3_B40fGyekB?i%LpLf-7udub}lb zl%GMjlGF5CTFx+z$`VFyk|+E549`VY^iQ|uy_}*h!%IufXw>pW)7Zm&tQ`@?C_#{b z;VZ4{rKQiio(&o#Y)?H`N9DMqaUst`VpCYD`rbCF*2?LBpnM$8yJ&PKco29fE$8v+ zUOFeLQsg)jTrp2-=doW-wP27=jx}_PaREqHl`aazG5_*q{@GcJ3Qs;o>ny>nsQN%B z`P8x=o#am6Rpul~x`ZY|b9wclUMFBo5j9T`V(ugqmdn@r%L@G0%O1T@v4A^V>-9Fv z5>R3>FX}me^ezdW9TDc!yG}zgpvXIsS9p^j6|qpj*g>0~4=zHEd+WMilCdKO>q%P61=U9yNLZYDW1fNPi)Tg3h^>tyMt zwd76p1P`_3W?G5_Fg`^dsXwF2k|KRKW`dD9a*$qsJW10sXR!+HzMC-O$zhD2a_wIw zFS(TPN!PFF$)YM1wMbmDBdL`M#vZOm`2j+>9xLGe3GaNv3XAZZc}u(4{LY)fkr>+a z`n3soj-mSQ4Tv}QaTI~RmF&9&H|KP3$AJEK*7mjxV`=Mr1%&FA%^Wa%w8t>mEh%9a z69q7Tj3W^N1B4d-%36as!u$F#2sO9$mD~a$*iVws6TDDc?`yyov?+N%30j*viI83% znp_SBDJvQ)fRM7Ty+FxI7D7+qeEwXX7mS%Y^bB*8 zLUo4JmQQex?)7qrT0IOwIoVbp^4bOrY8u;rABK^{YkQY}#E*Y!PlByjP`d1-$Q*|S z!7TbG1r8XUq=ox$H-aUN&-@&LgPfT~;hwQbCen7@JJ2s~zxzQgZ98B1zj#672xD%@Xy9!ZGSrvQPuMU&$p0gg(`;M*`EmQZxjA zu%nG71|XpCG%2Mek!iZ|1UQ?fcqA56O9Nn#N9MFeCnm;-{|MO^jJ54(JToH4oXgw- zdi=V-B!b!a*=X<8S!q=^jua>UCFXp?6UpKIOTu}65aGTmMGgkl z`OH!TgKbE4C9u2KQkE?Bg4-|d@q0gHJ;fI4<#MX}>YPL}IDG1>ua^>k46$v9{e|Xl zUwL%@JUH3YVJhnfpGk^}(}=)t*h=R+-9p{B+jwRcNVx4H#g(A9mtjQ(7=_1G9wbKX z(2)OB2X5o5p9&K8#}hFLaII^I49dWLb$^8a1Us|?3}OJ?$$NtIzX7sEd&?f4Le^4)`~gSn$A0NrbyEl zkXYfB>OG%%gnDr6k`)aGLwQDN2uZ2ujDY4o%hj=Un-rP{G-KtJpF`@lo93SZo}D(} z)A@m@G*Mj#q%JKs>c4;huoeE~tqrZ46hr`olr%5>#JsyU%H`MvZG1*wlog@^d_77!A0OC%0pjAx}@(JS8bsD}npS*#4Ab}UB_P)4)Lo5QRrd+s0*Jx% zq$40a9Oj3TA}9~XexyhB2WuwWa&ct89&9|_u{y;OO}0t;m5Sv^}^GWq@7C*h~3UAEyJr$-cjfYwZ-BW_P>Qp$}b7{gh5&Wxh7@#lZF1#dqCl3C}Vg@*9ybJ%f+#k_ME40%ec6o($Ku75Cs_9QD1sULOeu>160U*a|0p1vE8uJ9Ww|jkT zc+#)RNg`*ul~&NCN5Pw9I$CpOEy6d+r$fKbDL&r0N$R~^D~t&+OCz&(vmDaV&o%p97buG-DI8n9k1>L z*xgtBi)$HIYOd`__qD0mVX41w$RS|3ycsU^G>l(z^dJ#%rEmPU^BzX7xC{s)$H&%x zy!PuEBkHALtp3ToN<#?MYXyW*{h!Oj5ZPjNU+PBu5|`v^NLIfEBwk24m+Q%sYW%x3 zB1hMh(So8f)oA6*BA!ev(z`hzlgy_1%@B|?r*cJr;S8#<3(CpiXgw1fg=9)umPdh1 z)uRM7j!*2?a!4BgyM-;WPXS4X{#Yjf9abrpEOl6^sC!{I&s!=^`fEjo4{M>^nLpjHT;#Y1D#frs71%2ZyD9wPYPL ziaZQc5ePskOEmCpICErhKcmQr5OqRs^!A1V~J2> z5-_$6&2~qTIBUwwCnUjZq>=bMvo=#0g%03%hEPU+FQhbWdS>tul47W07ezq(sKS+iuG+7JLN8O1!L#bZVnZ& zWs65M7*+P#4eaUC%TF?$vX3ASJkoLg)=se4qnT>oavb2Cv2u^na{X2E`o=sJ8NwPA zpEUJ>+e?Zf{5$@ViT>?~fRxF82^272Ls>k;fJuz*+Hg@pS#~wRb^fP+7g$9-^#;sB z8|CU4BV9c&Kx*Bd@<5Q1uD?1!Y8ecDN{C96WrBe0(aM%VlA1M*w?gNaGBUb@h0XA% zJuWRLlHy)k!c>-dMNV1x1NCx40A=Z8TI^!oO2e>=UDZ<%_C>BjC|W=YW68($Br5kQ z4QI-NzT?!BKNR)91XsU*HVO!Txb`GQ0kiiE_BGm7zI3;XY}v&p!Z9r;wH${ zQrhtTN(l)>{?{tk8rn&(MTVv@n#mIF;iP|MWd1jmkQ7eg4|zF%gfsUgWq%SxW_D{g z#?i&M_M-?)Fzy>s0=DN=vI9lnFsalp0z6vj9&8bbw_lG1kkTXK76B4AHw$<&k@nrl zQ2z~IP)#zxc{TJIN#M*seSe^5#-lvrBrdRP2nhndeTv>T*dotKrUoDaL#MVx5Xj3d z4@Q}cv6)ode!c;JTfZv}$E(W-{0iP%;t`$L-e2VO^B&l}!_yX068YVD-I|i*1m`Y2 z3PgUl#itQB3ozr%-rqtX?yxfOh`9~R%F5Lv!=XycLE`DrTcS?d#P0(nU-N21IJG;= z9pTC}!vS!Qa>9)MZ|u1JmZv0oQ2iCuddW!<&jBzNo;3@9NZNuXt^%@mjsilYmHBXz zNz=$;Kn}KU0X?R}6iN^w-e}`uRszDSeg_LF&D++a`i8P@(i_i4fwC^d!&c1FCzrRw z=4^Uo;5V5pA?6U$4I6yAVuMf)aYg{s(~uu*$PgA93~}8w?Bxerl3Qn&d%|R`Q|^f% zkRB8Ra(rBW9|_j#Iq-E$%F0%`q31>_V;be!*bDvh7ZS1gP8Xo?SRxr6np+_sB0HNh$V}TP|O*VT&1+U`!b?qX5I7Q8NlKoI>GM6N6-4rE|C_dzb74 z*F0~OEf{3fyD=md%aH_hBp9CSw)f(Zq}4jokfH+nOfO((BI(N@BzEd)Z-NXyE0<5k zO6@3rzN3USf~{D#Ma2sceoH))1aIcPy*~#7NrcZ6ysk&cfGlYKQg{h&PklQD!;rH# z24Wx{JbUUE|F@cgA;^Ly_b-V#!RfDrF35~C(8FPHHbU`%#@AvyqKJrTPqYYFJ*P9Zb~y2Hpr zOle8R)BIAP0U+FtE-6?_*{8%{k#Z&L;i6U zQvplytgZG|fHyXAS(S-(Zc9|&0mm5Y%cn>rHpW&vfqxVl1`tEohP(x`u53zCp^-Aj zZHg3qg6kyFDVL{iWiKt+wVI9}0-W1yqku%oN#gK8|9Jc*-~9J7I<=wBkV6DOq%cKS zCczl^;@|_W-iB0=P0;=la^B8=VK(h`EdgUUOGEyfC4jf3E&mN(M3mR)BIF6k-YlWv z35Mq{hY$&dXDM$J#bsaZWp76cF1IFfSAgSc9k`LQ$+6DP(l9pDrp5xGoARQ7WaNo9 z6(9r0bi193+~%)S?8$ zbF*765BtNcmzHz?B^voZ#Nzkai=c%oA|MH#ZjS+iH1nJpi251wXfwwuHD7JI1Xnjn z@BqXN6FvC^SA3XL?s;vCdDTbqv!BBc;^UXbB+Z-}VxRfZDS0ukPGN+e`@KW2CC+|Z0 zEeGy^kfhhjJ!3CiZ-o;unA80-xqz{Gtf7ks1+DJt`k0$CHPdyN>|{?RKpZgkp64Vy z5wvuBxgjj;vU2UBXxn+O-9xJlCblV;Q9#I4pQRIs1}m8N`23@P{ANhjz27%R?DftA z@~0tXv+kI^fIlDizlT0a#C`?h6Iq^uxpEoY>^nV~FuUuB3tMg8KJ9IVw=wlwP#Ej> zR(l{oQi@F^c&L3Vms6`^maA`4xNlhru=pHJlxz~DFy1L(46N3~5kbJYh0W^)Je1H| z<$>(9w0WNyL?NtyFw}YheU5Y}o&|>jS<8il1BBT9N)~~@>Ygn~jF_$C$dc1t`g(|> z4v%CNFw7@w`hF})UBBgF4!KU!^`&f}z8qZZCZo%e_|?tOlK0)~ZRPEkl_WPqzj!`< z5`I1I@E5^+6}|_|$8o)xC#_tT1j4f0xn4kM<)fdCSnXJUi%w}7HnSebCwP82PTw;g zKR;{YZ3ZtWhBR2AfDoFtwM7GeAQjC=f3F3Lh5k*F2MgnGOPV8KEEDV5ctHFw-|64; z4Z@$>k{rYY?^$vb186-=VJ|H`TxAI|OVGpceShHSBy-QV?imb0q^)7@c(=6kvy}Xay3-*^SVdU z%#y|n2)pqm1cIFPmqqmbx{=JW)knF=^Lc5B0RPcXg~W6G6n||Pq?>)ah#~^cl6eTW zVl914OAu(oUYdn_saqSe&EvZ07bfVGS1ldGAFDHei5m0nc62aO9%7qlMF7TjXR}^D z&b2pv0xUL$Ul8Tn5c*iscmYvu-oiVg(tN|(6>lFw=2-luxK@BvIX$H%X~1u)Q)0Vc zNp%`1Hxs1la?70*u!L~~#x8#DDIgT^8y}h2{pA%&KNKHSS{N{vyjN=}G50M;Lx7OI zCI)kVfbnDYSA-A5!d}?resQ-wg-byPdiFiK{Fak}j5^9svbDAfNGkT#HS;7}droP& z!d27l6Ocj!x>y{j+4X8$fE_B(p3+auo7D?u@e@U61<=DRdMwXDoN>H~@ggXo=ixq` z{RhsNt+;*vPW%D?sCB`@JR2gr21uPqF%!{$pq{-jsetE>b_xg^`q+vnP*aORyedGl zgoVLHfja!iGYW{Zizq}S=<&OI0q5L>PzAjGN2tCnfANFgmm*tiH`isI0Oj6vH?ky2 zC9M%K%#fx`5n9t!5Z>jM77p;V0y?D+Pq{ossPe90He1)H#N-LXRD5#4y<6+Gr8jqf zS>-T~j+>W;@fF;3TwpYriyRE#xGinnXYImh3MbG?%N>7=XaB-tvLAE)_5y2L9|wX~ zYHk9?Zjpwqf;%SrDYt|a7vFV~o_0*mniD)D10@86$`z^B1h3@~5)g(~+|)@n*||E~ z(Y2;x^e*6CN9|NFqiFm)cu}i9BPE%Cz7dF8HD_01O-&NQ>`ZweN^GpR*m*)>0uEUs z0}ONOyec+egl%9tNi-2`IOHX3}DU^LHcx~x2g48u~z+PHX zZSTwihCi6R?em<}_d3OdMFYE0P^mm;p83tvGOT#DR#V=(O;KP4jO|^laiD{Lw*EVD z5WVIQQNQ9yI#$;ags<0_Q@$gKW$UfZk&vCKn>NDNV-$WDFz%=m4~=WQmp45bFos_m zyVCNUF{90)aDg_bo(Aeiq9HLgQ=qLilzwUm13UxkEq?BHNC@^;Kw9*S@ znsoO>p1aT6bX=UIO3g}3k^v=KIKi{kO-H%A^|O1y$f(+~l9TE08XKFSrC}r(IclP} zoZy~E4|I_Drs|Z=CCZci$z*-Q{3d&QdjVG%6C(MR;Jtf~((;C<*mUgQBxNPwYM|8} zhU^z`1rl~hp=puUUcc0Tq~}9eQms;JAi?ERlH&kjTkk9_V-x!^wg0-d=5x$)t-+Su za&0)CQ;&Vn*Pe46-L5d9d}s(3V%qJOoBPZNCx!hN3-JwUPYPDDnE*L9pXHXZb`Fi< zLUlXb0uE;XOM6NzhM&*U%|)BOUL6yxi_8@ueC#d_saaKK8OBqFYTyZCl%xpjJa%9TEgaP5E??@XQv%5-PoWa+B>EJPm_w! ziTPhl`@b21nD_Zhv--eJkgmT`mS6uLQJH*ww}Cfc^f@h*iYtapsC&eju5_PSao(k#gLII+c>n+ z1twis%(q-iB*@&Q~_EK;)gaYa|V;GjtKd9(T3U`#oV%j?&V? z^3?4&g}B?N=a#_bIJ~s-c-xYwOeHx=EV|BynLMuSSYU8}v8!B7?MtPkQQ@|>pNLPC zwKs=ArCA_bcVEP@+e&l$c@d1lwe%|xEdNJee(!c=AhCo#C%D#B0|PMJ)O(d`~)B3cgQI3G5Nb8b92Hj}GOE2?S8}impMi#rtx_79Fpl>~7Togaqwq#_GZ}-dRlD>(k z?xTR`Xuva2?0&w=GhUL&>raFUelI3vH$bF z%8p>uW-`Xo&H8;X#dgUC1B5YFRt$0LSe=#ZCf;_2^;QLKw10(EL zmrhS|*=jd??h+P(WcK|D%}d|L%o*jLR8Z}wfK=4%<(Bbfmt-Uj1hQk3meguMN_u~( z)rqV-pM_<&B&U}QNHnkKo?ltyL~j3C+W!!LcxjDW+AVo$iL(UTK6Ld!2fNLm7~}UN zNHE|C<-MBxf;n{Y*c4FNU4t440X;K0>~DYqvL1;8hCX)eNFqB67`N=Rb`-8wZ*TSv z;GIIcp^x3>kA!}k#nfmbbO{KJ{3fC%wr*M^Pebgk+or^vB6{6!lOW?wF#qzD0Q(nz z1Pf?K#IeC{>;M|qf)IA>NPX!Y!}9T_Lt?=1x^mrnCK)RdR|&FQe+T}X0R3NT+_#Sd zh8wU)0V$gL=B$D3nXHa<3}tIe+rijg{RoH?*nR6$<{6sD<|=DFdfS{WpK^6xC-S%@%i)QvX`#Ea@Ib*AN4CuDE zJ|Qvd$j8ZBr20qOx(_0w9aGR{gzk)rmAV0dRD#!_CKR*7Khxkt6tlxgn!SR16$%&7 zTZuwITYIiFRG&|?lW`SZ7isNw(oX%blZ5Nh)e^bwHn%?IA^vqLSA(>+{nF)so|lP{ zWJ9-H^tR6!TPG~#Io1&Eoq_80Y`x5yo4luu4KRM+lEP7dStVYUJ0z<8mxc9@#6ygl#2Fc^ zs8NqTq@;F&`~IlLuO9-O`>0pP=JF#DUl6v>XSo_?uQv3s4Meah!P5(?h)DIE{fWT_ z3ExkXz>uwuZ9|DqK-`soUT!%0ES%yY7K-thMOBMJqy zU#65iWEenAM4$#j)bX)x6cDaYToWXxV|CG_O?0B0rD61?Bp!-?9WzOBI4jvY@odnJ zo+D|!XF9O0n;18!L@zUC?E&qV|0H1iz^egqfZ-!*8YnW+Yn5|<@6?Wt)l$~ALn>OG zi96#Vzxu);5NlV51)4jAtO^Ywlhi<*qQa>J81atl58;8fucm z_ltCEQXP=L4G4twwt|k+!H+T3T_>?+()=hC5EpH#R-vHT7f;9qHIgG=v(>=$mzyzwv+)bU5B> z#~}qx=&2VljA?%u1N5ESEJxgc)6MI(3wftgKnS`e0|P1Nxi#YriRN(mOis5DUOx9e zTN}d5#KEqA(rkncrdtW!g+b8ndo8rtld=dB?@BWqkYb+u$Ibm~7WX+C_W~F$$`)D~ zFzo8x3utzaNb3N`6g?Wx4frb-pqTHYR5fDGvmZ4u0pqcy`XC@IoP?%AfbmGLh#Oc~2PGo~J?D0}2FU=fx!Wjzw}f%i@NGn%!(fpu^^WA$q%;Qi zX)V`4#VE1xeC$a|y-rnRpJQS)eG}w(g(oDo@};KOO|I_S^8qQ@F!Yv?ZbC_*5*^#K z=2TrW#O}-2T~q}8E0vvq@7ZK^50H>ib@ONI;@wy3Wzev)MaCl z-(CoRJ3ykzPXXi8i_TkOcGFgUKK>#-zH2l&y3yx$DMt+G>n4f!v?RG~7K;di{OvDKT(MX(MFI#AKFxJ?r5MM_ zlV}0gkGy_H5Y;r|W4bwgP^5-9-*?KX=o8%{7 z?5FcHLcd>){bYCO+DC5Kx*CxJxPR$HFGj4SrY9rooTcpL$;lUsXE_BtSvg%^`6ZS8 zXUD$arCRwj7b!_r&ajbhMp0IGI0CN6zB(!}ug=y32sE9u9&ZJ`gu$oIbIZeIX}BnV z{Ll*+kG-B)Gvu51TF1&WVk2t41|Z5;y>#tacu{&G=2^30fY9~Uk4?Hh^##ktvBFN# zKLwmqb!x#@Y*iXX28f#RDV^`E(pEa(e+AS8WNItNAK=aET<_qeO4-pZ4fD!I*$@ei zUPGeIz^F3yP6kAx(Mgq9VnB*N$!7q6{2eO^HW2t6ddG=Iri>J1qIa0XrVUq?hEa^# zGpk%n9rwAk-N`B@iruU(^1eerY72XLY)DB>6$9Mue;PU!apl#bMjcM@mSai4bCl;q zkovD|f?VAxXdp+Gs8nbDfO5-`RRIckTBg=~V-M--6ycVi)5$S+)e1wVdi>IVspN@> zz0?B&w5#JIYQ`7fojOR-vqlkFoQMD?WyU_!)Tpg)S{sJGFt?%N1hrvmAFsiz`l zc@+OoYw`mLc8+~YtOKJA+7;^;C_M7Vzy>ity5pi}o!W)(3JmB-Y?qdcf)uMf&9<#% zF>=-^AXgrTH2=o~07<2{(hPEcQ}t$mvvA1ZSo_ESDqSF|2@|5)R*MBfl-4 zN0%OQ*}{Ak?-LE`%&~qM7$d=rRO!c|1w*P*bncL=CSC7pLs-;P?|8$1=Gr1MVHDTc zqwA17$$DzW7An-kb^G8c?(CX#WhZ${O{lb!#HH?XfE;-4a!=UIA)x`0rjDpUbT)bAIBfQWU*-Ii+) zpSEB(!!_kiU^x-#_YP=((${`5c+ZQlWJlN0hCPGc6eF0hi%=F4))^dCz@0HU|1U%D z#y>DaXx{U8bglhYJ^fpTEh7r`Kn`K*v!q=1NMY)BG>8Q-# zS~d^@i`UjDA;8tP3TL2JO`!F&S$I;R8a86oxM=E7gE2kDxV(fbCk^Xwyu6QN4GN}!4v8v0 zG+;J;R~tmCVfAFO0^II*l$P+5r!<_?U4w`bsg4z+i#LEsH9WgM5jMe(6L>MZZeK|V zHjmT|6D9@_6IwhLK;I_yDRS?b-83*6kQy3ZT2AaLeU&SJxy=1O&Sv-3pGP?Eybphb zI5wwt@;hz`^Z<$#+iQ=pxSmfi{6zadB)pz8LR7fl-$7{ZaEK! zq+$3R{`gBMaF0>wN%v$O%QPbi>X=*#?jY+b4tt5MNDCn-X-J-_|=*TsyWwe-Wrd$;eMIMxYQR6A|rr zap(CFq$Zsq=Zb(Bpi6%Q#llt|{!2^L`&ut8@i@%iUa(#zZW0jsZ_5~;aC&_{54e(l zr*oZ#RPk6%HWxsw;rHkOEUlv{bCYzX^`rS-@U+t;jy}P#rTywHZ&(+Swwhq<=y#N> zkw6u9E$uc($I{1HvC39nUBE zLrKI1OgmTaNpe&;K=pDoJo_ju=MkYiAe`WjeoW-X!}QW@BmSdn&`DBJ&h`MI3nkb9 zkUDi;zs-RJJY|C2BmwPN{z!njTjbsV(O{Nx2!P?MzyS<5Vr^Z_FAU%sI#5Z1;;f;9{!455=Sl+h;}Sj%hSO-Pf~!vn{!j4!vR$O* zT%HvXq@T6X!6;7@4d;|S(1^~QQq(QMpR*)=Q``6Ir!bPSN12S|Q27u|D?og0F>5Cp z)(wFkxg6{5jxH+}vCSoECPAuy|5>>@cDQb(8#v87%hjo`tX2Z{+x=Od6mQMMU-P9lejLrDSlcROLG^Y?OobV>c5P)-dlZ046=t~Kn z1LXW%RL22vb0y9jFomUOX^Eb1)60o$9wxgHa?@u?a41;HQuoqug~c>~UY;Iso0%~B zGv%g#i8Id~)A1hVVkb)Clx}?GnbFg5kp6tdyG(G0joM2~C`>tRPjKe3j9`$J0B1m$ zzxzGhOwjCS&i;GyLEz?(>iiy(^l-}(i}FCRP;WQA8oJVZx!QQ+^_Ebb*UJMzR7u&a z1otl;=j(?AaoZA|1Bg`3c)e;sf8=L{oB@Qx)JfKfZXSB#p5QVO{!Yx+dei5?!a`ai z*_hxyKMVK+SJI-o!F4LC#a?d(3@dZamjVS0!+XlqSxJCOf;r$>f4MXM4+$GX&KG9N zNw?Q-1@SSYC=eio=vQ(#krPI%y-4i5L&9n%g46M;1^^@LY8s*3VaH0u#zgI~N@=WgWLm&zzzcNAhwA{Xdc*!ZgdzXf&+)rK0C}W{^ z4a&;r9;@J3G10{kMIbrae@MP}f+y@OUG2#;+NZ3{mV}-S`G)p?>~Z%L5JImENAj6d zUF3O-Bp>Z!Y9VgiyPV1<7S6EiqkFP^<`s-J=H(3&i%s|5(hxd(>n7>R{Qb{U!u*N6 z2q4G2Qx|84`ddTCKG{%vNho%Lb|p#@?2ftKa1<~*cZ&YPLCV6hPBTpDCc`&jjX zkl~;8f#TPUSEDqs*kVQe2+-zFtMSF$W}Z?1O;D7XiNY3}5im@zBV&IMAw9biDuDjW z|B=g+;2s5pkTl_-e+Ci9y-6L%iRkjUO=3V2d{%q(mSZj`nSthV*o^8~p|Bjw*_#s$ z_FuJ%@8^;5G;Hb1CbV~%1SKbUTUuDpnJCiV! zOt=JZS_RKwp74b~y76sz_qr0C2}q=&pYj_a2fbpHDDw;^#;39gfd*z=6e=4H@=t~c=C!)*e6e|shg}Q&mCwCb{aQi6`Aa8Ln3t1&}kBq4SuS-;uG3f1k|{xGfn+X-UAJo(7<@-26R3 zPiUdBElUG=RzIQYw_*GvO+mrzm!b1KxIqo3dH6Pj@?$3b%Vq?OcbgpI+wjEt%og%A z^knB;S4l#7=e2?{e2zHKfCsfidF7tu+?wU`-RJG~asv01ZUm%0&#W!OC6GflK*+d# zWIlP4e{qr%m!S333i_r5y2N`P3A;)#_A61(14J00KlzJ^onI2pzZ673Lig~W-i8o& zI`aS#eCP$_oL^#~6Lgea%A=Ferw$Ub#^H_V-Ub*Rg{02{TFhsOZv;ej<&%w1#L&Zd zKO~aKr~hoxua}-o;5r4Qbk7$?mdNoXF_3`af8H)JtdT?>T}e?e(!7?oqp-T<4FFQz zR`UD+DH$YUAqkpKF?W$UZhJ`N3E_{?A^iTl9x$2^^ z14we^5>6EG^t9dHr}Q~rrKyQ1ad??sSRKH7dlL^AQR3x!j4dGin#5iJh9}*YYd>q= zf2Ksn#4_?GiU|oCQR{kj7FBp&<0Qx0m0JV! z!P|5-+DX7kmM0*gIC{8+esFAkTR+t%e_XJbedq_1Yro3nzJKE9|2`iHPqE4B9Zynd zasrn!!);5(+)PE`w!ivAAOs676NKOp{V2rj#*g;5*&@|aHhWZu=U&-TQ7p%aMYH;lyZQRdNBKsGC%LDFEMT~QSKk4d zOQ-Gc{0{NpaM#xn&Covc`(7H`|NCvpOX{w)I;y`dj79O#(ee!= z`?(ofywgqMt^lbeH@sXMdz(q^>;$2ah0_Cc&+}oq97<5MCIN{mv{NpJC#(&9%&TWl zNco;CWf#DP%_HJffW!gXEg(GMdG|(icW=oX0SsI1%zE`fXsQ>G;3LTee*pB^w@E(~ zM40>8j*!mvt~4FWx#2l0X$k0FtTNu3si8&EC;0l zQjgWW^d4S7)03jLlUS4DN(nmEF65rX%kDOH$OIVHozxfs3?roJ4ug!Yh)#nnR*_w9 z7(2czLyuhU3`anYM9|AM)X+=U=FQ8+VKCSemjQBy*)wlWvT|F3e@W1~4NFWX6SW4` zkG}h!`H&K9Uw|+O^qVs4fSh90Yr`kK+e$Cj+f`;A@!VKq$1Rs5^rc}DNaDtlreTGE zYg~=gNS)kv%4E1nwh5<)PVQ_+L!=hbvE$T>*R&&5y=E%vwq)v_1)7u|I~u$Zpxw4l z`8mEy-pE80*G?hZf6%p!v1qb}SdwF9(imZNKU3)it(`P?p5=n**EThf0Fe4SI>1R& zwqN|-H;+BZwI{Fvu}eOpt55RKVuNy16XFb~?c_lA&dA|;xjuP?|PAbgq>DtdY#9v0!nuNmn<);@Vf zkoW!hyK)b12Amntsy*{ ze4V|O76A0S9#;ho*wqWag$68plsE%`wwJmb8}a;Jf7mQQpBjIOSnLdg;JiIUQHeYo zpr0-|x)Z(EwrAJ*xd{s!!h{6|LnS5@a<9Wj8QrAB+_CiC5Ft8$$C}?~MLIv+K(Qzh zarN8p^A>kfQ5qq)$$ts&PKHEy|6!O**c(_F*6L;C&gEUQClWlnxlm(hy`rKzDmZVm zQ|?Iue@nd@eoFE#0mD&k>ZAagH>I>uiXFSn@_S;?xB4!^6Dmg9rkIg84d~faGx|#g z`99dmAT<|rV&9~~?Dg-_qy438{P$(B8jh>Ui1Mtxc^)7zUau}M7@XJDCF@eKBh54c zojmyWfFI13>2g8@X*1F41%&jnH&Y2PR+B5Pe+U>_Mw0yjXyNth3Pl|vD~1-rv(&RY z6~jA8uDl|W8dU}^y#QesX@>Ha(QIRs;_A4&B-w1=IdXE_Mc#^$NEUV#0? z%JvyKAb#32z0soWqlrWf;2urndcbbHe{ZD*kezL}d{4qFr;B!Bf&{d^%L7uhJ0543 zhT$N&NH$J1X2TCxhXn9kAFs?XAmgjQ(;nT~-d%YGK$|A1hk#)l*sYyIY@O0Kyw;X= z2<6#!O#=!5!^YAyj(m)p#@O>jq`K^@aX3iNhN-1a&cV8H-7CSu)KQuk(0{oQe{yyB zkhedhVr592C<-Tt_S!9v1FfY@!y(YJ*BOHy61$joO`^*@B5<1ERgWtmvh*|}J3x4` zGt0$u)N}~6Y~y7}J<$Zi$DXxs(zP@~5QW4R7e5UdTlH zHas6@@;AE=`LJpFeNNjUrzJDdf8TcTI9X}v#bDL0ejUt{u#LqvMETZKQVlFNlsUw| z0t_p7^m6q*ck0;@(zh$jM18*}88mf`(7p{wbe0l4vlx#E;>M0PthAih^C0w@W;Yo$ zjp+uo+x4XA+@#g6L_YxTzbuFM^6iu%E4`oDHRS`b+>2nktOhskGk-See|Jk_S7%c~ z8_-k0Pq3JXzvI#O>e+vR)lcV?{JDB;h8XVnr7(UA9(IoFk?A4qmBX}hLx?)BT~i{} zr(PYl)X!3U8(z#Is~}Z3N9l)PpnXb9+v`;oO~{)s{Wb*B{_-oHS5AEFQgah2-1$qJ zkcP*GH64Lu7Mn@zAlQ!Sf3r(Ns5zZcXyLYBGQ~Id0J9o>X&E2!>O4arcf`n-8JTjp z?T9P|Aa;>X^4pS!6D9lvDgW%H_k*bAXS4)j6u=b^1le5d(p#R#sj?tE=Ow0eZP8py zaJMb>1OdYiQUdrAJ=*e2R&E(~UK*Wp_0Hmo?=ZL+O=s!6O|jgTf5hN7+7Qd7?A<7! z_rUb0V@jR%*7TW3;BK2j`=ECFD-!nnZh}%NjHT^}Z&O|na4!utO|e>v@;pmATD7Fg z3o{3Z#^x>{#Gcx+fLRnqZ|Ueoz8lOXPW6`o@jMSAwoO0bMB}deD&RtRO_n9V|B66- zuLouS)unze;0aIpe=UQZSe8hT?>Zp>`zRO3r0H+TqQqiPR*(G7WB^5*cp^_rLBfx6 zxD@aC37CJ#Lda#w`@#;oX{A0dn;_GfR_gOvNO5tOl9_-PSzYl^P^Jz0Uw2i&6r3%W zQ&+@w1;LE+v|R=4sgo)Xzmp0S*6j`M8><+!ZeEliuML>Y3rYpZn(Mq1{x6k?Et6|B>M z0tNGG=*K0HHqQyZJ^P*{E2Zdjf@Gk*I~uo1b*s{Fkpw0?+NEki&tqii=b+?%$^+e| z!O=kIq1Rtye<<*Hx!6<9Mq1vaIv@8I(OoK_>2p)7XeUi7AO%nFdnx3l+UZE<-oKQR zfA5B{*k4YFJc?&FyG-7jq^9ZOZOLkC02CnE$RC-2I_}@`^V@17)wj$2CPhNT7eF2N z&NOwOuR>zb9b0~kq24!y??)atoSjjhFsAd+EHJcie+k^^1w=weIUc|;ac;eQA-5v| zdVrY>^F9&jJ~OM#JPRu+zWy^`U+`uIKixEKEn?~HDQ~NvL7p%wD zBU)F0MC57S7wWYc5?op?P8~i14TMnH^CDqbxn>-rDGT|z3g~2@ihB!a%Z>~_L}m9; zcLOXVf4bhUfK+ToJjqWX!Pl(a3PPrc{~v#Y#xD7PXukDUu6?Tsy3N8?dOiLf=0PzY}0Dq za_?qIw|)zst)xM9n*qed>ILLjvdo1=%-zr=O(O=jjrL|EfK7EFf$r#DZy3&WH!BaB zf5JaQZwP04b$1$JU7?ux-^KD!)xwB3uDnU>sib@vdD?J7VI7PhQuLL!2)vHJ`iD(LS2WqSC3 z2r@_-*@3Dn&)nZ;Fo$06W~`3-VsFxkf5%Eo=tPaBLg{t-`7{<2xjQYZ=QWT)bI+r! z1i}DYFG4JxNmdmSuZTH~(rFmATO(!Beck;vpg^pqVHie2jD`I+3kSah_VEPkE)B9k zF_usMnZzL8mqwnW7wf)Mya~P7`^($>cWG=3OG7aLZ#Yi66?+EdnV0*)DcUS8e<|Oj zK^uVE=Pg%5G(Hi!h|kVG%XUFx&Ynt-Iwr&~+2R`#@l@R^+n$-`-qQ@B`q@t)0sy02k5PuzPgqpher)Q{M&z($Dpqjtu706F_8VdrLd+?S!psmv)eY8mNdo zZP*^_4*`0(ShIj(H~+ZB@A8?Hp^%+mD?AHR3~mrAyeO;weQnI$?e_8goqaj&4 zlLGjX55cIW`ABwx5w@o~PN`zsUSrQO7S559jWdO9u?owzajC|@q_k~2QuHA~J4ceG z(ti3&2YDMti{u)=JVTUiV>>;+JMA1Ic4E)=zyIckZcz3xB z4p5nj0Ar!=!e=2N+rnME1)MQ_wiuwOzTQ@%{t$RY!%$pEG+txne|iF|oOG7`WB0yZ zDAKck7MA~qUYRkRXW*!D}kkOzcX^V$*?O=&deZTQdD`!{=uh3$Dl{q&7#a&z~6`XNAeUeO>$ zFt+V03_L=xqaO|be+UpJZ0S(NZusS62xw~`6#xXZo+r=GaG(-TNzz#8#?CPMUOzfP z0@_CbV=+o=?!RXTOJn$5cM`n6oD2b3v}9EW^aHj3tUC++)qAI`)_~AjLWw09H@)(d zar4oqtj!7TJ0)TrFg(b)C1wQB z1{&q%Wx%OPWs(FPzCl`266dPP1{n5(T4#VTW%mtj2Si3vj;j*fvx|lW;5|JLihuJF z1WHVtodj1HAo?z5(qDVMF9X^7+um6Q7HeS}Q+^CKz*XTYKQaVhBqc*&`l z-*dCKhmZEIe~*BUq>h!Y5w|Z>XQBS~qtCwQSro7^A)EncILcqv6UgevrcNA^WrmGi zdI`(iB*+SofIZUzjRJk#Zoa)(nCucR0tofBc6q{>?^m+N7n-cGF^*F}LI9dB7@PVP z=Zg~tK|x|%8Mp+(jwjw4ggQ53b0v6I+C2|=l5E;fe-~`hXYW~>&9SzKPXNLfT^*nV ztwvKBi|ow5%!_9<5y%>Yte30rXlri08gE>uIx(wDq+!6kwbe?`F{P*LOuflUNf10> zOui{e@PH#+pY`fUB^Y+5oD2gJpXal56uZq&|NGw)-K4LMm40G$X9%Hy9(Ll`r60GJ z#oQk-f2@kIQrmg^AuUFv$bjO@DEpOQ>=tkM?n;%@_B)GxJE1u7S_KSirg#0>mZX+h z1>@72{zMka)oy8M)|AWz^d8pP)u#-d$whub?yPjx;CtU5NLAt zlOW-eyMTM{E1G41$kj;M$^x8%kWgLC{+OZA=={oK1iB|VIw;E zfV*8awh|<+(+dboX0noWQextF>cbNr+xK^@lgRny0e`=SFxbAw|A6aikY9rKm-6wp zf9&0Ndpa4!-qqW|uw5Cv9ntu`BmpJCups2*2oUN`q9p*Kc;3JWuyC*B1T8V&OF|O? zA3s0m;@#O?P(@5lECxLX9 zr|~n}7pR{|xU6z2yEy(z9D@`vgXM59GK=xkyf6Ao2$=01+E~Q?@)<+C;Yp%Tt7M6cbyU%??O}0~b zQ9#0P!|c^@K>E;MExzxbmJFVVc>>04{Mo(V_r&5lt8AcHT&B^632us!mX7pi?;b*~UD9tAxY8?(;4^hbBWbsbPFsRE7H#%Hf-omsXCF{)Ye7qwVkGWJK!~CB3DYlwx*sW%C1yrmO%%|`I`(n zlvwvqT=*Xu2^f>gMNJBDf5!6McWD{!<1f_k-%<>CQB*B0Ara*u3=k4=&jQ-KrpyYG zudV1nCb+igjtFR7Z9ZgR!-Nsx_yo>#!<_L?uMA);Gy&wzkd3rg*U_+&HZ+;fsIWFKwkF^r&$@u9 zsl26G6XWD}md;}v7CEWJ4pQ&6q5q}nzMzNq?!v4h>>BR3N#8peLdi-?(6$zG2OMNv zy&)V4hLOBV!x@Ipf2`mN7fX)E0O1#}zBY^>?{8K%*d4!wmFFX3`;g-#s{(({Y?4E}DtmwQrNTJ2T9^9zZVj;t-Oox_Fd&WZ>ve-#gVX^B$1dWk60`f!~o zH>pr{fl;Bg*n-4XMunE#yIoq6@p49KX`KkV(vdCYLV;{u*D-jL`7Hb2P3F_YA{my< z=W!XWMBuh7)DDWX&3;zud-VvjtIS=jsdFo~VmY?j4Rw{|C~qM-8>V`bNr9DPTLgU* zT%2Ud1EHipf3}DkBxtrDW(N^k2vL2xSVLz^6+po7-uKW2!jn*y5>tTiq}R%?fhfJB zfLS_9Mh4Qd3vTiKjj1==)^h@ZhU{tci?dI};hEkpCNZ_6*pz_b8HidTATd~mwtH#!v}jdf65erEpF^2)OL(+1)Ob-htdJb zpmS-oY^ACBeW*zpoz=gXE|4$-`{RM3{o1U*q9uvNN7GF*MPgf5;%0_@{4C%K{9C zdkyXAB;_fg#DFm<=kBHDvRiD<013VmOA;*hx3^pi7(C{^r5h?e-Yy^eBxk9654x{m ze?kmxiK!9$xR;jbG&Sk`BJ|hQ2A((hN!NBWX6dds49m37r43_Y>SHJteRPTD0)%#a zXVOj1QOq#JVZ+#T{RZUfSXyxcLK_}o8<2GE%_R{9@WxnH3SwFY?z#Rz%fLOQ6A^IT z&9*)#IXFkz85CQ?<#>2PkW(^009VG(e|&y-%DT26pZE=N;$~OcTmML2bX@1U)5-%< zlxI|oWmZgN1Yb9bj&IA=lC#rr6+mA{!rfP@!)iJZ*ktAY7mb<7T}PDQ0M|k;uYkLo z9-D%Nu_eNc33?cMRzSExKjoHLhjNx*h)~(B4;~itmMoS8Z%Ok2gho{Q6L7bme_1GC zybJMakfq(Wb=Lxn#cT8eQu(y&i^Iq{TPHTMwryy{?j#n4DgIT^_vCgR92L4 zMiLSg&MUaavqBJhyqdB_$nV<7Z-;KV491w`1ki z(;7gZSNSN!f#V~r+BXs4e`Q&r8bQ~{Qb1~VO8gL*bOHX>{0tTjM z$bwwXU|G79lL&UxfR}q(_*Ao(mq97qvGj+>&)!{L#!V90^-bO+f08wH7AfL=(^!A6 zrnJ4DAfYfMJji zsgw;k&wf`6BguNK+6M(0m$ZsywU|mIm(8J(wIoH1J(?~mWRrO}xuM4rs%#VB3Xk=9 z15`AaU6Nq|d)P=*e+*Mpj>F=6s3s(i!`W1y8!$XU4L(5mxcM)f;h#H&^6{RpYXD+i zwh>Q)cdyb(Y<54=_}`_rdPXvQ-6CY{L-o=C`&mCG*Z)H(+@&-w^2B4A=t%=o5?(YF z0U=`5`vA0Mk|Y7>F_ni5803eCnIx$vcvc~IktNn-QXoiIe~APHi?Oa@N|_eau7)Wg zON?-r?5Ri)$L{o1o(IWt<#N`FC~>^%Ei3@wSx3VcP$gbv83+u1Rgwz<*ZC#+{MR!Y z#BJ{(NNm1K7=TU0_Rt{`*!59N=uL{&C=@J8#r-TjJOLyXOh)V`AL|s$7O7%1&BQ0z z#A3Ip`z+u+e^d9_6fkb{$e;)GF*S-0RpVh(PfFNPTANQi5y(7KYQ`sc$5f^YNn?u3 zzbkoQ-NS~xrQy6`h01P)RPnMr;{SFLw2DcV6Qcw0gc+)Hfg%U7ed($_iJX1&D5B8kje`{r?gg|k{F z|4p)2LmC3K*^kDmqlrBI=;0?|*oIw3hd}`UOwg|(c1{do@oNEX{_N6k^|$1JeUz5* zuaX(HNo3n;Z%WIs&WgRcv2E_|`hzT4TPx2Ve;+4_;Afq&ByB~8DZ%LG)W;+`A_V6d4F9=_^72)RWu~*Odck% zf5W4IV}+3@);tQ#@xq&g9H6d@Sf!PQU~<(1?+~K4livMyKS2LQI|&GXtzJfe@!Q+1 zC1c@`Nce?f^W4SH6&>c^Rl+|86lnjVrCw~e*?M^%KBVeQi|R7TRYxfqHjay$HQ*&@ zrPyM~F2_+%FJAzyy;7MACFb^vq538>f4a+LOO$;GaJMVbw+RxNJqrlAe6F?wy{rr> zYR+WQ+Z7}yogB*!#!_sSx3qJ-U3Dr#k+~f^`if?<$^8sdIgUwPf?3UfM?<)yay9LD4Q6s02S@xwH6oSgLEv0;rR3^ci z*n>zaXXdj4u1xLqejkF@&J-bDKqiUaW}<$K9IaO{zOSS@T*x1{F&-~f5F{|=t|kSM z|H7vJb%(?dWPT~ngV8KA=cL=Ge;S>LCy$>rwO}X{>KDUTJ8b&e??qmbQ^1|cINl#~ z2p#C<#~f0-?zb5CdBUTBxpHBsD`(~d0WEn?wJ8B_eKi<2=<}C?J&sjVUTk0p>W@+o zd4@9O0!$hD(hkn1F7Z}qD=!z@6=mhoUES#bi4f|gU>H2BKF|=AksC%df0)}Zs!Kte z#dbZG?x(H``As@jWCsCfs;|D+b!aA|8!F5OAc0v{K&VP+(r>rA$y6?J38KZ+1eA6N zheLr~N;}>#UzOD;?{yNi0T^$ zNQm?-wPTQs+8;2q6C#bNPJ(V(2_w2LzlM;Px7#e?}`F|ccMJ=o zT^dQ>=~)PnYxq^FU$kVztpsr8ZPPbS5j^g(O^J00$W3OiB~g75Cy;2dWrV>qm5c~| zmwahpP=zk{_<-pvU%-tcwCu2euDR*K91ic1=?SAP=|8<7M79{8GabHUggC`;1H9LC zLrjh1X1bA}T%4{!fAZS!)^6&KgPL*w#UM#ROOKdu?vN%TUU98^|2$2k?v2GlgZTk* z7qL>^f69Y@ZR~Ua{SrVXLZp+vYl7Co+SFEea*I9SXiPCLj|@ zPL6hx_;fih1Malqv>v-jB~3LjICyk+RYt5M{<)Tcz;n^0-j{*O7-&}EB7`8?`pCs8rIv@qa#?-95Q5# zG(J;pe86NIf8K#W1m2oT1ev9;>nF~bh@GKMzX&wPq2A_OZ2g_no|%KY`5Mm+iIGp^ z7Y8O!JL3*@s{lM}=*okI_Onc-%f81G{)vF|MB`0fKd$2VlS);xVf;1#0r%gk^|VYl z-6`$`=rHH6k*|k>0d}Oc?#ZgELpHrc~r&?!p}X~7^w^itJ*+_K@T%^V*-q+r(`jD(4>o;1;qV9&_rI{OuP(uKwv;(Rl6mg6^gZB(j@#zf%0M`CJ=;Dq%NymE zci#>W0#s)tlFHNPmZx33OIPWMhdtNjtc9TRfBXe)3Anh}5~~wcc9!c0;bbtCw01ns057T#HVPRNStM6ec%k!PcJ->cn-T*?>3NlzT;{j=-tVY ziYFgf?B#mRj~4VeSMNK}f{sb3H=}^ouCQ6?Lx&+N6cE_@g>^|~{Cd^94j^a94oV5?6K zU>x-x$HtVr4%=GCsinVbSwqMnc2{jAPNU20eV&IQsy?|0SGTdglun6+88ogSfA)(I zdtM0HDKjzyXY_E4@kRvQM1+kq_ z!XBdxGHkS)wDa@&ZZga&t_K(c>*`E*)B)1aecJKllXX%PBY1|=^?*1w=#(LFa1Ax( zk=KqPIBGl4#2RCOaCSSr^xcyJf8Mq4*j8!>Us7$1K6JOh+kbWS97>(+)^+^=T=K&~ z!X(#Nb!4*RG<(Gu0rd9sboke_w>Wjo-2svVS=#%C@U43SfMmb_~l&& z6)^1Teo8@1IKAEly!&w4`A3!^yp4{pth|V9+b_WF`5{Cm`gu$bkhRa;wb<=PmB`TD z-ZLE@q+}e&wqEa|v3*=#f6YuPS_GF9G~1%B4ETS}4Pc06tpctS)}C0_jx&7!G1*_o zF+P2%3It&6La#-D@OG@>sx%0==Xyob6T81ixEG7#VqwP7*j_$0{2MS{(PR`f1XWv7QpLMX*kCv zKkVk(P#*P0={wA~{_>r~x9H!3-96;oi@NvlJVN}VY7zI2eqZf4snWbF*9RDB)iuyyzcplCwc2FCItfBu>+_AA%fi9G_`Yrd$_Xmj&J&MbxHz^ z5v&JvKtFD^OV-xUf0p>&xxbN^4l z7yx=I2@oD#RbG%1@8|06HDH`K*DN3mr=(6z(2kY)ZAoz}xen+<^&Lat&rU3Cl>G?vfyGRjG6@0a`URZ{xOZ%H@74*3i2X4E z@d|Hx#h;)be>FD&<0n6kv><4s&vz|N(1$F#V8_BTd}lf!sV%&gwA<2Ll#&ps?`E|T zJ_3&7t#xggIK817T!0X!_r4FDd%N820`9q8WQP)rskU|jPaJ*3 z{UO1a=i`);e;l4-NJp;HM~>_w`~c{&SzLXOBPmupe*(^AP9;nXkd%ZX9hBffNv44K zrRt!V$$i@Ey9jvtPK)vTUX!FoCKD{duyG|S6cE~bRm`^uvjs>#;~~QW`2>FXvmpW^ z!6se^fOwGlEg+d3#h^=&CD&vklU2;O1PE*-y>}RII~#~1))W+eu|y6=q=ca z1Joy%f0xK6I;A`>EWst)3SgX`SJOejo^NWBB}l4a`C|BlZ?(SSya``A2F{QoJjSAckO2-O2fz6?9EcH!imo51r0iDTPC1o8mw&QIC{;CffL z1VH>weV3~EonBpDEs0ip79UHNRqjFnVOh^Ae|7ORk@Qr6ac1vjW@1#td!6N(u&k0+ z81O7>rptX;0KX9Z?~~r-HSPH<#G4JbAqal=x*Oq`-5vuBB-UF0j$9zSHy=}`2|;OL zlIb_Xd3$&-Eu47EZI#+5CW*M-0z!oz9W*zo&{LlY@40j=5S_Mu_ox5f3oq^5p=%C? zf5*LDCknYp)|GolKr$QoEZ~Z-e{>1;Bs!Oul5m}CYL7_XBKq!taF!+mw729ek1YRy zzC?Czr?NPy%-`RGhs8h)e`LkmSf)+m5FWOjykNjfss(AMCkZL`A|O1Z z7YrtHyLJd7^3Cp>*uKeOetRaMuis_;zk+ywk2&=HVEA0+I}`lfp1qZ!A>B$jXh`n` zgoZTN+Hq!5wiA#{P`W_@S{ouR1Q<^oqdaokRbms66g6+SNn&BZNW^o3F(h^3e+3BH z`3A*+-8ji#`7$G^P7xg0NRW5Ux0V=6)$+iZ6eQ=c&!j+soV@p|fO%s%bDkR=`0-oji}MQ{vDF7<=b59mkfG zp(F+dBo+I-+MPJ|&Z*0h!2`~r%Mnp_bLwFe?eLhw%}VvmXeOK7O?L3p9R}%fe%$(- zFA?%%>N0_SMli0ljK_KGe;zsxvD;kS7{EvZ-}>7!ez$50BP4!)v0l$FA)lhBIs5(+ zXhjKP0Zi|US-R-R^IHY)?n8Dn9N2r8ObmeWD}HA0H`Y-Q@OHLLp8#)6AUS=YJ5HFT zm6Bm_Hqj{n++lu{6@tJ!;v32{E#9x!E*YVlyOcy`?UYACU_NFxe~6O|;4L=rfNx2D z{^N#_Bwwr8&q$J!)4<UCG!AxDWoArTVdy^%v}pmIm-&7eRd3=Q6Yh{_jj{ z=`_h*mVHWqAY^2lvVNf^9vi(VZvf&ZD?Uho@Ra8b1W544vL@CM661#}*;1V>Z%P88 z2i{L|mESN+J#emhf4-g*8CQa@5?o=-o&plS$2EE=8!;4z<%zKE5V&| zp81zDQVQ;IySM};czzqWfUzI;XEx#g-twMax`@Nbvje9l zc}qI=nbt(~owQw_DZG<96~W8|&rO3?O2*i2>m{KBlSLSv@V>oFLo6WoDYhG6SSGqj zp%Wg5E6E%Ne+W_e3ScI7=Y16uz{n*i=_mo$jPq5g97jsM=>~*oRI?HN?G~oOEhT-r zZLLngoZ06-lgORw2nyK41|PkE_;R|uGfS4z z{Rdg2Cpk}4H~=gTmQAnWPz#UK%6Y@9Hd@~2r0w>Nx!IGzl&^%Ccl@xWZ-$H~WT|+^ z7b4%|Xi77{Ywc&M{rh^er{AW_mj{exP|`|me}umA=<@;&GB6$K5>C}B0+AT2sF2El zaVpb$i%FQ>Nh|JKq>%PTP2;s5QtrE%c$Wd*6;FGK9n`+ZFdg!MzRqJlBH}%NQC82J zoam2Aa<|0pILdAy?%nSZ|BwXZ^{NGk;`cz{vOIJ9EoLDS-*&eh{V@=lRw~0?Zmmq< zf8E*R6p&24&yfq{q7EkgUieS`JUPEsh@}fV=JAyRBj}-2j{!8`Jb^m!sd zZKrQt9dUzhYW1K69%g-+g(sOpy<0#Gd>3Xcb-#&WEVb>Nc52W4{(_aBL1oDlUYW0i zfNd`m(ULvX`-W*rA8xHo=IFH)3;WNzm%6b`{8+}X6+Drd-2ZPNPI&%-C-370e}lYJ zMh`{r;Xfnp`-Mbv?PA0s^WE@{li^2*m)R<{PjqvxQkwvUVFiTL)8+Z%Pk2l_gh%l_ zrW41L=o9a&1kH}J0F#Vs^Kp6vncE6Uh$49FTW{L{ZEo|@A80v9d*}cn6Up47a=H-|e~%;fE4rH4>S`(?Cw}*m93y}+vzOBQ2!%J4@Bh6X zkZE7u4*(nlT|N~W-(%>}`Oxh^1xZl5@di^-4jc3W2|O~BRe<6eLk_qwu2 z0^M~bE(`ERBa)wZqr@FkPVWH$UXB2U5hxCw zfH6gKtUYskrEBCTCXh(Xxlip8B;&z$X#!UAh{ca+_acLL1raoVe;$a}@JcK7GvZLv zHc}|bCq+zv@WBe+zhI^B*O3V2Y^7%aQHMJPjLk@|=uyaSsCboveo+bhI*uuImI<(l zCX$sEJL;}4yb2@^u}c|Oq_K?=_ZEYRwAYFO^D#}|z(Eys$`K3|>U*bhsK`)2Q-r6fqIN*h5^TIW|hvEzHtWLECAVe?B9QK(6i*Bbea&i~o7S z(cK@{HjurO!qj3>NMuIpJp#shadopIU~Aqc{5PP*vFhc&(5Q}MgkI4D z-f6Odp<5lNRoS6Yu0B&w{a~?A>FnEtW_8nXjKp==0YdtK5iPn3c;dsTixOJc=tg>J zCoJc)YvbPgfB7O6H}clrx9+CMTMyfMiw}6_mb2;Z|N9G7eSS+%Qgg2YuK06_!z46oH_~%`!57KPkQgV>qTy7`s1IM*y9(9^StAoZkD>iqIzxXYCGimXm{xNz&^QG zx1ha~d%Wd|$QY=Vw+VHM!{lq9roweo$2TytuPrSXZ}*7QF(BmQ?FHOtoLyQuaBA62pF%o&Yz| zN++#4X$VsC+s-$s+tyM?FTnj5QS;3m!k5<4V;xG;VR*>~h-Nf`*Rt^glC$vJk5Q3E zTY3nRng8SmU%VOTbAJayLcRMUvA0eQ?Af>~ue1~8Y4DidOGzk8yA}M)vL-(l9#e0u ze*w=Kwb$^N>PLq7G^wLx|G}aOEAuD@>uB0@PulSm?2PeB3nr9_K1#!e?4BGX0=(@P z?W3TrrZ?rtRNv7=NMffVb!+M)eTbVnO?|>pq(+%R>@z^b@nv)dxX^CzrFu*vy|p^T zNcEp_C?EUi-BJQKL?&=hwPJe`Pvlex>D32=vuEiU8v?NMtG4PG!`uk)AxH z)#n-M0B%5$zjy9i?Cx23O+d2M$Y@3*I@Xsax1E6YQ)zxN#3$^%b^uGsy;5*IH;G)X$8iVSDZZB8br6ZqM`*)XTO*%+oI<=lOiZ zJb%r!uHM?I^dZX-Ad1RY-UNYA$Y)e=&osl{M;_e2OS!POmd-6eL~MmLL|%Huc+z)E z*L*6ya8{Cua$6qQY=6-^Upp8NHr0s*FoTF?{E)LljdK*IW6LSCZK1_EWEVWx6Fy`Y zM1&gAHd#H;mX5;)dmB9Gf7t53@EACy4}V0a=~R$#pV*0T@c$1ZsTTVS+`_+RV(29u zDB#K9m-0xQ|2TGicM*qd8$Ink1??A`Bdy;I#wZP46k~3we*a=59uV8(xaqegZc0LV zc&Bk9Ub3;G8jZ*1d5b~5-Cc^|hoHL@VEWv>-^-Gv6S)(>nVv(^K_l0>iKqhLB7go+ z_;OU9IrHg+w`AWWr4ryBzc?AG?s=0h4UvW79HsC9xdYZ6gea+-_L`K0aTA9Du)Iqx z1ySmqy?~3`!rG&iw{xZOlh;%g{O?Zbtqu#PP9O(6B37|gT6eA*c2_?mnuMfaHZyMlKWjxQCYTQLq1i*CP=obMov zSaj4jp+{0dx~0h|UGhAeza@=0s-GCrzsA9EpLvbYRF!VUH4y=6EKK=ofLvqCEJam1 z4l(N85BO(;eP0c!>3+s1T#(2{(y%-b{!Z`rkfn~5^6s}Tl%9Hx0FrM|n13r|so9mK zFN9F7WDcbuo?W-0b3J@u8k z{9G|CZ6wEcUrPXNS#pVj-56X^8Bvq*9|*~}j}{z1x2G3c5Eimdpkm$ZM-U3Qrt9oS zusTk|YC;0;Sdnf4jbx9r{C~pB$<7LxYFn}v15W>0pntDyLK^0c`-jA^GP%`9mwK3~ zR~MkWDa&Fr=|NF=03qP2usgT9Y=5FV?Vbkb^AqvI zol7)A0q5>ZGu~E^UX!lXzZaO=K;d=F~i=179+h( zF!E;ft`X+}rq*12)K zwsP3EN)iGtYZ_yYwsMc<;XUbt?cH?CH6o*|_1g8Ajjeet>2ZJ`1;ppkOD`b~o3Vy-+uNi`&&J0Q8#UpSsKv$uzEtH-8}4Y&V@C<&l2TJ(iAp zQiLWi&66U0bNqr0TN&>5JP~1LGSkRc#FsduZKYtG2CR2|B2;2|k61%oA;_n}X?PrU z2SbXv|Dt20WLSJh^(2sJW_NiTM`XE;qs$7Rt?jFTbFZzN6JVTf_P4>Hri@VHD#cF^sD?5i`>YtX0YWr>Idef!f>e*SOPYQ7X;HXuMO+=n!+$ui;ct*Pgn--^5+4)g}?yJcq0T`LTmSPt6g(zJD!V+po zINjx*{~25VmIYpvo9h`3?dDhkB#$rPXnJoNP%N5PFB=hQ9-hXaf@h~O_-}zl zyE#5grhgjz`bccjP6e^=XOl_H)Jg=~(VeK;)rapU6Texo!YsG#-s`1&kA{T%04^94EtFo*2j6qjwvCahB3e z7v1J~s~Qpnh_{AZwE()MZTpnO^SJM;v*9GmsekrqfUEU4(u0|T5Ud!Ys3wOkw{Cf$ z$G9Kbw55BZiY5Vuz5bl#E=j(8>hmng!!0i6Xe8fXRE<1uBQdl}$v79yUR#d+W9kI} z;Q0mCNcCuZ_$(!%A8&2_8Uoy}d5M1V@+2=mV-PUT<8suy_kXFWt9`#XIHnx2lqzTm0NipWRKTwl5!1jc5BRuZw(@tYNsXntU;JSF)74MySOedR~a%? zk5`l%VV2r)B)Ou94S0wy8U-X0%<3b< z{4y1g2oPoGbt^cJsj37*%1w1N6N~Mof7i%}D94Jd>S>55haIZ^0SF|A!E;6_$$yp3 zlu^mSZ=a)~fQTW-$7%0qK?}LXwkqQsaK?679|^@OnzkFAy+w$oXmfpj8Ltx9ITX@H@eshxPL~QeV0aJshv$0brg^p(x-s1u6Ez1pl1Dp&*vv8&-&fU(ZoDqvV6LnTlFV=J0g8j9gFM*TGqu4To*4LcUlQ>tGt_K_#s zD}JvB0qE$vxb7tw?SFj1{2-)`5PCkr7<+S+2Zj|Tp-y11y7%2)61=lXj20jauH;Eh z@JwZj6LfE~0s&s@O>Soa-MsaePB^GXqc;6oGYQ_~uUaD*{-7?ur~fb0V~p<{0Jew_ zU!~v*gFqNyz`f&iyGu#fUbj-x;EBl}B#{;w1nm_DcQMB<<YaN z1tfiiC^`a?%zxmetm34Y%Uvpr*GreDIh32_(#lHBPDe z-!?*?VA?;Gn5ERTS+nh+ZGPu)a%TyZ+D}D zIdpjKq=SWGPVjIaEbZ+7W%`+3+98Y7(z!vv+8wL3oqv~_s}$ryYCNNi2(~lI1jJ$_ z1Cb0LJj6L=lvW^=CAnsT$U*c{{kFd#thb@C1G|KChv^OV+(jBI!B`*PsAw>}5c*LJ z=K1P$ILR`fX9^O_7CZYbZDbao^%gS=V_quW-dfiQLlTWx!*}@^e%*D|AP)v==kjL4 zC|qGZSbr%wdsrDyUo08tYo#tW=IsTv+moCA=jsON=O@$pbevGMzeuQWa$R&YO|sGe z#zeO>W$hwgsXm8In@&&wPCS?a&bsY1f4}z&XauO2>R|;=os9@ukFFGT zf`8k@uMBLoKEB&k5N^ny4Lp$eC8O)x?&%22wE1@~P0)YARR0(TK#1h?M!X~#@Af?L zV_+m>+NInL!%UcRebN}M2 zp4Lf376Y}H>g$lUxq$n4)0c^t`)(pUkbmInO#;RMA)pu3U zACL&tvaI?6?$MN*283|F`gV2_&bCX*Fksf1rD=S%rY1Cu7)i%@< z;UMR{80!CTasa*mfn&6^-=6BYk&h1X=G%>t7CkRb>~`B$CH8QtFi{lsEVZ>L}>zxh0mTpBx#z^9Mo>wk*F?XF;0 zpOS+Ya9Y~nZzF5{La1KswrO%QLqK_%i7H}(F@SWmjP}3G<@l|2=q$UNB=7_rbDJn2 zCK%&F?o|NEGx`QhfvvtJ1y^FRt)5lNT}v8P3gTiW32y)`#*Q$q2LrSAVaU0k`SFr!T=sin@~!|d3ec1 zC*Tc}Lc}8heb|y!7Fp*-Jkz_cBI_KBogQicug#^e1E=mjB~d3}SS86;ehbMM$t-?3 z(m)UjdF(PYozVrb(!;Q~#?(=Tv-RxaD4QTNvlkHW;w5$m63ol`)PEOA2$OZW76kNW zO+OexWxo)mr<-J+uqJs=0K0EJ4xyGjdy|B?fV0iK&;RdTtYrJXY`BRahTx@Q7*PJn zh9Sw;(*$nj&Q416?^qq6W)NFtAIBJ+}9*nif#RiS>|!ak5=A>isqYmX$# zJ{1U%7*fBaUEk}*3a~S0dESaSEHUv3+T1Q1$s~&F7e6E=V>#SPi=&c!5E*;>bHikm ztRm47oGH^JdcNOGqDy?t0O7jC9zzj1HeFHp0*pzsbkYIdzv!WVpPKwtVLF{saPO)1 z6xj9EYJW30W9m&8%E>bG^gfy1KfRAeMYuCRl&w(;-oei`YA0rfh$YQpg>Xv0Z4{ zNvekUPq+>=koPd}r6iP-UH}D1>X$v}-H4@GLK2G`y$2iVNGc`zv_^qB6FRfpY?iXfpH4dMT8iyzknhC4}XD*(wk%im(Q9)O{Cs(o23Pk_%59!_$~9kn?KJtR$R*Fe$e@3p4e;DF9tDK%GT{*b;TC!+8AXP8fdb-`&ARr_Lq0(pdCe-I z&(ZbP2HoS>3Dr#kLE}DjVF!ynN{2DvjqU8)6c7a2r+qO*iJ%!LA9VF3)J|=7wSUwK z`l_y2Yj$lD+D%CTRFq@d>aGfSTa$D`fMJF-rJ|8ho?$uaC&Y_*x+Kmz$RjWFrOzam z-Tm1uLH3Uy{(c_L##0?50U^_#-4Vg#HSg`E?!xtRy~TFS!cW8#gn+kQ9v?={6^|=G z#AIe|A=bew>8SzX>+}{E{o}5oLw{fygZT=hBp9od3zF^|I_SWma0AtnM zdRGj1Z0lhS5#u9zZqay;y%hV{l|$)Z5TS!z8@4G zho0aVC}R$ti3iqhsILq9#j}_D*hS1%tPJ&$@O!$^E{q+LpS_;~hvMDUg9@?ZVO<#w zgpE>M2kX)fapN}~|Gr;CjQG7*e>OR-nB{MWZW4c@5S<{FkW0ZF1`of0ylb<9iAs)OogX z(oe*+RVx5*-DP_1glsW+k zz}tTDGT&58@!&SZ;Q(x%Ar1%V36tep7Nw1Kak~j;y@_vHJynjKbs-##0R1hGOoa-47i|38>IsMs=iKUOzS;PFi&`uo zJEgxH4l=>9W!R8jo@C@CJr>|jeT@pDn5&cI5cZtbnmp5D4UvmnFqB+R>H2LMDkII@ z^@}5sf_SOvJuYBs4M<5049hg=PcJPwy;BM@;+BqcOn(vkza?izQcE|Nn}UvXkAU^Uf&X%IFxG zKo{mN*}(rM--Wm9qA3Vy83rKR7-U%n7}}t-$Er^&&8L$_)bksnWbHoOFLE;3e`$mIgp8 zTQ?HKT+pvl(4n_vejR*B!?1r1bF_-Xve1nU@PEIn&lj9rY0B&bTuoiA!Qxlzj790V z$G@$D?7w1fqkl{?G&v!mc0A)H_0o{{OcEg-@|f;AV-NnJEv>)jkt3Nsz3oQam@(B$ z^}*NPr8*?w@luk6F6!}$;xROomFk{{|7Tr7qPUOw>Yszfsxss-g+MX%qa1P&Bj*16 z7Jo3#`D5yDB#`EgR!hc|lSsIea>A{vYwE%Ca&)EE5d?;=w*v0=i*I7A^YWX4I*yFYOi=nJ2}0Ee&7_)>P4EI5Gi_0%u| zTYo_hZ^5vYu9x0GgGrb);GKR`4d@%rJAb*cr6Y>uNq*JY;gFkP>Xbd{x8|!pq-0<|rk_FQ{qC@z|JR0|eL@+|?ue}1c z`}SQ6@`Aj8kYKNJP+}*nx2qUX?PDCPl0bWYB4Nc|tUN&fg*-f8fiM-()lMi*-G53y zpe@YdQ~OQAg0RxW7DXL6_5o!E0z^1Pug6daUN$v|0`SgxbnxE){oetNQ)n;N7c#so0h#&g#w zB0%@94%x^6Tkq-sfx2%GJ4>Ev7=H-fl`;p6VW3w_2m!|*E^CnC^SPTSRsx2x-t=@2 zcxQ5L0>Yuy+R>pVYD$2yOt(>cgfQ4Bwat36a!S6g)iGOh>-tn=dM#8Xm;->K>|WbvwtUG5M;MI zYEOKOpN;pg7)+U*)@&qECWI`~zrC4;K>#iUR126({%0M6cr*3;Ksb1yT~g|z;MY$9 z@zxXPBqV|x(ogb12QGX^uffm_zUPSHh8XaHl9ks_h{-q_RRK8f(Io)T*3l&({)W<| zMpf8M;_k`<1Q>Bb9s4WOs(QRXn4L3WtPC=Xf#$S7(3AJwU=kN zE$)zp+ia{|we8%aYumB&F7=VLnM9&mjl8TGLwQut*4p}k773`A)+RgDS(0@w!4vlB zDIjL~{q}Q^umnxV)kn~(PwNNgCpm%1qzxqmCT?@x^Q{Vj2T zpCVBP2<0f&F4!GI11gbB-b;KYjZ9M~4d9P^0F2s_Xb+IBcX|PlzEi6haJQiWUq;4= z)zuFf8Ra;9oUJ{An%rJ$$M^5=!i972=ZSsg4L5U<=KqCC7UxyWaV5yFF8 zm;7#gbmvhO4!g-k>Y*P!;ysTt{YD7SPIpBCq3-lF1ZcJ&FMoO?EQecoDaH%j>6ZBX zMj~@;tD8R{YA?5deQwQ(e0NZO$j;5#i$IQ?lMAc>8?ZxX>v6<@o+L z)X*L7C}@?Muz!Q1karLx4tsfx0>+FUT^>moj%CipZ+`&1KVJWzwN8U!5UAS-io%Tr z{rw1lX2~~xGv^Z58+Pz5U@T7k)yPY1>(wcc&!#>cXcP~~De2EhX3~Tf0GyT_rh;Ta zpQU=NflZQYC5YFMoPNohgwo zM%PGYGV;aIyqepWFd*KNG=wE~)2No3&cIhgB+;I4Z|sC3sg1hEcCg z5Gsxd+keC@8!%Q>m9{{Ym@I{-fRKqMD-hrwzu3L+D{g!T(@uS=@1z(t&JxgnaV}Ca ziILaTym<4jVpXPsaa$rfnP9Bkw`=Vc>xk}+NEk<_H7Ee^tYUs%@;bEN<@Wm{e@VLj zTj{VqPF`U@WAEU8_*$7DF*0nwNGfUTJHRA4uYWa(mT~_JjroT_6UZ$KueQa(OqU+w zo6c|x%WozICePUagjS-^GDf!!SzI;dDU43(EUp0FhKO< zo9;)R4DA!$0J6KOrzhYwQwK4mk_X-xrGF&suF3|WpFDB@EhS-ncX_1Ypt?#QVcZ^{ zdvD43N**J?7*a=PKVXbMjn78b7#>$n8-OZAcefbKsF_XF`)o+S_#5a-=fz!6s1b3X_Y<4d=56pd%s&%)M_)5uJ3>iu)!7F-EJk^*-)iRK8yX-$8Xt27io|Spu@-K#lL9 zpMsI+SL`o9ya)Z?#shNNFA(M5t55LuDDv z=%uanlpIOmNh}!P8Gn1f?0I62oQU*?_~oC>$MdrZ;jwjJpAx_@c$Ro3g&~=&obcZX zh5_+<6@&HRZwPuqoSavA;E2P~o0}DE#hxT*8NfJ!O>w;f%=_&rFK9y7P07s)7-zL9 zly-t1pRvoUT*={;flu~;Sp9XNt|a#MGyDku**{Y7>m=^AeSa(+lWf|SCXSSh-!f)t zgqzzjOKrmWBxh@aZa;s;@7oYjRN_zoAqvlxH?)!}l>IHiySsSQ0Kyfn`TlMnnHlvz zU?)-cCTRuR3y*a9{;`pF5|_Wmg=O;YF@xNZ6EP^285|w`pNLW<#Mxt zapF4t?K<&6_cUFoZnAGa-hw#auKjs@C9>KUHNFJxY=4o20-QbOs=i#5{NrSH3W#%` z>uN~YPfYA1g9_>VmA28ptr;+8)x0`f@U#6pg$w8hUu`H*8Y z;AtGOUgOJprwh`=s&rQ-w>+0S@;TaL-> zTfYyXL(_FyAk*5Tmo6a2NEnIwh6o4ZstF(i|*_YiM1RWfmv`DsgPq#{G+4t6ojE?IF%g>}BK}XXh zk}bh7y~oos5l6qEmqSUWDI%l^5_xQ;yGZY>Rl0lN^lt^H zpMN>ZGcC3`(eh3(K1Zt!;bVDq9IfQn)*}N67OTM?`U0_=OhgO7NTn(_;(+jBOD7-V z`I(efusHcFNmOM>vKk&d-<#Y7^d=+rFSZYGO)pj@put?02a-lcO-;bdiJ_E)2|ZRy z;#Riwcc0{?#1AV$-`#bfoFt}BFV$D?eShnEzzdwO8P{bcE34JTr+@Hv zU9E5-9>oGgF18&jdmy32_jiB$&vHS>b)xq8^~clG&$X^63Ff_mD}JB$hd`oxBsMw0 zz0NrWjN{%Bxlh3O_D2si0phIZy84jy=NC5ef#|!gBf`I6&|aeW4)~W1_1~vSDc7dA zs(@>aB?$)s_dU7be&*gl1pXl#Mt@HtNt^!sxl`8QKhVvU_mk3K2S+NOj<0%p2a z?P5k(jR`?iGNzg^E`nV4V1eBpU?0aX^!7CxG66u_e+YJl8}u(a>kL z)`jN<94HNr0^)xvu0?=h{-p`_-wS4!zd!ry8vp}$wJs4|fIF<&FHjl;zkhqvZWA$l z)A;&|!H=zPXB{}lt|o%#fMiE@{i-vWFLBOKaGO``-0n?Z%p`0!4{=}1=!M&S5ufww znH=?2v-{qTfZ>tb^@ZYF+BH96fCJLd$hZ4 zaR*9phY34s$?Mxr0ioB#ITi4RbvcfJCtcaf3_8h%S(gyL;|h+ka#H>ahl`*BF7y zG@$j``jlwq1Z_^q?g0pKW?r5NA9hMX@&V6X3Zkk}<_T)>^Cw&7|B%>DTJ88>>guPF zi|1PxIs^4r%y-!|0mD%2w}3dL-Dl?9q{H?p#SG67Ij{oyY|lvoQP<(mr6LIK#jQTg zr~dw%?rN^T){`9D+JC4g6{aT#z_7HYm~%+PlBj!>k_+M2XMrP1h-OML$gwiB{C|H* zzMr3h-|70@A-=U?(RP0uf!PwpP{53HndL|0^soC8lCfi%L@xtEqJ8&1iA1MO%wGg! zNiwzzNMyltcbU*#X}Ns{^(15{x-2heA{5__9wbsOwjCwMk$-^=yG8^F6FlvFftet< zLiJh~VvJe#^$}lEd{*8G0C?NhJqF2F!nW=5NXRx_ms2*jO^E_c zFwQ6aU0LT$vVTmHQYL7pP<80b_ED%hKt{Bzjeume^YY9w+Ru1=tCK(dnN5h(j$izR z)Lk}SfeN5Qjs|^aGriny`GMz#StceuinD&wmV93BOg?VkQW8FH$?ggWMe*uT8A`Nw z^;caAtnZVC<5PPjN5_nR3;xBJ$pa^x$GiH2#Yy4l&wpM?Jk^j+H_Y^}*54AodXEWP|7XtO&j=sn%qq-1M*IjILC7{uFMG8svsV|g1aAZ*-`segJ@>rRh?2+|S@`uYQ)J-fSF{b>}ckp#7p# zq<=@=<3mc15Ww}VH>0T9PA|4{fXm}3AtOCNTf_B4324`KyIUAi$JI9j{oD9D>YIUr zZS2Y-0g|AtG-sb@_9O%)_f~>o&FIZF;y^?;*8of4O+D%-Z{$Hk9x?Z-7^p|c-TTeyF~*g=O-9E(t!wUkyzK$a_p{yq?re{Vs^ zvR0pV@f$yHG2&Mx0l1+iiz2d^gMfR@*FP{Z)P?oauVf;{Zyb6xRY)JFVZYU9M`oMbD% zM-rYhe)q*+ZNhU>Bwi}_OjlCD_>s-@iG%3dUJ6b!XUL@p;BMVcDG7ghxJ3LOpNc_<>M<1s+!Wf9wc#cqs;dnyuRjr@Z`WTKRmiiH zlAHLfTKz9#@@@JO_EMXM4K157{;{*zyhz(3G_4y0Ru%rCwIpE;Ixf-lXPSOf0-MU0 zZ$Xe45f*3>nlqP994sndXMep_AyGe-JdijutT{_X`_nZL@S-y+4tR*0OE#S;+RT*?RynnW%djQ0$riUGrVWIAH!NH4l zr6b<+<1PWFuJ>n1zV_{sp)x@Z!>53oAV?tr5QpV#WTheEAg5TvfSBDn8Q4|rj#)vh zPr2T+@`X2ee|tAuZc~u@nl%?qB9C4z3VvviuXv>elNs!@999D=7Z0 z_&*m64J6$=*mPZ;b-?yMZ|uDxH#<{3`uh-Q%c7su3pjs4ivKzYv`Nma&qI?^&;JO- z;*cea3LyIa-_nmd?D&h}`1ig5<6NiSNhratxkSkqaDT)ROQK#ae*oDZ-*1g>>+~f_ zk^xT-i$snjfMNYfd=nt#*{%(F7#g1nQX=aYn(-gPHf=+X^a!yY8%K^;XZ-I^TuQLL z_t3j5K>xXsyid%@)k|%droAe7EiIYnMc}r%`;hhL;JMj*&Y7<|K`xf;m6V)!mdzA( z*E8Fy&wt!;{8dlV9KvCX$YJUbyYh>2c%I3IdR)9D&Pt+6Y;`bOh0#I=7N0&@vH?jC zu?vVt+SS3bl76yM5cWybN)wEYPW_P(jE%ivJ|hEJ`Pi0DDR%e0TFTdz48?#xYaj*S zAr-uUh|RWQ9szP=_U%Y$$PQ9>%H-OxTWJjmxPRMU$i%<8&|7Nc9GpCd=&L3+@6q_E z6pL-igFPh=F``FK+^EII%JB-VB<5}FLHL{`!t826crY7^O>3fO3%1rTh(aD1yV2GF zz(dr_*jEs@J$L|y#b&eoY7SsWj-rUt?%48Wk2-|C9Fa##EUW-g_XQl* z)_>y&jv{UBgf3<^AmVcKEw*Aq&zly zKpS_A@u@x}vhOH!^rpj~`iKMwg?5EkLw_x|jV^+SfXG_zUP|6LGk*D346)ldjBuX% zE(?z*-<6i*x5N|RbJBABM;)dD?k|Aj#SYnVbOG}uvBV-n>vm5sD+DHtyNy!vj_qf^ z-G=HC`+}M4v%1Anaomd#L=&7+dY{s(OF6G_MbE2zu}FbEi+_k zGhu!oQC9+t1@!1d2Xy-_I&b47zj%{FCWaGwS1b-ZM}prI#8e(y@TWrZAtR|TNxuRZ zlW2>gT7ovWgxv$qwYTJ~1zbJJfPc4{73X4!(*(PocBs@PH%IGQFuwGX%;|t|U}^@~ zOuCC-_=R2=sdjAYECjrycPk|kj9u@Q2iQ-XQz|dFbWHpvyJ3)#=(0TVm`zEDX*p*0 z&`F27Yr|2jfCF!78E3?`{9-u-*;zvMtHT4G;N>CI~lby>F}&w zc{BU(ejb@sPI+=44j2atNw^FcRg;gC4k4@Bv~disqwCyBM(*mmf?$73C&iEFx06iW zn*stXto$^0Uu@lVM|t2Lzkk>d0g0-;wLdqEBT*fR`Gqi@b^Y0>^Eaj1!R!~)@qI%} z&dqd8S#oasGi5h-)uWxI#xUS*OMmjL02--9PbqoB zZc+;w&`-GrMi`dxA>G2zhHZL+1B-*9o->hg9e)8SUymGiZwhIGv}?QihCKN`4T}Wa zW2n=9O2CF~cuL7Q(-k`qwb%BGJb8XMj<;>7ZHd}zA44bY#T&PE$%>I6Dd0x|Ar0-6 z>X3$KmXfhccS(t!V1KOKlI{X z-9@<<@b);2&QcwI5*zp1hLLXFT}?BTTYa0zdji4`J}w!Ev48&bsGm0Qld^}Yz{?g@s;}99H>Lm0Gq4lgzNJUI&C_c;aV|KLS{V?M z@Yd?w2*|k(DcCqQiSi#H+~F=gzxa&GvXKXe_z-ds28_doQvFE0hOMcgzi7P1BTabo ziwu3dc-fBt?|)nx2pQm?h`3;b(Gy_`jR)%qxN;v|7ss-GkfD>mY2zx3-KJl)FeYJg$5cMU4zZ^N3u zjxu1Lf+o_Ruoc>|0>=K@G^if%FM9OD@Otg-p-rwO$$$7TBxs@Tuw#DvY*b!d)CgM{&0UoMdGD zUXZ7QoF0(SBHg40e4F-`M4ujzP#A6JM+y3W$hv1qY7;={I#mTjWOSmp^VWq}Qv%P~ zbnjG`0q;q0DJ_8b=O}iK2jJx`% zI)6L9xgK+!-QBP7Y+!5ucs3~*U(s#>xm;aR8-LMwYu`cxvfNx>BOx!_RQC!c(23rg zK5tr_9EM`tJvZ&)O8QE#bshK4dDQb2F;C(&Rt0??(M<*H!;j<|286ECh(AZ|yl;&) zL=1F>39w6bZo(wN2Vnf1E!lPe??Tw&-G2*_4kdy0DbEahN@-OvN8~_yba3Tb8a#>2 zXxJZm8H>zlBV=Db&`EAf8E-$yZC$S*5iV9*hsaV#R8&b9!ML&(;3zq#Ix?V28V5XK z8BryT)6mtgjw<>b<$Vyn;^Rv?1HuiWF1}=R*+b0=KvJ@FZTN(dRAz}KUv=IlE`R#8 zw>&QPs;)hWm(|tv0r5~|Y~|-7XukFA1{RY+c{gN2+isF~I6<>E%M)XdY#RTIpy=pL zgD3qa(N)I%C8*VFhoG;76-81MAq*Wk#Fq?j;u?UesNq#6ugsH!D&v+Ak)LDIfA0}T z$8}W}$l39^+jxta;kNT4$Zbo6Vt@QDNGcQO9>DleBAu1k4P)w-+R#t3hTjw$jZgJj zQwh#<#IYkm8$Si#|E2{XgytTlItiBEfJ88dE7C{yWUpRpDlt29!3qYUB}u^n<2=13 z7y|Gwuh72{k(k98T?K@v5^stG7vyItX?rYj?F2-IZ?94vN=g{xi!v!Jmwy)!p`hO7 z2aR-0bA7=heb7Wr4-ogM?>wK#{5!3FFM}A8HQ(8l*lkmP4Cz`pS;&tW>6RvJ03eK% z5LyYYHje&mVsSNdD;RDH{Rx!@iw?dqNH;}ITeo+*0;c=Q)VdZY($5nDZl&Z{^GZ+wAZ*iqUJ;2~ z!rIc`NW@0Jqt@lp#K&6~0?MYmG$J#0UUbR>!yHscI6#NK)wvR8Lw{J&@7;c4VP$q5 z#@H96lGlQxZ)>_houscM3u1yX%3PP`lOAsOl#+A%shx!9lGHQ_9y{W&0SM7m<}|ro zwt8#;;G>mps+?~#D`1ihWo`bcU`w^8Ir*Dr8EN-n!+)aqx9 zBd4DPImjl9?VmKebK3wU^5!%S-J)`oC^)qmZx6BF`_Zg_?TYUwe(#2f&O z*InkvO1Cn}0GePNyl*chA>8CT`lh~U{G?gIJCekce!{^G{Xn>=wjrSzfN*QB+et!#6s4Tr(OfXg@*Oz%^TzNcH?fW*C$j(?JhAeq4vzi4%7+bbbQQ7w;V_zbU zBoS|9Qj{!3k)7<>vPAaEzD9NtLI}T6{ocoS~^p;51&gXE)t@*!E+wN_4)o zafvc|sxmW)YI8N}^>?@BxJJ>Mu+q>nCrs`14Hs9EOFMN%8=4pDpQJZjIm!B^NVkKY zTG#l%0Jt_TS!DY~V7FvkWU^FG;`7JZo*1vlbRFUfpA@$-qPm~DQA0=Hirf#@H#d}c zMc=9=sk5R>TJ%F}5C^NXe&Zu@>&lc&sR*yE{PFk+-r=B&-8MIRSY}#34c?2VZr!XV zXd~+rN}p=cYO1#)`0$B1t9j6ryiQMawPQ*%1;8-mMO#NTKVdu^MdA;)=d2J=9^ zKI+<~mv75m&;FAdH?-MxF|hu7UWa{F@SD#)K@8mvSBk=fNGD2fM+coZd?D*GqSgJ} z@LC}okPc16wuqH$%*z?TJWPXLfZt?!rF(3AOKM3dD7Oba8+XdauP_aMOBl|6RUDgF zk)gVnmrhF~BD25*)t6GgGe@F$Lo+0UFY3!H?*Z*pmo3Js%LSROp4R;ODqEg6^IX38Gdg;9<~=-a1S7Z;cS)<1lYmzEJusKR#dR)6nIiaKU-%7SMGr*w`0=5~oFn zC`r}O+PNogekvmyKSHs|L-O-yMxVqw;I;E^xxFkd%{VW%_A=@*D)F3c6wb&`xh`;4 z9B8DBD0w-K zz)l6Lx}eh{zLr;8M64xO)JBziI{)#zmw+;pg%72z-ioz*T28>lLi*dHQ+_^sjVh6e z-`Qm>U1W_MM~C}lSfZzNK1jndE?jZx+6T@&N?;cU(e;Zf=2_LB+M6+=r8kfmZQH+H zxudtZvN)ytvP=J($Yv^c`((FR9xDDM^PexO6LX$oS4u5he?@78722p=6j^Rt}={*^UIDX!vDawlDd6eR-XA~ztq zDiludyT{AL7m>b3;r*)lbCYm>Wgz?*n~|vNL_fV|(y@>11hniUHd^<((Li%rz>77u zcYGYr{&hd}1obOyW0bgB=yKZvQfNajNGv_MoCWk|Ard;TcBf=TG(htB@_w;sZ8)9p zpxo3sM^_|o9pIn_8#Yof2ThIS5&-6bqSrzXo?HF+b{<=p5^Tj~c=E(KgqRr5+sOG0 zksHLxMQY6l+vsnzb<8ynJ1wb47n&#`k&711lpZFCcZ>b?ooi|RE+Of_!(!}Yfrwu~ ze~1=!2mks(2-k3$)MHTRz$_sNS+7=8Wcb9S2CdyXaEZR`xaQ8{P`6n1`e~p`#Os-W zxxsVUwXFx?jDb!6XbxHK#W_ws6UolU>Uo%P)7HTQq4A>!Duf#IPH!HLeB>Ew=exd+ zV)GTw8v|p*9|d_+x7H9I38T9C^09HEz0U@O=o*`k`zr2Oa0i(f9^{7J<62=tQZB8! z4E2P<7xSyEkve10hun1B1HwQmlP3E9O6W-uof=8D{gC9W;%UE$gCY8=<2>5iLq(m| zcSo%Ug|{DF3!V0H69!_4cfhm*K6jZZ!d8K8H=3|f4vk!Dq+QMrVHKZ?hFXH$cUhO- zWs)2WL=7E2$L|=$YMw0esacYPU=Vv|T!rg;m+M3C!HpgUPiCx`zd!*<`^$xH)4a7O zsFY!-xh4mS?qIm&d-@y+(x(*TSvAeRmFwj^)HX=Iz9>dpY44iB1B9dLaMK6hAImMZ z*DMKdJD-ma#eKb=(ZsF_HG1(tv_t}T3WP`Ix6CzoM-@j8$blUOEe4v`+aIH5Rw-3% zmJI_B?9l$<9QWk1yRHCrs$w?`UZ!Bv7F)p{#xj)lAY_4g|DDI}nJp(N!i9#G?k^A% z%hx0{&oQ&l(=4?Bz-=~>D@K)%e(c|TJv#&zod$TD&JmdZ{FOX+|rlZOavNd z%e52eAdf)roe~AR8^9J8<*X3b8go(UixV zj-%!SJ4}{xe30e)iyvF$L;1n=)9aef7Pg;16KFM)oXP(Ty0~Gcz~zC(cg(tVf+lOk zmN+3j_lB5zaJvs}_Qsb8vn97UU5A*XSI6$S9;n4A_{+a<-|{JINd8`BblJhZS#F2X;wz^bpr92WDhM@eM<-qV!B2Ep5%U zvzu%tr`AuhJ|oJ8l+{Wwgmmx6Hfn~fGB8XtM3fPrx+@uxV)d2|)5mzVF3W^FI34r7 z_`nWj*I;VIjjk(U7>^3Rx-+9K?x8=X`^B_w{eVIKp@1Y2Lcg+W{EeLpR4b_6LKUgT zYU^vj^~v5p63`-Owv5NrE+je$(n{Prx16-NT)MkspqMA;(^yAG2bPqVabT`~A_nR(amSfD4oZC}F2)1QEkh36V`S2DXLC966z zga@BTz^BYySx$XV%7k#%lwb4@$SI*|bMPWim%I zt?uJ*^F6aQZ6C{U{SEop@KYuxcVu^6AMp7O3Hx%Trg`ncMx9e`Zq}v7XY(&o z3CK8jRfJrv(Gfg7{w8*VhOjN(0;hoR-|-eqcY9Vg*S?Ljky~1@y1~E9!&IF!!GrcB zU<-hS7*=5kI)f+A6puZX>&;MnGWs|n$Z@{Nn7x?gmT9{kuMSn1Yo9a-g3k6;WUM6G zZd^L0^7?gU<&33ys@Z1Q>3PI#+Z$A!K=GyS^ng^!0Pg^tZ-m&@JALPr*H zg{27RM<-PMO`zr)OszD{tZc;|A>?mx%GA>VKON@<19D4QVq5RmQQ@x?bmMrBZxH^7 zTuyO5@`r|Lb64(mXH^V}cy`kW=vo**w00k=tZ~2=ojS3QClmQu%*nI<%mlX@3U`5; ze;9tepHe57=e7q(D8&cEJWzdUjPhxhahvD%lW#*oKFtDHt}MupSId$Vi)>1w`j8X* zfN6FQJ@cx2Ar{)v48^#rqrS>X9)AJ?JgcD8Lg7rU~Yfq9LM!xu35*$EQyFz zcFKqf(N;a3AkhPbi0hu^It5wkc&uCiSanM8GS;zIKITe0+ZlJUBnAAk?{d$>oATu@ z*Mbn|iRSdBo?&NobMs?2u58iW9Nhbjx?v-msK?X zG$cbdrY~Qg+}W|s9DQ!~lD9;%el;Yg=hB=?U16bq(J8g`0ePEnaaLvE`WahZVW2#h zqt&`sCt$!%%YcfGH~Wf3T|ncN(Q2kQqumUo8SlwA#U~=4t1B$UzrIgk_L!gYza8`B z{?!T!u$*2So^7;6CGwPFbkfrtkxUkrK&|&gitwR!m&xG!2|o&=f~rr1n+VT>kT}0a z9yP#U$KnJ)$uq111C(YbUC6M`5ev_3W+`zlE1*5 zJxezv7iATdq}&GS@tIz#Gt2|x{0Hi0q6D&@)+gEYeC0+ZP${}&nlcg zf0M8eqnxheW_Z1&0mll6p#k<10*s05vva;>C_$L~E zhEncn-81)v;x|?FDs1CT0m?=nV?2!YtN@qh)&Uh!$rZY#zdI#v1?*m9*UT%XEsX!NdaW>2kek9zlBTKdsUzrXd5 z27a@wYFsHA_&D=r(`kL`V7wgUZ8WR(87Z(hRX*ogjISONIGEUi0}**+(Tk(O8^fFH z`x9?#-OMcxDh^idfz_Rcjp_WZ-QDpmH=z1;)tJR~UJFzFh_n+r@Y@^y^@+WXjfTC4 zdkfo}d%c^Ufj>mn?0;nb%UAO0i^5dCt2}>8mE8sOIQ5JiyG+!Km``e#zX&o7ZzBh6V$_{!@ z9%G(F2*3U2yqq&Ums8d`rolir_s?5>ukU;kI;Y2`LKb z8fe|2f-zRja_*cFGAF%$p_-^Vd(i)m`4*1)czzt|L4pYb3p`9v3jh6{kQZi;FZk(T z)un*A*1>~>Sz#lC?}nK&)+%NZd|hd5U-4-!?3W6wS8-C$61{3@1#gv8Bhx@OL0X84 z%$ay0upXliKlA1EH{~wY4U?C96#g9nh`Z|cc4A>nF}5lrJRuQ~Mam)`srzU&7;&kS z>I+jV(`C#4EIxy%P|5p!$Gx9kY<$^1Q9RS@a-Ti;LSvvmA0P5K=oQZ7c2B!-D2 zWnei-?U*4F8V4p-V1r1Ma$u4cu7ad14=(1E!-7aS1u)4{evo8}2N&xou!2ZicreKg zA3^F<U{0f4=k~3=vf!e$IctQ}k!v}h(BLoTi1v^2I@L!fQ1bJ8l zWLH-R68Xy_LXfCmmKy{q``aSgL6GP}n;z~aL1KQr{fT%wIXIFb;5W4= z1o@K}0`-ERe)Ap*M*U40>L)t{8er#1 zcKAiCsQCY-d^q^9k`)w+nG7Hx5SAokc;gfbj)B9Fa7h?K90n67Hz)hg-`~^Do*o84 z;YjZdr2#k`fy0q?9bORf&+EfG8N#a<4u>NT6L|!KBgg^#6N8}-L-{9$Kw^*jkvXvB zDE{FGLtt^T5a0-ig#9H3hD09L&7XsjsH5v62OleYWX*6G3XcAZ7=^<8Hy`jj0WcH> zb2Qj6Ss3nUuwk;Y=)e6i7;@?SDG&|A{Y8vMppQliAm@af^P_{&e@6k0Mg1iP1IHXq z6AXib|0M>4f&C>KgGH08@Mrx0D>)bzhCNyfFf0=G7co}$aBKa!Vl3`&fjH#femK~!%e;$@R3`;L6s-~|_|9>&V`Bwk{ diff --git a/00_aoi_caching_simulation/aoi_cache_simulation.ipynb b/00_aoi_caching_simulation/aoi_cache_simulation.ipynb index c2f0fd8..6d34cb2 100644 --- a/00_aoi_caching_simulation/aoi_cache_simulation.ipynb +++ b/00_aoi_caching_simulation/aoi_cache_simulation.ipynb @@ -16,16 +16,18 @@ "import os\n", "import shutil\n", "from tqdm import tqdm\n", + "import math\n", "\n", "# Types of cache\n", "class CacheType(Enum):\n", " LRU = 1\n", " RANDOM_EVICTION = 2\n", + " TTL = 3\n", "\n", "# Constants\n", "SEED = 42\n", "DATABASE_OBJECTS = 100 # Number of objects in the database\n", - "ACCESS_COUNT_LIMIT = 2000 # Total time to run the simulation\n", + "ACCESS_COUNT_LIMIT = 1000 # Total time to run the simulation\n", "EXPERIMENT_BASE_DIR = \"./experiments/\"\n", "TEMP_BASE_DIR = \"./.aoi_cache/\"\n", "\n", @@ -93,12 +95,12 @@ " \"Infinite TTL\": (int(DATABASE_OBJECTS / 2), 0, CacheType.LRU, 0),\n", " \"Random Eviction\": (int(DATABASE_OBJECTS / 2), 10, CacheType.RANDOM_EVICTION, 5),\n", " \"RE without Refresh\": (int(DATABASE_OBJECTS / 2), 0, CacheType.RANDOM_EVICTION, 5),\n", - " \"No Refresh (0.5s ttl)\": (DATABASE_OBJECTS, 0, CacheType.LRU, 0.5),\n", - " \"No Refresh (1.0s ttl)\": (DATABASE_OBJECTS, 0, CacheType.LRU, 1),\n", - " \"No Refresh (2.0s ttl)\": (DATABASE_OBJECTS, 0, CacheType.LRU, 2),\n", - " \"No Refresh (3.0s ttl)\": (DATABASE_OBJECTS, 0, CacheType.LRU, 3),\n", - " \"No Refresh (4.0s ttl)\": (DATABASE_OBJECTS, 0, CacheType.LRU, 4),\n", - " \"No Refresh (5.0s ttl)\": (DATABASE_OBJECTS, 0, CacheType.LRU, 5),\n", + " \"No Refresh (0.5s ttl)\": (DATABASE_OBJECTS, 0, CacheType.TTL, 0.5),\n", + " \"No Refresh (1.0s ttl)\": (DATABASE_OBJECTS, 0, CacheType.TTL, 1),\n", + " \"No Refresh (2.0s ttl)\": (DATABASE_OBJECTS, 0, CacheType.TTL, 2),\n", + " \"No Refresh (3.0s ttl)\": (DATABASE_OBJECTS, 0, CacheType.TTL, 3),\n", + " \"No Refresh (4.0s ttl)\": (DATABASE_OBJECTS, 0, CacheType.TTL, 4),\n", + " \"No Refresh (5.0s ttl)\": (DATABASE_OBJECTS, 0, CacheType.TTL, 5),\n", "}\n", "\n", "experiment_name = \"No Refresh (5.0s ttl)\"\n", @@ -107,7 +109,11 @@ "CACHE_CAPACITY = config[0]\n", "MAX_REFRESH_RATE = config[1]\n", "cache_type = config[2]\n", - "CACHE_TTL = config[3]\n" + "CACHE_TTL = config[3]\n", + "\n", + "if cache_type == CacheType.TTL:\n", + " assert CACHE_TTL > 0, \"Needs CACHE_TTL to be greater than 0 when using TTL-Cache.\"\n", + " assert CACHE_CAPACITY >= DATABASE_OBJECTS, \"Cache Size needs to be greater or equal to the amount of Database Objects.\"" ] }, { @@ -162,79 +168,90 @@ " self.cumulative_cache_time = {i: 0 for i in range(1, DATABASE_OBJECTS + 1)} # Stores the cumulative time the object has spent between its eviction and when it was first pulled into the cache\n", " \n", " def get(self, obj_id):\n", - " if obj_id in self.storage and \\\n", - " (self.ttl[obj_id] > env.now or CACHE_TTL == 0):\n", + " if obj_id in self.storage:\n", + " # Cache hit: Refresh TTL if TTL-Cache\n", + " if self.cache_type == CacheType.TTL:\n", + " if self.ttl[obj_id] > env.now:\n", + " self.ttl[obj_id] = env.now + CACHE_TTL\n", + " \n", " # Cache hit: increment hit count and update cumulative age\n", " self.hits[obj_id] += 1\n", - " self.cumulative_age[obj_id] += (env.now - self.initial_fetch[obj_id])\n", " self.access_count[obj_id] += 1\n", + " age = (env.now - self.initial_fetch[obj_id])\n", + " self.cumulative_age[obj_id] += age\n", + "\n", + " # Cache hit: Refresh database object\n", + " # self.initial_fetch[obj_id] = env.now\n", " else:\n", + " assert obj_id not in self.storage.keys(), \"Found object in cache on miss.\"\n", + " assert obj_id not in self.initial_fetch.keys(), \"Found age timer on miss.\"\n", + " assert obj_id not in self.object_start_time.keys(), \"Found cache time ratio timer on miss.\"\n", + " # Cache miss: Add TTL if TTL-Cache\n", + " # When full cache: If non-TTL-Cache: Evict. If TTL-Cache: Don't add to Cache.\n", + " if self.cache_type == CacheType.TTL:\n", + " assert obj_id not in self.ttl.keys(), \"Found cache time ratio timer on miss.\"\n", + " self.ttl[obj_id] = env.now + CACHE_TTL\n", + " else:\n", + " if len(self.storage) == DATABASE_OBJECTS:\n", + " if self.cache_type == CacheType.LRU:\n", + " self.evict_oldest()\n", + " elif self.cache_type == CacheType.RANDOM_EVICTION:\n", + " self.evict_random()\n", + " elif self.cache-type == CacheType.TTL:\n", + " return\n", + " \n", " # Cache miss: increment miss count\n", " self.misses[obj_id] += 1\n", - " self.cumulative_age[obj_id] += 0\n", " self.access_count[obj_id] += 1\n", + " self.cumulative_age[obj_id] += 0\n", + " \n", + " # Cache miss: Fetch the object from the database\n", + " self.storage[obj_id] = self.db.get_object(obj_id)\n", " self.initial_fetch[obj_id] = env.now\n", " self.object_start_time[obj_id] = env.now\n", " \n", - " # Fetch the object from the database if it’s not in cache\n", - " obj = self.db.get_object(obj_id)\n", - " \n", - " # If the cache is full, evict the oldest object\n", - " if len(self.storage) > CACHE_CAPACITY:\n", - " if self.cache_type == CacheType.LRU:\n", - " self.evict_oldest()\n", - " elif self.cache_type == CacheType.RANDOM_EVICTION:\n", - " self.evict_random()\n", - " \n", - " # Add the object to cache, set TTL, reset age, and schedule next refresh\n", - " self.storage[obj_id] = obj\n", - " if CACHE_TTL != 0:\n", - " self.ttl[obj_id] = env.now + CACHE_TTL\n", - " else:\n", - " self.ttl[obj_id] = 0\n", " if MAX_REFRESH_RATE != 0:\n", " self.next_refresh[obj_id] = env.now + np.random.exponential(1/self.db.mu_values[obj_id]) # Schedule refresh\n", - "\n", " \n", " def evict_oldest(self):\n", " \"\"\"Remove the oldest item from the cache to make space.\"\"\"\n", " oldest_id = min(self.initial_fetch, key=self.initial_fetch.get) # Find the oldest item by age\n", " print(f\"[{env.now:.2f}] Cache: Evicting oldest object {oldest_id} to make space at {self.ttl[oldest_id]:.2f}\")\n", + " self.cumulative_cache_time[obj_id] += (env.now - self.object_start_time[obj_id])\n", " del self.storage[oldest_id]\n", - " del self.ttl[oldest_id]\n", " del self.initial_fetch[oldest_id]\n", + " del self.object_start_time[obj_id]\n", "\n", " def evict_random(self):\n", " \"\"\"Remove a random item from the cache to make space.\"\"\"\n", " random_id = np.random.choice(list(self.storage.keys())) # Select a random key from the cache\n", " print(f\"[{env.now:.2f}] Cache: Evicting random object {random_id} to make space at {self.ttl[random_id]:.2f}\")\n", + " self.cumulative_cache_time[obj_id] += (env.now - self.object_start_time[obj_id])\n", " del self.storage[random_id]\n", - " del self.ttl[random_id]\n", " del self.initial_fetch[random_id]\n", + " del self.object_start_time[obj_id]\n", " \n", " def refresh_object(self, obj_id):\n", " \"\"\"Refresh the object from the database to keep it up-to-date. TTL is increased on refresh.\"\"\"\n", " obj = self.db.get_object(obj_id)\n", " self.storage[obj_id] = obj\n", - " if CACHE_TTL != 0:\n", + " if self.cache_type == CacheType.TTL:\n", " self.ttl[obj_id] = env.now + CACHE_TTL\n", - " else:\n", - " self.ttl[obj_id] = 0\n", - " self.initial_fetch[obj_id] = env.now\n", + " self.cumulative_cache_time[obj_id] += (env.now - self.object_start_time[obj_id])\n", " # print(f\"[{env.now:.2f}] Cache: Refreshed object {obj_id}\")\n", " \n", " def check_expired(self):\n", " \"\"\"Increment age of each cached object.\"\"\"\n", - " for obj_id in list(self.ttl.keys()):\n", - " # print(f\"[{env.now:.2f}] Cache: Object {obj_id} aged to {env.now-self.initial_fetch[obj_id]}\")\n", - " if CACHE_TTL != 0 and self.ttl[obj_id] <= env.now:\n", - " # Remove object if its TTL expired\n", - " # print(f\"[{env.now:.2f}] Cache: Object {obj_id} expired\")\n", - " self.cumulative_cache_time[obj_id] += (env.now - self.object_start_time[obj_id])\n", - " del self.storage[obj_id]\n", - " del self.ttl[obj_id]\n", - " del self.initial_fetch[obj_id]\n", - " del self.object_start_time[obj_id]\n", + " if self.cache_type == CacheType.TTL:\n", + " for obj_id in list(self.ttl.keys()):\n", + " if self.ttl[obj_id] <= env.now:\n", + " # Remove object if its TTL expired\n", + " # print(f\"[{env.now:.2f}] Cache: Object {obj_id} expired\")\n", + " self.cumulative_cache_time[obj_id] += (env.now - self.object_start_time[obj_id])\n", + " del self.storage[obj_id]\n", + " del self.ttl[obj_id]\n", + " del self.initial_fetch[obj_id]\n", + " del self.object_start_time[obj_id]\n", "\n", " \n", " def record_cache_state(self):\n", @@ -254,7 +271,7 @@ " \"\"\"Process that ages cache objects over time, removes expired items, and refreshes based on object-specific intervals.\"\"\"\n", " last_full_second = 0\n", " while True:\n", - " cache.check_expired() # Age objects and remove expired ones\n", + " cache.check_expired() # Remove expired objects\n", "\n", " if MAX_REFRESH_RATE != 0:\n", " # Refresh objects based on their individual refresh intervals\n", @@ -283,10 +300,13 @@ " while True:\n", " obj_id, next_request = min(cache.db.next_request.items(), key=lambda x: x[1])\n", " yield env.timeout(next_request - env.now)\n", + "\n", + " # For progress bar\n", " if (int(env.now) % 1) == 0 and int(env.now) != last_print:\n", " last_print = int(env.now)\n", " pbar.n = min(cache.access_count.values())\n", " pbar.refresh()\n", + " \n", " if env.now >= next_request:\n", " # print(f\"[{env.now:.2f}] Client: Requesting object {obj_id}\")\n", " cache.get(obj_id)\n", @@ -295,8 +315,12 @@ " next_request = env.now + np.random.exponential(1/cache.db.lambda_values[obj_id])\n", " cache.request_log[obj_id].append(next_request)\n", " cache.db.next_request[obj_id] = next_request\n", + " \n", + " # Simulation stop condition\n", " if all(access_count >= ACCESS_COUNT_LIMIT for access_count in cache.access_count.values()):\n", - " print(env.now)\n", + " print(f\"Simulation ended after {env.now} seconds.\")\n", + " for obj_id in cache.storage.keys():\n", + " cache.cumulative_cache_time[obj_id] += (env.now - cache.object_start_time[obj_id])\n", " event.succeed()" ] }, @@ -330,16 +354,16 @@ "name": "stderr", "output_type": "stream", "text": [ - "Progress: 100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████▉| 1999/2000 [00:10<00:00, 183.69it/s]" + "Progress: 100%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████▊| 999/1000 [00:05<00:00, 182.11it/s]" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "2114.009548152859\n", - "CPU times: user 9.85 s, sys: 1.31 s, total: 11.2 s\n", - "Wall time: 10.9 s\n" + "Simulation ended after 1056.5430396768973 seconds.\n", + "CPU times: user 5.01 s, sys: 614 ms, total: 5.63 s\n", + "Wall time: 5.5 s\n" ] } ], @@ -365,106 +389,106 @@ "name": "stdout", "output_type": "stream", "text": [ - "Object 1: Hit Rate = 0.83, Average Time spend in Cache: 0.81,Average Age = 2.07, Exprected Age = 0.35\n", - "Object 2: Hit Rate = 0.94, Average Time spend in Cache: 0.87,Average Age = 2.32, Exprected Age = 0.44\n", - "Object 3: Hit Rate = 0.84, Average Time spend in Cache: 0.82,Average Age = 2.08, Exprected Age = 0.35\n", - "Object 4: Hit Rate = 0.83, Average Time spend in Cache: 0.82,Average Age = 2.10, Exprected Age = 0.35\n", - "Object 5: Hit Rate = 0.91, Average Time spend in Cache: 0.87,Average Age = 2.26, Exprected Age = 0.41\n", - "Object 6: Hit Rate = 0.83, Average Time spend in Cache: 0.81,Average Age = 2.09, Exprected Age = 0.35\n", - "Object 7: Hit Rate = 0.96, Average Time spend in Cache: 0.87,Average Age = 2.40, Exprected Age = 0.46\n", - "Object 8: Hit Rate = 0.84, Average Time spend in Cache: 0.82,Average Age = 2.07, Exprected Age = 0.35\n", - "Object 9: Hit Rate = 0.83, Average Time spend in Cache: 0.81,Average Age = 2.03, Exprected Age = 0.35\n", - "Object 10: Hit Rate = 0.83, Average Time spend in Cache: 0.82,Average Age = 2.04, Exprected Age = 0.35\n", - "Object 11: Hit Rate = 0.91, Average Time spend in Cache: 0.89,Average Age = 2.26, Exprected Age = 0.41\n", - "Object 12: Hit Rate = 0.84, Average Time spend in Cache: 0.81,Average Age = 2.04, Exprected Age = 0.35\n", - "Object 13: Hit Rate = 0.84, Average Time spend in Cache: 0.81,Average Age = 2.10, Exprected Age = 0.35\n", - "Object 14: Hit Rate = 0.83, Average Time spend in Cache: 0.82,Average Age = 2.07, Exprected Age = 0.34\n", - "Object 15: Hit Rate = 0.91, Average Time spend in Cache: 0.86,Average Age = 2.25, Exprected Age = 0.41\n", - "Object 16: Hit Rate = 0.91, Average Time spend in Cache: 0.87,Average Age = 2.28, Exprected Age = 0.42\n", - "Object 17: Hit Rate = 0.83, Average Time spend in Cache: 0.82,Average Age = 2.01, Exprected Age = 0.35\n", - "Object 18: Hit Rate = 0.83, Average Time spend in Cache: 0.80,Average Age = 2.13, Exprected Age = 0.35\n", - "Object 19: Hit Rate = 0.94, Average Time spend in Cache: 0.87,Average Age = 2.32, Exprected Age = 0.44\n", - "Object 20: Hit Rate = 0.83, Average Time spend in Cache: 0.80,Average Age = 2.04, Exprected Age = 0.35\n", - "Object 21: Hit Rate = 0.83, Average Time spend in Cache: 0.82,Average Age = 2.07, Exprected Age = 0.35\n", - "Object 22: Hit Rate = 0.83, Average Time spend in Cache: 0.82,Average Age = 2.09, Exprected Age = 0.35\n", - "Object 23: Hit Rate = 0.84, Average Time spend in Cache: 0.81,Average Age = 2.08, Exprected Age = 0.35\n", - "Object 24: Hit Rate = 0.91, Average Time spend in Cache: 0.88,Average Age = 2.28, Exprected Age = 0.41\n", - "Object 25: Hit Rate = 0.84, Average Time spend in Cache: 0.80,Average Age = 2.08, Exprected Age = 0.35\n", - "Object 26: Hit Rate = 0.84, Average Time spend in Cache: 0.81,Average Age = 2.07, Exprected Age = 0.35\n", - "Object 27: Hit Rate = 0.83, Average Time spend in Cache: 0.82,Average Age = 2.15, Exprected Age = 0.35\n", - "Object 28: Hit Rate = 0.96, Average Time spend in Cache: 0.86,Average Age = 2.41, Exprected Age = 0.46\n", - "Object 29: Hit Rate = 0.83, Average Time spend in Cache: 0.81,Average Age = 2.08, Exprected Age = 0.35\n", - "Object 30: Hit Rate = 0.83, Average Time spend in Cache: 0.82,Average Age = 2.07, Exprected Age = 0.35\n", - "Object 31: Hit Rate = 0.83, Average Time spend in Cache: 0.82,Average Age = 2.06, Exprected Age = 0.34\n", - "Object 32: Hit Rate = 0.95, Average Time spend in Cache: 0.86,Average Age = 2.36, Exprected Age = 0.45\n", - "Object 33: Hit Rate = 0.83, Average Time spend in Cache: 0.82,Average Age = 2.12, Exprected Age = 0.35\n", - "Object 34: Hit Rate = 0.95, Average Time spend in Cache: 0.87,Average Age = 2.37, Exprected Age = 0.45\n", - "Object 35: Hit Rate = 0.84, Average Time spend in Cache: 0.81,Average Age = 2.05, Exprected Age = 0.35\n", - "Object 36: Hit Rate = 0.83, Average Time spend in Cache: 0.83,Average Age = 2.02, Exprected Age = 0.34\n", - "Object 37: Hit Rate = 0.84, Average Time spend in Cache: 0.82,Average Age = 2.05, Exprected Age = 0.35\n", - "Object 38: Hit Rate = 0.94, Average Time spend in Cache: 0.87,Average Age = 2.36, Exprected Age = 0.44\n", - "Object 39: Hit Rate = 0.98, Average Time spend in Cache: 0.76,Average Age = 2.44, Exprected Age = 0.48\n", - "Object 40: Hit Rate = 0.83, Average Time spend in Cache: 0.79,Average Age = 2.07, Exprected Age = 0.34\n", - "Object 41: Hit Rate = 0.95, Average Time spend in Cache: 0.85,Average Age = 2.38, Exprected Age = 0.45\n", - "Object 42: Hit Rate = 0.95, Average Time spend in Cache: 0.86,Average Age = 2.37, Exprected Age = 0.45\n", - "Object 43: Hit Rate = 0.91, Average Time spend in Cache: 0.88,Average Age = 2.24, Exprected Age = 0.41\n", - "Object 44: Hit Rate = 0.83, Average Time spend in Cache: 0.82,Average Age = 2.04, Exprected Age = 0.34\n", - "Object 45: Hit Rate = 0.83, Average Time spend in Cache: 0.83,Average Age = 2.11, Exprected Age = 0.35\n", - "Object 46: Hit Rate = 0.83, Average Time spend in Cache: 0.82,Average Age = 2.12, Exprected Age = 0.35\n", - "Object 47: Hit Rate = 0.98, Average Time spend in Cache: 0.78,Average Age = 2.45, Exprected Age = 0.48\n", - "Object 48: Hit Rate = 0.83, Average Time spend in Cache: 0.81,Average Age = 2.14, Exprected Age = 0.35\n", - "Object 49: Hit Rate = 0.83, Average Time spend in Cache: 0.81,Average Age = 2.12, Exprected Age = 0.35\n", - "Object 50: Hit Rate = 0.83, Average Time spend in Cache: 0.82,Average Age = 2.06, Exprected Age = 0.35\n", - "Object 51: Hit Rate = 0.96, Average Time spend in Cache: 0.87,Average Age = 2.41, Exprected Age = 0.46\n", - "Object 52: Hit Rate = 0.98, Average Time spend in Cache: 0.81,Average Age = 2.46, Exprected Age = 0.48\n", - "Object 53: Hit Rate = 0.83, Average Time spend in Cache: 0.82,Average Age = 2.06, Exprected Age = 0.35\n", - "Object 54: Hit Rate = 0.83, Average Time spend in Cache: 0.81,Average Age = 2.05, Exprected Age = 0.34\n", - "Object 55: Hit Rate = 0.83, Average Time spend in Cache: 0.82,Average Age = 2.09, Exprected Age = 0.34\n", - "Object 56: Hit Rate = 0.83, Average Time spend in Cache: 0.82,Average Age = 2.07, Exprected Age = 0.34\n", - "Object 57: Hit Rate = 0.84, Average Time spend in Cache: 0.83,Average Age = 2.07, Exprected Age = 0.35\n", - "Object 58: Hit Rate = 0.99, Average Time spend in Cache: 0.68,Average Age = 2.46, Exprected Age = 0.49\n", - "Object 59: Hit Rate = 0.91, Average Time spend in Cache: 0.87,Average Age = 2.23, Exprected Age = 0.41\n", - "Object 60: Hit Rate = 0.84, Average Time spend in Cache: 0.81,Average Age = 2.07, Exprected Age = 0.35\n", - "Object 61: Hit Rate = 0.99, Average Time spend in Cache: 0.57,Average Age = 2.47, Exprected Age = 0.49\n", - "Object 62: Hit Rate = 0.83, Average Time spend in Cache: 0.82,Average Age = 2.07, Exprected Age = 0.34\n", - "Object 63: Hit Rate = 0.83, Average Time spend in Cache: 0.81,Average Age = 2.08, Exprected Age = 0.35\n", - "Object 64: Hit Rate = 0.91, Average Time spend in Cache: 0.87,Average Age = 2.27, Exprected Age = 0.41\n", - "Object 65: Hit Rate = 0.84, Average Time spend in Cache: 0.81,Average Age = 2.06, Exprected Age = 0.35\n", - "Object 66: Hit Rate = 0.98, Average Time spend in Cache: 0.78,Average Age = 2.46, Exprected Age = 0.48\n", - "Object 67: Hit Rate = 0.84, Average Time spend in Cache: 0.81,Average Age = 2.05, Exprected Age = 0.35\n", - "Object 68: Hit Rate = 1.00, Average Time spend in Cache: 0.29,Average Age = 2.49, Exprected Age = 0.50\n", - "Object 69: Hit Rate = 0.83, Average Time spend in Cache: 0.81,Average Age = 2.04, Exprected Age = 0.34\n", - "Object 70: Hit Rate = 0.83, Average Time spend in Cache: 0.83,Average Age = 2.06, Exprected Age = 0.35\n", - "Object 71: Hit Rate = 0.91, Average Time spend in Cache: 0.84,Average Age = 2.25, Exprected Age = 0.41\n", - "Object 72: Hit Rate = 0.83, Average Time spend in Cache: 0.81,Average Age = 2.09, Exprected Age = 0.35\n", - "Object 73: Hit Rate = 0.83, Average Time spend in Cache: 0.82,Average Age = 2.10, Exprected Age = 0.35\n", - "Object 74: Hit Rate = 0.84, Average Time spend in Cache: 0.82,Average Age = 2.06, Exprected Age = 0.35\n", - "Object 75: Hit Rate = 0.94, Average Time spend in Cache: 0.88,Average Age = 2.31, Exprected Age = 0.44\n", - "Object 76: Hit Rate = 0.91, Average Time spend in Cache: 0.86,Average Age = 2.28, Exprected Age = 0.41\n", - "Object 77: Hit Rate = 0.91, Average Time spend in Cache: 0.87,Average Age = 2.25, Exprected Age = 0.42\n", - "Object 78: Hit Rate = 0.94, Average Time spend in Cache: 0.88,Average Age = 2.32, Exprected Age = 0.44\n", - "Object 79: Hit Rate = 0.99, Average Time spend in Cache: 0.71,Average Age = 2.46, Exprected Age = 0.49\n", - "Object 80: Hit Rate = 0.83, Average Time spend in Cache: 0.82,Average Age = 2.10, Exprected Age = 0.35\n", - "Object 81: Hit Rate = 0.83, Average Time spend in Cache: 0.80,Average Age = 2.06, Exprected Age = 0.34\n", - "Object 82: Hit Rate = 0.96, Average Time spend in Cache: 0.85,Average Age = 2.41, Exprected Age = 0.46\n", - "Object 83: Hit Rate = 0.91, Average Time spend in Cache: 0.87,Average Age = 2.32, Exprected Age = 0.41\n", - "Object 84: Hit Rate = 0.83, Average Time spend in Cache: 0.82,Average Age = 2.05, Exprected Age = 0.35\n", - "Object 85: Hit Rate = 0.83, Average Time spend in Cache: 0.82,Average Age = 2.06, Exprected Age = 0.35\n", - "Object 86: Hit Rate = 0.91, Average Time spend in Cache: 0.86,Average Age = 2.28, Exprected Age = 0.41\n", - "Object 87: Hit Rate = 0.84, Average Time spend in Cache: 0.82,Average Age = 2.09, Exprected Age = 0.35\n", - "Object 88: Hit Rate = 0.91, Average Time spend in Cache: 0.86,Average Age = 2.24, Exprected Age = 0.41\n", - "Object 89: Hit Rate = 0.83, Average Time spend in Cache: 0.81,Average Age = 2.04, Exprected Age = 0.35\n", - "Object 90: Hit Rate = 0.84, Average Time spend in Cache: 0.81,Average Age = 2.08, Exprected Age = 0.35\n", - "Object 91: Hit Rate = 0.91, Average Time spend in Cache: 0.88,Average Age = 2.26, Exprected Age = 0.41\n", - "Object 92: Hit Rate = 0.91, Average Time spend in Cache: 0.84,Average Age = 2.28, Exprected Age = 0.41\n", - "Object 93: Hit Rate = 0.94, Average Time spend in Cache: 0.89,Average Age = 2.38, Exprected Age = 0.44\n", - "Object 94: Hit Rate = 0.83, Average Time spend in Cache: 0.81,Average Age = 2.09, Exprected Age = 0.34\n", - "Object 95: Hit Rate = 0.91, Average Time spend in Cache: 0.87,Average Age = 2.25, Exprected Age = 0.41\n", - "Object 96: Hit Rate = 0.83, Average Time spend in Cache: 0.81,Average Age = 2.04, Exprected Age = 0.35\n", - "Object 97: Hit Rate = 0.83, Average Time spend in Cache: 0.81,Average Age = 2.08, Exprected Age = 0.35\n", - "Object 98: Hit Rate = 0.99, Average Time spend in Cache: 0.47,Average Age = 2.48, Exprected Age = 0.49\n", - "Object 99: Hit Rate = 0.95, Average Time spend in Cache: 0.86,Average Age = 2.38, Exprected Age = 0.45\n", - "Object 100: Hit Rate = 0.91, Average Time spend in Cache: 0.87,Average Age = 2.26, Exprected Age = 0.41\n" + "Object 1: Hit Rate = 0.99, Expected Hit Rate = 0.99, Average Time spend in Cache: 0.99, Average Age = 86.27, Expected Age = 0.49\n", + "Object 2: Hit Rate = 1.00, Expected Hit Rate = 1.00, Average Time spend in Cache: 1.00, Average Age = 518.48, Expected Age = 0.50\n", + "Object 3: Hit Rate = 0.99, Expected Hit Rate = 0.99, Average Time spend in Cache: 0.99, Average Age = 130.46, Expected Age = 0.49\n", + "Object 4: Hit Rate = 0.99, Expected Hit Rate = 0.99, Average Time spend in Cache: 1.00, Average Age = 65.80, Expected Age = 0.49\n", + "Object 5: Hit Rate = 1.00, Expected Hit Rate = 1.00, Average Time spend in Cache: 1.00, Average Age = 516.46, Expected Age = 0.50\n", + "Object 6: Hit Rate = 0.99, Expected Hit Rate = 0.99, Average Time spend in Cache: 0.99, Average Age = 88.47, Expected Age = 0.49\n", + "Object 7: Hit Rate = 1.00, Expected Hit Rate = 1.00, Average Time spend in Cache: 1.00, Average Age = 525.33, Expected Age = 0.50\n", + "Object 8: Hit Rate = 0.99, Expected Hit Rate = 0.99, Average Time spend in Cache: 0.99, Average Age = 144.73, Expected Age = 0.49\n", + "Object 9: Hit Rate = 0.99, Expected Hit Rate = 0.99, Average Time spend in Cache: 0.99, Average Age = 113.08, Expected Age = 0.49\n", + "Object 10: Hit Rate = 0.99, Expected Hit Rate = 0.99, Average Time spend in Cache: 0.99, Average Age = 69.91, Expected Age = 0.49\n", + "Object 11: Hit Rate = 1.00, Expected Hit Rate = 1.00, Average Time spend in Cache: 1.00, Average Age = 545.38, Expected Age = 0.50\n", + "Object 12: Hit Rate = 0.99, Expected Hit Rate = 0.99, Average Time spend in Cache: 0.99, Average Age = 85.16, Expected Age = 0.49\n", + "Object 13: Hit Rate = 0.99, Expected Hit Rate = 0.99, Average Time spend in Cache: 0.99, Average Age = 86.42, Expected Age = 0.49\n", + "Object 14: Hit Rate = 0.99, Expected Hit Rate = 0.99, Average Time spend in Cache: 0.99, Average Age = 89.83, Expected Age = 0.49\n", + "Object 15: Hit Rate = 1.00, Expected Hit Rate = 1.00, Average Time spend in Cache: 1.00, Average Age = 518.96, Expected Age = 0.50\n", + "Object 16: Hit Rate = 1.00, Expected Hit Rate = 1.00, Average Time spend in Cache: 1.00, Average Age = 540.84, Expected Age = 0.50\n", + "Object 17: Hit Rate = 0.99, Expected Hit Rate = 0.99, Average Time spend in Cache: 0.99, Average Age = 122.01, Expected Age = 0.49\n", + "Object 18: Hit Rate = 0.99, Expected Hit Rate = 0.99, Average Time spend in Cache: 0.99, Average Age = 134.20, Expected Age = 0.49\n", + "Object 19: Hit Rate = 1.00, Expected Hit Rate = 1.00, Average Time spend in Cache: 1.00, Average Age = 526.43, Expected Age = 0.50\n", + "Object 20: Hit Rate = 0.99, Expected Hit Rate = 0.99, Average Time spend in Cache: 0.99, Average Age = 75.73, Expected Age = 0.49\n", + "Object 21: Hit Rate = 0.99, Expected Hit Rate = 0.99, Average Time spend in Cache: 0.99, Average Age = 95.90, Expected Age = 0.49\n", + "Object 22: Hit Rate = 0.99, Expected Hit Rate = 0.99, Average Time spend in Cache: 0.99, Average Age = 63.96, Expected Age = 0.49\n", + "Object 23: Hit Rate = 0.99, Expected Hit Rate = 0.99, Average Time spend in Cache: 0.99, Average Age = 139.96, Expected Age = 0.49\n", + "Object 24: Hit Rate = 1.00, Expected Hit Rate = 1.00, Average Time spend in Cache: 1.00, Average Age = 528.02, Expected Age = 0.50\n", + "Object 25: Hit Rate = 0.99, Expected Hit Rate = 0.99, Average Time spend in Cache: 0.99, Average Age = 122.85, Expected Age = 0.49\n", + "Object 26: Hit Rate = 0.99, Expected Hit Rate = 0.99, Average Time spend in Cache: 0.99, Average Age = 96.64, Expected Age = 0.49\n", + "Object 27: Hit Rate = 0.99, Expected Hit Rate = 0.99, Average Time spend in Cache: 0.99, Average Age = 79.15, Expected Age = 0.49\n", + "Object 28: Hit Rate = 1.00, Expected Hit Rate = 1.00, Average Time spend in Cache: 1.00, Average Age = 532.88, Expected Age = 0.50\n", + "Object 29: Hit Rate = 1.00, Expected Hit Rate = 0.99, Average Time spend in Cache: 1.00, Average Age = 203.43, Expected Age = 0.50\n", + "Object 30: Hit Rate = 0.99, Expected Hit Rate = 0.99, Average Time spend in Cache: 0.99, Average Age = 128.23, Expected Age = 0.49\n", + "Object 31: Hit Rate = 0.99, Expected Hit Rate = 0.99, Average Time spend in Cache: 0.99, Average Age = 145.19, Expected Age = 0.49\n", + "Object 32: Hit Rate = 1.00, Expected Hit Rate = 1.00, Average Time spend in Cache: 1.00, Average Age = 533.60, Expected Age = 0.50\n", + "Object 33: Hit Rate = 0.99, Expected Hit Rate = 0.99, Average Time spend in Cache: 1.00, Average Age = 134.02, Expected Age = 0.49\n", + "Object 34: Hit Rate = 1.00, Expected Hit Rate = 1.00, Average Time spend in Cache: 1.00, Average Age = 524.09, Expected Age = 0.50\n", + "Object 35: Hit Rate = 0.99, Expected Hit Rate = 0.99, Average Time spend in Cache: 1.00, Average Age = 116.60, Expected Age = 0.49\n", + "Object 36: Hit Rate = 0.99, Expected Hit Rate = 0.99, Average Time spend in Cache: 1.00, Average Age = 134.98, Expected Age = 0.49\n", + "Object 37: Hit Rate = 1.00, Expected Hit Rate = 0.99, Average Time spend in Cache: 1.00, Average Age = 174.10, Expected Age = 0.50\n", + "Object 38: Hit Rate = 1.00, Expected Hit Rate = 1.00, Average Time spend in Cache: 1.00, Average Age = 531.44, Expected Age = 0.50\n", + "Object 39: Hit Rate = 1.00, Expected Hit Rate = 1.00, Average Time spend in Cache: 1.00, Average Age = 529.81, Expected Age = 0.50\n", + "Object 40: Hit Rate = 0.99, Expected Hit Rate = 0.99, Average Time spend in Cache: 0.99, Average Age = 79.26, Expected Age = 0.49\n", + "Object 41: Hit Rate = 1.00, Expected Hit Rate = 1.00, Average Time spend in Cache: 1.00, Average Age = 529.68, Expected Age = 0.50\n", + "Object 42: Hit Rate = 1.00, Expected Hit Rate = 1.00, Average Time spend in Cache: 1.00, Average Age = 525.51, Expected Age = 0.50\n", + "Object 43: Hit Rate = 1.00, Expected Hit Rate = 1.00, Average Time spend in Cache: 1.00, Average Age = 534.66, Expected Age = 0.50\n", + "Object 44: Hit Rate = 0.99, Expected Hit Rate = 0.99, Average Time spend in Cache: 0.99, Average Age = 222.32, Expected Age = 0.49\n", + "Object 45: Hit Rate = 0.99, Expected Hit Rate = 0.99, Average Time spend in Cache: 0.99, Average Age = 71.63, Expected Age = 0.49\n", + "Object 46: Hit Rate = 0.99, Expected Hit Rate = 0.99, Average Time spend in Cache: 0.99, Average Age = 95.27, Expected Age = 0.49\n", + "Object 47: Hit Rate = 1.00, Expected Hit Rate = 1.00, Average Time spend in Cache: 1.00, Average Age = 530.73, Expected Age = 0.50\n", + "Object 48: Hit Rate = 0.99, Expected Hit Rate = 0.99, Average Time spend in Cache: 0.99, Average Age = 142.18, Expected Age = 0.49\n", + "Object 49: Hit Rate = 0.99, Expected Hit Rate = 0.99, Average Time spend in Cache: 0.99, Average Age = 70.83, Expected Age = 0.49\n", + "Object 50: Hit Rate = 0.99, Expected Hit Rate = 0.99, Average Time spend in Cache: 0.99, Average Age = 83.70, Expected Age = 0.49\n", + "Object 51: Hit Rate = 1.00, Expected Hit Rate = 1.00, Average Time spend in Cache: 1.00, Average Age = 528.00, Expected Age = 0.50\n", + "Object 52: Hit Rate = 1.00, Expected Hit Rate = 1.00, Average Time spend in Cache: 1.00, Average Age = 527.27, Expected Age = 0.50\n", + "Object 53: Hit Rate = 0.99, Expected Hit Rate = 0.99, Average Time spend in Cache: 0.99, Average Age = 150.62, Expected Age = 0.49\n", + "Object 54: Hit Rate = 0.99, Expected Hit Rate = 0.99, Average Time spend in Cache: 0.99, Average Age = 95.04, Expected Age = 0.49\n", + "Object 55: Hit Rate = 0.99, Expected Hit Rate = 0.99, Average Time spend in Cache: 0.99, Average Age = 120.14, Expected Age = 0.49\n", + "Object 56: Hit Rate = 0.99, Expected Hit Rate = 0.99, Average Time spend in Cache: 0.99, Average Age = 106.77, Expected Age = 0.49\n", + "Object 57: Hit Rate = 0.99, Expected Hit Rate = 0.99, Average Time spend in Cache: 1.00, Average Age = 144.58, Expected Age = 0.49\n", + "Object 58: Hit Rate = 1.00, Expected Hit Rate = 1.00, Average Time spend in Cache: 1.00, Average Age = 525.37, Expected Age = 0.50\n", + "Object 59: Hit Rate = 1.00, Expected Hit Rate = 1.00, Average Time spend in Cache: 1.00, Average Age = 530.54, Expected Age = 0.50\n", + "Object 60: Hit Rate = 1.00, Expected Hit Rate = 0.99, Average Time spend in Cache: 0.99, Average Age = 132.33, Expected Age = 0.50\n", + "Object 61: Hit Rate = 1.00, Expected Hit Rate = 1.00, Average Time spend in Cache: 1.00, Average Age = 530.68, Expected Age = 0.50\n", + "Object 62: Hit Rate = 0.99, Expected Hit Rate = 0.99, Average Time spend in Cache: 0.99, Average Age = 63.55, Expected Age = 0.49\n", + "Object 63: Hit Rate = 0.99, Expected Hit Rate = 0.99, Average Time spend in Cache: 0.99, Average Age = 81.29, Expected Age = 0.49\n", + "Object 64: Hit Rate = 1.00, Expected Hit Rate = 1.00, Average Time spend in Cache: 1.00, Average Age = 522.91, Expected Age = 0.50\n", + "Object 65: Hit Rate = 1.00, Expected Hit Rate = 0.99, Average Time spend in Cache: 0.99, Average Age = 159.42, Expected Age = 0.50\n", + "Object 66: Hit Rate = 1.00, Expected Hit Rate = 1.00, Average Time spend in Cache: 1.00, Average Age = 529.66, Expected Age = 0.50\n", + "Object 67: Hit Rate = 0.99, Expected Hit Rate = 0.99, Average Time spend in Cache: 0.99, Average Age = 74.62, Expected Age = 0.49\n", + "Object 68: Hit Rate = 1.00, Expected Hit Rate = 1.00, Average Time spend in Cache: 1.00, Average Age = 529.53, Expected Age = 0.50\n", + "Object 69: Hit Rate = 0.99, Expected Hit Rate = 0.99, Average Time spend in Cache: 0.99, Average Age = 136.06, Expected Age = 0.49\n", + "Object 70: Hit Rate = 0.99, Expected Hit Rate = 0.99, Average Time spend in Cache: 0.99, Average Age = 98.80, Expected Age = 0.49\n", + "Object 71: Hit Rate = 1.00, Expected Hit Rate = 1.00, Average Time spend in Cache: 1.00, Average Age = 532.41, Expected Age = 0.50\n", + "Object 72: Hit Rate = 0.99, Expected Hit Rate = 0.99, Average Time spend in Cache: 0.99, Average Age = 140.26, Expected Age = 0.49\n", + "Object 73: Hit Rate = 0.99, Expected Hit Rate = 0.99, Average Time spend in Cache: 0.99, Average Age = 86.30, Expected Age = 0.49\n", + "Object 74: Hit Rate = 0.99, Expected Hit Rate = 0.99, Average Time spend in Cache: 1.00, Average Age = 140.32, Expected Age = 0.49\n", + "Object 75: Hit Rate = 1.00, Expected Hit Rate = 1.00, Average Time spend in Cache: 1.00, Average Age = 527.98, Expected Age = 0.50\n", + "Object 76: Hit Rate = 1.00, Expected Hit Rate = 1.00, Average Time spend in Cache: 1.00, Average Age = 530.24, Expected Age = 0.50\n", + "Object 77: Hit Rate = 1.00, Expected Hit Rate = 1.00, Average Time spend in Cache: 1.00, Average Age = 259.58, Expected Age = 0.50\n", + "Object 78: Hit Rate = 1.00, Expected Hit Rate = 1.00, Average Time spend in Cache: 1.00, Average Age = 528.38, Expected Age = 0.50\n", + "Object 79: Hit Rate = 1.00, Expected Hit Rate = 1.00, Average Time spend in Cache: 1.00, Average Age = 525.00, Expected Age = 0.50\n", + "Object 80: Hit Rate = 0.99, Expected Hit Rate = 0.99, Average Time spend in Cache: 0.99, Average Age = 70.65, Expected Age = 0.49\n", + "Object 81: Hit Rate = 0.99, Expected Hit Rate = 0.99, Average Time spend in Cache: 0.99, Average Age = 142.99, Expected Age = 0.49\n", + "Object 82: Hit Rate = 1.00, Expected Hit Rate = 1.00, Average Time spend in Cache: 1.00, Average Age = 528.39, Expected Age = 0.50\n", + "Object 83: Hit Rate = 1.00, Expected Hit Rate = 1.00, Average Time spend in Cache: 1.00, Average Age = 527.83, Expected Age = 0.50\n", + "Object 84: Hit Rate = 0.99, Expected Hit Rate = 0.99, Average Time spend in Cache: 1.00, Average Age = 127.04, Expected Age = 0.49\n", + "Object 85: Hit Rate = 0.99, Expected Hit Rate = 0.99, Average Time spend in Cache: 0.99, Average Age = 133.20, Expected Age = 0.49\n", + "Object 86: Hit Rate = 1.00, Expected Hit Rate = 1.00, Average Time spend in Cache: 1.00, Average Age = 538.40, Expected Age = 0.50\n", + "Object 87: Hit Rate = 0.99, Expected Hit Rate = 0.99, Average Time spend in Cache: 0.99, Average Age = 94.57, Expected Age = 0.49\n", + "Object 88: Hit Rate = 1.00, Expected Hit Rate = 1.00, Average Time spend in Cache: 1.00, Average Age = 530.51, Expected Age = 0.50\n", + "Object 89: Hit Rate = 1.00, Expected Hit Rate = 0.99, Average Time spend in Cache: 1.00, Average Age = 131.36, Expected Age = 0.50\n", + "Object 90: Hit Rate = 0.99, Expected Hit Rate = 0.99, Average Time spend in Cache: 1.00, Average Age = 104.07, Expected Age = 0.49\n", + "Object 91: Hit Rate = 1.00, Expected Hit Rate = 1.00, Average Time spend in Cache: 1.00, Average Age = 525.81, Expected Age = 0.50\n", + "Object 92: Hit Rate = 1.00, Expected Hit Rate = 1.00, Average Time spend in Cache: 1.00, Average Age = 530.95, Expected Age = 0.50\n", + "Object 93: Hit Rate = 1.00, Expected Hit Rate = 1.00, Average Time spend in Cache: 1.00, Average Age = 524.21, Expected Age = 0.50\n", + "Object 94: Hit Rate = 0.99, Expected Hit Rate = 0.99, Average Time spend in Cache: 1.00, Average Age = 137.10, Expected Age = 0.49\n", + "Object 95: Hit Rate = 1.00, Expected Hit Rate = 1.00, Average Time spend in Cache: 1.00, Average Age = 533.23, Expected Age = 0.50\n", + "Object 96: Hit Rate = 0.99, Expected Hit Rate = 0.99, Average Time spend in Cache: 0.98, Average Age = 82.53, Expected Age = 0.49\n", + "Object 97: Hit Rate = 0.99, Expected Hit Rate = 0.99, Average Time spend in Cache: 0.98, Average Age = 40.14, Expected Age = 0.49\n", + "Object 98: Hit Rate = 1.00, Expected Hit Rate = 1.00, Average Time spend in Cache: 1.00, Average Age = 527.31, Expected Age = 0.50\n", + "Object 99: Hit Rate = 1.00, Expected Hit Rate = 1.00, Average Time spend in Cache: 1.00, Average Age = 524.64, Expected Age = 0.50\n", + "Object 100: Hit Rate = 1.00, Expected Hit Rate = 1.00, Average Time spend in Cache: 1.00, Average Age = 526.64, Expected Age = 0.50\n" ] } ], @@ -474,538 +498,17 @@ "for obj_id in range(1, DATABASE_OBJECTS + 1):\n", " if cache.access_count[obj_id] != 0:\n", " hit_rate = cache.hits[obj_id] / max(1, cache.access_count[obj_id]) # Avoid division by zero\n", - " avg_age = cache.cumulative_age[obj_id] / max(1, cache.access_count[obj_id])\n", + " expected_hit_rate = 1-math.exp(-db.lambda_values[obj_id]*CACHE_TTL)\n", " avg_cache_time = cache.cumulative_cache_time[obj_id] / max(1, simulation_end_time) # Only average over hits\n", - " expected_age = (0.5*pow(hit_rate,2))\n", - " print(f\"Object {obj_id}: Hit Rate = {hit_rate:.2f}, Average Time spend in Cache: {avg_cache_time:.2f},Average Age = {avg_age:.2f}, Exprected Age = {expected_age:.2f}\")\n", - " statistics.append({\"obj_id\": obj_id,\"hit_rate\": hit_rate, \"avg_cache_time\":avg_cache_time, \"avg_age\": avg_age, \"expected_age\": expected_age})" + " avg_age = cache.cumulative_age[obj_id] / max(1, cache.access_count[obj_id])\n", + " expected_age = pow(hit_rate,2) / 2\n", + " print(f\"Object {obj_id}: Hit Rate = {hit_rate:.2f}, Expected Hit Rate = {expected_hit_rate:.2f}, Average Time spend in Cache: {avg_cache_time:.2f}, Average Age = {avg_age:.2f}, Expected Age = {expected_age:.2f}\")\n", + " statistics.append({\"obj_id\": obj_id,\"hit_rate\": hit_rate, \"expected_hitrate\": expected_hit_rate, \"avg_cache_time\":avg_cache_time, \"avg_age\": avg_age, \"expected_age\": expected_age})" ] }, { "cell_type": "code", "execution_count": 11, - "id": "3f9f5442-dee5-4545-b7b0-6a716e9d943b", - "metadata": { - "scrolled": true - }, - "outputs": [ - { - "data": { - "text/plain": [ - "[{'obj_id': 1,\n", - " 'hit_rate': 0.8343359555761222,\n", - " 'avg_cache_time': {0.810432254071845},\n", - " 'avg_age': 2.068923674198366,\n", - " 'expected_age': 0.34805824338356045},\n", - " {'obj_id': 2,\n", - " 'hit_rate': 0.9368521766863339,\n", - " 'avg_cache_time': {0.8697853571068594},\n", - " 'avg_age': 2.3207402902916767,\n", - " 'expected_age': 0.4388460004809609},\n", - " {'obj_id': 3,\n", - " 'hit_rate': 0.8387391502969392,\n", - " 'avg_cache_time': {0.8200673629152411},\n", - " 'avg_age': 2.083112933481689,\n", - " 'expected_age': 0.3517416811204158},\n", - " {'obj_id': 4,\n", - " 'hit_rate': 0.8345864661654135,\n", - " 'avg_cache_time': {0.817667207716411},\n", - " 'avg_age': 2.098241838496266,\n", - " 'expected_age': 0.3482672847532365},\n", - " {'obj_id': 5,\n", - " 'hit_rate': 0.9079009995240361,\n", - " 'avg_cache_time': {0.8745472033792867},\n", - " 'avg_age': 2.2637599890084745,\n", - " 'expected_age': 0.41214211246837196},\n", - " {'obj_id': 6,\n", - " 'hit_rate': 0.8327790973871734,\n", - " 'avg_cache_time': {0.8080445983334636},\n", - " 'avg_age': 2.0885926647923605,\n", - " 'expected_age': 0.3467605125224976},\n", - " {'obj_id': 7,\n", - " 'hit_rate': 0.9611706197398623,\n", - " 'avg_cache_time': {0.8721183854707718},\n", - " 'avg_age': 2.396789243995202,\n", - " 'expected_age': 0.4619244801255555},\n", - " {'obj_id': 8,\n", - " 'hit_rate': 0.8350230414746543,\n", - " 'avg_cache_time': {0.8224079743937736},\n", - " 'avg_age': 2.0748384445301578,\n", - " 'expected_age': 0.34863173989679114},\n", - " {'obj_id': 9,\n", - " 'hit_rate': 0.8310523831996225,\n", - " 'avg_cache_time': {0.808204836664193},\n", - " 'avg_age': 2.030852029418002,\n", - " 'expected_age': 0.3453240318108861},\n", - " {'obj_id': 10,\n", - " 'hit_rate': 0.8308288899660689,\n", - " 'avg_cache_time': {0.8177615771744638},\n", - " 'avg_age': 2.0440294768985754,\n", - " 'expected_age': 0.34513832220112506},\n", - " {'obj_id': 11,\n", - " 'hit_rate': 0.9088757396449704,\n", - " 'avg_cache_time': {0.891248201160126},\n", - " 'avg_age': 2.2625636303653898,\n", - " 'expected_age': 0.413027555057596},\n", - " {'obj_id': 12,\n", - " 'hit_rate': 0.8373071528751753,\n", - " 'avg_cache_time': {0.8102551278956152},\n", - " 'avg_age': 2.0383876738470725,\n", - " 'expected_age': 0.35054163412796613},\n", - " {'obj_id': 13,\n", - " 'hit_rate': 0.8361344537815126,\n", - " 'avg_cache_time': {0.8105750271598551},\n", - " 'avg_age': 2.0954043404028435,\n", - " 'expected_age': 0.34956041240025426},\n", - " {'obj_id': 14,\n", - " 'hit_rate': 0.8290556900726392,\n", - " 'avg_cache_time': {0.8201096214390584},\n", - " 'avg_age': 2.0706796740450875,\n", - " 'expected_age': 0.34366666862091},\n", - " {'obj_id': 15,\n", - " 'hit_rate': 0.908745247148289,\n", - " 'avg_cache_time': {0.8605605035087328},\n", - " 'avg_age': 2.2466123908950646,\n", - " 'expected_age': 0.4129089621073024},\n", - " {'obj_id': 16,\n", - " 'hit_rate': 0.9110956360259982,\n", - " 'avg_cache_time': {0.8747680644435698},\n", - " 'avg_age': 2.2834548671334542,\n", - " 'expected_age': 0.41504762899280906},\n", - " {'obj_id': 17,\n", - " 'hit_rate': 0.8320683111954459,\n", - " 'avg_cache_time': {0.8150399870989544},\n", - " 'avg_age': 2.0097170455667013,\n", - " 'expected_age': 0.3461688372478207},\n", - " {'obj_id': 18,\n", - " 'hit_rate': 0.8342067651262506,\n", - " 'avg_cache_time': {0.8032009912464316},\n", - " 'avg_age': 2.1273968056684316,\n", - " 'expected_age': 0.3479504634912017},\n", - " {'obj_id': 19,\n", - " 'hit_rate': 0.9354469684588985,\n", - " 'avg_cache_time': {0.8651012574814502},\n", - " 'avg_age': 2.3206810673715705,\n", - " 'expected_age': 0.43753051539947174},\n", - " {'obj_id': 20,\n", - " 'hit_rate': 0.833976833976834,\n", - " 'avg_cache_time': {0.7986061563297104},\n", - " 'avg_age': 2.0432248271474878,\n", - " 'expected_age': 0.34775867980501185},\n", - " {'obj_id': 21,\n", - " 'hit_rate': 0.8348837209302326,\n", - " 'avg_cache_time': {0.8152281904411368},\n", - " 'avg_age': 2.0677338592418755,\n", - " 'expected_age': 0.3485154137371552},\n", - " {'obj_id': 22,\n", - " 'hit_rate': 0.8338068181818182,\n", - " 'avg_cache_time': {0.8174427840452981},\n", - " 'avg_age': 2.086382182099578,\n", - " 'expected_age': 0.3476169050232438},\n", - " {'obj_id': 23,\n", - " 'hit_rate': 0.8357510528778662,\n", - " 'avg_cache_time': {0.8057637380263669},\n", - " 'avg_age': 2.0794074474530007,\n", - " 'expected_age': 0.34923991119323095},\n", - " {'obj_id': 24,\n", - " 'hit_rate': 0.9097920074783828,\n", - " 'avg_cache_time': {0.8768806713137},\n", - " 'avg_age': 2.277444995774618,\n", - " 'expected_age': 0.4138607484357729},\n", - " {'obj_id': 25,\n", - " 'hit_rate': 0.8363039399624765,\n", - " 'avg_cache_time': {0.8033370429558485},\n", - " 'avg_age': 2.0831638192632096,\n", - " 'expected_age': 0.3497021399983808},\n", - " {'obj_id': 26,\n", - " 'hit_rate': 0.8382218148487626,\n", - " 'avg_cache_time': {0.8105553974196054},\n", - " 'avg_age': 2.0739601366722598,\n", - " 'expected_age': 0.3513079054441766},\n", - " {'obj_id': 27,\n", - " 'hit_rate': 0.8346604215456674,\n", - " 'avg_cache_time': {0.8174373373929206},\n", - " 'avg_age': 2.1512142438129023,\n", - " 'expected_age': 0.34832900964739566},\n", - " {'obj_id': 28,\n", - " 'hit_rate': 0.960876670191291,\n", - " 'avg_cache_time': {0.8625135261787757},\n", - " 'avg_age': 2.4084789355150056,\n", - " 'expected_age': 0.4616419876589515},\n", - " {'obj_id': 29,\n", - " 'hit_rate': 0.8324705882352941,\n", - " 'avg_cache_time': {0.8104802301710875},\n", - " 'avg_age': 2.0824021086384605,\n", - " 'expected_age': 0.3465036401384083},\n", - " {'obj_id': 30,\n", - " 'hit_rate': 0.8315191670610507,\n", - " 'avg_cache_time': {0.8174875104134197},\n", - " 'avg_age': 2.072225068112276,\n", - " 'expected_age': 0.34571206259495174},\n", - " {'obj_id': 31,\n", - " 'hit_rate': 0.8260656540911318,\n", - " 'avg_cache_time': {0.8153992880564279},\n", - " 'avg_age': 2.061721077642618,\n", - " 'expected_age': 0.3411922324345047},\n", - " {'obj_id': 32,\n", - " 'hit_rate': 0.952234570820525,\n", - " 'avg_cache_time': {0.8556777555326739},\n", - " 'avg_age': 2.3617840905668293,\n", - " 'expected_age': 0.4533753389328747},\n", - " {'obj_id': 33,\n", - " 'hit_rate': 0.8347378277153558,\n", - " 'avg_cache_time': {0.8177898808005426},\n", - " 'avg_age': 2.1157873141297703,\n", - " 'expected_age': 0.3483936205094755},\n", - " {'obj_id': 34,\n", - " 'hit_rate': 0.953300196509074,\n", - " 'avg_cache_time': {0.8723919138738911},\n", - " 'avg_age': 2.37152246660409,\n", - " 'expected_age': 0.4543906323321196},\n", - " {'obj_id': 35,\n", - " 'hit_rate': 0.8371985157699443,\n", - " 'avg_cache_time': {0.8056650949556616},\n", - " 'avg_age': 2.0546440283833953,\n", - " 'expected_age': 0.35045067740369884},\n", - " {'obj_id': 36,\n", - " 'hit_rate': 0.8293269230769231,\n", - " 'avg_cache_time': {0.8321331411343728},\n", - " 'avg_age': 2.019798753122858,\n", - " 'expected_age': 0.3438915726701184},\n", - " {'obj_id': 37,\n", - " 'hit_rate': 0.8385178408051235,\n", - " 'avg_cache_time': {0.820059027970993},\n", - " 'avg_age': 2.0459185671323534,\n", - " 'expected_age': 0.3515560846742432},\n", - " {'obj_id': 38,\n", - " 'hit_rate': 0.9372218690400509,\n", - " 'avg_cache_time': {0.8698808303188571},\n", - " 'avg_age': 2.3594967138941594,\n", - " 'expected_age': 0.43919241590346314},\n", - " {'obj_id': 39,\n", - " 'hit_rate': 0.9754142169962586,\n", - " 'avg_cache_time': {0.7626087843902165},\n", - " 'avg_age': 2.4388237909562465,\n", - " 'expected_age': 0.47571644735921215},\n", - " {'obj_id': 40,\n", - " 'hit_rate': 0.8275,\n", - " 'avg_cache_time': {0.794355906656446},\n", - " 'avg_age': 2.0686563554852295,\n", - " 'expected_age': 0.34237812500000003},\n", - " {'obj_id': 41,\n", - " 'hit_rate': 0.9524259237398182,\n", - " 'avg_cache_time': {0.845923081620667},\n", - " 'avg_age': 2.3773225761537065,\n", - " 'expected_age': 0.453557570105823},\n", - " {'obj_id': 42,\n", - " 'hit_rate': 0.9532319832888476,\n", - " 'avg_cache_time': {0.8603717658690662},\n", - " 'avg_age': 2.368518600216613,\n", - " 'expected_age': 0.45432560698239494},\n", - " {'obj_id': 43,\n", - " 'hit_rate': 0.9076295585412668,\n", - " 'avg_cache_time': {0.876926816727247},\n", - " 'avg_age': 2.244802766787443,\n", - " 'expected_age': 0.41189570776890744},\n", - " {'obj_id': 44,\n", - " 'hit_rate': 0.82810236600676,\n", - " 'avg_cache_time': {0.8224668160130034},\n", - " 'avg_age': 2.0368413613592855,\n", - " 'expected_age': 0.34287676429299696},\n", - " {'obj_id': 45,\n", - " 'hit_rate': 0.8323863636363636,\n", - " 'avg_cache_time': {0.8319088220634105},\n", - " 'avg_age': 2.1104292351117517,\n", - " 'expected_age': 0.3464335291838843},\n", - " {'obj_id': 46,\n", - " 'hit_rate': 0.8343443770415305,\n", - " 'avg_cache_time': {0.8225991984196005},\n", - " 'avg_age': 2.1195374144133803,\n", - " 'expected_age': 0.3480652697504098},\n", - " {'obj_id': 47,\n", - " 'hit_rate': 0.980509111403344,\n", - " 'avg_cache_time': {0.7793000913510133},\n", - " 'avg_age': 2.4490817341548503,\n", - " 'expected_age': 0.4806990587724876},\n", - " {'obj_id': 48,\n", - " 'hit_rate': 0.8343675417661098,\n", - " 'avg_cache_time': {0.8080294162265821},\n", - " 'avg_age': 2.136948776052968,\n", - " 'expected_age': 0.3480845973764105},\n", - " {'obj_id': 49,\n", - " 'hit_rate': 0.8318116290245074,\n", - " 'avg_cache_time': {0.8130078566363472},\n", - " 'avg_age': 2.1232360998461477,\n", - " 'expected_age': 0.3459552930902024},\n", - " {'obj_id': 50,\n", - " 'hit_rate': 0.8326159732185557,\n", - " 'avg_cache_time': {0.817458050161407},\n", - " 'avg_age': 2.055003674129556,\n", - " 'expected_age': 0.3466246794293414},\n", - " {'obj_id': 51,\n", - " 'hit_rate': 0.9612454770519901,\n", - " 'avg_cache_time': {0.8652760189728331},\n", - " 'avg_age': 2.4115942850497527,\n", - " 'expected_age': 0.46199643357645404},\n", - " {'obj_id': 52,\n", - " 'hit_rate': 0.9782768777614138,\n", - " 'avg_cache_time': {0.8078795902330617},\n", - " 'avg_age': 2.457015718981127,\n", - " 'expected_age': 0.4785128247813101},\n", - " {'obj_id': 53,\n", - " 'hit_rate': 0.8317399617590823,\n", - " 'avg_cache_time': {0.8224509800875742},\n", - " 'avg_age': 2.0588664125261387,\n", - " 'expected_age': 0.3458956819934998},\n", - " {'obj_id': 54,\n", - " 'hit_rate': 0.8293036750483559,\n", - " 'avg_cache_time': {0.8081452701769272},\n", - " 'avg_age': 2.053967188615532,\n", - " 'expected_age': 0.34387229272435454},\n", - " {'obj_id': 55,\n", - " 'hit_rate': 0.828125,\n", - " 'avg_cache_time': {0.8176938747650575},\n", - " 'avg_age': 2.085346884674153,\n", - " 'expected_age': 0.3428955078125},\n", - " {'obj_id': 56,\n", - " 'hit_rate': 0.8280565026790063,\n", - " 'avg_cache_time': {0.8173220706448464},\n", - " 'avg_age': 2.074950238616093,\n", - " 'expected_age': 0.3428387858144936},\n", - " {'obj_id': 57,\n", - " 'hit_rate': 0.8393339333933393,\n", - " 'avg_cache_time': {0.8270340728801309},\n", - " 'avg_age': 2.0691955449482378,\n", - " 'expected_age': 0.3522407258727672},\n", - " {'obj_id': 58,\n", - " 'hit_rate': 0.9883888888888889,\n", - " 'avg_cache_time': {0.6768908831920782},\n", - " 'avg_age': 2.4643101465551154,\n", - " 'expected_age': 0.48845629783950617},\n", - " {'obj_id': 59,\n", - " 'hit_rate': 0.9093491124260356,\n", - " 'avg_cache_time': {0.8748411466058176},\n", - " 'avg_age': 2.2267777175980874,\n", - " 'expected_age': 0.4134579041350093},\n", - " {'obj_id': 60,\n", - " 'hit_rate': 0.8384580082606701,\n", - " 'avg_cache_time': {0.8104072319895872},\n", - " 'avg_age': 2.0723452264510507,\n", - " 'expected_age': 0.35150591580822493},\n", - " {'obj_id': 61,\n", - " 'hit_rate': 0.9923634975181367,\n", - " 'avg_cache_time': {0.5747045857007451},\n", - " 'avg_age': 2.472985486607898,\n", - " 'expected_age': 0.49239265560321444},\n", - " {'obj_id': 62,\n", - " 'hit_rate': 0.8294685990338164,\n", - " 'avg_cache_time': {0.8224411637289837},\n", - " 'avg_age': 2.0655736147672212,\n", - " 'expected_age': 0.3440090783915611},\n", - " {'obj_id': 63,\n", - " 'hit_rate': 0.8315939278937381,\n", - " 'avg_cache_time': {0.8105502727907914},\n", - " 'avg_age': 2.0794497864895076,\n", - " 'expected_age': 0.3457742304548678},\n", - " {'obj_id': 64,\n", - " 'hit_rate': 0.9081364829396326,\n", - " 'avg_cache_time': {0.865498922040767},\n", - " 'avg_age': 2.2665026207308543,\n", - " 'expected_age': 0.41235593582298274},\n", - " {'obj_id': 65,\n", - " 'hit_rate': 0.8366013071895425,\n", - " 'avg_cache_time': {0.8129554073994908},\n", - " 'avg_age': 2.0648277501716747,\n", - " 'expected_age': 0.34995087359562566},\n", - " {'obj_id': 66,\n", - " 'hit_rate': 0.9804088183921069,\n", - " 'avg_cache_time': {0.781811758702253},\n", - " 'avg_age': 2.4642764008736737,\n", - " 'expected_age': 0.48060072559050365},\n", - " {'obj_id': 67,\n", - " 'hit_rate': 0.839392544868845,\n", - " 'avg_cache_time': {0.8057032348271645},\n", - " 'avg_age': 2.0516174721394225,\n", - " 'expected_age': 0.35228992219069794},\n", - " {'obj_id': 68,\n", - " 'hit_rate': 0.9971018872070984,\n", - " 'avg_cache_time': {0.28694251969249696},\n", - " 'avg_age': 2.4912476009423554,\n", - " 'expected_age': 0.49710608673597856},\n", - " {'obj_id': 69,\n", - " 'hit_rate': 0.8279362010633156,\n", - " 'avg_cache_time': {0.8104624011213533},\n", - " 'avg_age': 2.044782938269008,\n", - " 'expected_age': 0.34273917651557745},\n", - " {'obj_id': 70,\n", - " 'hit_rate': 0.8330975954738331,\n", - " 'avg_cache_time': {0.827067381762729},\n", - " 'avg_age': 2.061054243655572,\n", - " 'expected_age': 0.3470258017921412},\n", - " {'obj_id': 71,\n", - " 'hit_rate': 0.9102174421323358,\n", - " 'avg_cache_time': {0.8438498811202659},\n", - " 'avg_age': 2.245598184286809,\n", - " 'expected_age': 0.414247895980966},\n", - " {'obj_id': 72,\n", - " 'hit_rate': 0.8317490494296578,\n", - " 'avg_cache_time': {0.8103677547984748},\n", - " 'avg_age': 2.094107348921501,\n", - " 'expected_age': 0.34590324061356964},\n", - " {'obj_id': 73,\n", - " 'hit_rate': 0.8348666053357866,\n", - " 'avg_cache_time': {0.8222844065855565},\n", - " 'avg_age': 2.097902145286362,\n", - " 'expected_age': 0.34850112435245},\n", - " {'obj_id': 74,\n", - " 'hit_rate': 0.8388838883888389,\n", - " 'avg_cache_time': {0.8223920952154627},\n", - " 'avg_age': 2.059451157427686,\n", - " 'expected_age': 0.35186308909918895},\n", - " {'obj_id': 75,\n", - " 'hit_rate': 0.936951316839585,\n", - " 'avg_cache_time': {0.884020791397808},\n", - " 'avg_age': 2.313501961216909,\n", - " 'expected_age': 0.4389388850637162},\n", - " {'obj_id': 76,\n", - " 'hit_rate': 0.9075005990893842,\n", - " 'avg_cache_time': {0.8603442007780137},\n", - " 'avg_age': 2.278602079093859,\n", - " 'expected_age': 0.4117786686737956},\n", - " {'obj_id': 77,\n", - " 'hit_rate': 0.9112534309240622,\n", - " 'avg_cache_time': {0.8674652781940188},\n", - " 'avg_age': 2.2542752448800436,\n", - " 'expected_age': 0.4151914076854373},\n", - " {'obj_id': 78,\n", - " 'hit_rate': 0.9380210791253736,\n", - " 'avg_cache_time': {0.8839771052976533},\n", - " 'avg_age': 2.324935499962482,\n", - " 'expected_age': 0.4399417724417652},\n", - " {'obj_id': 79,\n", - " 'hit_rate': 0.9867845598022438,\n", - " 'avg_cache_time': {0.705585200712788},\n", - " 'avg_age': 2.46010684921625,\n", - " 'expected_age': 0.48687188373205403},\n", - " {'obj_id': 80,\n", - " 'hit_rate': 0.8322211630123928,\n", - " 'avg_cache_time': {0.8177314370626462},\n", - " 'avg_age': 2.097477368005882,\n", - " 'expected_age': 0.3462960320828498},\n", - " {'obj_id': 81,\n", - " 'hit_rate': 0.8304836345872008,\n", - " 'avg_cache_time': {0.8034749610214771},\n", - " 'avg_age': 2.0624698657772527,\n", - " 'expected_age': 0.3448515336585836},\n", - " {'obj_id': 82,\n", - " 'hit_rate': 0.9619305958282668,\n", - " 'avg_cache_time': {0.8509832375052683},\n", - " 'avg_age': 2.41091877839736,\n", - " 'expected_age': 0.46265523559526217},\n", - " {'obj_id': 83,\n", - " 'hit_rate': 0.9100070307007265,\n", - " 'avg_cache_time': {0.8722800197572179},\n", - " 'avg_age': 2.3170644212278697,\n", - " 'expected_age': 0.41405639796237653},\n", - " {'obj_id': 84,\n", - " 'hit_rate': 0.833254828073481,\n", - " 'avg_cache_time': {0.8177016874896731},\n", - " 'avg_age': 2.0464469902323,\n", - " 'expected_age': 0.3471568042538831},\n", - " {'obj_id': 85,\n", - " 'hit_rate': 0.833255269320843,\n", - " 'avg_cache_time': {0.8247840962323026},\n", - " 'avg_age': 2.061285101346782,\n", - " 'expected_age': 0.34715717192547535},\n", - " {'obj_id': 86,\n", - " 'hit_rate': 0.9074074074074074,\n", - " 'avg_cache_time': {0.8555887732493566},\n", - " 'avg_age': 2.2769598734065584,\n", - " 'expected_age': 0.41169410150891633},\n", - " {'obj_id': 87,\n", - " 'hit_rate': 0.8397639582387654,\n", - " 'avg_cache_time': {0.8224276969838862},\n", - " 'avg_age': 2.0870135852266167,\n", - " 'expected_age': 0.35260175277841943},\n", - " {'obj_id': 88,\n", - " 'hit_rate': 0.907762338284619,\n", - " 'avg_cache_time': {0.8602891254952841},\n", - " 'avg_age': 2.235994985739091,\n", - " 'expected_age': 0.4120162314039796},\n", - " {'obj_id': 89,\n", - " 'hit_rate': 0.8307105388650453,\n", - " 'avg_cache_time': {0.8080035927903887},\n", - " 'avg_age': 2.035873238721567,\n", - " 'expected_age': 0.34503999969072696},\n", - " {'obj_id': 90,\n", - " 'hit_rate': 0.8352996696554978,\n", - " 'avg_cache_time': {0.8079407137714084},\n", - " 'avg_age': 2.0794798223111317,\n", - " 'expected_age': 0.3488627690632919},\n", - " {'obj_id': 91,\n", - " 'hit_rate': 0.9086402266288952,\n", - " 'avg_cache_time': {0.8794285016730224},\n", - " 'avg_age': 2.2588139685983926,\n", - " 'expected_age': 0.41281353072410504},\n", - " {'obj_id': 92,\n", - " 'hit_rate': 0.9085754783841248,\n", - " 'avg_cache_time': {0.841418447951084},\n", - " 'avg_age': 2.2786416827720615,\n", - " 'expected_age': 0.4127546999604706},\n", - " {'obj_id': 93,\n", - " 'hit_rate': 0.9372827804107425,\n", - " 'avg_cache_time': {0.8936600617349919},\n", - " 'avg_age': 2.378841722682071,\n", - " 'expected_age': 0.4392495052272461},\n", - " {'obj_id': 94,\n", - " 'hit_rate': 0.8275355218030377,\n", - " 'avg_cache_time': {0.8105095792801881},\n", - " 'avg_age': 2.094877983310673,\n", - " 'expected_age': 0.3424075199229129},\n", - " {'obj_id': 95,\n", - " 'hit_rate': 0.9085263912108908,\n", - " 'avg_cache_time': {0.8700376807857447},\n", - " 'avg_age': 2.2455942083568528,\n", - " 'expected_age': 0.41271010176334233},\n", - " {'obj_id': 96,\n", - " 'hit_rate': 0.8329366968110423,\n", - " 'avg_cache_time': {0.812733015130395},\n", - " 'avg_age': 2.0386270901405714,\n", - " 'expected_age': 0.3468917704472451},\n", - " {'obj_id': 97,\n", - " 'hit_rate': 0.83082158483228,\n", - " 'avg_cache_time': {0.8084037771066447},\n", - " 'avg_age': 2.0786109804084023,\n", - " 'expected_age': 0.3451322529116107},\n", - " {'obj_id': 98,\n", - " 'hit_rate': 0.9946180888462768,\n", - " 'avg_cache_time': {0.4651534320375863},\n", - " 'avg_age': 2.4811043242858535,\n", - " 'expected_age': 0.49463257133011007},\n", - " {'obj_id': 99,\n", - " 'hit_rate': 0.952843435525392,\n", - " 'avg_cache_time': {0.8627920808474391},\n", - " 'avg_age': 2.375694850086415,\n", - " 'expected_age': 0.4539553063119159},\n", - " {'obj_id': 100,\n", - " 'hit_rate': 0.9087917254348848,\n", - " 'avg_cache_time': {0.8674273959799007},\n", - " 'avg_age': 2.2584215419035614,\n", - " 'expected_age': 0.4129512001094576}]" - ] - }, - "execution_count": 11, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "statistics" - ] - }, - { - "cell_type": "code", - "execution_count": 12, "id": "b2d18372-cdba-4151-ae32-5bf45466bf94", "metadata": {}, "outputs": [], @@ -1017,7 +520,7 @@ }, { "cell_type": "code", - "execution_count": 13, + "execution_count": 12, "id": "80971714-44f1-47db-9e89-85be7c885bde", "metadata": {}, "outputs": [ @@ -1048,6 +551,8 @@ " mu\n", " lambda\n", " hit_rate\n", + " avg_cache_time\n", + " cache_time_delta\n", " avg_age\n", " expected_age\n", " age_delta\n", @@ -1056,63 +561,73 @@ " \n", " \n", " 1\n", - " 2161\n", - " 1803\n", - " 358\n", + " 1060\n", + " 1048\n", + " 12\n", " 0\n", " 1\n", - " 0.834336\n", - " 2.068924\n", - " 0.348058\n", - " 1.720865\n", + " 0.988679\n", + " 0.986652\n", + " 0.002027\n", + " 86.266415\n", + " 0.488743\n", + " 85.777672\n", " \n", " \n", " 2\n", - " 6271\n", - " 5875\n", - " 396\n", + " 3141\n", + " 3140\n", + " 1\n", " 0\n", " 3\n", - " 0.936852\n", - " 2.320740\n", - " 0.438846\n", - " 1.881894\n", + " 0.999682\n", + " 0.999596\n", + " 0.000086\n", + " 518.478962\n", + " 0.499682\n", + " 517.979280\n", " \n", " \n", " 3\n", - " 2189\n", - " 1836\n", - " 353\n", + " 1060\n", + " 1054\n", + " 6\n", " 0\n", " 1\n", - " 0.838739\n", - " 2.083113\n", - " 0.351742\n", - " 1.731371\n", + " 0.994340\n", + " 0.992451\n", + " 0.001888\n", + " 130.457732\n", + " 0.494356\n", + " 129.963377\n", " \n", " \n", " 4\n", - " 2128\n", - " 1776\n", - " 352\n", + " 1053\n", + " 1041\n", + " 12\n", " 0\n", " 1\n", - " 0.834586\n", - " 2.098242\n", - " 0.348267\n", - " 1.749975\n", + " 0.988604\n", + " 0.995039\n", + " -0.006435\n", + " 65.802517\n", + " 0.488669\n", + " 65.313848\n", " \n", " \n", " 5\n", - " 4202\n", - " 3815\n", - " 387\n", + " 2073\n", + " 2072\n", + " 1\n", " 0\n", " 2\n", - " 0.907901\n", - " 2.263760\n", - " 0.412142\n", - " 1.851618\n", + " 0.999518\n", + " 0.999509\n", + " 0.000008\n", + " 516.463009\n", + " 0.499518\n", + " 515.963491\n", " \n", " \n", " ...\n", @@ -1125,103 +640,115 @@ " ...\n", " ...\n", " ...\n", + " ...\n", + " ...\n", " \n", " \n", " 96\n", - " 2101\n", - " 1750\n", - " 351\n", + " 1026\n", + " 1015\n", + " 11\n", " 0\n", " 1\n", - " 0.832937\n", - " 2.038627\n", - " 0.346892\n", - " 1.691735\n", + " 0.989279\n", + " 0.983446\n", + " 0.005833\n", + " 82.531337\n", + " 0.489336\n", + " 82.042001\n", " \n", " \n", " 97\n", - " 2057\n", - " 1709\n", - " 348\n", + " 1015\n", + " 1001\n", + " 14\n", " 0\n", " 1\n", - " 0.830822\n", - " 2.078611\n", - " 0.345132\n", - " 1.733479\n", + " 0.986207\n", + " 0.984133\n", + " 0.002074\n", + " 40.135630\n", + " 0.486302\n", + " 39.649328\n", " \n", " \n", " 98\n", - " 78225\n", - " 77804\n", - " 421\n", + " 39278\n", + " 39277\n", + " 1\n", " 0\n", " 37\n", - " 0.994618\n", - " 2.481104\n", - " 0.494633\n", - " 1.986472\n", + " 0.999975\n", + " 0.999964\n", + " 0.000011\n", + " 527.312192\n", + " 0.499975\n", + " 526.812217\n", " \n", " \n", " 99\n", - " 8546\n", - " 8143\n", - " 403\n", + " 4158\n", + " 4157\n", + " 1\n", " 0\n", " 4\n", - " 0.952843\n", - " 2.375695\n", - " 0.453955\n", - " 1.921740\n", + " 0.999759\n", + " 0.999997\n", + " -0.000237\n", + " 524.637562\n", + " 0.499760\n", + " 524.137803\n", " \n", " \n", " 100\n", - " 4254\n", - " 3866\n", - " 388\n", + " 2084\n", + " 2083\n", + " 1\n", " 0\n", " 2\n", - " 0.908792\n", - " 2.258422\n", - " 0.412951\n", - " 1.845470\n", + " 0.999520\n", + " 0.999942\n", + " -0.000421\n", + " 526.641909\n", + " 0.499520\n", + " 526.142389\n", " \n", " \n", "\n", - "

100 rows × 9 columns

\n", + "

100 rows × 11 columns

\n", "" ], "text/plain": [ - " access_count hits misses mu lambda hit_rate avg_age \\\n", - "1 2161 1803 358 0 1 0.834336 2.068924 \n", - "2 6271 5875 396 0 3 0.936852 2.320740 \n", - "3 2189 1836 353 0 1 0.838739 2.083113 \n", - "4 2128 1776 352 0 1 0.834586 2.098242 \n", - "5 4202 3815 387 0 2 0.907901 2.263760 \n", - ".. ... ... ... .. ... ... ... \n", - "96 2101 1750 351 0 1 0.832937 2.038627 \n", - "97 2057 1709 348 0 1 0.830822 2.078611 \n", - "98 78225 77804 421 0 37 0.994618 2.481104 \n", - "99 8546 8143 403 0 4 0.952843 2.375695 \n", - "100 4254 3866 388 0 2 0.908792 2.258422 \n", + " access_count hits misses mu lambda hit_rate avg_cache_time \\\n", + "1 1060 1048 12 0 1 0.988679 0.986652 \n", + "2 3141 3140 1 0 3 0.999682 0.999596 \n", + "3 1060 1054 6 0 1 0.994340 0.992451 \n", + "4 1053 1041 12 0 1 0.988604 0.995039 \n", + "5 2073 2072 1 0 2 0.999518 0.999509 \n", + ".. ... ... ... .. ... ... ... \n", + "96 1026 1015 11 0 1 0.989279 0.983446 \n", + "97 1015 1001 14 0 1 0.986207 0.984133 \n", + "98 39278 39277 1 0 37 0.999975 0.999964 \n", + "99 4158 4157 1 0 4 0.999759 0.999997 \n", + "100 2084 2083 1 0 2 0.999520 0.999942 \n", "\n", - " expected_age age_delta \n", - "1 0.348058 1.720865 \n", - "2 0.438846 1.881894 \n", - "3 0.351742 1.731371 \n", - "4 0.348267 1.749975 \n", - "5 0.412142 1.851618 \n", - ".. ... ... \n", - "96 0.346892 1.691735 \n", - "97 0.345132 1.733479 \n", - "98 0.494633 1.986472 \n", - "99 0.453955 1.921740 \n", - "100 0.412951 1.845470 \n", + " cache_time_delta avg_age expected_age age_delta \n", + "1 0.002027 86.266415 0.488743 85.777672 \n", + "2 0.000086 518.478962 0.499682 517.979280 \n", + "3 0.001888 130.457732 0.494356 129.963377 \n", + "4 -0.006435 65.802517 0.488669 65.313848 \n", + "5 0.000008 516.463009 0.499518 515.963491 \n", + ".. ... ... ... ... \n", + "96 0.005833 82.531337 0.489336 82.042001 \n", + "97 0.002074 40.135630 0.486302 39.649328 \n", + "98 0.000011 527.312192 0.499975 526.812217 \n", + "99 -0.000237 524.637562 0.499760 524.137803 \n", + "100 -0.000421 526.641909 0.499520 526.142389 \n", "\n", - "[100 rows x 9 columns]" + "[100 rows x 11 columns]" ] }, - "execution_count": 13, + "execution_count": 12, "metadata": {}, "output_type": "execute_result" } @@ -1252,6 +779,38 @@ "merged" ] }, + { + "cell_type": "code", + "execution_count": 13, + "id": "8630b3e8-50d1-4590-833d-27651d84a366", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "access_count 1026.000000\n", + "hits 1015.000000\n", + "misses 11.000000\n", + "mu 0.000000\n", + "lambda 1.000000\n", + "hit_rate 0.989279\n", + "avg_cache_time 0.983446\n", + "cache_time_delta 0.005833\n", + "avg_age 82.531337\n", + "expected_age 0.489336\n", + "age_delta 82.042001\n", + "Name: 96, dtype: float64" + ] + }, + "execution_count": 13, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "merged.iloc[merged['cache_time_delta'].argmax()]" + ] + }, { "cell_type": "code", "execution_count": 14, @@ -1260,7 +819,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAACWAAAAHWCAYAAADzMbJhAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy80BEi2AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydd3wUxfvHP5eE3kGKKBJE7GJBxY4oir13EfFnL1/bV/1iQcUGFhRBEBDpWGiCGHoNPZRAgABJSAKk996u7O+Py15md2e23O1dEnzer5cvw93e7uzs7MwzT3VIkiSBIAiCIAiCIAiCIAiCIAiCIAiCIAiCIAiCIAiCsExYfTeAIAiCIAiCIAiCIAiCIAiCIAiCIAiCIAiCIAiisUIOWARBEARBEARBEARBEARBEARBEARBEARBEARBEH5CDlgEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRB+Qg5YBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQfkIOWARBEARBEARBEARBEARBEARBEARBEARBEARBEH5CDlgEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRB+Qg5YBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQfkIOWARBEARBEARBEARBEARBEARBEARBEARBEARBEH5CDlgEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRB+Qg5YBEEQBEEQBEEQBEEQJtmwYQMcDgcWLFhQ300xRXZ2Nh566CF06tQJDocDY8eOte3cqampcDgc+O677wyP/fTTT+FwOGy7dihwOBz49NNP67sZtuBwOPDaa6/VdzMaNZGRkRg2bFh9N4MgCIIgCIIgCIIgiAYKOWARBEEQBEEQBEEQBNGgmDFjBhwOB5o3b4709HTN9zfeeCMuvPDCemhZ4+Ott97CypUr8f7772P27Nm47bbbdI8vLy/H559/jr59+6Jly5Zo164drr/+esyaNQuSJIWo1dZZtmxZo3GW2rBhAx544AF069YNTZs2RZcuXXD33Xdj0aJF9d00W3A6nRg3bhyuuOIKtGnTBq1bt8YVV1yBcePGwel01nfzfMjOlGb+IwiCIAiCIAiCIAiCMCKivhtAEARBEARBEARBEATBo7q6GqNHj8b48ePruymNlnXr1uHee+/FO++8Y3hsdnY2br75Zhw6dAiPPfYYXnvtNVRVVWHhwoV4+umnsWzZMsydOxfh4eGW2/HRRx9h+PDh/tyCKZYtW4YJEybY6oRVWVmJiAh7VWeffPIJPvvsM/Tp0wcvvvgievbsifz8fCxbtgwPPvgg5s6diyeeeMLWa4aS8vJy3Hnnndi4cSPuuusuDBs2DGFhYVixYgXeeOMNLFq0CFFRUWjVqlV9NxXnnXceZs+erfjs/fffR+vWrfHhhx9qjj9y5AjCwiiWlSAIgiAIgiAIgiAIPuSARRAEQRAEQRAEQRBEg+SSSy7BL7/8gvfffx/du3ev7+aElPLyclucVHJyctC+fXtTxz799NM4dOgQ/vrrL9xzzz2+z19//XW8++67+O6773DppZfif//7n+V2RERE2O7MFGyaN29u6/kWLFiAzz77DA899BB+++03NGnSxPfdu+++i5UrVzaoDFH+8Pbbb2Pjxo0YP368ouThyy+/jAkTJuC1117DO++8g59//jlkbZIkCVVVVWjRooXi865du2LIkCGKz0aPHo1TTjlF8zkANGvWLKjtJAiCIAiCIAiCIAiicUNhWwRBEARBEARBEARBNEg++OADuN1ujB49Wve41NRUOBwOzJgxQ/Odw+FQZEX69NNP4XA4kJCQgCFDhqBdu3bo3LkzRowYAUmScOLECdx7771o27YtunXrhjFjxnCv6Xa78cEHH6Bbt25o1aoV7rnnHpw4cUJz3I4dO3DbbbehXbt2aNmyJQYMGIAtW7YojpHbFB8fjyeeeAIdOnTAddddp3vPycnJePjhh9GxY0e0bNkSV111FaKionzfy2UcJUnChAkTDEupbd++HStXrsSwYcMUzlcyo0aNQp8+ffD111+jsrJS8/0PP/yAnj17okWLFhgwYAAOHDjAvUc1c+bMQb9+/dCiRQt07NgRjz32mLAf77jjDnTo0AGtWrVC37598eOPPwIAhg0bhgkTJgAAt2zcH3/8gX79+qFNmzZo27YtLrroIt9v9RCNnaSkJAwbNgzt27dHu3bt8Mwzz6CiosLwfCNGjEDHjh0xbdo0hfOVzODBg3HXXXcBAGpqavDxxx+jX79+aNeuHVq1aoXrr78e69ev1/zO4/Hgxx9/xEUXXYTmzZujc+fOuO2227Br1y7NsYsXL8aFF16IZs2a4YILLsCKFSs0x6Snp+P//u//0LVrV99x06ZNM7y/tLQ0/Prrr7jpppsUzlcyr776KgYOHIipU6ciLS0NAHDhhRdi4MCB3Hs67bTT8NBDDyk+Gzt2LC644AI0b94cXbt2xYsvvojCwkLFbyMjI3HXXXdh5cqVuPzyy9GiRQtMnjzZsP1GREZGYtiwYb5/y+/Y5s2b8frrr6Nz585o3749XnzxRdTU1KCoqAhDhw5Fhw4d0KFDB7z33nuaMp5m74kgCIIgCIIgCIIgiIYPOWARBEEQBEEQBEEQBNEg6dWrF4YOHYpffvkFGRkZtp770UcfhcfjwejRo9G/f3988cUXGDt2LG655Racdtpp+Prrr3HWWWfhnXfeQXR0tOb3X375JaKiovC///0Pr7/+OlavXo1BgwYpnJPWrVuHG264ASUlJfjkk0/w1VdfoaioCDfddBNiYmI053z44YdRUVGBr776Cs8//7yw7dnZ2bjmmmuwcuVKvPLKK/jyyy9RVVWFe+65B3/99RcA4IYbbvCVV7vlllswe/ZsTbk1lqVLlwIAhg4dyv0+IiICTzzxBAoLCzUOZLNmzcK4cePw6quv4v3338eBAwdw0003ITs7W3g9wNuHQ4cORZ8+ffD999/jzTffxNq1a3HDDTegqKjId9zq1atxww03ID4+Hm+88QbGjBmDgQMH4p9//gEAvPjii7jlllsAwHef8r2uXr0ajz/+ODp06ICvv/4ao0ePxo033qi5Bys88sgjKC0txahRo/DII49gxowZGDlypO5vEhMTcfjwYdx3331o06aN4TVKSkowdepU3Hjjjfj666/x6aefIjc3F4MHD8bevXsVxz777LN488030aNHD3z99dcYPnw4mjdvju3btyuO27x5M1555RU89thj+Oabb1BVVYUHH3wQ+fn5vmOys7Nx1VVXYc2aNXjttdfw448/4qyzzsKzzz6LsWPH6rZ5+fLlcLvdwjEEeMeXy+XyOX49+uijiI6ORlZWlqatGRkZeOyxx3yfvfjii3j33Xdx7bXX4scff8QzzzyDuXPnYvDgwZrMYUeOHMHjjz+OW265BT/++CMuueQS3bYHwn/+8x8kJiZi5MiRuOeeezBlyhSMGDECd999N9xuN7766itcd911+PbbbzXvoJV7IgiCIAiCIAiCIAiigSMRBEEQBEEQBEEQBEE0IKZPny4BkHbu3CkdPXpUioiIkF5//XXf9wMGDJAuuOAC379TUlIkANL06dM15wIgffLJJ75/f/LJJxIA6YUXXvB95nK5pNNPP11yOBzS6NGjfZ8XFhZKLVq0kJ5++mnfZ+vXr5cASKeddppUUlLi+3zevHkSAOnHH3+UJEmSPB6P1KdPH2nw4MGSx+PxHVdRUSH16tVLuuWWWzRtevzxx031z5tvvikBkDZt2uT7rLS0VOrVq5cUGRkpud1uxf2/+uqrhue87777JABSYWGh8JhFixZJAKRx48ZJklTX7y1atJDS0tJ8x+3YsUMCIL311luae5RJTU2VwsPDpS+//FJxjf3790sRERG+z10ul9SrVy+pZ8+emrax/frqq69KPDXXG2+8IbVt21ZyuVyGfaBGNHb+7//+T3Hc/fffL3Xq1En3XEuWLJEASD/88IOpa7tcLqm6ulrxWWFhodS1a1fF9detWycBULwfMmz/AJCaNm0qJSUl+T7bt2+fBEAaP36877Nnn31WOvXUU6W8vDzFuR577DGpXbt2UkVFhbDN8riMjY0VHrNnzx4JgPT2229LkiRJR44c0bRBkiTplVdekVq3bu273qZNmyQA0ty5cxXHrVixQvN5z549JQDSihUrhO0QccEFF0gDBgzgftezZ0/FXCDPU+p3/Oqrr5YcDof00ksv+T6T5xj23FbuiSAIgiAIgiAIgiCIhg9lwCIIgiAIgiAIgiAIosFy5pln4qmnnsKUKVOQmZlp23mfe+4539/h4eG4/PLLIUkSnn32Wd/n7du3xznnnIPk5GTN74cOHarIZPTQQw/h1FNPxbJlywAAe/fuRWJiIp544gnk5+cjLy8PeXl5KC8vx80334zo6Gh4PB7FOV966SVTbV+2bBmuvPJKRZnC1q1b44UXXkBqairi4+PNdQJDaWkpAOhmZ5K/KykpUXx+33334bTTTvP9+8orr0T//v19fcFj0aJF8Hg8eOSRR3x9k5eXh27duqFPnz6+UnuxsbFISUnBm2++ifbt2yvOoVdSUaZ9+/YoLy/H6tWrDY81i/o5XX/99cjPz9f0C4v8nZnsV4B3TDZt2hSAt0xdQUEBXC4XLr/8cuzZs8d33MKFC+FwOPDJJ59ozqHun0GDBqF3796+f/ft2xdt27b1jW9JkrBw4ULcfffdkCRJ8VwGDx6M4uJixbXV+DOGzj77bFxyySX4888/fce43W4sWLAAd999N1q0aAEAmD9/Ptq1a4dbbrlF0a5+/fqhdevWmtKMvXr1wuDBg4XtsJNnn31W0df9+/fXzCXyHMPOJVbviSAIgiAIgiAIgiCIhk1EfTeAIAiCIAiCIAiCIAhCj48++gizZ8/G6NGj8eOPP9pyzjPOOEPx73bt2qF58+Y45ZRTNJ+zJdpk+vTpo/i3w+HAWWedhdTUVADeknMA8PTTTwvbUFxcjA4dOvj+3atXL1NtP3bsGPr376/5/LzzzvN9f+GFF5o6l4zsGFNaWqpxdJIROdio+wLwOtbMmzdPeL3ExERIksT9LQA0adIEAHD06FEAsHw/Mq+88grmzZuH22+/HaeddhpuvfVWPPLII7jtttv8Oh+gHTvyMywsLETbtm25v5E/l/vQDDNnzsSYMWNw+PBhRTk6dpwcPXoU3bt3R8eOHS23W257YWEhACA3NxdFRUWYMmUKpkyZwj1HTk6O8PzsGBLBG0OPPvooPvjgA6Snp+O0007Dhg0bkJOTg0cffdR3TGJiIoqLi9GlSxdT7TL7LtkBby4BgB49emg+l/sasH5PBEEQBEEQBEEQBEE0bMgBiyAIgiAIgiAIgiCIBs2ZZ56JIUOGYMqUKRg+fLjme1EmJLfbLTxneHi4qc8Ab2Ygq8jZrb799ltccskl3GNat26t+Lec7ac+OO+887B48WLExcXhhhtu4B4TFxcHADj//PMDvp7H44HD4cDy5cu5/a7uG3/p0qUL9u7di5UrV2L58uVYvnw5pk+fjqFDh2LmzJl+ndOfcXLuuecCAPbv32/qGnPmzMGwYcNw33334d1330WXLl0QHh6OUaNG+ZzSrGLUbnnMDhkyROg42LdvX+H5ZQfAuLg44ZjnjaFHH30U77//PubPn48333wT8+bNQ7t27RROch6PB126dMHcuXO55+3cubPi36F8l0T9yvucHSNW74kgCIIgCIIgCIIgiIYNOWARBEEQBEEQBEEQBNHg+eijjzBnzhx8/fXXmu/kDERFRUWKz48dOxa09sgZrmQkSUJSUpLPQUUu9da2bVsMGjTI1mv37NkTR44c0Xx++PBh3/dWueuuuzBq1CjMmjWL64Dldrvx22+/oUOHDrj22msV36n7AgASEhIQGRkpvF7v3r0hSRJ69eqFs88+W/c4ADhw4IBuP+qVI2zatCnuvvtu3H333fB4PHjllVcwefJkjBgxAmeddZbwd3Zy9tln45xzzsGSJUvw448/GjqYLViwAGeeeSYWLVqkuDd1qcHevXtj5cqVKCgoMJUFS4/OnTujTZs2cLvdfo3Z22+/HeHh4Zg9ezaGDh3KPWbWrFmIiIhQOFf16tULV155Jf7880+89tprWLRoEe677z40a9bMd0zv3r2xZs0aXHvttfXqqGgnJ+M9EQRBEARBEARBEMS/mbD6bgBBEARBEARBEARBEIQRvXv3xpAhQzB58mRkZWUpvmvbti1OOeUUREdHKz6fOHFi0Noza9YsRam1BQsWIDMzE7fffjsAoF+/fujduze+++47lJWVaX6fm5vr97XvuOMOxMTEYNu2bb7PysvLMWXKFERGRvqVoeqaa67BoEGDMH36dPzzzz+a7z/88EMkJCTgvffe0ziLLF68GOnp6b5/x8TEYMeOHb6+4PHAAw8gPDwcI0eO1GSOkiTJV/bxsssuQ69evTB27FiNgx37u1atWgHQOuGpy0eGhYX5nOSqq6uF7QsGI0eORH5+Pp577jm4XC7N96tWrfL1vZw9ib3HHTt2KJ45ADz44IOQJAkjR47UnM9q5rbw8HA8+OCDWLhwIQ4cOKD53mjM9ujRA8888wzWrFmDn3/+WfP9pEmTsG7dOjz77LM4/fTTFd89+uij2L59O6ZNm4a8vDxF+UEAeOSRR+B2u/H5559rzutyuTTPvTFwMt4TQRAEQRAEQRAEQfyboQxYBEEQBEEQBEEQBEE0Cj788EPMnj0bR44cwQUXXKD47rnnnsPo0aPx3HPP4fLLL0d0dDQSEhKC1paOHTviuuuuwzPPPIPs7GyMHTsWZ511Fp5//nkAXkefqVOn4vbbb8cFF1yAZ555BqeddhrS09Oxfv16tG3bFkuXLvXr2sOHD8fvv/+O22+/Ha+//jo6duyImTNnIiUlBQsXLkRYmH/xdrNmzcLNN9+Me++9F0888QSuv/56VFdXY9GiRdiwYQMeffRRvPvuu5rfnXXWWbjuuuvw8ssvo7q6GmPHjkWnTp3w3nvvCa/Vu3dvfPHFF3j//feRmpqK++67D23atEFKSgr++usvvPDCC3jnnXcQFhaGn3/+GXfffTcuueQSPPPMMzj11FNx+PBhHDx4ECtXrgTgdXgDgNdffx2DBw9GeHg4HnvsMTz33HMoKCjATTfdhNNPPx3Hjh3D+PHjcckll/hK5oWKRx99FPv378eXX36J2NhYPP744+jZsyfy8/OxYsUKrF27Fr/99hsAb0ayRYsW4f7778edd96JlJQUTJo0Ceeff77CoW/gwIF46qmnMG7cOCQmJuK2226Dx+PBpk2bMHDgQLz22muW2jh69GisX78e/fv3x/PPP4/zzz8fBQUF2LNnD9asWYOCggLd3//www84fPgwXnnlFaxYscKX6WrlypVYsmQJBgwYgDFjxmh+98gjj+Cdd97BO++8g44dO2oycA0YMAAvvvgiRo0ahb179+LWW29FkyZNkJiYiPnz5+PHH3/EQw89ZOle65uT8Z4IgiAIgiAIgiAI4t8MOWARBEEQBEEQBEEQBNEoOOusszBkyBDMnDlT893HH3+M3NxcLFiwAPPmzcPtt9+O5cuXo0uXLkFpywcffIC4uDiMGjUKpaWluPnmmzFx4kS0bNnSd8yNN96Ibdu24fPPP8dPP/2EsrIydOvWDf3798eLL77o97W7du2KrVu34n//+x/Gjx+Pqqoq9O3bF0uXLsWdd97p93lPPfVUxMTEYMyYMZg/fz4WLlyIiIgI9O3bFzNmzMDQoUO5pf6GDh2KsLAwjB07Fjk5Objyyivx008/4dRTT9W93vDhw3H22Wfjhx9+8GVw6tGjB2699Vbcc889vuMGDx6M9evXY+TIkRgzZgw8Hg969+7tc3YDvBm1/vOf/+CPP/7AnDlzIEkSHnvsMQwZMgRTpkzBxIkTUVRUhG7duuHRRx/Fp59+6rejWiB88cUXuOmmmzBu3Dj8/PPPKCgoQIcOHXDVVVdhyZIlvvseNmwYsrKyMHnyZKxcuRLnn38+5syZg/nz52PDhg2Kc06fPh19+/bFr7/+infffRft2rXD5ZdfjmuuucZy+7p27YqYmBh89tlnWLRoESZOnIhOnTrhggsu4Jb/VNO6dWusXbsWEydOxJw5c/Duu+9CkiSce+65GDt2LF555RU0adJE87vTTz8d11xzDbZs2YLnnnuOe8ykSZPQr18/TJ48GR988AEiIiIQGRmJIUOGaMpiNhZOxnsiCIIgCIIgCIIgiH8rDslqPnKCIAiCIAiCIAiCIAiCsMCIESMwatQobuk9giAIgiAIgiAIgiAIgmjshD7UjyAIgiAIgiAIgiAIgvhXkZmZiVNOOaW+m0EQBEEQBEEQBEEQBEEQQYFKEBIEQRAEQRAEQRAEQRBBITk5GX/99Rfmz5+Pu+66q76bQxAEQRAEQRAEQRAEQRBBgTJgEQRBEARBEARBEARBEEEhOjoaI0eOxIABA/D999/Xd3MIgiAIgiAIgiAIgiAIIig4JEmS6rsRBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQjRHKgEUQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBOEn5IBFEARBEARBEARBEARBEARBEARBEARBEARBEAThJxH13YCGgMfjQUZGBtq0aQOHw1HfzSEIgiAIgiAIgiAIgiAIgiAIgiAIgiAIgiAIop6RJAmlpaXo3r07wsLEea7IAQtARkYGevToUd/NIAiCIAiCIAiCIAiCIAiCIAiCIAiCIAiCIAiigXHixAmcfvrpwu/JAQtAmzZtAHg7q23btvXcGoKH0+nEqlWrcOutt6JJkyb13RyCIAiCIPyA1nOCIAiCaPzQek4QBEEQjR9azwmCIAii8UPrOUGEjpKSEvTo0cPnWySCHLAAX9nBtm3bkgNWA8XpdKJly5Zo27YtLSAEQRAE0Uih9ZwgCIIgGj+0nhMEQRBE44fWc4IgCIJo/NB6ThChR/YtEiEuTkgQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEHoQg5YBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQfkIOWARBEARBEARBEARBEARBEARBEARBEARBEARBEH5CDlgEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRB+Qg5YBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQfkIOWARBEARBEARBEARBEARBEARBEARBEARBEARBEH5CDlgEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRB+Qg5YBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQfkIOWARBEARBEARBEARBEARBEARBEARBEARBEARBEH5CDlgEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRAEQRB+Uq8OWNHR0bj77rvRvXt3OBwOLF68WPG9JEn4+OOPceqpp6JFixYYNGgQEhMTFccUFBTgySefRNu2bdG+fXs8++yzKCsrC+FdEARBEARBEARBEARBEARBEARBEARBEARBEATxb6VeHbDKy8tx8cUXY8KECdzvv/nmG4wbNw6TJk3Cjh070KpVKwwePBhVVVW+Y5588kkcPHgQq1evxj///IPo6Gi88MILoboFgiAIgiAIgiAIgiAIgiAIgiAIgiAIgiAIgiD+xUTU58Vvv/123H777dzvJEnC2LFj8dFHH+Hee+8FAMyaNQtdu3bF4sWL8dhjj+HQoUNYsWIFdu7cicsvvxwAMH78eNxxxx347rvv0L1795DdC0EQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQ/z7q1QFLj5SUFGRlZWHQoEG+z9q1a4f+/ftj27ZteOyxx7Bt2za0b9/e53wFAIMGDUJYWBh27NiB+++/n3vu6upqVFdX+/5dUlICAHA6nXA6nUG6IyIQ5Oci/39uzAn8EXMCHVs3xXcPXoTObZrVZ/MIgiAIgjCBej0nCIIgCKLxQes5QRAEQTR+aD0nCIIgiMYPrecEETrMvmcN1gErKysLANC1a1fF5127dvV9l5WVhS5duii+j4iIQMeOHX3H8Bg1ahRGjhyp+XzVqlVo2bJloE0ngsjq1asBAOP3hCO/2gFkAxMWrcOVnaV6bhlBEARBEGaR13OCIAiCIBovtJ4TBEEQROOH1nOCIAiCaPzQek4QwaeiosLUcQ3WASuYvP/++3j77bd9/y4pKUGPHj1w6623om3btvXYMkKE0+nE6tWrccstt6BJkyb4dN96AF4vwwsv6os7LjutfhtIEARBEIQh6vWcIAiCIIjGB63nBEEQBNH4ofWcIAiCIBo/tJ4TROiQq+oZ0WAdsLp16wYAyM7Oxqmnnur7PDs7G5dcconvmJycHMXvXC4XCgoKfL/n0axZMzRrpi1Z16RJE5qcGjjyMyqsqEvxFh4WjiZNmsDjkbAztQDhYQ7069kBDoejHltKEARBEIQIkrkIgiAIovFD6zlBEARBNH5oPScIQo/k3DK0bBqBbu2a13dTCILQgdZzggg+Zt+xsCC3w2969eqFbt26Ye3atb7PSkpKsGPHDlx99dUAgKuvvhpFRUXYvXu375h169bB4/Ggf//+IW8zERqSckoV/5bgLT+45lA2Hp2yHQ9N2oYtSfn10TSCIAiCIAiCIAiCIAiCIAiCIAiCaNQUlNfgpjEbcdWotcYHEwRBEAQBoJ4zYJWVlSEpKcn375SUFOzduxcdO3bEGWecgTfffBNffPEF+vTpg169emHEiBHo3r077rvvPgDAeeedh9tuuw3PP/88Jk2aBKfTiddeew2PPfYYunfvXk93RQSbE4WVin9LXv8rHC+oq7uZUaw8hiAIgiAIgiAIgiAIgiAIgiAIgiAIY1Lyyuq7CQRBEATR6KhXB6xdu3Zh4MCBvn+//fbbAICnn34aM2bMwHvvvYfy8nK88MILKCoqwnXXXYcVK1agefO6VJdz587Fa6+9hptvvhlhYWF48MEHMW7cuJDfCxE6alwexb9r/a9QUePWfkgQBEEQBEEQBEEQBEEQBEEQBEEQhGkksrMRBEEQhGXqtQThjTfeCEmSNP/NmDEDAOBwOPDZZ58hKysLVVVVWLNmDc4++2zFOTp27IjffvsNpaWlKC4uxrRp09C6det6uBsiVKgdsGRiUgp8f8eeKPL9ve9EESKHR+GjxfuD3TSCCIgVBzLxfzN2oqC8pr6bQjRCJEnC8IVxGLc2sb6bQhCNlt3HCjB0WgyScijCjyCIk5cJ65Pw7vx9kEibThAEQRAEQRAEQQgQ2eIIgiAIghBTrw5YBOEP1eoMWLV2g9bN6hK6/R5z3Pf3vRO2AADmbD8OgmjIvDRnD9YdzsF3q47Ud1OIRsjBjBL8sfMEvl+dUN9NIYhGy4M/b0N0Qi6en7WrvptCEAQRNL5deQTzd6cpglYIgiAIgiAIgiAIgqWcqTrj8VAAD0EQBEGYgRywiEaHtgShV/BzkQBInCQUlFEGLMI6VU638UEEQZgirbCivptAEAQRdEh2IAiCIAiCIAiCIEREhDl8f3sogzJBEARBmIIcsIhGR6XKUCDLfS5Pw0uHWlrlxP60YirvcZJRVFGDWdtSUVbtUnzucnuw53ghnO7AxqLDYXwMQQSThj53HcsvR3pRZX03gziJaaBDnyAIwlbMbp+SckqRU1oV3MY0AtIKK3A8nxx0CYKoX4ornDiYUVzfzQgKCdmlyCurru9mnLTklFRRqXWCIAjCb/anNx75I7e0GonZpaaOdbk92H0scJsOERryy6qRYPLZNiQOpBejpMqp+fxIVinyTcq/kiRh74kiVNZQMB1BNHTIAYtodBzOLFH8W7aRNkQB6c5xm3H3T5ux/khOfTeFsJFLPluNj5ccxIWfrFR8/vk/8Xhg4laMXHowoPOrHbsIwgw7UwttO1dDnrvKql0Y8O0GXDt6HaW+JoIGjSyCIP4N/LHTuER7elElBn0fjSu/XBuCFjVc3B4J1329Hjd8ux4VNSSrEwRRfwwcswF3jtuMnakF9d0UWzmWX45bf4jG5V+sqe+mnLRc+dVaDPp+I7KKyamaIAiCsM79E7diR3J+fTfDFFd8uQa3/BCNEwXGATRfrziMB3/eihGLD4SgZUSg9PtiDW79IbpROZVHJ+TirvGbMfiHaMXnSTmlGDw2Gv1Myr+/xRzHfRO24OlpMcFoJkEQNkIOWESjo33LJsoPatNUON0Nz1x6vFbA+2dfZj23hAgFM7cdAwDM2W5szFLDZhpKK6TMPoR11h7Ktu1cDXnuyimpUxa7KU0RESQorTpBEP8G/okzXucPNKIo52BS46oL9skrpXLhBEHUHwXl3jlodbx9+7+GwJ7j9gUUEfocyioxPoggCIIgOKw93PCCdfWISzPez/6yKQUA8MfOE8FuDmEju481nmCE5Qe8updMlRP8jhRr9/DbDq/dMeYkC8QgiJMRcsAiGh0VqvSKDTkDlg8qKUcY4GYy+ZDhn/CHsLC6ica20oENcO4KY2p0uikDFhEkaBomCILwEka1sQEAEpMbkbqEIIiGgKsBBiEGgqMhbj5PUmzTFxAEQRAnPw7dfzZ4JMpxf9LSuGRHflsb1z0QBGEFcsAiGh1rVFleZL0BT/mkVirUl7F+0Z70gEtlFVc68eyMnVi6L8OmVnmZvS0Vr87d07Ad2BoQwSrJ5mrADliSJOGDv/bj+1VH6rspjQpJkvD+ojiMXZMQkusx/lewbaqzeJ7Ryw/j078DK8FphMgBq8blwctzdmPO9mNBvf6/mS+j4vHFP/Ehu976wzkYNj0Gi2PT8fS0GFNpw+uTn9Yl4j+/xzYKx8A18dl4ZnoMckqp/EhD4+MlB/DtysOKzypqXHhu5i4s3J1m6hwrDmRhyNQdOJZfzv2+vNp7vkV7zJ2POLmwanSdsTXF7982dkYvP4z/LYiDJEkNMtuyGY7mlmHotJiTrlQZEXxcbg9e/W0PZmxJMT44SOxMLcBTv+7A0Vz7yotUOd14YdYuzDsJMhyk5DWesitmSCsMnax/29hoRA6PwmdLQ7e3aUg0ZvWfPDfN3JoalPPvTC3A0Gkxts47BEE0fhbtScNzM3ehvFpZivyndYl4Z/4+v/dJ36w4jI+XNK6yd44QR6PM23UCz8/ahUpVUgazyNmtiODw0eL9eH/R/vrRFZwEvkusXs5MHx7Pb9i68YbAp38fxKjlh+q7GQRBDlhE46Nt8ybcz3kORGpF+YYgOc+Y4WBGYCm+x69NxNrDOfjP77E2tcjLiCUHEbU/03bHrpOVZ6bvDMp5Waerq3p1Cso1/OVobhl+23Ec49Yl/esMb4FwMKMEv8ecwNg1iSG53nVnneL72y4HECtnqXK6MWnjUczYmoqs4uA5dbD7fNZxcdGeNCw/kIWPFjcuxUVjobjCiV82pWDq5hQUVYSm9NIzM3Ziw5FcvPnnXmxMyMVbf+4NyXX95btVCVi6LwPbk/PruymGPDdrF9YfycXn/9CGtCFxPL8Cs7Ydw4T1RxXr7bTNKVhzKBv/nb/P1HlemrMbm5PyMGYV3wH4l03JWHMoG2/PM3c+4uRCnfLeiC1JdXNaetG/p0y20+3BpI1H8eeuE0jKKUNxhbO+m+QXr8zZg+iEXDw8aVt9N4VoZETtz0RUXCY+rUcHlYcnbcOmxDy8MGuXbeecve0YVsVn472Fcbads74IDzsJrE4M3wnklmBwOKsUADCtHh0M65PGEDAiYtmBLETFZeKTIAV+PTxpG6ITcvHS7N1BOT9BEI2Tt+ftw5pD2fhlU7Li8+9WJWDB7jTsOV5k+Zxuj4SJG45i1rZjDT7gkCXU2YDfWxCH1fHZmLvDv4DbfSeK7G0Q4SO/rBpzth/H7zHHkVtWHfLrNyZJ2O3he7/vOlZXgvtQZqnhecJOMvnfbjKLKzFjayomb0xGtcs/p02CsAtywCIaHVW1E2f3ds0B1HkG8xywalSflfvpKW8HgaY7LQyy0l8dwUGEFtaR5IyOLeuxJVqqnHXvUWNW1IWaSmdo55sezLixK4uaFZGevWQwM+qxGw02s2BpFc1hwcTNPOD6ygKSVdI4sjX5G5VXH+RSBqwGBascYOfUgnL/ZMCUPH4GrILy0DhREg2TQGT+k63clR6szFvpdCv2la5GJA9nFv97nOYIe2lIsrVoPfOHwhAFEoSCk7lEbDADvyiorHHrdSpCpLv8NzmdEwRhnvwyvhxR7YcOmNXdVrsacWrCENGQZFPCC6sfbsyyRSho14KfVITFjD3ntPYt7GjOSQvZMYmGBDlgEY2OEwXeTXCrZhEA6jK08BThNSrhVeRpbERplRP704otKWrUGWAC1fGonZsLymswe1uqfQtJI1LeFVc4ER9gRrH6pMrpxubEPIWR3s0IrGmFgSl6DmYUI8/GqAN27PpjcErJK8dfsaEpc1TldCP2eGHAJT8BILukSjHOjudXWCqLwPabHe0BvEpAUUkpNgW0XYZB3lkKymtwIL2Yc2zd0cHSaVfWuLGXiSpzMnN6I5rCQkqNy4M9xwsDXitYp7pAHYoBZbvcHgl7jhdq1mw17CaqvsguqTIsR2HHWHS5Pdw+8XgkxB4vRFWIHTz/TdRnH7Nvlh2OtGrZUX7XgnlvSTlliIrL/NeVtj5RUIF5u07ozrWS5B1bZrIIysduO5pvu1NnhYnzSZKEA+nFKK1SOv8ZjUtJkrDvRFHATn6lVU78vS8Df8WmafZf8vwY7DHmUTkesw6SwXa09fcec0qrkJSjjJptEq6v8imvdmGPBdn5WH45MsgozWVxbDoOZYZ+j5pRVIlUCw5KZo+vT3V1RY1Lka1APTyLK53Yd6LIL0ca0sN7Ka5w4mCGdk8XCmR5RC8qXTboZRVX2eqAB9AYAACXn7rRUJNdUoWkHOXey6zjYWZxJebt1JfNTgaqXW5b9vt2UFBeg8NZoV8HzV632uXG2kPZGn2yxyNh9rZUW/WoIqqc5p9XSZWTq3sLFkk5ZcgRBL1lFldanotzOO+vv9i5R5ffmVUHs/BLdLJlfa1Ib+X2QyZhx4FVmUbed4UioF7dtuX7M4Mi80qShP1p2j2oTNMI86Zsq/3Z2JIKJWaX6s5ZB9KLUVyp7MfM4kok6+gzTxRUWMrEVuV0YzeTvamgvMY2e11GUSUOZZZgL0feZ99ZM+Uwy6pdmL/rBD5ecqBe9VRm2mpGxtHTyeRUWs94bpac0irM23miwWeVUutxCKI+IQcsolHBCrk+B6zaedTJEYDVmwN/J927x2/G3T9txtpD5ksYXjVqreLfgTpEqNffyz5fjRFLDuLRyfaUk2hMcuZ1X6/DHeM2Yc/xQuODGyCjlx/GkF93KEqlsRu1P3ed8PvcR7JKcee4zRgydUdAbWRZfiDT97c6q5wZBn63AW/9uQ+/7ThuW5tEvDB7N+6fuBXTt6YGfK77JmzBHeM24WhuGSpr3Ljh2/W47uv1poV1VuDzZyOuxu2RcO3odRjw7QbuBtuhOtYOeBvWp6fF4K7xmzWKIPaadtwvj2dmxODV3/b4/r2OmZNP5gjwQBi+MA4PTNyKMauOBHSeV+bW9bsdj/e9RQfwwMStGLsmAd+vPoIHJm7Fewv0y6GFQiFqRP+v1uLmMRuRo5M5yo6h+N2qBDwwcSs++Gu/4vO5O47h/olb8fS0mMAvAooG4jFrWyrun7gVz820r9yRWdh3K6Ooboz5PaZUP/xxbSIemLgV83bVOUXbmQWipMqJQd9vxKu/7cHIpcEpC9NQuf6b9XhvQRx+WC0un7QxIdf02Pot5jjun7gVj/+y3bb3XYbN0ClSYm9MyMVd4zdj8A/Ris+NHLB2phbi3glb8NSvgcmhd43fjNd/j8Vbf+7Dr5uV5aG+XnEYD0zcig9V86PdKOQaj6TYhw5fFNzSZaOWe+9xhMWyyld+uRaDvo9WBAwYveHv1coJyxh5X0RZtQsDvt2Aa0avowwyKlbHZ+PNP/fi9h83hfza14xehxu/24ASgbGKRZIk88fX4zN+fMp23Dthi/D7V+buxr0TtmDb0YZf9rmhcsO363HnuM3Yfawg5Nf+aV0SHpi4VbcU8rrD2QC8erWB321AoY3ZO0n+bTwGqf5frcWg75V7L1bXoOfUfvWodXhvYRzenrc3mE2sd978Yy8emLgVE9Yn1XdTcNnnq3Hb2E0hd8K6/AvvdROy9Us3/ee3WDw7cxfuGLdJ4bD+5NQdGLHkIC7/Yk2wm4rXf4/FAxO3Ykp0suGxt34fjbvGb0Z0Qm7Q25VdUoVB32/ElV+t5X5/9ah1GPjdBo1Dhx5X1r6/2TZkMv9lUzLun7hVoZfyl3fme2XfF2bvxpfLDlkuZ8rq7Nn15MuoQ5bbwu6trM7Kf+/LwL0TtuChEJQZV/vspuZX4PYfN9keHL/ucA7u/mkz7h6/mbl2Xc80NQgsYbG61jcm0SA1rxy3/BAtnLO2Hc3HXeM34+YxGxWfXz1qHW4as5ErU9W4PLj+m/W4/pv1ph0dX527R6Gjv3PcZtwxbhNibbDXXTN6HW7/cRPum7AFv8co7WRfLat718yoyt6Ztw/vLojDrG3H0OfD5QG3zQ5EzqmBOMgXVTjx5d4I3PBdtPHBfnDll2vx3sI4xfvZEClh1inXvywwlGh4kAMW0agoY5wOTu/gTbcoy0dORlLq17MDAGiUiv6WzUjN9yqxl8Zl+PV777UDm/BFzgVsneBAaEy+C6W142DDYfMOccHGimA/o9Y5aOGeOgOoXUrArUfzAACHs4xrRptlcWy67+9ASs+MWm59M2oVWTEx0wYHLDli4EC6MqOY2Y2IwgHLhufLOn7xUl6zc4RdGbd4Z9lf63i1XvX+hWKzuj1ZaSBg5+TGFq0UKhbVvr8TNxwN6DxsVJMd9rio/VkAgMnRyfi5tm2L9/q/xoaaozlKB2/WEO2wwaV50kZvnyzYrcweOLfWkXVHij3GsmYR4bac52RiTm0fb07Kq9d27A9CtLM8rljsnLvTCuqy4szZHnyn64bITzrGr+W1854Z2f33mLr+i0m11zjOOhLd3bc79xi5rRmq6Emj8SLLYQcDVMYfy69zIPp2pdKB+JdNXocs1pEwGLC6T5fbo+i3uLTgZiOQnc7+2OlfUAbb/0YrUlSc1/Fq1rZjhudlMzyTA4MSdn4NpXMaK/OrM3Bzj2eallnUcMsQ7zN4x7YkeR2vlvghO9qRyfVkQDair7EQZGgXk6O974s8//BYuk/53TELGRmMUM9f/0aH0sZmkErKrjNUsvqYnFLjAB1/5gmgXn1QLbH8gFdmm7rJ2KEnVGwPsXOs/EobOeWuis/2/b0rtU4e35YcuvbKbfh1s/Hzyqp1XJKfcTDRy2bEzpHpflRsOGKDflqWjdfZYAdYuk85J8zebiwDi2CdJfzRw7PLkdUM2Av3eHV9oci+Kmrb5iR7nQPl+TqV2QtWMdl22rU0LuEmYzURQkQjUiobJSRYedA7Z4iCWJPztM4/rM3VbKnHtYL3ccORwMaF2qbxx06lbmkqE6Bl5imvOBj8OdQM7AgTZaENxEHeTllZj4RsezIbBgtWzrerQgxB+As5YBGNCjn7TniYA+G1gpG8EWCdEzq3buY9XpUVK9A0k2bnbJ4CJ1AltZk0lQGdv1HlwKqlnr3G2JrLRqWzjLBLIAhGFiB27DWWkkKBlm5SOFM4HH4NNbYJdhipPIo2ab9nP7OtBKHOadRfsRukUCmx2X4Na0Sb5caOnRnOwhz1W+LGX5qEK8cb+8oFc2my+9WyosD6t9BQFG+sgdjvBFgG/wbsdaKwo2ziyYyV/gmmXG5GlgsTaAmMxkswXp/6eicVqes9EqoDlPVDCdtjHVo1te284cyzaCTJU0JGMDLRmsEtWVsrlJkW9NvZGB4xrTuBY1fgjhXC/RCW7dxfqvcy/0bbTGMzSLE6Kfbx0RxQR0PSh9RXW6xMLVZKmQWDhjZ09WwOrFzjj67DDv1IQw0aDyRIGdBm3LVCKLtE1DS7TQS8OZ21t1jZF1rtT7nSzskA731h5T3evlahX6/n982pygKl9ywbi50KUFaVaSZYgwJxkGcfW33I9w0FVsZtTOODODkhByyiUSFPmk3CtWaJooq6bFeywKYWKNhJNy6tCOd/vAL9v1qjW/+YhScIFlc68eyMnfibiaDgKTMCLZfHCj9sWQnAq4x6b8E+jFubyG3bPyYyd8Wk5GPotBjLNd1FSJKE/l+tQeTwKGQUWY+QMcPaQ9nGB+mwZG86npu5U1Nb/PlZuxA5PEpTYk0Na4SoqPGv5rosWIkEo30nihA5PIpbguT3mON4cfYuRQQgq+hYfyTwyKCB321AOvP8+n+1Ft8xmQiO5Zdj6LQYYaSZ0ilH+73L7cFln69G5PAoS3XGZU4UVCByeBTuUJX7CFSZwc4nDiijLM1u4thIE3ZO2JSYi6enxWjeYwDYmVqAodNiuHMSGwUxd8dxvDJ3N2pcHkQOj0Lk8ChFKm67FJF6Z/leVWaJnW8DkfM3Jnj7x8y8cTS3br7KsDGKv6iiBv83Yyd+23Ec/zdjp250dkNhwLfrETk8ShG1ZMT3q47gg7/2KwwaLnfdmBIZOr5bGVg5Q5Yqp3Yz9FdsGp6Zzi+59cU/8fgyKt6Wa3/+T7widbXenL8lKU9RUkvtdLtgd12WEocqG13fT1cicngUcpjU+1VONy78xPs5by5gUZaSqnsmz87YieIKfgmACeuTEDk8CqOWHdLMKawsFBWXiSV703mn0MCTdz5avN83XmZvSzV1nl+ikzFseoyifEFuaTUih0eh1/tRqKwxl2UwUIortDJScm6ZInKV/W7U8kO4ecwGDJtubn7iEZ9Rgqd+3YEle9MxdFoMdqkyG5UzskRJZd3fe08U+f6OHB5luvSaWvHGU7TpldPUo7za5Xv2sixjV9au71cdwW1jo/HUrzt876W83t80ZoNmbkrKKcVTv+7wZQENBEmS8MFf+/G9qmxrldONF2fvwh8xyuhLj0fC+R+vMHVus2ujxyNp+jLHj9IdTrcHr/62R5MVNPZ4ke9vtyDFvSglvpF8YTZgZMHuNDw/a5cp+TncpAa4ssbtm0fsMNSzBvoTBRWmsgvN23UC/zdjp6XyLMEgzOHwyVNsuyOHRyky27KY6WXWaeLCkWtQVk+3+fOGo3j7z70BKZbLql14buZO/BWrzaS2ODYdw6bHoKC8BtO3pOC13/boKsOzS6oUme1kuX/5/kxEDo/Cq3P36I7Ju8ZvQuTwKFNjTA27L1GPu9IqJ56buRNL9qb75rBHJteVqTmery9/bKnnTJBm8GsE+PGj1DzvnneHH1lSiiudiBwehcu/WG35t9G173G6QO4wmnKLK5wYNj0Gr/8eiyd+2Y64tCIASjl2cnSy7/Ng8fGSA/hmxWHfv/1xzrDTjKTezz8/a5cmy/UPqxMQOTzKttJf2SVVGDY9RpNFWsSXUfF4f9F+v9cznq6ogCk5FIoMWOsOZ2PY9Bi/ZBhA7PTBVjow6/xwUe2+66hJ3a8eI5cexKhlh/DtysP4eMkBTN2UjNd/j1W0V9brbEnK88nL6mPspkiwLwSAFQeyfO0IBcEOILaDYGaC/mrZIbxlIKdYGQm/x4gzC49YfABv/hHrG2/+ws41q1TZYk4wWa/YR3sgvRhDpu7A7mOF+PCv/RjD7J/Y821OtNYu3r4rlA5rrPxkRKAOWOwYEe2/RGxk1ie24sSo5YcQOTwK25PzsT+tGJHDozDwuw0BBY6L5BDRXtIM49Ym4o0/YhV9sJGz5vrT7uiEXIX+ziqRw6NMlfa2SkWNd/8xh8m6NmrZIYxcqi2DGZ9RgiFTd2h0RoCx/McL5qoQyAMy7PrEjuptR732wmP55Xhn/j5T5W4DfV3V75VeedlyCzrwYCLv+yKHRwnby+o6RU7AZhzkedn2PB4J7y6ssx3WmJTznG4PXp27R5HNee6OY3hu5k6/bZ12klfm1RVfO3qd6d+w4yfQOdosP65JxPCFcQHroVYdzMIz02OE2euIxgc5YBGNCqfLO4k1CQ9TbOiKKpSCg2wcUAtpZ3Vp7fv7vglbUFHjRnZJteka4rxJ9Kd1iVh7OAev/x7r+4y3qf5uVYLmMyuwmY2GL1Qa3uLSijFvV5rGIWLsmgSsPZyD136LhRGL92YgOiEXr/1mri+MOJxViuwS72Lx/iJzhkKrBFre5I0/9mLNoRxNyYjVtSmh77JQ09hf5w85DapIwLp3whYA/JTI7y/aj5UHszGPqT/PGkZenL3brzax8Bzy2PI6b/25F9EJuXj8l+3c329PqVNSDzy3i+b7ZQeyfIL/2/P2Wm6ffN14VcrlQB2QfmM2+g4HMGljXXpwPcUWyxdRdRtgdk546tcYbEzIxf8Wxml+8/CkbYhOyMVLc7TPjj3HpI1HsWx/lsJ5hCVUEa3VTCpotqRmIALn09O8/fOBCQeDXKbkAK+0lr+MXZOIdYdz8MFf+7HucI6ipn1DRS7X9O78faZ/M25dEn7bcVzhyMaWIWE/Z/lLYLy1i7f+3If1gpTVUzen4JdNKQEbt/PKqvHr5hRMiU72KVb01qonp+7AJkZxOFPlbPQ/Zl1mVR3xmSUoqU3f/RHjSDtn+zGfs9zb8/Sf2bvz6+YK9tVeezgHP6zhyxZyya7J0cmITsjFy3PqxrA65f4bf+zVvb7Mj2uU8k5WcZWizNyIJVqlEY8vlx3ChiO5Ckeuz//xOtVJkrZvg8X4WvmNlZHUc6/8XWWNG5M3JuNobjk2HMlVPEsrPDl1OzYl5uGNP7xr50OTtim+Z0s6FDKyrdpQKZeiNMJMVswp0f6VK/mFKXOyrLYshh3yniRJGLcuCYezSrEpMQ+P1joLvFAr0yTnlvtKBMuMXBqPTYl5+I8JedeIo7nl+G3HcYxbl6RYy/6IOY6VB7MxXHWPMakFqDDpNGh2bdzOMfCPXGrd8XTZ/kxExWXik7+V7yYrx4nkhZ1MWRYWo1swm4n1nfn7sDo+G9OY8gEimoSbU1nMqp07JCnwPQKgNIiYjZx8b0Ec1h3OUSjVQ4Uye2udPKV2zH7zz73c35t5dE0ilAf9cbR+1ElfrziMRbHpin2GVaZEJ2PNoRy89ad2DX7zz73YcCQX0zanYOTSePwTl6lbukK9Jsgy+8u1Ooao/ZlIFgQ5SZKEA+ne8frAxC2W74PdH/yoCsaavNF7j2/8sRe/185hrAMmby/CsvJgXbBTQ42iDlX2m5fn7kF0Qi4encLf8+rxQ62OJq+sRmjAFDG09j22It+z/L7zuE/m2no037e/WqwyKj/481a/zm+GEwUVmLXtGCZuOOpz+jHjf9X39HZBa5N6PK87nKORreT3aeg0flCIVT5ecgAbjuTimRk7DY+tqHHhl00p+D3mONL8KPcF1OmK5jPlzJ+bWXftUOgL/m/GLmw4kouPTe4R1LBrLytfrGDKsZldn0tr18LnZ+3yqy0yOSVVmL4lFZOjkzFh/VHM2nYMX0Qdwt/7MhTOdbJe58mpdQ4Af+/LwAYbgiT9gadfshvWsJzth0Oxv7D2gNYWMtiYdfC3SpXTjSnRyfgrNl23JJ3V9Yu3DqfklWP29mM+fT473gLhBZUueeB3G3x/s44d7y/aj81JeXjw562Yu+M4xjP7J1Y+mWxxvzlv1wnuvitU/LzhqE9+khEZw10BOCAByoCPL6P4+l0e6iCqyRuTfY4ok2v1149N2Y77a2XLlLxyhc7WKrK+Rk0gvrzfr07Akr0Z2Mk4GPFK37FBZGbXrqHTYrCHkXnNoHbEnrDO2NHIKgt3p2HNoRzf3qG82oXJ0cmYviVV80w/Wux9v3h7N6Ppg7evW76/LrCY59TGrqfsfPP4L9sRnZCLAd9uwILdaT5dox6BOjurn3PzJmKH2S5tmwd0Lbt4mbEt3/pDNPeY7kwlHVHGc38zNm1LzlfsN5MF+nw16w/nIGp/JkYvrwuU+PCvA1hzKAfzd/k/Z9jFF7VzT3pRpelgXTaDWqBztFl+WJOAP3aeCFgP9cLs3Vh/JBejlh02PphoFJADFtGokBehpowiXpKActUELK/TrHMAALRr0URzDACNIUcET8DJ53iNByO9Ibs3zCxWKmEqnfwFiOfRboTZvjCCbZO6vQ2NgvI6Q76ViDR2w+yv8lfeIKmjRqw4sJQwjgisjSrQsohmMIrUrmay2/RhHCBl2OxjJwqsjxNWIcn2WaC6+GwmStMBh0KpY1Z4Y52DeONKr+/SOYpW3nVzBUoAu4wkRuNQFHVvh0JX3T+hKmsI+Dd3NhRySs1FSYgMy5XOOoWH3hxi5/PwR/UZaPQwGwUj1d6mlew9eg4XrLKDjTpi5xXWuSbbICo8m1HEqNcangzCg83YZCVLmugcQOBrTCUTTcWeO1SZYwoqtH3Hm3sBbb/nmnzP1BSadOAFlO+oP6V6AHPv1jGDDCgiCpmxV2Fj1KE6Uk+W8VMZZZL67ZczhJl9H3Svz4xrdp4pEoxLKxnbzMqKvPlFtN7rUcJRYKuxGhFoNPdaHaqsDC7CrIHM7PpnFnVpN6NybYq2+JntIxBY2cuv8jAmZgz1McU19ZvhQm0osYI6gIsHuzbpRVerxx6vVLOorWyG2wx/MmAx1ypRzVOsrMFbW62sSXaWn7YTf/Y8/tyJUbZSPRRZkf3UE/mbeVMtr8jOfmoDpzOI0eE8w6loXr+Ycbrq1LqZ4js7hyBvr1psYk4IBCsZ7tgMwYGWvy1jnjVrmAtlCcJsP7OtKh2w6j73xxgvYyXrOm/d13se5SYyRZh12m+MsPqqUJaGZPcO1pyqgtNGdr23sx94Y11t8wgFrIzJ05/IzQxkjlHLM4D5IA874OkD2T0Ta5MKdC5lx4iVvQxvD8eT1dj28fo1UALJgCUjsmnJVAv253aj7j6zwddWyCtTji32mamfqexA5o8jNu9tKVbYjrRHsGtuoHJ/oLpCtbys9/43r+dyslZowTiSsWM5slNL39/+ZmxS71XNvisiPRcgdjwNJUrZ1dy4YvswmHscHnatywXl9d/3hD00nhmKIFA3aTaNCPMJExIkhREPqBNg1YuPaO0pq3ZhxYEsHMxQbh6qnG7MZ7ILeSQJ6UWVOJbPeBEz51y4Ow2ZxZVBSdfPZvxSC/isGMIaqNjPzRo0eYak8moX9p0oMm1wL692KVIMy0qGnNIqJOXURQAdyy/3RYEWVzg1/W+GrZy+PlFQYUmxokhhrurbf+IyFEZGFo9HQkJ2KfLKqrmbrsTsUizdl6Hbb7JMqdbF8gQlkYKZPX2oUn3LhiWj67EbJZ4AzhpyrKSNLa50KqJkAKXipaLGhT3HCzV9ll1Shf1pxuNM7UTJPo8tSfnCsl8irG4SeUfzziEaW3ZtSqtdHsRy+lEmr7QGcWneuYG9pl3X33eiyJfyNpRKYiO9nZwpb8aWFIVwLc8HZvB4JMQeL0SV043M4sqAyr+y44Btu55RSmFYZn5zJKsuUknP2GynTjWQR5tXVq1I71xW7cKO5HzdMXgkqxT5zGZGdJ81Lg/2HC/knqupTkaWw5l17WH7aV9ase9c7OdGfZmcWw5JkrA/rVhjMDOr1GWPMrtK5JZWI5Hp2yRVFJs/CmXWEMhmtXEyfWwmYqja5fbN8YezSoTrNIskSb45pbzahUV7tJncRJtztUFFrbBafyQHsQGWmgaUCgU2uEA0RnNLq/HJkgNCo57D4ZWv4nX61N+IMHb9Nyt6uD0SdiTn676jIsOWwqij+i0vUlYmv6waS/amY8WBLM01D6QXa0oLsPcya9sx32/sSF1udq7jHSY3q7C8Bocytc9Tfiesrr/s2upye7BoT5quDG303rOvhpl9Q25ZNQ5n6b/zZg0ubIr85k2Uc/TBjGKh7HY8v0LTp9UuN3YzJeUkWJNDZENC3dztvwJ/c2IeYlK0pSfUsGN0IWd+M4LtZqfbg48W71eU5i2pcmoMbWp56WhumaFTsRnKq10++dIMW5LyNKXhXG7vGi4KjDIzqtTrUVJOGde5Tn0ut1tSjB9APLep9QZWS6my82FKXjnyGTmUXav0ujK7pApJOWWQJK9synNOU88t8RklKKqo4c6jRhzJKvW1U35H/C3zsud4ESpr3KhyunX3LGZw1o4Zl9uDNfHZeH7WLtS4PMgtrdasMwfSi00HbBjtl83oQUTyiToLNODVQcjylmjOFrXocFYJlu3PRHGFEztqSxfZGXThdHtQWeNWGCA3J+Yhu6TKK6cx+/StR/MUz3PPsUKsPZQNNTUuD5buy0BqXjmKKmp0+/JYfjkyiiq5/VKjs85vO5qPJXvTheWhiipqfLKWaP5is58ZBWyy+8sqp9vynMgGQJZV171brD4mv6xacV63R8Ke44VcnY3oPa9xebA1KQ+7jxWiTKeNsceL/HKYZce9QyBf5DF7C49HwtpD2bolNQM1xAWq57AjQ6cegbyvR3PLsWhPGiRJgscjYXtyPrYk5XHvOaekCrO3pSrGKnucFUeoyho3Jm5IwvbkfL/az8o/eg4m6nPboV6Sdd9sP7Dv0J7jhUJjrFVnPPVeKPZ4oSLgVcaMvtPtkTBza6piD718vzjTpxXk+c1MYLokSdh7okhjh2DXTXk+UwS5+encIesDjGDHcpXTjeIKpyK7Lat7NnOfR7JKMWNLCnfPo7ePBbz3Onv7Mc0+hnddyaApZsZ8RY0Ley3Yf2S9YmF5DQ5nlSC9qFKT/UheX0TzhYgZW7yZ79n1I5h6YbXOxZ9yyZav6eft6Ol3PB4J+0yWlj6SVYrskiqUV7sU5dSNno/R+OB1nfy+l1e7sPtYoTCQrcbl0ex99XQQhzJL8U9cXXZ9tU1Qr3whj8oarx5At4QsM3c53R5umcgalwc7kvMV89Ve5rmwY1nhiGdRPyfSBZo9DxtMqZ5nzAYbutwerI7PFsrg8tyrtvsl5ZQaBreyQ2nXsbp5xOX2YPa2VKTklWv2K6xj6O5jhZrxqt43Hs4q8SsQn91z6cHTRbFtyCquwj9xGSonSXLbOVkwn5uVIBoAsoDZJDzMNwNLElBZw3eW2JKkLksgdlaQUzKv++8AnNnZm6nnznGbFCWYSipdvpqzB0cORqtmEQqj4X/9TA1vBtb4oM5WwG5ObvxuA+I/G4yWTZWv98UjVyF19J2G1+FFHjwyeRsOZpTgx8cuwb2XnGZ4jgd/3qpItSx761/55VoAwJbhN6Ft8wgM+HYDACBl1B247pt1KK1yYdEr1+CyMzoIz31Apfh/YuoOrHrrBpzdtQ0Ar4Bz/TfrAQCHP79NN02pTFRcJiY84f1bnXlBLj+UOvpOJKs2ERnFVb60ovNevFrxXY3Lg1tqv8svq8awa3txrz1ubSKe6H+GxtiVkF2G87u3VXz25bJDGHHX+ZpzsKNanSUjLq0IfU9vz712IFz51Vqkjr7TULHCpjr/aX0S3hl8jvDYUgsOWK/M3a15v3cx5XJKqlx4YOJWjLjrfDx7XV3f3zdhCzKLq7D0tetwkU5ZA2VEk0eRPe+Tvw9i2f5M/Kl65nrwBF+97QpPGcMz/i4TKEns2pSujs/G6vhs/PeWs/Gfm/tovh82PQbJeeX484WrFBsiOxywDmeV4t4JW3DRae2w9D/XWTJ+ezxSQJtlo1rpq+KzfSU+lx/Iwp8vXo3UvHLffGBmrp22JQVfRB3CDWd3RnSCt9ze3o9vQfuWTS23lxXS2bXiV1Vpp30ninBxj/YAlM9IdoQsrnQqSjnmlFbjAsE1PZKEML9yV9mDvIG6/Is1AOrW7rf/3ItV8dn44r4LMeSqnprfJWaXYvBYZTroiho32rfUHIp35u/D3/sy8PpNZ2m+0zOmfbnsEG48pzP6dG2j2ej9uDYRb99ytkL5ZSarys8bj+KbFZxU3368akv2ZhgfBOCKL719G/3uQJzRqaXQ6GQF+ZyA15lehlVKRCfkIialAFf26ig8zxu/78WKg1m486JTEbU/E+FhDhz96g7day/em463/tyHvqe3Q5xAMS1699WlnyOY+eVobhmeme4t6XLos9vQoqmx3CGCXSpYmUOUmUbuz5nbjnHnHQccuHr0WlTUuLHolWu45/DXscgfA8nYNQkYX5vK/5Ube+O9287VHMOWb2FhDWbs/GWU3r7fF3Vj7j83nYX/3uqVQzYn5mHIrzvQtW0z7PhgkO8Ydg797J94bErMxfRnrlSU7fMXs06LvKAJ2Qmw/1drUeP24J//XIcLT6uTY96ZH4el+zLwxs198NYtZ2t+n5pXjshTWmk+Z5VTI5YcwO8xJzTHWLkHVlE0Z8dxPMWZh1lF3tJ9GVi6LwPLXr9eI/fKtG/ZhPu5GlZ22pVaiLO6tKn9uwAPTdqGNs0jsP/TwYrfVLvcGPT9RtS4Pdj03kD06OhdDN78Yy+WMyWOJMmabDNvVxq+eehirDmUg+dn7UKvU1ph/Ts3mv49y5BfveVkFr58Nfr1FM+LrHNUVFym8DgR7LJ2wccrUeP2YM7240gZdQccDgduH7tJUz6tRURdn+SUVuHmMRsBmJOD9Lh/4hYkZJfhpycuxV19uwuPi07IQ+fWzX0ld9a8fYPvuX/+TzxmbjuGIVedgS/uu0jzWzNBK0cYhX1WcTUGfc+/P7Wxv7CiRlPS7YfVCZj9bH/FZ/tOFGnKkT3xyw4kfHG7Yo3Ugx2XJVUu9Ptija99Rs6LXdt6Mwz1/8q7R//2ob54d0EcrojsgPkvKdcMp9vj21fHHi/E/RPr7u+09i2wZfhNptqbwMhhqaPvxMaEXAybvhM9OrbApvfMnYPleEEFnp4eg2YRYdiUmIeP7zof/3cdf98twxpUyqpdvpJVH9fOgaxsfvZHyzW/P5BejLvGb8aFp7XFP/+53rCNHo7MzTLgu/UoqnBi/ktX44pI/jsuMqKcKKjEztQC3+9OFFT4dBCpo+8UGvZ4Q8Pl9uC2sZs0n8945grceE4X/olMUdcIp1vCRZ+uUHwrz3G/Pa98PxbtSceltfsWwCtf89rz3oJ9WFwr20aEOeDySPjrlWtwqUqnVFrl9OmfeON10sajGH67Vi4BvOV3ZHj7tatHrUOl043Fr16L9xbsQ0J2GSY8cRnu7Huq7xjW6eyLf+Ix8t4LudcClHJxWmEl3p63FwnZZZj45GW446JThb9j2yMzYf1RvDvYe1+sI+gvm1Kw/kguknLK8POTlyE+swTj1yXhgctOw/ePXOI7bktSHp6cqpWXAGXfy0wa0g+3XdhN06ZzR6ywvDawGTAW7E7zrYEdWjVFaq1O9OW5e3znnRtzHCNqyzpt8HPNNWxTgHqOSRuP4t3B5wSt/N34dUl4naO3YZEkibsG3jbOW6qsyulBq2bhvvJr79x6Nl67SXnOK2vXjV83p2DDuwMBKGV1K6UAz/u4bk4wq3NmWcmUCB6x5CCeujqSe5z60YlkWlH/8HhvYRyi4jLx4oAz8f7t5wEA/mFksI+XHMSOlAJMeOIyAEqnGSMnIrWDDdu/si6pG6f01t0/bTbUhd82NhqJOWX45O+DSB19J7Yk5eHPXfp7ALNYCV6Zt+sE/rdwPy7v2QELXq6TO9juv3rUOs3c8dafezHhycssty1qf6ZPx68HW7r1P7/HYnW81vlXZv2RXN1z5ZRUKfRPOz8chM5t6jI8yrIzwF+bL/t8NcqqXRix+ICiH0ZwSrsa7dPM6J0en7Id+9KKMebhi/Fgv9MNj5eH6WVfrPbJHOFhDuz+aJBvrZy4PgljVidg8AVdMfmpywGYcw75dGk8Pl0aj7O71lXTcJtweMsXBMUavdvq7guB/xVGLzdXdrLK6fa909uO5mOqStfLMnNbKnYy9hEZtZ0wrbACt/0Yje7tWqBN8wiFHc/o8fy9L0N3rubJu/L7LvNQv9Px3cMXa47jyRaso6I6ePmHNd5S32EOBwad11VhE0wvqhSWAxTx0eIDWLgnTfcd+GPnCby/aD+ujOyIAed05pZl/GFNAn7ecBSvDTwL7ww+B8UVTsUend3Dsf1t5Ciu1sNdNcprn4sIV/a5Wd3FSKa86MWfKW3HUzen4COOHVLNtyuP+ErNbnz3RvTspNQ7/b0vA2/8sRfnn9oWy97w7p1OFFRg0PcmbCjMO/vM9J24/cJu+HlIP/zn91iFvubXpy/Hzed1BaDsw48WH0CLJuGKZ/nszJ3YkpSPkfdcgP5ndsRtYzchzAEkjzIvp6r3XEyDFcftSM7Ho1O2o1Orptg94hbFvWxLzsdn917ALdUdEYoJiAgJ5EpHNCpqfA5YDt9iLgGocatLEHonWlao9X5ufI0DjBf5UVW9XFbpLHu4hirVJSsjntGxzlJ8fZ9TNMfm1yp37MqGJEdpmY2m1qtzDwCHMkoUHtouj+QTpjYIDG8yG45ov9/ORDyz3tT+RNLqbRK3J4ujz1nB5txubRQlnvTq3WfVRlGrryrf07nd2vg+UztT8FArcmTlcbCwU3Fk5VRa50pg7SHt2Jim6jO5xKZRNAhrpHR7JI0ScYeJTAQsdjgkWVH22Z3y/dct/LEnp4JdfiBLYVywMypJNig6OTvA+y/lb/gCvX+j5/U3sxmUx4I604ER07ekAlC+o/6U4QS8xicZdtqfrnpu7LWUmfPk6ysdQZvprG92PeLT2rfw63fqy8v9v6pWOfbnTr4CkZehUqT8/Huf9zlP3HCU+70e8hyu7qdfatcDK6WsAPCdr2B+rKujhqwQe4J/fKBDQJEBS6VIYxXpPFbUfh+136vAMDPHzt/lVaSKnK/0WKeSTVgHz21H69ajwgDL17AG9z6MotHv4CdHnVOKSL6yY73gKdhOaa11JmUdPEXv1dJ9xg6CbITgbo5yUQR7zRUHvWMnu0SpoFXLIkZKdfWtX3eWVi6XMdvVnVpp+y6r2NtOeS+knsvkfmP7mEX0HrPrNet8dbHASd3oVWvBZJ6auTWVewwvU6Re9uC7L+Y74Ki3Oew8spYZ72tq5UNehHlZlcvXp2zmJlaZB3jfE39kuSV7vXunQLJcyvDkXJaNCfrfG8G+x6wzqnzbaucrAOjdtq5PErMDd9KVSag91+JY/b3nigNZivuOSakb5zO3eTMVzNl+nPtbq6Vs9MoUq4cGr7TrpkTtGN8gmF+sZAUOpETIfSrDybh1iQDgM9qw5ePZ8a9uN29siNiuylQmG6r9lYEBICalwNe/s5kMFSLYeY/NaCbPgUb7542138vl/IxgdVI8+U8ucbNGx8CrzJyqPAc7N8SqMnuInKV5o1/khL7iQGBZUdjT6pVg5OlaeO+vOksLa6STn210gvZ9yyhi9E9+loIElPsuGTmIcVNCrm/+kud/HvL8JILdm4Q5zM+JgL6DvHodk4MrFu9N9zmaqzPEyjK5Wl7y/k4rs5mR48zCjsk/mL3dI5f34B4/g9n77rEhMy2vK+2Qm81kzPGX71cnGB5jJM78sCYBUzfV9aWeoT+VWe9Yhwo5QNYqCxjHF7PwshrzUD87UT9YyZImG9NZmXe+6h5Yg7uVTHDqY9l5a+Y27/WyBFlHjUrNJaoCq+Q9tUwXlS2FxegdkHXqTsV4aM09Vl531foJnozGfqZur1nMjhUWPecrwHjOS1DJx+rAbpanOc6DZQKZkCerGMmEZqYvOROlWYc8eTyw53Z7JEXZvCmbvDqwlQfr+tJKEBjbh2Z0zWpbnozR/durReejHtrs/lvv+mw5xFXx+nLZbIGMcVoHpe71QHoxJMkrx6vteEZjyehd4m2zZqnaJZrvebIFyx6BPnPqpmRFRuziSid2WrTdAMDCPd526a19c3d47yUmtYDrfAUAP9fqnmT56oSqnDnbx26FPUVfRhC9Ah1UwQFmdRd2mI9Yu+deTpZB+VmzmXvN6mXV+jlZT6PW17DrgroP5+9WzmeyTXHWtlTf31ZVPaxugJW91WNfnvfyVRm2ttXuiecI9q7h4dZ0FUTDhRywiEaFvBFqEh7mm9AkCahxKWdJeZFRp4s0s6joTW/sRkP+q0mIHLDYBacTY9Q6pXUzzeQu/9vuqdrfdNYtVJE3YWHKhY0VCoyuwCvfwG6Q2d+LMkbooacMqdGp48veQ5vmEarUl0z7TJaMk4WFbu20EU1qPDoLfbAJ9fX04AmpwrIjBu1mx5kdZYe4gq/F07otpKG1o808ROO3SbhDmT43CGmheffUlRPxBwTuHBRh4O3AM55YvaSd745yjqn7XK9NihKEgmP0hpxVByIRnThOGmZQD0W1w7EocwRPocpTIrZkshjxlDxG66H8E6GC0qZXxPSyHMB4E91DoAaIJsyGUt08UamGQAiWwzA79Kwa9NWw7zI7Vp0u//razC376zBr5OR/5ilaRbuZwABRmS4WRQY/P7tc9KwCXT/0staYXRt5Y1Uk66tRvJaKeZ7/A5G80LYFP+uU0T2wpxMdy2u7P2sKG5ACqPYDgtK8aqw4r/gj2/grD7Vtrs0cYTTWAx27ovPr3YPCmTuwy3PhzRnq9Vcp95jvBKtzh5V1ybTCW9BeK2uJn1VkAWjnK/XrwMpoLhvmXUDbNzxZIpASWmZ+q1xDrN+M1Z+0amYyM6bJ86r7kB1H6lOIhiLvvkVOB010ym6bQZHxRUfXwpureXO0GflTnQUAsKd8FaCvY4pg+ioQuVOhi7D47vm7FohObbQvVmNnySZWRmHPKrpCFVOOzeZ4NB926DmCoSsJ9PrsRxFhDsV7a3ZNYp+Xv/tEf+Zks3sZdZtE64U/DnJsE/T0xoE8efY+jZ6J1SGmdko9VSdIzmj8ynpZdjyc242f5VY0Xag/t6sUrp0ldc2eUy3rReisqYHqK9TPRp2UwMr9my5BaGKw8e5KMb8z47mdYA9q6XqCbjTMEKZx0rR/vOjJELol7xSynvIc6t9p5XutjdQjSbrrpJH9wWis8ublQGQvFp6MB3jnV+Vc7Amazcqf/Ze6LWwfs/KukROwyEFLPV6DKWv07MQpIaEDb80yu283W16ezRil7kM9tby/Q4R9BwJ5l0RzgrrCEdF4IQcsolEhe8o2jagrfCRB0tSYdXsk5JVVY5EqQsyMAJks8JQHoPDgr/PyD83mmV2s2L8d0C4WgTpfpBVW4OlpMdicmIdZtZE1QJ13b43Lg5fn7OZ66arrNAPeiECPjqKTVTClciKGAW8E4XMzdypSt8tsrY2a356cj6dqU9gD3rHx587jeGHWLkX0kCRJeEdVLvLtP/fC45G4pd9kMgR1lYG61PmAd/yxgk4OUw9YJABpHbC8/1Zv/lccyMT/zdipqE380zpxWZzZ248hcngUHp28DS/O3mW7UZsdi5HDoxA5PMpvIU/+VWmV03cuNoOPxyP5Puehzt4DKPuejUw6msN/z4dNj0Hk8CiMXn7Y95nT4wFPB8NmMxi/NhHvLdjnmw/UEcxj1yTi3fn7FPOFBO/zeWXubu5GRN2XViLxzGwUJUnChZ+sROTwKKyJz8bQaTHYmVqAm8Zs0BxbVOHE/xbECZ9teFiYpgTh7G2peHXuHqw7nI0np273PTt15gtJ0n+u3uvXKN5tmcnR/Ewf6rb85/dYfLPiMPdYHrxMFewcon4WkcOjFHOKv1HVZuTrT/8+iMjhUfhtR11EODsfmB0lx/Lr7pF1aGbRG0dOt4TskipEDo/COR8tR1ax9+8LP1kJSZKw9Wie77luPaqMQrdj2VSvve/M36cYQ80iwjBhfRIih0dh4Hcb8PS0GGw4ksMto6eOADXTRqN3TH5X1IdVOt1Ysjdd8ftAsj6YVQpZmZe/WXEYzzIlkTwe4J84bRQaNypcdZ3Lv1jjGwfsvAoAx/Pr7lv9DPRkMT0+/fsgvua86zUuDzf7iBl4GSnYzfY6JvPEbzv40UvxGSUYOi3G8Fpspssp0cl4YOIWSJKEmFTjyL3I4VGauYfNJiEaAgdNZvBQo85ios7YwjOaqvV0LrcH//k9VpGt0oxizm3BAGHmd+y6ZKYcApuBQn11t0fC8v1eWa1QFeVm9n3lHZVbqlw7RYoakXFblIljW7I2o6geRqVI2TlAvZbmlVXj8i/W4Lqv12t/p9M1oqhSdZYhNkKdfdZ6CmL2uNd/j0V0Qi6e5ryrHknyy1lR7VBY4/Lglbm7MXv7MeSUVuGZ6THcOcasAXLezhO+fc6M2syaZhi17BAen7Id/T5f7ftsU2IeErK1WYz1xq1LYr1R6/5cHJvum/vZeSmnpArDpsdg7aFsJOWU4alfd+hmP2Mf3UeL9+O7lUcUY8UjKVW3clNFWWJ+3nAUb8/b6y1Bwnz+0uzd+D3meO05+PfLZkgzNj6afNcFh8nZFEVzCYueEyF7L9mcLBnj1yUp9oasrgNQ3ud+JkqZN/+sPZSNYdNjkFNShYTsUjz16w7EcjLQsOcsr3Yhnbnmq3P34OcNRw1LgbPR7WrM9LxLsb+yLrOzGafe/nOv4fFsadYB327AS7VlzNVM3piModNiuGVo5RZ/+vdBjFLJU5JUJ/+oM4CL3t+MYq3sOXEDX6dgxgFr5lbvvo/Xn+waqyfz8tZzntFl/u40VLvcuODjFcL9Iy9jCZs9YoYgQ6MZ5GZWOd2aPewPTPah5QeyEDk8CjmlYh2SCLa8MtunW49q1+yyapdivvXXYMz+6vN/4vHM9Bjc8eMmTBNkwhYhz9vLdTLUZBZXYtj0GG52e8CblWPotBgMXxTn+8zhcMDl9uDu8ZsxfNF+7u/YbHxWemFLknff+unfyhIw1S6PZk2ww6D5+u+xmKzKWBqXVoSh02JwKNM/uZwlcngUiiucqKxx4/lZu9D7g2WK73ljZFuOUt/MZkMpKK/B7Fq98I9rEvH2vL2K3x7O8rbZycmeaRUHvBkpRPtHHur9T+TwKIxapi3rpRbxRZmNLqjVkRkZfdn3tMblwVO/7sDC3WlCvV1SThn6frpK8dkBQXbNeydswUWqY9n+5WXaZNGbB3iZ29Vyy74TRUKdltFW6YlfdiApp1Rhl1C35uFJWxE5PAp7jhdxzi/hq2XK5/7dKv5eQI9Fe9Lw3MydeGn2bvy84ShKq5zGmY0BRbUOM6iHydwdx/DS7N2odrmxP60YT/2q3Ffo7Uuszrdq1POTev8oGhaztx/Dy3OUeumdqYUYOi0G3686wt0byWw7ms+VnUXXeurXHZAkSbHn3sfJmCPi+9UJ+N+COF1bnKiHjeRL9bO0qqdLySv3zV07kvMxdFoMUvPKMWr5IYxcqi0xppZhXLW2pNd/j8XUTcpKKp8tjcfW2rVKPU5W18rgW5LyMHRajCablfx+J+bUfe72GATsGrzn6w7n4OwPtWW6fW2Kz9bMoUb9D/D3K2pEjuEeSbke/Lg2UVHyUARrk3hx9i7f54cySxA5PEox/n/bcRyRw6MUmZzMopZz3/qzzobAjmejvQlPDokcHoUHf96m+CzTxFzGu5Y6i3nk8ChIkqRooxm7s9PtwXVfr0Pk8Chf9mAWddY8HpHDo3xZ+ZS/1R7Pzq3q88nVW2ZvP4bbf6wrt56cW45UxjYi28gqGdtwTEoBhkzd4ZN1ZNiAYnbNfWDiVoW9xSjr7RGO/gUw1rsRjQdywCIaFYW1SpOMoiqFwfiLKOXmyuWR8BVvw2ViEyjXDjZCnltD5H+lUMRrDFiqG5MFljidUgl6vDs/DhsTcjHk1x2KOrSy0uqv2DQsP5CFjxYf0Pz2kcnbNJ8BSmVRmMOh8HReyaSNFKXvfeOPvVhzKAerOalW5TIjj03Z7iuXCHg3hv9buB+r4rMVzgp7jhdqUp0uik3H9pR8ZHKUkYBXQWzW69rtkYSCpUghr1aey8JM93bKyKOX5uzBusM5eGxKXT+z51RvtOVU8TtSCrDyYLawLJe/8Dyyec/IDHLTWUPbyKV1tajVxl41RQZptv/ze6zvb9HGllcKxO2RuMaNgd9t8P09ZnUC5u1K86VafW7WLsWxf+/LwPzdaZpSFSMWH8Cy/VlCQxGbVponkLZpps2QAJgz/BxIL/Gls35u1i5EJ+Ti4UnbhI4Pf+46ISzD2STcgUt7dFC0dcSSg4jan4n/m7FLUTLyzT/2Kn7LOm2KlB3Tt6Qq3m0Z9rGc0rouuot9D2KPF2LpvgxM3HDUtMKUt5li5xCjDC1mUqL7E8xQUuX0GQw++KtuI8mW1bqmdyff32qHUvbuX2feB1lFoY5A0TPqRSfk+taAapcHV41aC8BrBNieXIAnfqlzmGP/BoCjgeuVDdfzphFhvrkkJa8cGxNyMWz6Tm4q9Zfm7NZmzDRQ2xtd3+ekzTnPG6p3ANA3JgbSjrrz142F+y7hl/MCvAqLiRuOKsp3uSUJr/0WqzmWp9hlN9aZxZUKo5u6NJqevOVPtoX0okrM2JqKnzcc1Tgb/7mTX4LKDOr5HFAqT9i+GidwiH5y6nZhSSPWMKcucbXneBFXMS1Cb3MvWkOvOasT93Mj1Iq9Kapyy7zxoVY6rYrPxtJ9Gfjsn7q13owxXOFI5edulm3KrT9E+/42E834JmNwV99mk/AwvDzXK6upy8CYfV/NGE+triF6BgdeubOOnDKIgNcoq4ee/PFl1CFu+UHAuFSKUckWtePexT3a+/7Wc2Zix1JGcRWGTosRKgj9Mbqqy5cujk3Hsv1ZGLH4AD7/5xDWH8nlzjE8eJd/b2EcVsVnY+6O474SWGaYHJ2Mbcn5mlT4Q3/lO5+JYF9X1imHfUfYuf7TpQex4Ugunp25C19ExWNTYh5e+22P8PzynJGaV44524/jp/VJCoPNrRd05WaoflPgFPP1isNYtCcdO1IKFFlaVhzMwvu1Bv1DmXwlaPsWde+Eep5Sl+oJNGJedsaV55Ixq8WGR/1oeeM2Ld0nllnZ9/kZxjGbZzt8duYubDiSi5FL4/HM9J3YlJiH+ydu1baXacevm1MUGUej9mfi6xWHFVlseHy2VDwPmen7bkwGXdYpxyys8Vod8Meja1vl+FjBlFlWz23RCbn4qbYUpJqMWjnnV1VJlMziKp/842TmwuJKp3Ddmbwx2dRngLnyyp/87d33/c0pG8OWf2WNf2p440qkU1mwOw3lOoFzvPInYxgD/twd/suF8hD7jLMe8tr78KRtlsqOAUoDJGvk4pXS/V2h5yrSXatuOLsz93P1a/Pr5hSsP5IbkIHx5bniuX3E4gPYcMS7N+PxwM9bEZ2Qq9A93N33VCw7kKVbDpZFby5QB+49OdW7V+U55qnlcDvKB649nKNxpLx3whZEJ+RqnDX8Zdy6RMzenorV8dmmMg/OS66bi3kOIiNq9cI/rEnQlJ6S22xHRnSHAwod9KSNRw2D23iy5+Ro7Xymvu9/4vR1NtGJ+s46X6jmgE2Jefjv/H244Wx+OfJB32/UfPbwJL7+nOeQYqVP9Y598Gft2swzprPl4m46t0vduQ3W2SPZpRi5NF4hrylkNUnylTrmcSBD+45PWH/UUrljAHh73j6sOZSDFQez8PWKw8Iy7QBw2RntfX+zejYzsPo3APjwrwNYcTALC3en46FJ2r5ms7TkqJxNArUvGY2RKkFA9ojFB7D8QJav9JpMdEIuxq1L4u6NZJqEO/i6WkYKLWHWrk2JedifXqx4b9k9s1GSg2qXB3/uOsG9powoE+PiWP3SduqMYZt1gkR4sDaCR6d49T//N3MnJm9MxvQtqZrnrcbt8WD94Rz8vS9DY+dcfiALT0zVBiUDwIuzd2PDkVw8OXUHV+ckr1usY6PHY5QBy3gwGjlUqYMIzTjtfLxEa2dUw+4dWK7o2QFOpt16JW1Z/Svr6MLOezLs+Lc6P8hUOd2Kd1+NogShQT+ZXQvM9OUyju3ik7+1zoLH8iuElYxERMVlaoJ7WNigEbVzkxG88oWsrlEtN8jOqCMWH9A4urOlMWUbGRvs/9afe7E5KQ8fL1b2Cxtgo+6OAd9uMHEX+vgjgxMNE3LAIhoVsnL93ku6G6btzCzSCjZ2lUySzwYEJyUpD0W5G9W9azfU3v8bKXpECluRE5JMSaV1QzFbtzzc4VAYuPLK+cYYHlZSlrIbQ3ZhrxYodaucbqHhzeWWTCtb3JIkFJhEAqo6JaW8GWnehC9YihxVjJroj5JZhMcjcQ2AZdX8cXf/padpPuP9XuSlL9ossu2x8rlZnG7J9DkqdRTBgHJMshvLUo7xE1C+NzzFkkiJakYYNupPo/awRISFoQtjXNDLIKKeXyoUmaX4v+NlN1PDKj7Y22cNkmYym4hgFd7VBnOrqJ9Y/ClVJgmazzpwsEYl9RrAjovjnD5VDxt23F/KKKUAb6Y6UXQSL3KfxelRZnH0ByPFX5vm+qnLWSTJm+lO/ZkepjPZCA4zmxLZxBUs/6JfZEfhd1bKLfLWuXJGkRFIinF/3lV2k61ucqGNax9g/f3Vu76hotSC0U4vS4pozlc7DvhLgeravGGj7rfSKm2/mEn2qFeCw+x6zTr5sW23OvbU61bTiLr2aPvE7Lxh095CME4fu6KH4t+8+VQUnW3kgKyXYl0vopVnVFaeV79P1Hs81ilbL327WQWmR+WAdf6p/FIqRrDrY7bFCPtWAmUzAJQZ9J9ZsmqfEVu6Qq+P2Oqoom7OK617D+TAEKAuo5Le/Ci/3+z+SV3SRtE8k+9OpdMtLr8sOEcbpiykej/Xr2cH9eGmEF3rRKFSRiss928NYU8vKo+q5/wo2s/qLYG5ZdW6RlK264oqnNw53+i9zCk1rzvg0aIpWyYuoFOZoqnORXhjQO0YCXifpeh5sE5XTSPq5gm3R7JlPbFyDnUGLkApqeo5xPK+E40Ff/RR6jXZX+RmqjOLiDiWX6GRr61UmTKSS1KYKHvJoKTQud3amL+wn5iRkY3eYd4e4uIe7S2tdYHqgGTUcri/pbuNkJ+byFHdKgXlNcI9udEtWK2CJr8LTsVezE8HLM5nRmcyK7tb1d2XGIw3XlYOAIjs1Mr0NXjO86J5z0pGfKuOgry+Yff1lzCBDWb6ce+JIuW7wvxpdB9mytH7Q4GOLMUGbmSYdPSSx3h3QbnG0ion917YKdLI4dwqRvNTswj9kshmHK7VOBwOrr6CHSanqfqoxuURjlHeHVzfR+vUqDfGRXIXT0ZhaWJjCV0ZVpftFNhQZNwepX7cLpwuba96swiLx4sdtk71+DejQmP3iiy9TqmbV5sJ9jS9OrdSyMR6sO+KnkO/Xbg9knAvJn8v408GLB5m7stonfNdU5IUY8LMultuEGTMPiveuqAnR/DWTlb+tLJe8mD1VvK+ducxpUOhsuRhcNYt4uSAHLCIRoXsmNGhpb5hNb2okj/R27hXltc7f2SS4/kVGDY9BusP5yBRkGpQkiRExWVi/q4TKK5wKrJXsAtdan65L5WijKjM3BFVtgJRpLSR8ZwV0oyOldnGlKAKcygXJ5FD1NHcMqyJz1Y4M4iEA57jC5vef39ase88IsXfmkM5qHHz+8Tp8ZjeHLk94sWXpzidu+MYtjIZggAgraACKXnlQieDZirHrBqXB7tSCwwNtU63B/+dt8+UQ4tRdIbLI3ENdCKZmick8o5VpwLPK6tGQnapwruch2gsqh0rNN+7PdhzvFAYWVftcuuWrmIjbI2yD7AbQXV7eanAE3PKfKnNeUZNkeAtC8a7jxUoUvtLkoR9J4pQUePyyzki9gQ/Ui0i3KF4T/UckMIcDiRml/oUdewcKNrkGQnu6t+6PRJcbg9+23Fc4Wgk91eV040VB7JwNLfM99/eE0W6Aj57/iqDvttncC63RzJMGw94Mz6wCiCRAwVrmPt1c4pvDVBveN0eCWXVLsSlFak2JN6/1VmY2PGlVmJ7JCAxm58Sl7cGbU7MQ43Lg/zyGmQxOi1R2Vkjig0casIt6k7Uc7PZpV2en9Q43RISs0vxlyAzgqav5YxZkiQsRcCDfcYHM4qRV1aNTQbRunpKCd6cclSQFY93rGLMmOjEKqebW6KouNKJtMIKHGfGR0J2KdIKxeOFdU5Xt80uoxt7viRBFgd2/qtxedcXPfQCCqxSVCm+T5FBzCPVrQ2yLCVJEkYtP4Txa71ZONRzEf88yj4/WhtJuDo+GwfSi33zDwtv2eWtdX+rsqNuPZqHrUneOUV9X0aKY1kWFvWH1ZJ8akU32w3q6Dq2j/JrDWzynCyvGU63BzEp/DETl1bk+zv2RBFijxfC45E0MrAkSUjJK0ecoJyDenlaHJuuKRdo5BAlk5hdiqziKiTllCKntEojL8nvnscjceWcuus5fW3fzzFoyXO0aG1Vf/ztyiPYWRt1yz5q9fps1pBa7XIrZJHM4kokM6VnvH2gnya+oLwGh5jozt2cueFYfrlwnlOU3vNImMdktY2wuujpcCSrVDEr6YnRVczQExnGD2QU+2ReVj7gOZkAyv0Hb51hsw4mZJf6tRk/mlPG3YR4PJKwL7OYdmUWVWH2tlTffk89jtQZAUWI1ib1fcdnliCzuBJTNyUjOiHXN4YlSeKuMWXVLsSkFBiuP4C+vKO+L1k+0etyNrMtoM2wp96r8vabRvspPSX3iYJKxB4vNJDD6/4W6SHsRK+/eEYx0UMRGa7Yz9m+cXsk7t6KN8fqwXOSTMwu5TqKuNzeMel0e1Dj8uDDv/ZjGZNlRs/xdBen3DIvQ6NZtiTlocrphtvjbZPdjjNGuhIWXsAkq4+JzyhRONGzY/TDv5QZDHYfK0SNy4NDmSUoKK/BRibDZUR4GPeZy+uVyOFSgvmptLjSqbtXMePUyMpgZh2lnG6PpaCEYzr6Lr2xoB6HHma+jUsrUpRNVaOXkcUKvD6RJAmzt6Viyd50FJTX+LJF6PWfaI+hHo9qGVCUscIoQwW7nzYKlhLB09VmFVdh3q4TqHa5kVZYodl7m8mqAvDlmeM6uogalwduj4Q5248p5ruiihoczCgW6rzMlNlS43J7sPVoHkqrnEJdrZUgEatt4PUgO7b09EKiE7LrUVJOmW+/o3cfJVVOzDYo16THqoPe6gJW5mcAvvdaLqNsBrlPRHpkUYCBfPtOt0eYobqs2oXfY45zg5X00JufAO8+aPqWFBzPr4DT7cFP6xKxlcnyZPZdYhH9Qm+edbol3z5NJiWvHInZpdw9KE8fHxEWBkmS8FdsGlJVc5iRo4+r1gagliczLAbHmIHVu5ZXu3SziR3KLLHsAGsGnq3kRGFFwBmwjAh3OHCioMKnN+M9F00WOMG5FHK9oI8kyfw8yc6zRoH0gLeSTpEfDooy5dUuXV2IIoicaY8kSZi9/ZgiCYNVeVa2eSVml2JxbLqiL83KYJLKASuvrMYwO6Uo45dsf2PvY1dqASpqvO+HrB/Wc8blB3vW/R3o+N2RXKCZHyQJmLopGavjsxGXVqSQSXn2tdIqp+U9F3Fywq9dRBANFLl8RkR4GFOCUDup5pXVIK9MuzCanX9dbg8iDDQHvhKE5k6p4IZv1wOoK3e26b2B6NGxpeKYf+IyfSXT5vdKUygz2TTYvPI08sR/Sutmis3z4LHRiP9sMFo29b76T/yynds+o0wRrEf6Td9twO4Rt+geDyjL4jgcDkXqcN6imlNahZvHaFM0i/iUkyKTvcbawzm4Z/xmrHvnRmFU/287jqOtIGuK2yMJ09hqj/Vwxx/A35yplWqAt5zBoth03HFRN+551BEdY9ckKMqQiRhfWx5p4Z40pI6+U/dYXtkIlj93Huc7YDEfhTnq3jszERSbORury79YAwD44r4LdX8rcuRwuiXwKvXlllajc5tm+HjJQfwecxzPXBvJ/f03K8RlPzYm5CrqgT87c5duv2aV1L2P7Hs2d8cxblmfcWsTMWF9EnZ/NIjrwc+WsGBxuSUUlNf4aoCvfPMGnNOtDf6KTcfb8/bhgu5t/dpci0pTNAl34H2mtjqvXJnMicIK3FJb7mnnh4MUaZBFQjIvDbAadnhJkoQnpu7QGIHkPnx6Wgx2pGiV/F/cdyGGXNWTe/4f1ybirVvOBiCOuJGZtysN1/fpjLsv5pd6+22HsVKptMqJG7/bAABIGXUHHA4HPlminOeScspwVpfWCuVfYk4ZzvloBX57rr/mnE3Cw/DAxC1IUDlO7TlehLO6tMEQVUprRYph1fubWVQpNJDxlLZDft2Bey/pjiV7MwDUOZCqlQGi7H5qXv1tD9b9d4Dwe70Iex6a98Hg9ZC7Q56f1PywJgFfrzjM/Q7QKsQPpBXjmrNO8ZVKNIusjNp9rMD3vhsxWqddvM28yJDMU6zP3JqKey/xZjs0E/n87MydihKlMvEZJbjua6+sFP/ZYJRWuXDrD9Fo0zwC+z6+lXsutvR0UaUTrZiJn1dShCUhuxRnnmI+Wnl/ejEGfR+Nzf8bqPnurnGbsOFd7+cf/LVfN/U54F85UkCZ+U5mzvbjeO+2c7nHCx2wPBLm707DewvicHGP9ljy6rX4aV2Sb75v2SzCtz7JcxEPdVa90moXVh3Mwgu1zvCf3XuB5jffM2W1KmvcaNE0HB1aakvfKUum1q3Lr9zYG93aNVd81++LNb51mKdQGjw2GmveHsDN9pqSV6675vNQvzPsOpacV46ckip0qc1MyB4qt/OenzYjObcck4ZchtsuPBWTNx4Vlsi456ctvr+j4jIRFZeJj+48D8sPKGWB+bvS8N7COGGb1fLYx0u0MrTaGZ5HdkkVBo+N1t1fXfb5aqSOvhOToo/qKtFkGXv9kRz83wxtST7ZmX79kRzNd4A2U2ZxpRMPT9qG3R8Nwo6Uujnm3glb8MOjF+P+S08HYF7pOHaNsiRYYYUTN43ZiN0fDUKn1s18ZXhZ1Iq4fl+sVsgq7Fg5UVCBjq2a+tLVt22uFVzZ5zZ6xWHF3KxX0sAqg8dGo0ubZr4MJW5JnEUns6LuuqJSigczSnDzmI3Y9dEgTSlumYyiSl8GgSu/qutLWc5lL8/OB7O2HcPtF9btlfSeJnsPX0QdwqOX99Ac88umZFzHibKX70Nm8FivHDtz2zGseXuAximcV/6Mh6gMmlomSckrx9Wj1vn+/fOTl+H2i07FHztP+Eonsvx33l6N7Hy8gG+UE5Xx8LZDOYbvGr8Zvz9/FX7ZZM7BDAAu+GSlYm/041rlu6QuZwvUOaiKEO3XZe6fuBW/DL0ct5zflfs9+y49MXWH4Z7YiLyyakXWPb3rqZm+NUXzGU++0nM6Y8cb62DjkSTu/Hz3T5uF5+KhNhYez6/by6WOvlMxTr6slcUev7IHfo/Rlv3+aT2/VDPAL5UrCr4zMvoA3rJyQ6/uiQ4tm2rGnYiKGpdPVyZCfjyi7Dc8eGvN9d+sx+HPb0Nidhnu/mkzWjYNR/xnt3mP13EUfvDnrTi7a2vNfs7bNok7fm4asxGpo+/EHzu1z4S9JzPcPGYj8sqqMZez1wT0M2DJetZjTNau52ftwq/DrjC8LqszMMPPOrqxgd9tEL73D6lKwsl71Z2phXhksv5ea0p0Mm46twuuOtO/8t4ys7alYti1vRSfTduSqtEXrXjzer4TJ7wOHKJHwY7H/LJq3PrjFsX3IuPubWM36bZbWXJO99C636jeZZ4+6PpvvHvC2duOITWvHKXVLsR8cLNPvm7bvIkwiz4LT3dxw7frcaj2vVPzS3QyFuw+ge3JBfho8QHfmLn+m/W6gQrxfjji/bo5BaOWH8at53fFKoEMbkV/tzg2A8NvN5+tlZdldermFDx25RkAtMGORnhUVSGOZJfinp+2YOKTl+Ha3nw5CwD6frrKdJvVRCfk+vadVpH7nJVBjdhyNB8Dzu4szLQi2s/Jc/Qnfx/EbwI58MJPVgKARsY7ll+OnjoZ1ob8qi/TrD2cg7WHczByaTyu73OKxrHJH0dlSZK4+gH23VZ//crc3Rq7E1u+zwzhYQ7M3JqKT2vLUrP3LfLBke0oo5Yfxq+bU/DYFT0w+sG+AMwnFwiEW2tlJxFv/rkXH915nu3XfWjSVsR8OEjx2YT1RzHu8UuFv/HXiZZlU1IuXph9DBU1buz+aBA3WOfKr9Yqx6wo2Ir5W8/HymzmozvHbfZd93GBbZTlAQP7mBEf/HUAaw6J9SvsvBrLyPX/nb8Pi/akYwSzBpnVX8h2C/VcU1rtwlO1dg9eyUoeLk7Jysd/2Y75L10j/I1IHnxg4lb837W9cGbnurnsi6hDirKbf75wFbJ1sqXysrex85BRIgYjkvPK8dFfB/D1Q30Vn6tLg8rwsuvdMW4TTqj23/ll1eiks2ckTk4oAxbRqOhaW+Kq1ymtGAcsZT1ymRac0m1mSxDK2U30dNnyBsTIqUTO1tX39HbCY3hKWtZYqHYiMEKOdrnvEq3xP59xDLKiNGJp3qRu6hBFL+sRHuZQKMF5kWwJWfpR5CzndG2DP3fxlUkscqYwPeeJVfF8hxan24NTVUY+EW6PuFyh0+KGhlcmDNAats04X1lFr3wE4DUaGDk53Hp+nVGE966oP5mr45iyz6QxQ41IQStnlvo9xiuITt+SavncvwgcE9h3hCVW5SwpkyzIMAN4x1NaYaUlD36PJCElr+4diqk1Ps7f5XUEOJhRgiMmI7vMEB4WJiyjqIbNJJeoyiATyBaP7R+3R+LOm/IxPOcrQGwIUzPoPO2ao0aU+QgApggMV+zrlMGU0ZXbrXa401sbeM55PTu15Crr5chpTQlChaJN+d0BHcWiyJjndb7S55DJ2u8peeW6il2RsVhkjNOUIDQYjUZrv1GGuTM6KZ2uo2uVX1FMlgArrD3Ed0rgodc2M5v59rVyDS9TEesQbnSqh/udznW+AoDOTFm8/LIaX1RjaZVLmJadHfNWMybsSM43zGzHg5cBgHUGNnK+CoQcQXp2vUxVPDnGI0n4s9YgJ6+zY1Yn+L5njT16z7RdC61B/LtVdc5MagcWAApndTl71wOXacsVi5i44ShX3pcRKZF3phagUyut4kOv70Ql59QyhvqSiUxWJH5WCu/YlufH71YlaI7RY9a2Y5poSj0DNyBea3lOP3ocyiwxbWD7dZPWyYBFLuG2dB9/DpSNOP8Ivo8T7GlS8yvQXuXUx76XgWZEUWchZqmoceEBpvy23rKx+1ihIsMST3nMNlXtGCsKLvGXa8+qM4559zX8xndoaq7/jEoqWcn8qIbNHmAlkjuTkx1h+pZUS/K2nPXMqKQJAFysowtQY2T0kOcL0b6JF7hwOJMvX/XScT7m9cXq+GzT5Sr8xcgIJpLlWP7cKZbp7YjqZzlqkP1O73JTOXMjT4/QRCc4kHU8YIMy3B7JtjJsLOqMyDynBp7zlZ0YZUmTmbXtmNAIzqPIRMlqf8ryiN7p0ioXNiZ4ZXg2473Rc+Pt54DaspMCcVYvMMJsuTi3R/LN56sEgWB6yI7YrOGdzWrYEJENiFFxxvtYoM6B/bIz2hseK3rOczg6CV6wXkxKgW/8qMkqrhLOG+wYVme/CgRWVjA796id81vryKL704t9Oid2v3XHRaeavBZ/3hBlED6SXYrtyVp9i1GW2K1HrWXTBeBzjhQ5XwHWShxZ2YN6PBL6nt5e8zmb2VWhazMxX0jgZ6L5Kzbdb8O40dqvzpjMb5V1LujO3wMu3+/dk1gtXy/3pcj5Sg8zmU3NwssqZca5mUerZtr9ODtm1GYDo6B/M4SFASM58yIgHqOnd/AGe/y62St7sU7JdpV/DRTWTsezdfqDqOyvbgUIG+THf/Zl+mSbjKIqU89ddFVFEJNOu/0JNA8Fes5XgPKeOjMOOov2aO0KZvUX/7npLADaueYbJiC3hU4gDovHo91n70zVn4/0MnRP25KCPl1aC79fHZ+NxTo2FUBb2pSdZ9TjgGcfN8KMnVmmvFopX1zf5xSN8xXgrWJlFpFdkWh80JMkGhXyBOqdZL0zq4Q6Zyu2NCFPCDYrP8iCol593rpU1Prn+u+t5wAAurfj1wUH+AJGIHp0OZV+uJn83xaQDTOBGivCHEoFk1FddCM6tNKPglXTXMdYJypDoOdUpcYjKe+PxeqGRrSXY4Wzc7u1sXROu3B7JG6ZL/bZsX8blasC9A1I/mYJEaXftiNbgEiBL3rfA3l3rPzW5VFGIRmVbwyUJn6WvlHPn2aVvzzY/hF1lZFyxOxdRJjoT/3NrMkL1SIyfFp9J0RjSORspJdq3m7jla8tnH6bLoiK1muDqM9EGQp4G3UzTtj+oi156P23v/Ocv79TY2aead9CdsAyOlL/XHoKdrZ7w8IcijVPXb7R6Pdm8Pdp2hAYqBjHV/bqqPs9i2htEymdJPCj0NySeZlT753jvRPNIurkLb3Sl0Bdu/UyJ/DQcwQXtVcki4n6VJIkXxCI9lzqayj/zd6P3njxdyzxbt9IvhHNX0ZZP8yeh4dRFll5fIjWTp8MzpyG3feJluWm4WGa9UuUhcpfRG32SPp7SRZ1VClvz6EnV9iZAUt9fUkS74EEiTcsE8hp2Geo10dm1jcJkl9jwsxv1I6AehgZPeT33oo8KZrf9K4VaPSwv4j20fLzNTP3+LM2+ItRQJKeUz8vEI23jrduFm5K1mPP5xFkQ2IRORfrob7f+jB1WXmEVuQKM2PD5Ydjm+h4h4O//vubecKt88x1HVRNXk8dxNGplXZe08s+YUdGDR6B6BCMqAu8NdsW7/+NKioA4jnW7JLeLCIMNYL+dro9QuMd+xzs2kMCyrnLrIyoPsqsPKOQU0zOQqL32wGHbhZDqxjteXiYuW9r+kDzbXBL/HK16mNkzDxaSeLPBd7P/ZMtjK5rFABnNL+L5hFRthL5fGYz7sjo9TW7t+Fhru9Do3OWcXskrtzCBp+LyqEGgsutzcjDton7G537C5Z+0yo1jKOoWecY/68lfmfsKNvMjkWz87To/WB/r/cO1dfexV98exumv41KyJodq614pWBUvzcrI0swXifUGNmh9M7m1tE/yD9WB4CGM/ei1vfxgkXtRN1WUb9a6cJubc0lASEaPlSCkGhUyAtpE0UJQvhqR7MRPjwh+OlpMRhwdmfDzD7H8ysMU7P/vTcD53Vrq5vlBKibdOUNC08YzuV4o5tJoSziv/P3ITzMgfGcVOuBGI195UFUUWrPTI/BkKt64ubzjKNRZdhIN57i8UlVKSw9jnBKF+iht4iLxobLIxkKQTJuj4TkPH5UotXNWbwgWpktA8kr3WCGe3/a7IuuWPb69TifieyZaqK0RGJOGS6vzVjAwsq77HhbeTAb1S63wiCrFor0FNjzdvmXSeTKL9fi4MjBms/tyBawLZkf3SZ6ygWC0pRGFFc6FaUOjfB4JBxksgl88Nd+LNmbLsz8FCi88kVmGKq6p4Jy/yOh2Gw8T/3Knz/iM0rQ5ZzAhdjPBJFWLKIxcDCjWDjPSJI3MvON3/cqFKZOjwctoN18v79oP+7qy4/4nMWUfZUZySnVCgDHBOU7PZKEpJwyDPpeWw5WXY7ELnilp0RZC9mSc2qi9vOzpPwVy59HePXdwxwO4Zq5PbmAW/rWLD+sUWa5OZTpncf9mecqalyYsD6wLIiSJGHXsUK8M3+f4bHyfj3JIOPDiMX6/aOXdZDVKQyZukMRnd3fRGmAwWOjLZUU8nisKxQA4OW5e7ifRw6PMn2O3NJqX+ktXlY7UZaH3YKIM14JUABIzinjZir0SJJCKbpM8O4A3rHWNEJrbJu9/Zii7LMM65xrlCXR6fZg4oYkyyUAeSv5gfRiXHhaO6ECTiSLiZzXSqpcmtJIn/59EOd3b6sp9afOJPDr5mQ8/st2fH7fhbrKshUHszRl9PxFlJXJJ4MJmpHFyQjEY+HuNPwTlyHMwKFm7JoE7l6H5dOl8Rh2bS+hgbOgvAYtmoYrokALK5xIzStH5CmthEoup8ejUS5vPZqPZ6bHILO4ym8ZWkaSgA2C9dDNSdUvwuX2KPaIPKX35OhkXylxNXYH3fzDZGN0S3zDCgAcKPRed8UB40wo9+jsrd+Ztw9JN5bh1YFncb/Xm5/ZbEyio7Ym5Wn6ND5DO2dll1QrMpCaJdFgPQSsGXZ2HePP7zJy2VErRkxRZh+RgaWoogZunvE0AHebLUnKbAuibCSVAgcsjwSEO4C35xnLKqvjs/Hegn34+sG+cDgc2JlagPHrkvDJ3edrytHN2paKIf17mrwLLcMXxeHW87th+O3nYnV8Np6ftQvndmuDZa9fj/zyGnz41wHNb/TkhFXx2ZrvUwWyupoiJnvY1E0phtln9UpQsojKLKbmlQfdqMHDSlYrKw4mFTVuzNiSgp067+CDP29FlzbWnDW2HNVmGgG8sjSbdVTGX7unxyOea/TmUbMZ99nS0TO3HUNHjgPWwj1pGPPIxdzf9/10FXe8jFp+yFf6WlTaUA+XR7IcECa/Y9882Ff3OLnbZm8XZ2pnWXMoG8l5ZcgxIVPVuDxoGh6mKTOWkF2GyOFR+OuVa3DpGVp9m8z/Fu7Hyzf25n53OKuUm+EG8OrHZIZdE2nYTjM8P2sX0pk9yNvz9uG+S05DWJgDybll+HRpPNIKKnDrBd65EgCSckox6HtlSS4zGbMBbxlsmcOZYlmuosaFe37agqScMox+4CLuMZ/8fcCU08rO1AI8rCpRyYO35zEKxNXLcigjX/vw5/ySiSxWnMD6fLhc+F3k8CikjLoD65hs2wnZpZgcnYw3bu4j/F2l083VX0o6MqUR6gwyz0yPwaNX9ECT8DA8O5NfBpulXCBbyAiDOAXPTp5r91usLKInDxo7iQV2fiNk25oVPFJddQkWvRKEdnDXePG+4o8YfnaxxbHpwsyvRg588jFXjVqLgvIavDqwN/anl+D7Ry621YEzNa9O3rMzi+mMLSmaz95dEMc50svQX2Ow+u0bNPY/K2Qwds17ftoiPE4uy7Y4Nl1Yrl6SgC+j4iFJwNW9+WV+HY6GmwFLhPedlhT7MaOxyEtiwePblUd8WTlZKmrcGDY9Bjee3dlE5sC6do5cqtXvRg6Pwh8vXKX47I0/9mLfiWJM44w5Fj3ZM7e0WrcfZm8/prGXbmb2mer9bViYA/MtZLSyygd/KeU4kb3EUgCJzQF2RP1BGbCIRoW8kIaH1ZmKJEg4tdZwxWYOEKUy3JiQa2g0NHK+ArxK8I2JxgZoeR8l+RywtMfw0kmLDGhmefPPvdw0o4EEh8nexGqDy/ojuaY2PDIeSRnhU2axVJAaq+lr/Vl0XW4JTpNh3m6PhCYCT2+r6YmDCZva9o5xmxTfieoaq+EZvNowWU3UwsV8lXOBWijyJwrXDNM2awU/M0oOfxEpcKykMGVhyziZwe2RMELlFBUs56tAUCsHZm5LtXwOua/ZsSQyqA6bvlP/XJavrnMuwcme+EXsXOqRJMzbeQIrDmZhMaN81NtErrOwIRY5QBwUlBP0SBLX+SrUiDKIsKV6zVLFyXJ43VmnaMaiBONoIH+uLyI6AIe293QUJzJndhaXGAK8DinDF8YJnfFYZAPO6OX664TIQdUMrFFZ7dBiVo7hOXeL6NauOdfQHApGMf3IU96JFHpfChwQRc9F9P5LkqTwYnpl7h5h2WxRmVae8xUAbjkLES6PZNn5CuArdB+Z7DVQiJ4pTzFdXOEUOjNMidYaemdsTeW+e0dVJYXX1BosRiw+YOjk918TDpCBsHC313kp0Ax+/52/D+uP5BoGtMjwyk/ySCusEK7DY9ck4CuObHrjdxsAKMuWsizdl8HNPLT+SG7AzleA9/15RiBbWIlA79K2mWGksZ4S0u4MWCxuj2QYTfzSnN2G5xGViQS889O3K8Xvv1ljklD2mroDb/25V/FZniAo4pO/tc4ydhCMPaAZxy8jRMrvr5YdUmQvYOnOKWerh7zXVwdYiUotiTJgqcutGjFvV5pvv/vwpG2ITsjlyrUfLzkYUGae5NxyTNp4FFVON16ufRcOZ5ViQ0KOYo0PFKNMW4DSecGMnKqXGZxl9PK6ciVsK75decSWLAnBxEoGrNnbU/Hp0njDkuCicj4i3vqTv77/3wz++uGv0dUtSSgWlFPTG+Oid07NL6qSmf5kWuGVGJWdrwBrgZgygTgcqB3p1VjVGR0vqMCGI7mmnCZXx2cjPrNEUQaL5f6JW31/i0pRndNVnA1f5IDFYtd+Vr4XxfVrjaGvzN2D6IRcJOd550rZ+VbtfGUF9pl34DgCykzfkurT/w9XObrJrDyYbUo2NuN8JcKoLKFeqSY1ZkrXidZvfziaW66QN0YujUd0Qi4e/Hmrzq/4TgISxNldii3q9dcfycVLc/aYtkUYzeuiMSDaH8p9rJfVm3sdnWdjNAy7msiIEsia7M9cKkkS3vhjr63tCJT5ghKcq+KzcfuPm7jfmQlqWB2fjYJy7xo7Yf1RRCfkYoZOUKE/HMmu25/amZXr06XGQcQsNW4P3vhjr+Xf+YMc1Pimaq/GUlzpxC+bUjB1c4rvGaiRJP/LaNYXHknS2FhFASpyyXujUu0yFTVu4dqz4UiupWebU1olDBZ+bMp2zWdGzlcA8D0nAEEms7hKd11ezgn+YnU7Ggcsh0PocGhHIInIpqLGUgb5YHiuEvUCOWARjQpZ+GgS7lBkwKquNbINYjIwtQ1BJF5Ftb6iYszDF/sUZfLcH6y022YJ5Op2zf3qBaecMQraVeNaD7PCCovL4/EJ5IMMMn25PZIwOtisE1dDY83bN2Dfx7dqPuf5mTVhnCXUSjlZYJRRbyiMUi77S3GlE3cKMgUFA7s3m9kWM+I1dEW4iHQTjqftWzZRZF6Tb9XfVOYs8ng9u6u4Frnpcwk+15t/PBLfoVTv3iTJ2LnGXwLp0gu62+dMabaEk7/07txKYxj1SJKwpFVDw4wR6BIDRxi3R9I4joiQp3U264jd2KE4saKwatE0ot7kM/b58ZQtogxwIsxmMZJxeyRNFqmLBeMl32IWRyvKDDvmcBnZkChaC3nP2snIeWqMsjeZxWiIZagcmq4+kx/d6S+ltTJYQ5UQnG5JaMwtKK/RnetEBtL8shrY5W9/w9mdNZ/pTTNuSbwfUNMsItySQk7tmBkeRAWdx2NvBLYVetfKN2b7Rm/ezxco69WIHLN4nN6BX3KcB8//6qLT+M6u3uND0+elVXy5NLO4itufDjjwYL/TLV3DqtOnqNRwuR9BW2pnbKvlanhcGaktFyyfm113yqrdltdNPYJRZs3sOp1fVjf/stPN0dwybt+d2q45Bp6jnTPNYHdAlpXZsTCAbMz+IHJ88tdR2uORhFk+gyHmhnJleOyKHsLv7JQh1TSNCN76Wlzp5AYH8RDtrdsHSX9mB5W1c7laxyPKcmgFdq516zg4l5jU/QZ7yRUFHcuB41b2e0Um7ikQxw11VjSRM4A/6GXAqnbbdx1/EPWZqMxnjZ/9oqdzMJr72Sz5kZ1a+nV9PRwOh2XdoqjN7HMOhSNBoDKSvHaKSrcCfF1uTqm+7qVVAGUE67ssYmZxYIkhzGLGDsCu82I5x3zlmoaCRwLKqpXjSpThSqr9uD7GRU2IbZk1Lk9A67JaLhT1WY+OLfCQxX1tqAimfocILY3EtEQQXuQIg4jwMF+5FAl1Xq5sfVsz6UMDpaBCX6HWqll4XQlCjwS3R8KUaOPSbsEkECOSJGkdaPzBIylLcrAe2WGO4CgXA8Xllnwb3T4GzhlZJVUagbCkyol5O08Yjpn6ZPexQhSU1+AXzhjt2akV2nGUO7xscnml1YhLK4IkSRqBafn+LBzOqvMML1UZ8IPVP2FhDo0hY96uE5iwnl/KJVDsTnsrKkElItDsFvWFmY3E6R1aoFPruijHrJIqJOWUmt6E/BMnTrF7OKsUO1MLUFIpNvAc5JSs4RGXVmTqOJaMokokZGszcsSkFAgVy00jwmzRfvPm3UCMf3aV0gKgKFsaDGZvP6bJJCaXIAwlx/LNOUCpMZP5JImTFp4l9oT5rBLpRZW6hg5/DKSac9igmC+tcmHfiSJTMoXb41GUsggpTPN4Bgmr07lZQ46MR9K+r+uP8DPruT0e5JR651wzqNd4PcymUlejN95E68KB9GLNO+GRJFQL+s6O8QhoM4UdUP1b3V4z0fBW1nv5+g3VR3vviUJF6TuWfWnFwr1dTmmVUO5ye/wvdaIm9rh2ntSbX6woRytq3Ciz8L6onYaDuVy5JQm5ZeL9o51KYHaPAHgNHQnZpb5MckbsTC0IqbOYxyNhq6C0mBqXxwOX24M9xwvhdHuQmleOtEKxrLQoNl34XSB0bat03jsukNdKqlzCCHO7hptIlhA5pfgTYBKXVmRKLim0YQ+qdhyLPV5oa8nuYGzvzL6/cWnF2JiQi12pBYq10uWRuMb5iHAHDpiMBldje+CFhQGrzuATauQ1xd+ggNjjhYgX9HswDHai0qbBQK/9wSw5FEy1SnJuuek9s8jgbEc2z2Cx4UguDmeVaAziZjOu6VHN6MdEe4g18dlYfYifaVGNP0G6VhCttYk5Zah2uS29n+b2thKKKmqQU1KFpJwy7E8rRqFJR3S1vtvOd2D9kVyUC5ysN5vI2BZMRHsqUb9tTy7wOglYnFtrXB7hePNIEMpeALAztRCztx9DcaVTuE6IxpopJAlZFoN/xSWuxRnNg0F6USWSDXReesgyaWQnsQMab4w44MDR3DJhxtNA9Aj+6kfsIrvEniA0I6pdbuw+pl+xg936LtvP1xd4JHscfENJUk4ZThQoHdBEdtsNCTmYvPEoiurBrsjTgwST/enFft2nJEnYd6JIo9s9IpCVThRU6trbthlkr7RKSaUTaYUVOG4iS+qR7NIGaR8nrGMtTyZB1DNyRoQmjLGRVWq1YFKoh8IBa8Ri/RIF7Vo0RaXTu5B6JAmPTN5mOXW+3TwyeRtSR9/plyNW8ybh6PvpKuH3ZjeNHo+ewcihqBMdDPxJL+nySD6Bw4wX8sI9ytScev3WUNBLIS1yROBFictpPScNuUzznPenF+O2sZuQOvpOAMBPKgcof8oPmSHM4dC0Zda2Y0G5FmB/BiqrZTYbawYsURkrltS8CrRtXvcOXzt6HQBx+SE1r/0Wq/u9Xmr51Lxy3DnOuEQt4FVESJJkqlyIzCu1qZfV/Of3WDzZ/wzud5JkT2bFeZzymH5HX0v2ZkcKdgYsjwR8teyw5vNQR5wM+HaDX78z877HpRUjr6xaWM5OrzQmjz4fLhd+d/HIVYj7VJsxMdTcP3ELMourMPbRSwyPdbkl0++23cjvmdPt4T7LYDvUFlc6NXKXqAx286bhuPLLtabPbSb1uMxMP0ugqMvtsoiM+zwnH7dHQlx6Efd4o5IVZlErd+4av1nzvcNRZ+gw4wRqxej4T1wmnr/enFNifSAq0SQTk8pXzF755Vp8ft+F3O9aNA23VI5UD55Dod76uzg23bTR6vlZ5ku5A4BTtc8N5hMtrnTivglbhN8/N5svu/jDbWOVZUHyympw6w/mSxStis/GlE2hC3bKKqkyvX66PRI++yces7Ydw32XdFeUmubxTpBKkqrnlfVH+A5C+04UcT/3SGbzuhkjMtqJSlLoZTkR8dWyw1gcq9/XAHD1qHWmzylal/t9sUbx7+k2l6UJxtStZ+hlyS+vwdPTYjSfu9wefMYpYaI2Jlmho045MX+wIs2Hwkisxwd/7ceoB/r67Ug6bp04uCxYgWehQk/XaFQmN9DrBktumr39GGZvN6eTEs1/bHnQhsYfO09wyyvmllaje3vzGSR5sE5dIt3/cxZlq2Ci95z+O28fguFD2P+rtQoHjkvPaI9JQ/oZ/s5q2U2rPDCRr3d+e15wS7EbIcpYKXJoKq504v1F+y3r4r6IOoTTBOPfLUm47PPVwt9+vcI7jkYsPiA8hxW5WY0E6w6SogzF8h5VHVwRLK77ej0AYPdHg/z6vTynqMd/elGlr6/V2aoBoLTaiZvHaMtb28HmpPp1SgwVRRVOPPizfolXds4X9YtHkvDWvL12Ni3o3DFOWxIzWSCL8kp9horJ9ZBMxGyFBpYlezO4pSy3JYsdqfTK+j7+i7a8YiC8MHu3peM9EmChQjHRQKEMWESjwSPVRWxHhIf5In1Z5SBrgLcz7eTtF3bz63dX9uroU3JKEoTOV/+77VzNZ91M1PYOhEROlhUjenfRz/xkNvW3OgOWEkkYtWcXA/0oc+j2SD4lgZka78l+CAoNGdnn8av7LzL9m79i0xtMloUwR2Dl1GTuvEi/jOGZp3ijZdSZCUJNfZWKCQVl1S605KRxtqtElIgrIjtYdqC1M9J4rmBT4JakgB00nrqqJ3fT4ZYkwzHPbZPN4z/YDlg8moQ7EGYis1RDoNqkc8ExE1E2duDySMgrrf9sj5m1TkVqh2ge6ncolCVrZUSONMF2qOUpEkVcdkYH44P8ZImBM4I/WJmDXW7JLwd9O6modiucI8IcwNzn+uv+xmpk7Pbk/AZbgjAQRKVb+vfqGNTMGHpDbP7utKD1dZXquQdT7jMqCbs5yd7I0ECZttm842co8Uh1wR9Gzldmub7PKZZ/E2h2zxq3x7LcGYiYOviCrr6//V0P7c5qVF9zaCDy/lkCPU6gewinW8Law+Yy1PF45HJt2Y8bz+mMKyLtkzcaizwPAL/HeJ1VgjGlT9xw1P6ThhA9Jwd5nRc5JASCvu4yuHRvV6cTrm8Z1U7sKBnJOl0FK/j63ku6h0QP8U9cpiU5zux4VO8RYo8XGWZMG3hOZzRVOaA01uz6VjnqR/akhXvSLOv8UvLKNQ4k8j7GirNnMLIamrn8ud3amDqX3L4tId4npHKyyt9yvleWlPX1POTglibhDox//FLf50cYBzKeg7jdpYu7mAwsbmgMv11r1zTLhTol2a3gkYyzwctyp7wdaoi2k2DIMsFGVJ49lHRo2cSU7pcgQg05YBGNBnZNjAh3cCPZWKO8nZuwn01EifAID3P4sp/oCcctODWmg73B9keBaWRU523MeM5l3shZcakQMxuJlk3D8dcr1xgeZxcut8c3pvSE9pMVeRw/0f8MfHjHeQCA9pyShCx60YKhFnJ5GbD84erenXS/P71jSwDBTYNvhvquFR9sQl0aDgC6tm1uucSPHZmpjJAkCYH6O7VsGs5tq8cjoa0fa5HdSlCRYT2YuDwSrNprbrvAP2ftQNFTMgw6r87hOFj9KCu0WOzLjxEa1DLR+ae2Ddm15SuL1igj54dAsTKv2b12B9smKj9XI3kF8DoVhCJ7rlEb2Mx74WEOXHuWvoOFuuSVEY4AS31feFro3o1OrZqadjARjU2XRwqqU7zeOxFMWUx9brdkfc0yC++9COUcaZVQiohWspwGw4DJZv82S1iAokCV0209qCWAW//pict8f7vcwctEY4X6MkYHMpcN5+hkgMCDHAKdX285v5vmnXU4HBj1QN+Azqs4n21nsoeenVoaHnOy7eXNyGFG6OkvZd2L0V7n0jPaW76u2xOaPT2ProwDVk0965fsxI5gada5KFhlujq2aooONoxdGZEjLGDtnQ9kn20kK/Y9vb0mA1Bjza5vhot7tPf97X/298D7Z3CtHslKVwdjXjJzL6xcpoecmTDUchtPNr/xnM4A9N9Bucxrk/AwnN21zsmsWUS45hiWQOVqzfnqQddtBy9cf6bfv/VnP8PDzFgbenVk7bHefXx9rO83GSSFYPfeF59uj3NasPHHbmA3fbq2sbQ3bwyEN6IgEkIMlSAkGg2snNMkLIw7qTZjHJnqu1ayjGxI0RNk3ZK3/NPq+GyMe+xStGgaHnTFnj9KHadL/ze8c/LuY9j0ncJzrD+SKyyFwBIe5vBrIfJ4/ItgO5pXjr212dbqIxtLQ0RUNkLG7ZGwKZGfGtblkfD1Mn6N9GCw/kgODtqQWc1ozEXXlkS1I6ovEP4bpLIlDYX62JRKkvGYV3PORyuwZfhN2JyYi7WHcnC5jdHcMnakIRalE/ZIwO8x4nS8IuxWENfHnOvPOlFfm6OMYnEGI7Zk1l3jN+PPF64KRZMaTPZDAMJ1iMWoNGkwOZZfgRMFFdiXVsT9/qU51tJUW8XKWN+Rwi8B5y/BHCcutwf/xHmzzPBKx2mPlzBza/BKE5uFNUrxlLxqjKI81YQ5HAFlcjiQHpoyEoBXgW52XhUZh7Yk5ZnqR3/R209JErBgd2iiMD/860DQzj2JIyNENOBc+Nklwc2IymJlP233fLfneKFfmYcC9UdctCfd+jUDmHTYkWY2UCvYxB4vqpfrDvre/7JCTQSydKClpgJ93yRJQpjDoTSASZKtMnVDM2Zml1Tpfi9JEmb4WZa5odDnw2WKf1vdQ/PQc3iWDf1GpQh5WbSNePU3+8rsWiX2eBEih0ehZdNww7JgzSLCGowO3IgnftmBX5++PKBzjF+XhLJqF64+s1PQynT5qzsWoRfoYSVT44T1/meze+pXbSlZljCHA01UMt7Iv8Xl3hs77FKTmudftvBl+7MCboe8TFmRcYJRAcDMeI8wuT4vic3AukM5uKB7aIM2yqu1+349u1zk8Cj0Pb0d7qjN/N80IkzhXC479qYVVvhKQLLYneEry0BGaKgEkm1UrzycFXalGlesYB21iyudaOGHXBAoRuW/04sqcdf4TZjzbH/sSysOUasCY82h7PpuAtweCQfTG0d/Ef8uyIuAaDSwunOR0pf1TK9xWatbHSxkGUSSxBG5Ho+E9xbEYXV8NmZuSwUQ3DIvgH9RLDGp+oY3nr4jWJmAmoSH+aVMS84r80sJPGJxnWFDnZLZH9Sb2sbEioPmNphJOimcc0qr8GsIS4TY4XwF6EfMsJzMUWINgceu7BHya7o9kuVMIwBwy/cb8b+F+7EqPhtfLdNu2Bsy/o5jux0Q7Zhz/cHq7YeFOTDoPG02qGBTxlEyyaSrysu9+ede269/SmttmvQ4gTMRwef6b9YLncAKbTBa2UVjMggeyS7F2DWJAMwps51uj63ly+1gY4JxQII/NJZSIuFh5g3nonv6Jy4zqBmw9NY7f2SGhkg0Zxw+3E9bNozQRy8q259yIw9M3OqXM1J9OIsHEl3Otrdzm2a0x/KTJoLnzpunzgthhrtLerTXjOOyarciG2SgNDD/K13H6V6ntLJNb1GfsI7Pl/mRdYqH3rsvjyG3ge7xyf49bWlLqDFyvgIaTgCyWZ6duSvgc0zfkooXZgcvUMUtScix0cmlytkwbBR6hIdp7S2NxQHAH1jx5LN/4uuvIQ0EM3tEs3JkTGoB1h7Owbh1SYE2yxLjOdeTnYNEcnNcWrHP4T85txw9OtZlqpQd1d85yYOcTwbM2KrY4N4J65PqJbBDTu6gx4H0EoxZlYAeHRtfOcL6wuWRkG/g3NaYMJMxl2gckAMW0WhQOGCFObiKFNZIK29ApzzlX/nAQNn54SAAdelP3ZKEBy7lK6tZpWRhhXex6NrWvrrP3zykTeEeDCGDJ6xXB8kRLiLM4Vf0dXm129S9P3ddL2wZfhP3O1EEqRWaR1jzsueVeKoviivNGYPLq8XP3kyZH7ORNcHinou7az5r36IJWjfTTx4pSQ0jOvtkZsDZnUNynd+fvwof3OEt2eGv8ciMwrShITsa+qsktLuMV305YFlNlx7uAO67VDtvBBu9ZqqfRWax/RF1zSLCcJ2qTJq/454tmVjf7Pv4Vs1ndpUgfv3mPpZ/c0bHlpj1f1da/t2dtdGcMg1JnggmVrMeqR1pot8diDsuqp+yosHE4WcGrL71kP4+3OEwXVZPL+AjkAxYV0Z21P1ez2mvvkta8vZ/drDm7QG46kz9ktwnM/4qQ/Xeu3GPX+pna6wTeUorrP3vgJBdD/Df6fPqMzvB4XCgY6umALxGk4a0xzq9Q+MxikQIZOkzOirlmoHndMay16/jOtcHCqu/axYRhi3Db0KXts3RRxXg5JEkm0v62KNT+Piu8y0dv+btGzSfGcmRd/U9VbGuPHNtpKVrNkTeE5S/tIreuy/LcEYOmtf2NlfWuDFS37qzkxEzy8253doYH1RLY3CSczgc6N6+8axtANCmuf/FfRqKRBGIaNPLJv0EYM5OFKosuP6uf4XlNejXU5nQINxnlxP/Tr71i3u0Q9vmTXyOZvJP1IGNjQEr85MV2JKBL9/YG/s/1erN6gsj/Q0rD+eX19ga2DH/paux+i2t7GeWtqq5LL9c3wH4/67t5fe1GhMXdG+LSUOMS5+6OUF3bQzsdw2ZFW/4P5aIhgU5YBGNBlkP4XW+csDBUaSwSh15c9PbZMYau+lcG8kqC21Otwexx/npMNkot/jav+2sQ3xh93aKTUlKXjnm7Tph2/lleJH6wSrF1iQ8zK/IyPIal6mNb/uWTXCaYOMZaKp+wHp61lb1kBZVhMvkM9VLq2omTXj7lk1NtykYRHI2sg4H0MXAOfJkiFpt6ISqrnfPTi3RrraW+baj+bZGQDZk5A11Xpl/93s4y753wOEILJ11IJSYKFvGEuZwIMJei1HA6K13Z3S0L6JGrfjz10AqG1kbAu1aNsHlKuXdqe2b23Juf1LxeyQJN/jhfKpWvHVqQH0cTNZZLM3FyiydWjXFGZ1a4vo+5vu7sdi9DmeW+FUKqFk9lIINq93zmUEv25RZuZXHpT3b635frZPJJJilD80QLOeQs7q0Dpkc1hDx986PZJcKv5NlzVAQEeZAZCf7jHVm0HtP9GhVqzTvXOsM5PFIho6Np7QO3RrHGqAaOqJXVp2V+4Lu7eBwOHBON/t1aGxGQ1bX0kG155fLEtqFv/sZNVbL153VRWv4bGPwrrs8kkLHVR9l2O3GLscgPblOnheM9h92Og40NLmPsgPazz4TWUqsBCiwgawNac/LEuZw2JqB0CyRAWT60CtPaoTVgLtgEcg92Pm4zNhvQqXveufWc/z6XUmVE8fyleUkZbvcIZ1Snxm1DlZyZR1ZRolLK4IkSQGX8K4PRPJ+oPuOti3q7Iv9zuiANs2Dt4+x6mBo9JzYjLAeSUJSjnh/ZoV+PTvgisiO6NPVf6e3UzgZkfUye3aycc/jTzbmUDHwnC64zoRejheQd1ojCpZRUx/lMYng0Ph3c8S/Bnke1ds08xQ1dipv/EFe2+PSipGcV849Zum+DN/fmxK9jil2+i2FhzkUGUQGfrfBsmHKDLzSRi2aBsfb+LKeHfwyysdnlGD4wjjD4/T2YXYoW8xmkZJZvDfD+KAQ0a1d4Aboj5cctKElwYXnPS9J+mMDAO4avzlILSJCTUS4A4ezvBuysmoXZm07Vs8tCg37a+umT9+S6tfvtyTl29aW+lAA+sui2PSQGlHNoJdN066UxpIkaQz9k6OP+nkuO1oUOLICQi1ndG9nzwben1GdVuhf1GW4Sm5Wv1KBKHwbMuPWJlo6ni2FIitprcw/rYIk79rN/N1phiXFedSHw02Yw4HY40Wmjv1uVYLwu0CMkkYZa6v1MmDVc0nL4iCWL21ohudQEgyHiECyN1ilvNoV8ud36w/RSNRxQBMht1Nei50eCT+t1y9lE4zMTd7zao0ciTllQbmWWexwjO3SVrmv71q7zw+GDo11jimprHOaVa9JklQ/pTKNaN8ycBnf6LbcHklx7/tPgtJfeqXS7WJKdDIA4/XezmEdylKdRP1gJrDS32ynDdXYnZpXXi/Bb4GsOc4A5PyGksmyewBBXkYVGqyQqnJc4hGqbHv+ygHZJdUax2t5TOfqBNTO3u7V9cpjUb7+x0sOYsOR3KCWtA8WYuf7wORHVmcX7D2MVdnLSA5gM2AVVjjx4M/b/GqX5rw2vBdqvZzTLenej50yTUMONo8Id5iqisFzwg+FDEoQRpADFtFo8Dlg1XrbywsNu8bxFh+eE4WaEXedL0zdOPbRSwAAYx6+2HRbWfzdSPgbiXExJwInzAE0D2GEJvtMBpx9il+ZHowYfvu5fhnmmzcJR7mJ0khy7/MM1Lzsa3bx2sCzbDnPg5fxy136w2f3XqD491uDzrbt3P5ihwJUjzdu7sN9dyWAu/FS95HMb8/3t7tpQWXgOaEp7SfCTIrkf/5zXQha4qVJWBi2CLK1XdO7k6m57YUbzrS7WZa5+dyGU9aNZcFLVxse0xANMHpcdaa4XJXed1YxO8e/fYs4cvCTu/nzllUkAE9fE6n47ERBnbNQhyDP1/5yjk502j2XeEtJquWM9+84T5jx4s1B5ssKhjI4QKsMUv6bIua1yPOOlcf0YD/75C6ZhlROpj7aEh7mCDhzybnd2gSUiepUg6CD+i4zqMfxAmMjir/Ud4BTfaIu2WYHdjh1mZUxskuqQuJQySrKK51ubE+27pwvjzN5/vF4JPy6OcX3/agHLlIcP+i8rngoCHMxAPzPhjJqdpcKsZKRSfTEn7qqp+Lf9196GoDgy9+VOmXOPVLo5hgr5T/79Qxcjje6L7XxaOtR+4Ja6ovsEvvLn6tZfiALgHEGLDv1eDNNlgWXHW1+f/4q264t4rnr7C9HdFOI9AiThvQLyXXsRi+wVq9kUrDWqkCJPVHo1/wbaKmzQKb8QDLdjrznQuF3z3Lep4cDeG5X9uKvIbec3xX/9TPbE+DNXBlK1MFdwcKOyiMyVmxH8mVZMWhpXEaDKoEdKOrsp/7w+b0X4OmrewrHdaCc2dm733rAgm3rvFPbGpY9Z5N6HMvnJ8nwBzsybKqryLRsGq57P3YGK9vpyGk3TcLD0DQiDO8O1p8nee9ofhm/Ms+g8xqmjYQ4OSEHLKLRIM+j8qLmUH3+yOWn+50B69nreuHju8/nRjbeV6uE8tew4m/0iJFwd/6pbbkLxruDtcrBsDBHSFMXsh7lDocDXz/Y19bzx382GKe1b6GrGPz07vO5n5t1bJMPEykcrj6zk+9vOzfPdjkW9bfR0D/06kjFv9vVszG9Z6eWPuVwsHjrlrOFJRB5aU1FaXGv6tUJqaPvxJCrzrC1fcFi0lP1q/gy2ix9evf5uPA0r4Lh9gv1a7vbQUQ4v9wtANzZ91REvX49UkffqXuOhlBzvLNNEZZP9Ld3HF8eaTxPNTQHLKPnLTJqdmzVFBOftO/9GvOIOadwvTXFrnEhSfpO3p/fJ1Zsas4VYFuu6d3J+KBaztIpUS2nnlePv46tmuLQ57dxM529eENv09cOpe+CukyAJgNWQ0k71oBQR76aIRjZ784PQgCDv1jpCzMRisNUTps89C750xPmjObndGsTkGHG6F2tdhkHddQXwZxn/q0OWF6HF/vnzCY2lHP54wW+U/vXDyqdlORn9/TVPXmH20bCl7cHfA65W+T5R60fefxKpVw69enL0SwIQWc/PHqxLWU+PhboJ/zFqnHyurNO8f094OzOSB19J5o3UZ5DdjKvz3fcI0lBlf/lskIAcMt5XQ1lexk7HJGNzhAKA++dF50qzJDLC+as71JpPB3t7o8GcZ+bUYYSO4e12Wx7q98agNTRd+Jqk3sUtWOpFT6663zb5dEfagOSg82N9RwI6C+ivf+jl/fAbReeKvxdQygvys6FMuFhYX4Z9c3K5SICWXP8nTYfufx0XX0ILwjjWz8D8wHxGB/32KUBBcyHuoyinUE5t57fVfidnWKAFXHJlwmbbYDUMIPW1r9zo+73otcqUBnP4QCeujoSI++9MGhBHev+eyNSR9+JljrvRphDeY+ntW9unAGLea52vjqi0pw9OprPsqfew7RsGq57P3bK6iKbcUPI9ik/s1cHnoUrIjtovv/xsUsA8N9RUcDH1KevsK+BJvjhUf/XDqLxU/9WQYIwiSgDlkxEeBhXoWFFGAiGosefU0YOjzJ06vF2By9Dj3bBCXUJJ/X17IxcYM+n59wmeu5mZWa5H3mbC4dDOVbs3DzXR4kXq4RKISu6jCSFZkyLAhh4mRRExkZfyQxXw9usAd7IF/Z+7DAABUJCtn4pD/adD8UwjAgLE16HNwbV/Ql4yz3VN3YpC+pjdjpZjLxuj9TgyinaEfkG8OWO+sKKHGfmcYjkDJ6i00p/hjQDlqpd6lvKE0SF/ZsJ80W+1u8ztVt+DgQr8mmTcAeMks2a6S+999ls5pclAZbwNrrvb1YcCej8wSSY80w9i4v1RkSYQxOdbAehdJbzZREPsYP7CD/Kz1c5vc4UR3O9+4PdxwsNf9MkKPoccUBGfWLFCOpQGank+VU9PkSfhxJJCq7MnF5Ul6XViuxmR9YPo36dsTUVf+w8HvB19MgsrvS9W2p480Kgxv3ADZzaNvHkg5dm7xbel+9M9TGsLV4z0CnM7nsMVTDUybLnlzHaHzfUuy2pdPol4wX6/NIKK40Pshmj+cLujDAiXWugQz/UsVQiRxN/0Jtf7LSNWDmXPJbZMb0oNt22ttiJ0foskl0b0z7OaHg7mGPWHMoxPB/7XO3MFh2XVsT93Io8qw6K+D3mhO7xdi6borLmDSEeWpHkgzOmZQfWQILugk3T8NAlRSEaHo1oyiX+7cj2Y1lJohagmoQ5/Fp82jL1io3SwlvJrCCTXeJf6YwFBkZ7nqD1+s19kJKnTaEZHqavMrzhbP+ijfpyIuQA5QLdu3NrOG1eBGVloz+KObMKpFvP92bXCedIpj07tVSMNTOR/maxLWItiJswXq+f0VFbqjFQ/nMTvxzjSwN6KwSwYDHgHH72M167jJzwSqrEqcnrE7WzkB3GmGDqzthTh8JZMSLcIcz6xFMyOd2SJpIwmCWAzHLfJfZkjLvv0tMwwM/1wgy8vrZSs93u0i5q3rjZfIk5Na8O7I2Wzaxvus4UZNczi16ZPbsU6kbLqloCGXyBONIxUAWiFWOkGUWx6Hy8ZlrqTweCnslRRpMBCw50NyirFih6mdeCZcixUorJiMeu8M5FVpaZYIglDakEoRW785smSlXfbCLtu9472rJpaOLICoPgbBMqzEbT62UDVCOXKzvZDKU87rm4u+aziPAw0/KnlWwerQI08ull2r2+j7Id79WW0mtI84uIdYe9hpTSKq8s+POGo4a/CcYac0VkR8Rnlth+3kDJKDZf2u2szm0UY1fuJ9E8UZ/D49YLuqGVBZk5EFnZyngRvTNWjPRPXnUGXh2onzGVdQro3TmwfQCvbXuOFwnL5952gTbDdGGFsR6DV6pL5pIz2hv+XkT3ds0x8h5tyXTePLziYJbh+exypOzXU5uBQXhNi5cMVMfx+k3+71d5hCqAiPd+9Q9SaatQsD25QPf76/rUf8Yvng43vajSr3U00KBkvbK0wcIo6D1Q2UxN2xb88wX6it1/WWh0CjJ2yo/nBFi60gynd2iB+AzzMlxDcES3i2ev56/NLw/g21rM8sqN/N93a+vVMflrY+RhtA7wqgDpEaznKpKVrFzPqm1xzaFsS8fr8epA/jNtCO+BIliC0xw5ey8v8PzmEJVRNsKOEpVE44UcsIhGgy8DlqoEoUx4mFchamVt2PTeQGx7/2bfv++4SJwiGABmPHMl1v53AGb935WKz5e8ei1iPryZ+xuPIPPI9X1O4X4eCG8N6sMtjxYW5tDdRE17+nKseXsADowcbPpay9+4Hr078xX2YWEO7P34Fmx//+aglGSRlRL+eO2bSQRzSutmvrIvPPmnTfMmCiHEnywirwuci1iHQJbP7tUqnnSxaW0//Plt2lNzzn1XX/13xx9kI4+ax6/soenzFwecafv1eWUFHQCGXt0Tq9+6QfG5kcKhoZVRk2HTaqvraf/vtnMNUxqrueX8rlxnn7X/HYDLAlC++mAGXyg2AhFhDo3hitMUH13aNMOatwegUz2XamDZ8M6NuFKwaZU3yCxr3r6Bc6RXcXFFZEdMffpyXMmUDry4R3vd63927wVY/Oq1hu/AoPO64vN7L8Tqt25A9LsDdY7rglsEqcof7HeaptQOAOz8cJDutVlE9w94S5MCwN6Pb9E9B++9ebJ/TzQJD8OSV69VfM4rq8EySCctu5EBBwA66IzFiLAwzXsv4pIe7bH341u4G1h5Wf3ozvO4v5Ug4eDIwfjk7vPxxwtX4ecn+2Hpa9cJjw0Eo3HGOtGZyoDFHPTBHfrKHauRlc9fL163ePKYvCaafWYyaiWpwwGs/e+NmrFoFx/ecR4evaIH97tP7j4fG965UdcxkCXu01sx/Zkr8JyOYU/m9+evwsKXr+F+N+/FqzFt2OWaz1uoDM+yDCaXn1aPJ7b8NMv6d27UPH87ln2rxoxfhmrv0SxGz8SKHPOcQNnLItpDsOit82EOB35+8jLfv9vUPrsuOqVE5jzbX/gdr6w7UD8GIR7qsWoG9TNTy66Ad82Lev06PHK5uXLqr9fOoXbIYEZjTvRMQsXw27VzfoRBUBPL+SZLNpzbrU3A2e5EJT23Dr8J3VQOt7IjvZ0ZsJ7sfwauOrNONnzxBvv3ZSLUgTF2Zg6875Lu2DL8JnRv3wJVAc4Fe0boy47jHr8UYwSljba9fxP3c7NG0DVvD0C7lk0UY9cX0CY4R30ZCu67pDsuPK0dN9iKJ6PfdkE3LHvjesVn3z18MRablHH8yYrBcnnPDtj+wc3Y9P/s3XecXFX9//H3ndnZXpJN3U3vvffeE0iA0FuASK9SQpcmTYqKWFDsyvcnKopiiyBNmnQQRIMQ6Sg1gUDqZnd+f8zemTN37r1z7+zM7iS8no8HD7JTz9xy7jnnnvP5nOfddzEtHdlT5ywN3o5ra/q/x77gMUbpseJhuEu95ZamzOmoGf10z5q5OmleZt/Erb+Zzf4Te+muM+fq3rPna4XLOJN93J63h/u29Bp3CLq7nelNTb8+aYZ+fvz0YB+k9OPmouXufaU0bVyMcvSs/ml//+7UWXrg3Pl65IKFev6LS/Vto+0URNgx133GNequM+fqrjO9+9ROz1yyxPWa9H8+7bZi4rZft/iEgr395JmuY41S7uf8KfOzjwuYRjTUqtpj7DmXSXe5tFMLZd/xmRPoTS9euYfuO3te1kkiXpNrwy5k+tVJM/T0xYtVVuI14blt19vpA7u4jj+ZaSFrPPa1n+8dOUk3HZ5ZX7Sl/bjAsTihc6X/8X7v2fPS/v7XFcv0w9XB+7sPnDtf96yZpx0hggLY+6MtY/hh7k98ab8xvpOY/fhdLm4/eaYm9nWfLHzYVPexmmuzpMC9Z81c3bNmro7ySGN+/znz9eC5C7L2gZ7waJu46VNfqd6dvdshJ80bGDISfeCXSpLOXDwko0/6lSypSM3tG+Z8iUUjnvcK3fTq5B4I4cJx7ouY/RbCHuoxfudWPa3MUsfmm7mg1G1r2ukTm1vi6tclfZtMH9jFM7pXe/Lrsz3xhUX6xQnT9fD5qb7E4hHe+wq7no4/AoGA7HlFybCtjrrLvuAGjZ5QVxFTn/rKtFUN2QbsSksiGtStOuN1w3rWqHuNeyPcq9FW28aJSfF45oXQawApalm+26UkGtHg7tWhVu+NaKj17ChEI5Y6VZYmB3wLNVHCr2Po9VSQaCr9jQu2WwSsxOPmBKzwVanXe7yOl46ade6+KjazLIUIuOV1PFtW5oTCXAb2cpFI32BpiOOmUTE06HJh3tx1DprEopbnwJCXMb3qXLeFW72ZC3O3t8cZYVmW5wC12zlZFouoojSq/m2MWpRP/btWeTb23U6xugr3QRB7hWQsGtFAYzW2X2dYko6a0V/j+3TSJI/Ov1mWaCRxbvml+OjXpcpzACliWRrqckO3m88Neae+9dn3XbbIK51cru/2edG/S/rnZwvh3uwza7it4d+jESvwYGmvzhXqVFmqoT6rFP0GqarKSnT0rAGaPrCLIhFLYzwiaLb1YpJtoMyMzBTkumqe/2kDhG0spyX/srq1x+wIamEnfTu/x1JikMJ5LObLgK5VnikW7LZ30Bu7teUxLRjWPdDq2JKopUn9OruukqwuK1FteeZ56YzQuqk1yopb6gH7O9xUlkYz6tN8rJoOuwqyoQ2RzbJFQQrTDg1yQzvIoHb28zl1TtoRcvwGt7wmI0tSmUddmC09SXvJJbKAs/3ibLtK0uDuNSorifpO1jXZ9U8+5u74tR8Gdq0qWB0VlNuxVBKx1BxwsCHoOROmjeLFqz3gVickbyzlsW8Zi0Y0Y2BqcVmdTxTEQsvnopfailigySdBZLup3rWq1DN6ZLnHTdug11L7ODDrhGzbqaPGHvz6UIO7Z9ZhA7tVZYxXVMSiBYnO7VYn1FbEVF1Woj4Bv68kasmyrMCLdfz6AUF4je+FiTgbdMHC4O416lOfeb7kEnVqQJcqDetZk7yp5mTXX179mAFdPRaKBq2XfRbITO5fn3FN9vtY86kg13KvsYegnG2wqrKo+nWpUq9OFaotj2VddOwUti4oiVga1rMmVGQbr/qxrVGV2ovb2ERzi3f70e08seUa9c452TqbAV0rPdtyXhMGula3vb3SHob19J/8UR6LamCQhSAe2yFsOtr6qlJ1qS7zvGbn43rrNm5r9iOzTXRys3RUT03IxyJag7NOz9Zkc46rVZaWaFGIiQn9uiTaCGGahqkIWMHf4xR0sZkkDetZrVGNwRZtOPllePEby/fqq3fJco4P7l6jwd1rPN9fURpVX0fGGKfenSvUPeT9m/E+i34ty9LwLOe8KWw/oTyWuIaasl2bzO2z1WcyrlPEstQ7RPvVa6iop8dH+AXI8Lv/5tStna8FZt3pVky7n/Th5h16/cP0DCQt8Xi7RNrLxu+4615b3jpRLFU/7gqRqhHcrtGaBSS9u9V5AynYTRGviRFugxlBB7GcN7/sBrM9kGzm7fWqZNtalQYd5JESq5b8Onm5auzk3mj6yBF6M5fVFkH45gv3ePyGu19K+9ttpbzZAfK66JkPv/zep96F9HC3R6hQrwbRay6pJf0UIvKYza3BE48rbVJGoTlvGrR1cDIorzQN2SZCNDoG73OJmlYI5nZ0bsOgg3/mrrAkPf5qerh1ewC8d+e2D4Sb9X57tUe9riFu54F9HBTH3k3xGjxyrg6RvG/4m8fHL55M5aIP3DHI8jLzab+PjMe9B/IjLpMzwwry9my/2W1Qzl7Jbzk2b7by+g10ds3DTdsuWSJw2ezf7HbNtKsKr4E9t4kvXrrVtu03vZMlHY/l+He2CSt2+iMpfV+19eZIc0s8dMo8u77evD1cFI63Nm5N+9seRHEei/lSU16if/73Y9fn7Hoz7EDzB59mTwNn34RzXoOkRPve7ca2W5jyRPns/zv6GmEmyeehWRI2AklbBvDf3eR/7vz73U9y/mw3QSaX+a0YrSyNukbM81vh7DdY6rWava1Rb/IlaF1tCtMXcIug7MbeJ/lIA93g0Y+UpN71ldqSZdsXut8RiVgZN4WjUStwezZw86h1W3YOMGnJa7N71RVu+8m+lvXI4+KV7rVlab/3xf/lt77w45zIks8+1v899nry32297mdTWxHzrKNiHo9nu8lss68ND738QfKxbG3ZfE08swWNGPKwUUY3zkP6kf986PqaQvTF3NrsYfsd9nYPujCpVxv6z36LLIb2dJ984HYz162/6GRfG5w3viR57gy/befWlkv/vtb/e1SKpSVtG4PNdhPaaYDPhGFziwaZ7JzvYa22Tu4IO1m3WCO/F0o8Hnf9zX6pO/3GDnNtX3WpCnfMvvL+5owxSpvXPve7bpREIm1OpZcvXpOZQ3+ORzs67AIBu89jLxZxKtQpY577b2xwqZsDyPf53FiXfsxlO97buuDQ5rWw3v21iTI995b7eEYQYSa8WZb7OEUQXlHVpOzjCG7f+en27CmHg2ivyZp2RG2ve5NuwtaxnStj2uwI5BDLcl70MAJ0vP3RVp9Xpgub7jzs+VkTYlzW5vYN3ds4ZtuWMrjdC/Ab42mOx/MybtFWYRcftvc2RmExAQu7DLseev/T7a7PezWovDoVbpGQvFbsOzlDotuV/U+PmaoVYxr0m5NTIc89J2BZVtbQuH6+tN9o1wuhW389alm6ej/3UKJDe2Rf+eHl6FkDAr0uzGSxMJw3Zr52iBEGNMAFdvGIHrr1+GkZYc3Nt3qlnzEv4H9b/4Eu3HO4Tpw7MCPk997j3Pfx8y6N+Ql9O2lSv86urw/bEFuSh3CVl+/jnvbQbRAnrrh+tHpKm78zKOcEB7Mze9Ck3loxtsEzfG6Y8858ba9OFWk3XcyQoNkaU86Q4HYqM6fpA+v1lYPGeYbNP9vjfZK0YmxD1vzotvP2GKaDJ/fWNCOdkjPNjj34Z4autn390PHJf//fManQ8JGIpVcdkwV/cnTiuLjIIz1ZGGkRsAKc43Z6t/0nZqZFlKQVYxqy3hDwutHmPgGrfRr2P/BIMzV7cFedv4d/mjTbirENuuHg8WmPje5Vq7rKmGvKU6/7TkE7fdlelVbv+uzbuOL6eKv7wEA00vZBIq9BanMintekAHulm/M4GGtEe3L+Nq+BkWNnD9CaJUN1zOz+Gc/ZK8D2n+B+XIex19hg9aG9XQ+anBma2r5Z45WKNkzK5aNm9NfswbmnaP7X/zZ5pvKVpKjZfrOkP34+MxWiW6h9Kdix9YsTgqUk2bKjOXTbyP7+oBOORzTU6tcnzdCzb25Me9w+BN1+zYoxDaEjH5pWz+inqQPq9fB69xuo9vkVdgxkvTHRfWRDrZaP6ZnxGr+VzNFIIjJD0HQAqYlizs9x7yeURDIjzebj/pnfTbPTFmSGp49EpJ8dl56uxW8BhnnOvviO/4QJ15uqAXhNKgkSISdipS9qMY1qrHU9F8b17qT9J/bSARODpdSzHTvb/dgo1AT/5WN66u6z5ibTXWYTtM9l2nN0g1ZNS6RRypYea6fLxLUbDs5Mr2D3ld2qw/0m9NKfTp+trtVlGtOrLpl+aEr/9L7N1AH12mdco85dOlzfPCyzjSlJ5+8xTO+5TArca2xDou82pkE/Wj1FV6wcpdUz+uV9soiUuF7/8oTpaRFkYpGILtt7pOv17oI9h6dNCgs62Gu/6pcnztBSn7TDkjzT94aJMmvvO78UWya/9JSlJRHtN6GXjpk1IK1t9DeXSTHZfCdkWizbYdP6av+JvZLHUpibbL86aYbv82a97ja30+7jZOOVimXFmMQ5euzsARrVWOua5vbcZcM8oxgFTcPjdihmS4ly2sLBeUsx0lBXrq8fNsEzgsHpRnrop17f6Poam7Pd9tybH2W8JmKFb2eYZfBiWVbGPs/W93OmB7XrBbP9P8QnAuWle43MWi4vbimpbD87Nnt7tUtVqVaMbciaakdK9QWefC1z4pRlJVL4OPlFYvJqR9rs/pTX5vea5B30uDjUIz2T069OmqEVYxt03YFjA71+RZboU787dVbO6djNtJtrjDGjMH3j7xw+PuOxSMRKS/Warf9pft8ZLudV1xwmlAfVP8BkQUme6bNy5beNnW0gyT8iolt7LIg9RvfUFStHBY6G++I7n+jMxZlji3eeOcfz+uA3ocOZ5tbmNaYclHN887K9s9eJfhFvzXFM27nLMlOZnrV4qMZ5XLOu3tc/TZuT3ef36kt5tRe9vj+ooM2hLywf7hmxyavO/NVJMzLSCWZz2oLBOtMxnh2xLN12YmZbzP7efEVU9ZpM5yYfczXmDe3mWx+Z9xkilqX5Q3NLu96nvlKnzB/kmo4322KnrxyYeW33S50axkGTe3tG9QqynuFWx3iG12/5fuu4+Iku6Y/z4cBJvbX/xN4Zk6jc0mTPN86H4+cO0H4TeunmIyZ5frZXGzvM4Rd27Ntr8dL1Pm0Yt684cJJ3G+lkj3S4R07P/bprLoJxnp/nLB2qqjLviYgtLXHPtqJXGuu28LofE41Yrm3AGqOPZ+7PVdPy205Bx2ICFnYZO1v7IbMGJW7MOStdtxnIfpGX3G4wBV1pbg60TO2fatwP6latm1ZN1EijoeF388QtFYTTEo+B2DAhO6MRy3OVq1/5vrTfGL127YqMvNu2Qud5v2zvkb4hb80b2d9ZNVH7TQh3s2X24C4a3L0m42aruU2cDZqDp/RufU3qMcuydOK8Qbpw+Qhdtnd6B3NkQ23GwJub165dod+eMsuz8xU2fVtb8rLb5VntUW7XiX9x/5QBftwmAWZbaemcLGmek33qK3XT4RN16NS+roMbfqtEnHoZ6VGcjbPZg1OD5Nm2tzMVkVfagWv2H6sDJ/XWlz0GOj/vMzh80+ETNSFLmjfbKfMH6/oDx8m8Rexc2W3/6ZygsXxMT43t3Sn5t1+482kD6pM3xZ374rVrVyT/82NOXkmLthXgEH/q4iV67doVuv4A9w7FTasmas6QcAMHNre6M98rxLzyfg/sVuXaYfvGYRN0wCT3QdFbj091Ykf3qtVNh09UY6cKnWUMvJ29NHGMuw3AeKXcCboqNsxAht9Ny3hcGu4RQtiyrDavkvM6l4OUf0hrXeY8Nn5v3DB1HiNex8z5ewzX6YuGuNZX9oSEtqQ4++flyzy/38w9b7Pr2OqyEs8b+W4DEVK4VWYVsajrpE/7u01ug6XRiKVDPW4q33bijLQRn4hlqUt1WUYd5JyUbTOPLa9xo+mOm6crxze6DhjZN1fCnBf2ceUVtclp7emzNbl/5gC0vWrMeZx2qozpplUTNdC4ls8dmr1+NNs4l68cLcuysqabCbsKrcyYhPOVg8bp26sm6ccBb3xLqeP3wj1HBLqhbB8mmeer++sjEUstBZio47eZZrlMVIxaVsbjR03v7/kZ5qQVM2rMEdODTcwI4lRjoljYScpeKdSPnT1AlmVlpJCUpMqyEt1w8PiMyXZeE0GvWDlKr127wnPgLpeoN16TUU3fXjVJQ3rU6EefC3YcV/sMLHqJRhILcF67dkXWCZ9NjuO3riKW1p+1pVIQZu7Lrx0yXqMa6/TUxYv1h8/P1rCeNXrt2hX61Ukz0163YFh3feOwCaqrjHlez+urSjO+Y+7QbvrW4RM1c1BX3bRqovp3rdJRM/rr8pWjfX9briJWIi3yd45I9ROjEUtdq8v0LZeJuifNG5QWFSFo1BH7tBjao0bf85hgL0lfPnCsRvdyT98b5tyy69+gqZ3cJl7b9hrboK8dMr41vYvZfw5cnKQ9xzToC8uDLSIwlZVEdcPB45OLnsJEDpzico304hYZyCt1a42jvbJ4hPuNtZtWTdTV+43RJXuNTLRhHRtueM+aZB16+LT0enlEQ63nxCwn1wlYWY7PmvKYvn6oe3ssG+fh+MPVUzSlf70WDHPfDpM9FqBNH5i5f0Y11umZS5b4fr9fO8TrpuiIgOlJ5g/rriv3TdU52fp+btdq5/uOn+s9OTxMitIexmr5Ry5YmOyjuy1E8rqpbbbPxvXppJsOn6iGuuwTXO3Jym7HlSXpzMVDM9rbYdMsm5Ipojy2v9fYWdD2Z1lJVN/wmCBsmtK/XjcdPlE9A47NRiOW5/hHeSyicX065RQBq6asJG2C4+hewcajneYMzpwEKqWPSYzyuA7ZzGPbbXHp6hn9A5dHksZ5pa134XXj16kti00kpe2/bPsrbApOt/SZQS7x0Yilo2b0163HB1sMJLlHSh3YtdqzXsvW1nA7v7zGlIN+7i9PnKEnL1qc/DtIaje3z7ts75F67doVWjk+sz48dcHgtOv5yIZaneEyadSWa2SSsJMr3SZlhxGkvhvTq04nzB2kq/dzb0t7jfVN6V+vb6/ynlzi5hyXCeVxxTV1QL32c0zsbOs56hRmy+cjRXckYunmI923z+R+ndMimEasxOu9+kSS/+SV8/YYrlPmZy7MynaN9QpWkQ+15THPRTbZFjd1rynTTEfbqZdH2nr7HpSz3Z3NoVOyT7KORS195aBxikUjadfR2YO7uvY1pg1Ina+VpSX62iHjtcfozEWDtv09FosFbdtL4SLE1ZaXuB4T/75qDx3s0derKS9xbUN4LZCTpONmD3C9j33lvqNDLcw1mYtrnMU5beEQ3+3QEvduBzkXhnz/qMmeCx+CpDZfMKybZgxyr7dLIhHXPoH5mHnt8tvG2PWwN7HLaGodY7cHC53Vp9uNP7/OpttTQW+exxwRFHJheZTByS/1hXsquMzGTK6TcbJ1EAodxXHLjmbffZhLCsIg79+4JZXqxtl5a9qZ2CbbmlI3ffy+68NPt2v7zravIgg7AauQgh53Qb29MTMka7aPcx7T5t/mM267OE9RjNNk66Q5n/U6ru3jLddTK+zNzR07Uxvauc29bjrG4+m/1/xK53EQ9OaOH3Nbbd9pnnfBf6tfPZLPlCLtdZ62xKUPXVJytcTjnr81krbPUv82O4/2xEa3utFrOwWNDhJuf3k/F4/HPW+uRS0rp5t+QQTZt/Z29Q/Pb/n+bSt0+ga/z3c7hvx2cz6z8kQty7PecBbZbduVRCKev835eNgtbB4CgVO0yv2aaW/PMAN89jc2twRbGW0PunrtO+d+dqaPlrKHV5fc94NXGrhkBKysn5qu3JiImEubyuwjOLe520CUvc2C3rQqiVh5TxmTjVuaLbeBdr9j1XzGPD/yMfCc/A7jS8KmwXGLViylrltmGyb5XOvvcKYP9vpue+KcVx2fSxuhrel+3BQ4+1lGxIVoxHI9t5M3vdvwG9PajR6viVpWRt35P58UDoXok9r9BfPcyJZ23ixG0PZI0AkBftvcawJ0Pvgde+YxYu7XXOuQMNGrvBQqGq1be9fr5pYzUnOup69Z/zTtTD9HLRXX+IApI31v6/bwKm7YdLth+91p741YrhPZw2xL8xjLdrx5Pf3eJiOqfwHqd3Mb5Xo+Bp3wL0lNrWls3b7Lq45ry7lqf+amrV7thLafG/lsCwVhN+/bMq5mM29G5qNPmdZezPJxXuMMyedDlidM+zof15CwWuJx3+tk2Ek3ZS43XcPsw1wjaNlKSyKex35bF/nmQ5AyuLWXstUJZrTlbNeknNvAIU/ttlZjQUqZjIzt8Zv8jr181C1eC5jy3ZcKU6/mKwqU13nk7GMF+a1h20lS9nOl0OONXnX3zixjWW7bI9s2CvtbnNk/spUjPQCDe/aksOerVxsoTNsrzHkSibiPs/p+Rlx67cPNGQ/7TXjyGkOQck+xm7b9XWo2v/2fuEfi9bnpT/jtwyDX8ohleY4dRSOZYxt+5SnEeBI6TnH22AEX9hh7cgKWoy5yuxFhV8JuYd9PdFlp5hxE84pcZDZ+cm2zWJayphmQpIde9g+/7TTfZWWh3+DBcXO8V9xla6MW+npwx7NvJ1P62fvSDMNrXpDsotqzxYOkMPK6+JtpWJwXPTu6xQMvve/5ueZ+/cnfXtPPn3gza1myOcgn/UN7c2vwtGWcaLNPB8cZdtkO4Z2ZFih4A8+Zd97puNkDkv/ec3QqioFbJBFbtnrAWT6vxpQ9wcjvhp9bVC+7rgo7KHLgpNRxZXdK7VXI5qoFM9JMSzyedmPB/C3OvkLQsKl+dYm5Gu3S3/0z+e/n3/oo0Gdn+/wjPFYTZVt15XZsfdCaIjdIqqBgK1vcj4OWeNw1NUNteSzQBCyz7OaxaV/b3H6beT00O1S/efbtQCsRvbazverk0Cmplf1uv2FQa7jkfcY3et4kiVhWwQZe1/ik/7TZK7PCDFQ5IybZ/E7lI30i2gRllmOWx2pn0++f+2/y387V+LmmynATiXjf0HRGpnLbzp9u3+nZ5imJWGkl3TdkCscNm91TX9qf7eXspZnHjj3YGKbOvvOF/0mSVjiiEmZLPetMu/vYK4nUUF71ormN3vvEPe23yXmj2Y/9nc50zVm/wzgkclkRa+4f53Gzxm3/xN0jlB06pa9rlINoxMpY6bcgYGo5SaoqDRfdaOHw7q7Hv9tjfuUwt+UgI4WjvSLTXKXolTrKyU79Z0f6XDC8WzJa8JdaU0PbEYrN9pabF9/5xLV2sfenW5RcM1qfyate/v5Dr0pKv/nevaZMESsRfSbgfMc0YSKWSInoc9kEja5h8zpPzGPN3P7Owd7PLxzsej212wdtudSai1i8UgdalpWxz7wm5EnBo15I8kyJ4ZSaVJ3bjw2bgjBreXyK4TYOYtpnXPbIf25jI5L/TSvzsDH3zwebMxcJ+Dmmtd3svJaevjBzRX82YfeXWzRNN27ntdcNXWcZcu0nm+M0v3r6rbTnLCvE4kGXbRI0jfW8AJEwna5zRB7OFq3Ia595bbdsu3h8n06eUQ0Pn9rXdTJdmJubZjsz2019r33kvPnnllrZZvezlo3yHzs0x2jMr/XqGzqjqknp9WPQCf+SkmnPTnCpR7y2rF8bOEh0Ckm67s4XXR//ZJt3m70Q/K775QEXpNltT3syW1uYx7PbMXhQ6xiQGXWmvizu2cc2rwPRLMf8uv9tSv57RM/M623YG+VmP3NqlqiFQT/abIe0lVc9Zbebg0SAMtnt6GE9apL75/SF2VOk2vIR1carjvXq79rtcbc+rx97fMetL2YyI3W5Re1y6lqdeT6GmVCZ7RjN9R6QX9pVN0tHel8Xgvjfx6lU3uP7dHLtN9nHr9dv8mvLeh0PfeqDH4P25dgcl5akE3zuU0nhF/q63SfzcrujvZUrr6hN0YjlGiXHL4JyWyZjrHakXLXbG267b9agrnmcmOVeOdoZNk7x6LudsiDz8WxlCjqJvrK1H3znC+9kfa3X+FHEslzryDCThU+eP8j1Ny0d2SPwAmcpMTYeNK1vxLI8o5TanOdVXNIHLgu//fqdbn34VBkyHwsS6c8s9odGH9O+R+E3FtvSEvesx5zbw7IszfNIrXrpXtnT6R40ubfn/otGLP3p+f9lPG62ccztH3Y8CcWNCVjYZexsSVSMZckIWM6Zqm6zpBP//9Pps/VdI/zn/hN7uYZYdA4CeIUeNG8O5to4sSQN7h4s1HkYg7tX66HzFqTdeLDLeLojfdntJ8/UAS4hyW3ZLvuFnpH7ybad2mtso+5ZM08vXrmH7jt7nm47MRVS2W3bP/aFRXrovAXq37VKz39xqX7sk9rDLL8z5G3qNel/982SGk9SWrhyr9nrfuFgn7t0qX56zNTk3w115Z5hLDuCXzSPfLvtxOm67+x5+uUJ0/Xz46frZ8cl9n/GTHXPBlXmY9VGatK/nDVXvzxhuh7/wqLE8XL0FF20YkTy+dG96vSn02frnjXzMm4SWR4TWtxYlqUHzp2fKpfH7rc/xi2qg+2h8xboYqOM84d1S9ZVYVeSmseVvQ9/esxU/fWc+RpqTKpxdo68Vuw4B6CcIXdfuHyZrt1/jJ51pI5wmxT3+9Nm6bELF6mzx43JbY4oKJfvM0qPf2GRvuqSvtFv/4zr00m3nzxT3ztyku5ZM0/Pf3Gpvn/UZP3p9FTaOHN7Jz/T5bPsyWJeKcxMT1y0SA+eu8D3NV4Dem4T9OoqYr4DEeYmMPtLbqu43epWM1y7M695kBQNi0e6D3r8svUcNycJuF1b/nT6HP31nPma1K/es8MXiQQ/B3536iw98YVF+u0pqdRIl+/j3qm6bO+RnhOyzRSq9nXX73gzn/v6oeM9Qxl7fca9Z88LdHxlY9aZP/5c6npTX1Xqeu3fYUReKI9F9ddz5if/zvXGolsKmGgkMwVPn/oKPXDufI0zUp9GLPd9PaBrlecAovO49koL48U878zf/PD5C/Tspe7pcCKWpePnDNTdZ811/awwVba9GtM5EearB4/TPWvmeqbkcab/sCNIebXhzJsswwKk5HG7sevF/k639A9+zMXcnSqDDTKZoh4DaJL7TWh70zhfu2B4d913zjzXz3emaxvqkZpKktaePift7+e/uCyZFjSI7x45yXWg0Xk87TGqZ9q13Gls7zo9duEi/f3SJWmTgMb16aT7zp6n7x2ZSofmNYhsumfNXF1/YOLG+4PnLdBD5y3Q4O41+vHRU3TPmnk6cFJvPXTeAj124SJJ0heWj8g4NzK41C92H7BHbXlGe9quP5wpWr3OtY9ao96a+7qhrlx/PWeBfnXSjIzr7dQB9Xru0qX65QmZKV7+79ipeuKiRcnBXS/PXbo07e+zA0zwLc/ymWtPn6OfHTdNz126VA+cO19/PmOO6+vMdBgX7Jm6lps/8541c/W5mf19r6dt6QN2rUmdw1VlJXrg3Pn65QnTM26sZgyK+nzm4VP76p41c3WYRwpak9eN/amOyazRZJvI/XO6uwyMmkUOuo382gxfMdq0fp+X7cZDkAlYx84eoPvOnqd/X7WHSxnd32NGLthqLKjJlpL11yfNSPvbbmc769yzWs8Nt8Unf/z87IzHpPBRAsw0qX7KY5nnoN93PX1xKmVSrhPVD5qUnwVYbhNdnOldJLnexDnGmKj59UPH+37P6QsH689nzNEBjnLbbU6vOsVrO3pGyHP5nPVX76nrDxyrh89foO615a4To245ZqoWj+zhOj5jXksOnNQ7YxGY1/ebv6mLy3Fqfu7vTp3l+ZlX7TvG87nfnTZLfz1nftaUmWn1j9lX96gerlo5Oq2/e9neI9MmLoS5CWhfcxe7LDD1qj/8rjHORVzfXpWZ9tXP2BBp67yEucyVx6J68qLFGRPpzt9jeOBoXHZ7o7HOf8L1xStG6OYjJuo/X1ru+ZpYlvHqaw8Yq3vWzNUNB6euMfMaWhSJWHr64sW69fhpeuSChfq7S/8m20SWZqNB0dnlnAg7fG7OA/x/x03TvWdntsNtzqJ5pVLvWZe/G5st8Xja99555hx947AJyTGGvcY2ek5wfv6LSzMem9Svs/56znz97rRZ+spBiT7eamPhirMe/snRU9JS9Dnbv2E8d1miPN6LmdyP5V+dmLimnzxvUFq7fqHLIpA9RqXOkav3G6N71szVyfPcJ2LY4ySlJRE9edFiPXXxYt/xrj+clhi3rXBpM4c5n7Md427tMa9Umf2M8Q63eunxLyxK/ts8tpeP6el7HXLj7EvubInrxSv30PeOnKTfnjJTPz9+um4/eabrog5nW9ROH+d3vrq1Lcb36aRzlgab2C6l6j3nuIy5AH3dFXvoJ0dP0YtXptqnX3EZ8/UzuHu1JrpMQHPzic+CDyn7Yn+73qwsLXHt50Yjlvp0zhwHm2iM2Tj3kdv1uLY8/Vz/1xXL9MW9R+qeNfPS+pqX7T0qLSjFN1rTS7vtv/5dq3TR8syx71x4jRHOb53gcu6yYbr7rLka4QiY4ZZu0e04PG+P1HHmd1/2ugPG6IXLl+nh8xfoida6cvvOzEm4zgUHae0oRzSsbi6TPIOOid5x6iydt2yYa5m/e+SkUBGwxvWu06MXLtKPj56ScTw4RSyv++apx56+eLEePj91j8JrEY5f3zUa8ZuAlfn4rcdP00Pn+d8XMe//j2hIjW3Z98H8FoS2xL3rdGfzLGJZaYsSTUtG9tBD5y1wnchqmzW4q5p8olBu2eFft0Rb22BPXLTItd+JXVfuLTOgnW1rHdPzioDl1rG1LwqWZWmZ0dAf3rMm64SJ8ljEe5WeUbmHzenuLFtbeH13n/pKDe5erb+/+VHrdyUed16QnTflMmRpQRR6ApZ90bYnNQx0XAjN3WMXtbqsJHkTvLY85rvy3xlG1PU1OUywy5ZrO/G5kjwCP9VVxjIaf85UKsnPsQo3+cmL2+SPfEZAMZWVRDWwW3XGvnfuL6/95HaOmMet88bkApeVMaMasw/gBQlp3K9LKhpBtihFfo22qrKStEkbw3rUJH9/W1ar2Pu1qqwkY+AmbbKZ0ldOmD8lW6qe6rISHRrg5pgkjW2dbOG1rZz71l5dmMuqP2dd6IxkEnRST5g6sbK0RH275NYMc1uQnG2FhNdK6PQIWK0pCEOGeM4WecHvM+1zPK2sLtVdeSyq/q0RPbwG/yKWpXjAXVBfVaruteXqbgxueEXiGN6z1vOaPbBrtV5699Pk94fRo7ZcG0JGifDqEIZl1pnmQGZdRSxQfdbfiK6Sa+2fbQDA1rW6TP26VOnxVzakvddtBbZleV8PohGrTdEazfKag2C9XQbQUgVK1J9DHNca++1h2pBeh1csGlHvzpWe1w23lV2Jx90/z9xEQc7tMDe7c71CtTVVbNqkYccP97sxZm47O2pTZWlmvR02TY05cVNKHFtuN0y8jo9YNOKe1sVRjt5ZJk1FI5Z6tt7oc36Xs14OwlxYYrYlqspKkm35Pkb7JRLJPDecml32vfkze3eu0CsfpELj28esV7vZya3O2b6zJbngwvn9/eorVVcZ07SBXbR4RHfds+695HO15TF1ryl3vV5MH1ivx1rrsDrHxPJ89AnNCYDOzze5XfOl9DrN3o9+53Y++4D9ulSpX5cqjetTpydeS2yjeNx7taoby7I0uHuNJvbtpJ8/8UbG83UVMX28NRERxesa4Zw8kZqI6ZFmzvVz0gfog/B7ndnezyUKQRgtcffzPq5EHbfT5Vw0zw9zYUS2mweZ/YzE/52/w/7Nbn1rr4mOhUpB6NY28p6AHFcX4+aM2+YIUkz/Cf3Z3x+W26XWvP7WlqfqFsvKfP2QHjUZN9Ls10re9YbndvSKgGVlnmcl0YjrAkuTfR1yj4CVKoO9QOC51rG0zNe696PcbpbEjGtRZ48J5HHFfScV2H2gbP18c3+Y7RLPlf8RS8ONCEXOPnSYCVh+vD7G7/c4rz9Bot6YOuLGVbeaMvXvkh59MmhkCin4mJ5lWdpjtP9inGxppaMRy3MxcJfqMs2sdkY7Nt/rX75cJq/4Mb+7tCTi2xd2fnbPWvfxkVwiW/bvUqnXPtyS8bizjzK8Z23aeSWlR3Q3mXVq2ncZ/ezB3WvSIkw665EwkX38dKspS55nXvvI65y1609nn9f58j71FRrTu053/jMRfSYW9T4OpfRta491fbLN+wb2GJ+Jl2GOuqwRsFyeH9u7k5576+PM1/rUxRWxqHoYY1Hm8eA1LuUno22lRF24tPVeWHksqkn9Oqt7bZne2bQt7bXOn2RHkQzbRxnUrTrU+eVV75nfW1EazTjOg/bzTP27VumZNz4K/T6n7h71is1cLNbDZUJtNGLJMorvtol7da5I20duYyHOMYzK0hJ9ziUTQyRiaVD3av2rNTphtjHfto67pD7H/XH74+36wnlNCXrMpS0k9umzDupWnXaf0IvzvDf/di6wKSvJbGMEvSdmL6Z0q2csy8q6iMX5+ljU0oJh3VVTHtMmn/oxEQHL7TNS/64pj6nGqIdyORK8JnpJ7vWwZVlp40Pdasr0viMKf7b7tb4RsOJxnwAI6e/L1jfrU1+pKpexwNT7Lc+2czwed60bnadbF5fJfdj1EQELu4z/tvZ17BsEznrxvx9tzXiPV4Oivip7heY34GBWmtnaBrUV7pVzYYYGU8yw6/Z2CJJKxlTX2nD0GsAo0PhmUrYbR+bFMpcJQGZnyG0GuxRsPzlXppgdsr71lcmbdibn4Ew2XpO6OmJwye0mr1uY57bolyXSmHMltDm4ld44zv7eXJkr+sJO1PMaRLQ7ktn268vvfZr8t1c6ubCChjiNK+7ZwA0ycSM046vM7fbGhswBMCloar9wutW4rRLLfJ0ZIaQhy+rVILy2ZnnMZeJJ6/+9Op/mcWLWfWbH3d6v2cZM0kMwB6uHwhyb2QZtvCaF+OWbD1Ie7/s/3se1GRXRbeW7n8rSaEE7WNlWULtpifvfBHKTewSszOug24CvfWNuu3Fzt099pWsbrzQa8dymQUOTezGPGb+by14DpgONwXSvFHdBxdIWAqT/38n5HfafXoPrFcb5HOQmSQ+XVbRe15MnX9uY9fNs5rXa7fNqQtT1Zj3nPF7d6oLy1kE184aH34C/WxvA77QIOrDY0+ccdhv4c5YjW/1iDiBlSxdhfnKh2/8mt/5YWpvYURb7eHRuY3OilKmPSxRCMxW58/hOH4xN/46ymB2lOVOvTt7t2iBVqN9gXxhebaQeLjcT/K7bzutlmOtNpwr3a2VPIxpqSTSScZwF2U5eEfLM9mN9wCh6dv23xWMlfLa+StCbzM5JD3afpmt1qXwO9TTZ6hS3vqiTZxso7n0zxrzebTdSOtlphbw42412+b2OuSE9Mm9ee/3mXFNGujH7t26RXDwjN8X9/5baPokxl0WA2SZVux3TZp1h9r0GhBjLSKXzzH5T37wWNXmkwDO3nV90RufxZPezd7qMZaS1qyz/rWt+/2sfbnZ9jR0hz2x7eh2adRWxQBPesx0zH3yaGuszX/vXF92vf4nXeX++WTc5+zhhJjp6vdJv7MH5+WH7Gl6T3QrtH2+nT8DI5TyvzTLZzC06+ABHnZs2STHgvqryuUyY2z/bts32fWEndIQZX3KOsZltOLM+r68qTbYlg6Y27+dR5wW5V97W49HcYkEmnuTSTjev2177sH/INPDOPnHf+krfdrSTW6Rwv4WqfkJFwMphA8YVd41AE+aTzK99a+PWjMfC2tbkvuLbdRKE49FkMIOQ39m9tsx18YyXJ179MOQ3JLzz8bbsL3IIE7XbT5i08G7b76GXP0h73G7qmO0tZ3vMbbw1aN0luU9G9TrOw0549lLhMUacOVEw+1HmNqaRNqbts287uVwz/TIoJV9jfP5d/3w3+W/LslzHS2s8JtR68brHFyYClsleVF5f5V6OiGW5ti/86uGw9y2lxP781383pT2WzGQVoCJ2SyFtvs/t/POrs+urSrMGQPD6201jJ+/zP2JZnguE4nIf22vneBroIEzAwi6jc2ufJRmyz1ExvuDo7EqZF9AbDh6ngyb11r7js4fhb2r2rgbNAZJsbcts4Und0mUFZbYxbjo8PSy32dm0bzy98r77AJGXFa05yp0dJ7sh1ZYV29cfOFaHTumjm4/wDid+YYjQp34T5sz0kyaz+GaI2/TXZP+N5y7LDLG7oDWs6u0nz9R5Ls9fsXJ01s8NUg5nw2/F2AbdfvJM19fazMbJzBxSGzr7vAO6VukYl5UWQc0Y2EU/+lwizc2swV2019iGZAobL3s6Vv3Zx6qT23ZbPqZBh07poy9n+Y5sVoxp0CGTE5/jNgHtKEeudUn60n5jtGpaX80d4h4O3R7oHNqjWsfNHqAzjLShZkPzsVdSHVWz3e42IeFgj2Pb9pWDxmnvcY06KMuqYZsly3NQJq5E6hrJ/fe31R0+qRtso3vV6phZA3TZ3ukpZC9eMULHzxmgq/dLnHv/79hpgb936SiXdApGR/Gnx0zVPuMadf6yVDqf/zt2asZ7bN8x0ij8/Pjp2ntco77nqKf89tvAbtUZDXu7s+C1kjLt5rlxzLitHHJ2YOYP8w7HHItG1NipQifOG6hTF6SHj9/TSEHpPBf/7+jJ8uIWNt7kFbHGsjLL7pWixmvFkSuXy8s1+4/R4dP66oI9hidvbO7nk9LXdNneI3X0rP4a06tOK8Y0ZA0X7cdMt/TTY6ZqxdgGXXfAGK0Y06BbQhzjtnhc6u4y4dBv8C/XCIjX7D9Ge41t0G0nztBpCwbr3GXDXAcz7ONy45ZUZ/yyvd3TRXarKdNKjzbeoG5VbZokGvRmk5lC2Kwnvmqk+bBXtrl9op2Gy+8aZYbdT0W0yj75MvF3+v+dzDZftkGInrXlOnBSbx04qbduPGR88nGvst/21JvJf2ebZP8LI8XbMbMGaL8JvdLajFmjuBrMfbfdkb7W7aanfYPhfy6LO/IhYrkPuv3k6FTa7M6VMZ2xeEjGa2yuKTxb99d3Vk3U/hN66WgjZYkbc/LR8XMHas/RPQOllC10BNxsGnyO0WONdFlBHD/X//XO9GTpk5nTX2tHPHDbPhetGKG9xzW6tz2Meun0hanv+/5RqeukWzrQTpUxrRjboN+flr1tZBvTq861jXT6oiFaOb5RP1yd+k6/GxXOCYA3Hup/3Hy+9XeNaKjNSE9ts9uN/bpUug6WBqm+Fw3vrsOm9tW1+4/RhUaKRfO6sHSU+/c7P9/+9v953OS54eDxmju0m/rUV+jHreeuWeSgp8lZjhSUtx4/XSvGNOjnx09Pi74V5Ly79Tj36/7UAfVaPaOfrljpfu2U3K/9UuIab24aux0tpZ9vZl/8ttZ0RIdNde9buNVfkveEphNc0jd5bY2gURnNFCtmapZr9k+lgrtkr9Rr9hrbqEMcfaWg0QPc2h5eu/Pa1u832xJ+zNRW3ztykvYZ16gzPa4dD523UJK0nyP17h2nztKKsQ2u9f+kvp11+LS+umSvkXr2jdQk6i/t750yT5JOc0nt6JmSxKhqrtkv1X4w01p6fc4X9vQeL/r9abO0YkyD9p/YS6cvGpK8gec2bGROlLIs//PXbFM86xFN47etfVazjeF1Di8Z2TPQjWGz/3Xr8enn+mFT+6TdWDM/7r+OOswrsp79r1uPm6a9xzXqkr1S14mfO9LuPnnR4uQNNb/26pmLh3imRDt29gDdfvIM1+ecfT2vSaC/OcV93GvW4K46eHJvXbR8hKb0T7QXzTaWm1uOmar9J/ZKngdueyvbefnQyx+k/e13HP1w9eSMqPdSYnzuiOl9M9oYdRUx7Tu+UcuNca/ftZ67zrFg873ZJpN89aBxOnBiL03s6neRTT03b1g3HTG9b9q1wJQtG0Cpo442U3N+M0AbVJJnKrG5Q7pp1bS+Wji8u/Yd36iT5g3Slw8cq/0n9NJdZyZSM/fqVKGZg7rot6fO1IoxDfrR5/yPC9t1B4zVirENGSl0g/Qt3VLxhVFVVqKzFg/V6YuGBFpM+vvTZmvFmAbf49VeRHz7yTO1YmyDbjh4fNrzZhvKdtW+o7XPuEb9OMs2+/HRU7TPuEataU1FZ3/Hlw8cl1Z/mtfQU+anjyOtGNuQ1ne25RqZL8ykZa9zxi/tXTwu/eqkzPooTJfJrI/tCIw/WD1ZK8b6R7wLzaVQzofsfRO0/AdO6q2V4xt1yvxB2polzZbdRpS8F8hk43b/L5ug7cNsQz7OvqH5+iDjRc0tcdco22N61enoWf112d4jdfGK1PX3+DkDNMSIovfbUxLnU7a00KbPt/bz7PsuUnqbYtqA+uQY9b4TeumgSb31tUPSj/fvhEwF3LdLpU6aN0ifm9lfK8Y2aOX4Rq2e0S95TU6Ww9hkZvo704EuKbmzLUQ/f4/hOnHeQNcoe+6LaByTcTzT6GXeh5O8072bqYlvMepkZ8RYu48WdGzVOc5z/p7DtXxMT32jdb999cD0dnrEStx7C+L3pyXaFjcfkX6PYkr/zsn0ut09JtFXlEbTFrNJ0m9PSVznnfWJW19hW5P/JNtTFgzWvuMb08ZJ3Cbgff3Q8dp/Qi8dMb2fdyRYy/l34gFnm8p04Z6JMR23+z2WJU3s21mrprlnfbGztpgKEcMAxYcUhNhl2HWS18oTt8gGzgvm/hN7a/+J/pMRbH7RS7xSNrjxvKHb+vABk3pr1uCumn7NvYHK5fXZzka5WyUe5sbj3uMaPTsei0a0PczxwZP7ZA0THyaaiN+EuWWjeurq/Ubrot++kPa4+ftKo15RvoLMgM68ifjjo1MX474ux6zZWDln6dCM54MyO62LR/TwbSjYetSUJQfivnrwOM245r5Q3+k85m88ZHzWCRMLhnXT/f9+3/W5sX3qtHB4D7127YrAZXAem14TMtyO4WjE0rUHtG3ylf051/kMOLrlhj7coyHmZFmWLt5rpLbuaNbX731ZkvdNxWwrHK8/cJxue+otz++yb54H5TbJxRaPJ8Kkh9mX9mcG0SVAGH/LsnSp48aiJB03J3WDYtW0cJPDskXOmTe0W8YAqlc4dee2mTGoi2a0ToTsWVueDDXd2KkiI/SuKeNGobEN5w/rpr86zrf0dB3unVW74+K8oeS8UWM+bw+yXth6A+T7D72qHTsTnSavFAGHDmzW9IH1rs/Zykoi2r7TvfPlNbARsayMso/u5R6K3q1uDzOl4LCpfXVY67//8cVlGc/PG9pND7zkXucdbUxYjVrS819cpv4X/CnEt6dcs/+YtJuF9nF4yJRgdY2XkQ21yTDlWeXYaexeW65vtV6zpg7wPh7s+t0c6OhSVaq3NrpHwfMa+G9rmq+gk07MNBPmWyb0TQ02JVMQunzmPq0TBQ6a3EcX/fYF7Wid9WwGgjDbHdkmVDkjPcR9vtssWxCPfWGRpMwBaa8oYOap+90jJ2nFNx72/GwzRXBFaVRfMyZ4SeH2p1nPOcO6+92YiuWQ3kBKrLTza3JblqX9JvTSL40JaVJ6GpFvHT7Rc0Kt/Rle9hzToD09JqZL0pDu1bp7zby0x7rXlOs7R7gvWHBKnAsdN1pknuLOm4xhI8N2yRIVOTNiVOp3m3WC2a73ir7qdWPR3JIrxjbqG/etl5S4Se7Xnjpsal+dv0fmDTI/Xm2kmvKYvu6YRBVmol22CZVnLx2ms5dmLkgxxaKR0O1Hp0jESrsmXvPnFyUl9mO2z3YOeCej9njcsGnsVJE2kJ5RlgDb74erJ2esNB/ao0Y3td7k+IeRzibIHOCZg7sqGslMf2BZli73WfzjddNAkhRPb3OumtbPtR1trti2J7ok0rin13NlJRHP+succDZnSGoRW7bz1BR0srTZp9h/Yi/960+JNs8Yo91ofq/d7zPrbb8FKX5/S951+KFT+wZK126/fdW0fvrug69IkuYO7aalo3rqx4+86vqennXlrufB+D6dPMcQIhFLX9ovcU6d8Ytnk4831vmf8yfPH6Rv3b8+raxBIvGYq8P71ldm3MSR0s8Fv0iPoxrrkueSyW0yT1qkKsvyPX/T+07ur7PbQWa0Gq/2RtBoK+bLZg5KnR/7jm/UNfuP1d3/ujvQZ3pFurVPv5mDu2qmYxHpUEe64M5Vpfr3VXv6lvfUBYN05mLvca5EOqz65DE54pI7tbU1YktGBCyPz3CLwiolfv/1Bybapse7TOB0mtK/s+YO7aa5LhOibJ+b2d91wpTze8361+8ysGhEDy0a0SOjD2hZlq7ad4yu2ndM8rkbDxmvfSdkLvQZ53HupvX1s1yLDpjUW/uM7aG1a1/3fZ35eVftm6gTnOOrifL7vz+uxFi7PbnZjHC497hG3XT/+rTz3q09Pb5PZ9dUYpGIpav3S7/pfNDkPsmFhmb951U/eOlZV+66rYP0m8JGy3djL8p4+d3MOtFpdK/gv21Sv86ui1pOnDco2Yay1VXEAi3UWDCsuxYYfRrzO9LSwhsHy8Lh3fXtv/5HUiJamdc1Keeb1Vl2gTle7VX/j/NJcRhXYrFEbXlJWhqwMG1p8zCx2wgLh/fQwuE99KfncxsrcuNWImcx7XIHnbi2cHj35OTQbOeEOe6T66mRS5SyoNHQ/T571bS+aZOK5w3tpp8eMzVZVwf9DnN7299nWVbaIkOzvrr96dR4/oS+nXXT4ZnnrJ9a135e6t/fXjUx2Z6KRSP6cuvYzlm/fE6StHhEd9+xBS8XuEzkzGBsjN6d3RdouN7vtcznM/fZyY5JnWlcjlHnV3hdOyMuEbDqKmKekcNOmT9Ya/+RSLs6y2hbmcfZpH6dddSM/t7lNXj1Z3t1qtC3V01SU1OT1q6T9hnXoHF967X4hgcktUZ3DVgfje3t3rYwJ5kO61mTkWXJLfjFD46arJGNiclmzm8/ModF+9VlJRkLv9xO2ZXje2nl+F6ezyced0y6a/1zxdgG/ekfPZP7zdTZZ0xHSmznq/cbo589/kbGc15R4bD7IwIWdjl2heisP91DSObe0fFrdJkX4jDhVb3k2uj0+31uk63ChLKM+aWdaKeV72Ea1W6h5E1uZU6fuOL1vsBF8OS2L8zf1pY0gpG0Dmz492QbkHHjHLQMsp/8Gnr5CgXspj3T5Dhlm7kfhHnTxzx/vSbT5BqSOwzL8t6u+coXbzI/sqOjbpgKURTndt283X3lt+S/rbMNqpjb0ZyMYHdcnYOEznM8rbPr6Hyag85eNy2DHKV+R5LXwEbEshRtw8o2r3oql6O6iA7VUOz0Ms7f7Nd8KPQ0DHtClTlg61fX+W37tpQ1l33q9Ra/FIRmm8Ec3DEfN9+WHCD1KKDfBHW/snmVLwjPFYMuEz7bg9nWcbaF/doguaatTExPyrZAI6eP9hV0xWRb+y4dXb95tYFyWRUftl2R1iYxjmdzAPLDzTtCl8NmphjOtlK74LshxBcU5Hh2RhFqQw0e5J1eE9tzbXsG6R9l+2yzegpajFz6Pn51QtCt7tYudXuv1+R6Kb2uNutft23p1Q72WpTj5LXtzfMu18uUs2jOib+J78/ts232293OixwDhGRl/i639nbc49/JFJMe29y8wWveRPM6h8z2TtCIFia3Yydtv1v+51vaBCxH5Cwn58SutvC7GdhagkDf5XXstXWhQub3hPs8t6jMNq/zPV9jPW6TDJzFD5ImMkxqxjDC7pq0fn+em9u5THwwtbTEPdNlSpkTBN3quHy3Odqy31ri8XaNYJG3r+qgsBtmnZnexgk2rp3reGO2Pey1QDHtM/zGGFqL5SydXz241ZEiMG0btFM32e7LeE1ECHqumfulPQ6tXCY17nCMH3nGSvD50Vs8InPanNcJz/FFj/6kl0IcD2YZsrWdC7lPc61+zfHAsNclt5/jdQ5kvC6SmQrWa2J75ncEelnemMfj23mO7O52bLu1k7zuQ0jBhxqyvS5b+9U7U4DjdY5MH2Flu0a4n8eEwPosYAIWdhmpFfvp/7ft7bJysy2dQ7/3mhfbrgEisri95gAzEpdPMd2i3tihJu0w+GNcInwc5PKc2UBxS5snJdJ3SdKBWdKW5ZMz9KYtyKCNHa51RpZUettd8p9v3JK6QeIZEj9AGXLJkW1e2L0aa/ZqZDscs1suYfO7DwuwWlZKpW6qKS9Rp8rgUcZsznCtQTpldghOtxXy+VgRFtTiPERvC+qnf3utzZ9hDgaZkwzN9C3vbkqlFbjj2bddP2dYD/doTLmwLCst9Uy3mrLkfnWmhgzKmd7FDNl6/4upsNTmwPOCYf4rUAutEEftqUbqoSUje2i7zySTNY6UNWE6HeY595tnUseM3fF2diidA/7m+zc4bjSfbUT0W+aR5ifQjSGf1/jdbDHPGTMy5NmO7eWagtDjM4e7pH7Kxo4OYaeTywczGkShBYmYmWwvhIigl4vVMzNXRg3sWq1PjNWldjjtI6b3c71ue6VBysZMqxnmxpSdzsgZddVus9ir35znsSTNNlLUmu0Dr/PGrVRmeqfGTunRAbLtWbs9PbBrVXLVmBnVKwivttMlRjh98xwc35oGw3bivOzRCrxUubSVzDrLeWg72yBjjdXNVaW5B4teOtK9/rPZx4ZX/WI+fvyczL6AU3VZiToHbNOFmahkr/Y2o9a6TaDwixrRFme1Rs/43Mz+yUG9KUa92tYbxvaKzKDMGwxex/lPQrb/zGPSXJThjOY3zREpMNc2V1Bu55KXQkyQdx6mzpQfYTjPe7N/bfevDnVcJ+xjy6yfsg2wH97aF5vQt5PrIPvAbulRkc2Ubm7MevLp1zcmP9tPmDQ79m/zi0o9vGdNMlrzkdO9Vyq73RSdMziz3eJ3PXnJiOyRLY1VN4/UF9lupNufO2WAez1SbvRxcj2uP78w/Vh1jYCVp56EmTrS/m3ZovTkyoyUlm0Rl7nK245qbp7T5jnoFglCSh/b8Erh5RVt1499XTl0Suq4N6+fW3e0+F5bzDJmG29Mm2xgvNSZgieIaQO7yLISKbVNqbK6X5/GOdpYXlFyRzd6R3eRpL1CpsHy24bOc0RKn9SXsV09mi1B0rH5md1aRx3l0tcwI9dKwSZ3Om/YBTnP7XPhdJdtkqu+9ZWqiEXVtbo0L4sdzerd3K/mWOSswam+mOkYI/KzlGgv+i0OOXleou9ln59uXVK3sf+wx6fp4hXeqUyzaYlL01ojezvHUILwu6668Yoy7OWI6e7ne9hbvl7ppsLyioBlnvJ+7T331GGZxjqiVU3Pknor4lEuU0OWyI+SMjas130X1zIYX/vRlqa0547zyIbgl7llvsd4qfnzTmqNEOj8yW9tDDZZw96fE9MifQc/uq7ZP5VRwhl1308u4/q3OiLSXO+RFcPeJqcvykznvK31vpIdxcvOcGGPhzmjPrpFvOnVqSKtvxck88vUAYnjN1vbOIz6qlJVl5WotrzE9V6TlGqrBL3XlAv7Gmimiw/il0+mItKGvc65jXU6o2We7FEPRSwro6/hl9XGrLNyHbcIct/ZTVsnTPuxr13mmJX9+8zrlNn2P8oR8crcHnY73y1qmluUxjCcm8E+X/0m3b1j3KNaPKKH6+cuG5X+uHkcOuuPwd2qXa8thVo0g+JCCkLsMuw6ySsUqttNzraMBfsNKpmNc3OQzssD5y7QqMvukiQtGt5dF+81UgO6uqdSdFo1ra9++HAijPx+E3rplPmDkgNNs4d01f3nzM+4uSYlbu7df858zwa5M8e67dcnzdT/Pt7mWz7zovT3S5do09ad+tb9LyfTnL145R6+v+mJ1pQ1tt+ekvjOBV/5q+/73Dx64SJt3LxDfer9O2KdszRqPfe38XBtuXuVmW0w3q2RFbWyd/BuOHicTl80OLm/n7hosT7askNzrr8/ORBhNsAXeAxMmh48d4H6dqnUQ+ctUOeqUpWWRPTUxYslJRoLv37mLa3OEga0xpESJ8jg9KIRPXTf2fMUi0Y05/r7057LJQpXUGaki3vWzAvcYc/Fi1fuoT89/z+d/avnJEmbtjZleUd25rHTZPyWUcYNQ3MA64NP0yfDPP/FpZKkm1ZN0OIbHmxzeaTEKRGNWHr64sVqjsdVHovq7rPm6b1PtnmmiM1mREONXng7le7MTBdoTrIwD5Ufrp6igV9Ym9P35WLW4C56ZP2HOb//8wsH67jZ/pMKDp/aV2N7dVJ1eYkGdK1yjexnDxCeMHegXvtws37+RKLj6Ray3JS+8iT170+3p7av3ZF0TjpwdtzMv0Y5bl6fPG+QZg/uqtrymPp7XEeCjMn4RbowB7fP22OYrr/z38lymfXRKmOg4LSFg/XEaxv00MsfSAo38dMvvYmXJSN76N6z56mPRxhtp/VX76l71r2nslhEExw3Sl68cg899PIH7TqBNIgg7YV8VO9zhmQOHtZVxtRkTAL56TFT9ebGLRrUrdp1comdKiPs6r1zlg7TTfcn0iGEuVb95hT3beNssxw5vZ8u/8O/ks9fd8CYtPeYq8i8IlO5XYOPNerQSsf5nG1y3aR+nfXXc+arZ125ymPR5L+HX3Jn8jXzh3XLCGNvMk+vK/cdrUvuSKQo2Wtc6uaI+dsu3HO46qtKNbBbtV55/9OcbqjaLthzuC753T8lJSYqfNeRVs88PtwWAJghxYNEO3BjWYmJPacvGqJvtKYRtj17yRJJiYFbt3b6c5ct1ZYdO9PqnQv3HKGDJ/dRZVlJchKf031nzwscUTXMBKzbTpqhtzdu1UBjn3StLk22N/7v2Knq1aki2E2JHJy+aLCWj+mpQd2qdfbSodq0bWdaCs62RC347SkzQ9+8TY/KmfNXOz7TiHrnE03l/46dpjc3blFjXUWb2lxBZbvZ/OfPz9Se3/ybpMJEwDLrvHvWzG1TveBsU6wc35jsXz976ZKMY9xkpri6cuUo19fYFgzvrvvOnqdenSv0K5f03z9aPUXzjf5utujU5nXHjpTwixOma9jFd3q9JdS++OWJ031/u5RoA526YLCWjerpuw92utxQ79+1SiMaarXOSGnsdxNh287Ugikzvf3Olsz2sLM/anNO0r//nPla9NW/Jge4n75ksTZt25l2c8B8R60xoSDXw9q5gM6trmhz/dG6oytKo3riokUqiUSSbdvB3au1aHh33WssYskH8waI23FmPmT3FVviqYml5qS5C40bmyi+oQAAiDVJREFULOb7zOiYc4d2031nz9OO5hb1d9R3z16yRDuaW3JaCHfC3IFaNKK7BnRNHc/mtbU5HvfdP2YZs12DzHPY7E/98oQZ+utL76VNCvjqQeOS4whuBnSt0l/PmZ+xgM7+ihaP69PqGf205s2Pkn8vcowZPXfZUm3evtNzUqPtm4dN0H4TemlalokMtvF9Mid0PXfZUj37xsa0lMs2c0s6b6Z69QvLAozFemmsK9ePj56iNzZsca3betSW69cnzdCBNz8qKVg/IDP6SfZyXLR8hA6d0if0Ygc/NeUx3X/OfMWiVl4WO3pdqf52wUK9+sFmda0uU6fKmF7/cIuG9kj/HRevGKHDpvZRQ6cK13FbZz9mj9E9dfdZc5PjCG7fPb5PJy0e0UP3rHs3+di1HpMpglg9s79mDOqqO/7+tr7TmgbP5JUOT0q04Xp3rtTD5y/IqT66fJ9R+r/HXg/8+qqyEk3tX68nXtsQ6PVX7DNaq2f015KvpY8Fhj0q/nrufNfHve4reCnxiG5pHgd+k9JqymN6/AuLVBqN6Nk3N+qYnzzl+rqfHTdNb3+0Vb07V+qjLTs8U5ulvj/1b7P5e9zsAfpBa3vRTD3302OmavWPnjA+wY4YkHrk1uOnpaWLzcbcBhMdE0C/sHyE7n3xPb36wea0x39zysy0v+cN7aYHXkqkUhzc3X2Rj7nv7YW9zvNwy46dro87PXPpEn3i6JsFWcj31MWL9e93PklLyXbDweO019iGrJPlJGmIx28L6vMLB+ugyX3U2KlCq37weNpzdjCDsxYP0dwhXbVjZ4sOb32Nfcz+v2On6a2NW5Lt5+sOGKuT5g3MuJaYbaEpV98jKXFfz62N5KdXp4qc6xgv5bGo7jt7nizL8oz287Pjpqf9zkJYMaZBQ86sUf+u4e7VmOPYzuvckCzXU+cRunJ8oyb27ayHzlug2oqY3v9km2efJ2Klp/I7ad4g34Usdp2VywRd28PnL9SGzTvS6qAgco3mbtp/Qi/9xmWh/5KRiXt8nStLNeHKRApse6t0rSlLRtwyx51mDu6aNj5mVi/fXjVRb3+0VVWlJbrWkf62MeTE468fOj7tb+f9keta2wuZE7BSfw/vWaPHX01cZxd5jMPfdPhEvfbhFtVWlKT1w6RE/bH32AZ1rS7T9p0tqquM6b1Ptrl+DnZ/TMDCLsOusu2KMzNUYOZ72rIaN2hHNcgtDPMiGYtGMm7IuQ1Y2sxOyc6WuIY4Itn43fh0Pue1cslUHotmnRxmbptOlaXqVFma1iDza0AO71mj7rXpN5uCfKeX6rISVQdohLjdbDIHzLy2h3kMeQ305sI8vLxTIETSOk32b7WUOu7Czmjv2zoByRz46Grc5HOLuJZN0DIM7Fat9zZlNjjyuIgjg3lu5XNQy015LBpoElyuzMk43n3a1BPzh3VTbesxm89UT/a5Yt4criiNtulGoHMlj3luekWbaM/IaVLmJIawl5f+XapUV+lfh1iWpTHGaj23KCP2hE/Lsjw7hW5FMycte6Vftbe7M62I8xw394lzVZdlWRrbu5NruZLv9302wW+CgDm4bUZ3s6z0Y8eZ/mRI95rkBCy3QfR830AOc7O4JBpJi2xnKo9FtWSk+6qbjhTk2l3IcOVmGPnSkkhye7tVDfYxHLY4QdMhOHltG2ebxXluzRiYPkhr1t3pp4Tl+s9cyurGnDzpNpGyoa7CdwDQrGMqjTrC/D3mb4+VRJLtW2c7Nyzz2jBvaLeMNqeZastM92Yz67Tc+xGJ9zmjfnaqjKUtCHA7RuoqYhnbNhKxsm4X5+/045YOy0tZSTRj0NXcj3UVsbwOykas9GPdslK/vaY8lrkIIMeDvaasJCO6RRDmlitE1Cfz+uusP816rtCTr4IwJ6oUYluYP9/rJlLgz3JGvjPK63aMm8L2tQYmr0WZ73OuMM+2iMftu9sy4cDts4Kcv+Z56MUr4sGInjVpE7CCtgvS02UHe4+Uvs1GNtRqQNcqRSOWWlr7hG71iMm8QZJLWlMpc1zBfWFE/s4ZMwqWrW8BFh35RZN041zAYLbfvSZ4OifQeR2f2RbX+bEsK6NOMfsF8XjcP4WfUfRs9YP5WmfKoYXD09v2nauyjzW51f12Ecxz0K9czp/m1u5wf5+lRR5RANy4bcO6ipjr5Csn53FQiP5ENJq46ezXXzNv+gW5FORyszNIGy8XPX0i44Tltf2ryko02si4MMwlqqv5+9zGbZ2HifN643VtGeC4WZ/rogn7O4f1rPGclOR3PtnlyzbBx0su7dhskyWdn+92fIU9pZxjYTa3CD9+Yo50r6l/m2Pz/p9hT4z3u47WlMc0vGeiXgtyv8ArBaFbul0pc3F2MmOL8Vi2yVcZ97TMaJyOPmokYmlA16qMCVjOgABekYzSvzfzPojzV9qLfLPti9ryWHLM2Rbk2OpaXaaug9OP4zDXGLNcpSUR7fBJb+3GXoAzyyVSq/3ZlmVpsiPQg729Sksiae2TaCSzXWFztoXszw+7yDPXOsZPtvED5+8sBLv+DcvvHkdllnPeeVmxr5f2fTL/ca70v4d0r87apu8RYpzGTXksGnoSkpSftMh+16iB3aqTUeHS3mO8xdmXMqO4mp9cHotqULdq/TcPqRKdx4ZzAZ1dxzubbGYdbPZTvBZMJe7ZetyTcek7ux0nQSasYtdX1CkIm5ubdckll2jAgAGqqKjQoEGDdOWVV6YdnPF4XJdeeqkaGhpUUVGhxYsX6+WXX/b5VOyqnA1aZ7XldvFd/96nOX9f0JsTYS+kztQDkv9F0bwA/OG5/4b6rkJxi6oVNMxs3yyRqkxt6UQ7OTsFUvrFzzsFofn63L7b7YJqNmLqAwy2mcwLfCEGV8MK06ZzO0q65hBdxs8//5sa5G/v7WMeR92y1A1BBgJM5go/83z7/XOp1QjmZ5oNXXOiQk3I720Pzhv85nb0Ws0rpW5c9W+H/dzW2ihoZBKTW8rOIOVwq6vMS6R5Xelh3LSxOxl+KQel9IlhuUyeDXK58BsMN6/35nYtiUbSjh1nZ8+8drnV+WHPyd2Zc3WyX3h7U76iDNqRKfxSYHmlW/MbAPG63to3XP3KX5vHFYe2zJu06c+bbUbz31aWtolfypN8dPF//fSbvs+bZTKjSpinXZgIErlyq2vM9r1bhDrz5lmu+9wlG5AkZZ2cWijOqFnZou5k47ViPVdm32BYz3ApAZ8zono4+a00deuPBWGmYAn607NdW8y9YUb9aMtK2fZgdtMKcQY3tHGw2k+Y671ZPYU5ddyuN872VLZxhGhafzFYf8lt8n5YA1vbdmHqZq8oeM4bBr1c2rY289plnl9uk2W9mOeQHSU8Wz3VxYjKZU6Ka8pTXohuLn1dZxq5bJz1uDMCrVPPApw/6ROorIxUWNm2ljNyk82cGF2o9kA2zsllfuem2X7ZaKRid0bpktL7KdmOw1wjW9ifa96I92sL5yv9ZTZhFy+a555zIpNZZ/eozc/Ykdv+8hXgou/sR+RromU+o57koqosfxN/nbJtoX4e48fOSUj5WHBo1kVmJK/aCu82Q+9O7T8em4/JdUGidNup0Tr7LCKsD5kay6sPUVkWrP4y5XPsJj0dYurfXm1R53fbYydhznnnK823urWp3MZj/CK4BP1eN/Yxn0sN1h71lfk7g06+Mu+jmO8J08bMhyApB5GdX5XvNo5uyoiqGaK57zzH8jFGaLanvcY4c5GP62K2cWC3Ot3cQtWO/ouZ2s9tMUY+onY59695L81tAqotbQKW8bu8siGF5dbFIQXhZ0NRj+pdd911+s53vqNvfetbWrduna677jpdf/31+uY3v5l8zfXXX69vfOMbuvnmm/X444+rqqpKy5Yt07ZthHXb3aRSECb+72xX5ju37cYtO3yf/8FRk7VyfKNOW+idn9z5+r3GNuh4Iy2MrXttuU7zyi/cQYNQTrMGp8LAnjI/s6zZclH/4oTp2mtsg67ab3Sg7+tTX5FT2icvC10iE5kRhczNfOMh443H3S/AbWUpkWrosKl9tGSke9QTL987crJWjG3QHz8/W5fvM0p7j2vUrcdPy3jd1w8drwMn9dYhPuFQ88Gtk5kt5KvtoEm9dUBr/uV8eXj9B8l/33DwOK0Y25ARmrlQzGPk8x7ntO3XJ8/QijENumfNXB05vZ+u2tf/3Hjp3dSEUrONZqYgPMII122mkdu6I7Uq4bentm1bFKJKunjFyLS/o2mD4N6ree84ZZZWjGnQjz43Jf+Fcsg8zMNtiFyuUdfsP0Yrxjbo1yfNcC2I98TXzO9KH1RKPW6me0xGwHKU1S/lwoXLR3g+5yVIH+P7R03WijGJes7JXBXdtbpMZywaojVLhiYiBPqU9ZjWCH+9O1ek3RC5bO+ROnpWf413pP6TpJ8cXfhjq9BuO3GG9hrbkP2FSkUUu3rf0dprbEMyVdAdp84K9P4rVga7xmdzy7FTtWJMg359snd9dfi0vtp/Qi/ftBBSetqIvcc26uDJvfXVg8alveaOU2dpxdgG/dilLrly39E6cno/zRwULOVKWzjPvS8fmCrn945MpdKLZ7lZ6Tf26rXA4Eefmxy0mGnXHTdmfTOwW7VOmjdIF+w53HPie65t+BsOTmwfc9tkW0Ft1puX7p249swbmkpzGTNuAE7p3zn575M9Umxc4ZKSzP5aZx193rJhrp/RVtki5P36pJlaMSZVBwRdNOHFa0Jvrsx69mfHZbZnc+XWt/pd67n+rSz1hpdTjM8M+tt/ZV7DXZi7o6I0qnOWDtXnFw4OFdWsUL5x2AStHN+ofcc36muHpNeb5vlciLHD0xcP0crxjaHqJi/OxTD9u1Yl66Vs0n5niB+6dGRPHTa1j647YIxOnDdQF+45POOYOTBLH8h8/b7jG5P/nmGkZ7ls7/Q2dD788HNTtGJMg353WrBrvySdvXSo9hnXmNFuctadzja/F/Oy4FxBbNb5Tma0itMWDkk8luUas9fYRh0yuY++fODYtGuqWypwp6t9xjZuOnyi9p/QS0fOSPXPcq2DvrTfmLS/z1w0xPf1q2f2D9RGCqOytERnL0nUT12ry/TTY6amXVuyGde7TsfMGqBL90o/BswFE/ke08tFXHEdO3uA9pvQy/V5s4jmhMIvHzRWK8Y26PaTU3V+bXlMZy0eqtMXDckaCXli385aNa2v72vc2NWE10JHZ71VgICFab6490h9bmZ/TezbKdT7ehoTDpwLl6YOqE/We852ws+Om6a9xzXq6Fn9Jcl1XMz065MS/SKzje0l7LUtl36xny/tN0arpvXVXJd07O1pZEOtjp09QJfslZ/rjTmZPVu642sPGKu9xjZktKWOmtE/7e98VB3mufLz46cn/z3DJSWaPb59xb7+qYlt1x2QqMN/uLrtbZozcmgf3XXmXEmJbb/X2AZ9cZ/s5f7FCdO1YkyDfnliZjvWHmv2S73lxpwQYLZxBnWrTraVgppspMVtq4hHv/TgKX20cnxjRkqrIT1qdMLcgZrQt5P2GdeYvM5nOw7PXJy6djvbhOafbu3Dc5cN0z7jGnXxCqOecXxfrvePnMMDe49LtDlLohGdG7L/GqZdkKtc2grnLE39jo1bmpL//s3Jwdu6balnvnnYBO0/sZcOy+E6D+n6A8ZqRENq8YHfGPXlAeq3MB69cGHy33a/8Nr9x+iwqX0z0jqHcWtr+8Xsyy0b1VNjjawYbeGMJpqLk+YN0r7jGz37XlGXsTezbpvjiDL3jpEVx22yZreaMn1+4WCtntFPe41t0C9PmJ7xGjdHGX0tv/66XzYi80+zLs1XnVaIiOHYNRT1Uv+//e1vWrlypVasWCFJ6t+/v37+85/riScSeZbj8bhuvPFGXXzxxVq5cqUk6ZZbblGPHj10xx136NBDD+2wsiP/MlMQOm4Q53mwJlvqoMUje2hxiJRA2V5/zrJh+tb96zMe92tUtKfTFgzRI+s/lCTXvMNuEaZM0wd2CZTL2/bQeQuzvygEt47IDo9B1RnGTVZz8+cS8jPxGZnfHZd0yJS+OmRK+MZ3/65VaYOp3zxsguvrVo7vpZXje+niO/4R+juyWTaqh+76Z2IWuVsjYnL/zjpocm99ae2LGc+ZvnxQ9oGvbMwbp1J6XdC7c2VeB56zMb/bOdPfaXjPWt20KlG2K7NMvnLyalCaDVhzt5g3W9uaxqUQNVK9YxVQWhQjo+zOc2lkY2obFppf4zyIXKryhrqKjOPXKxJD9og45mek/jJXtNodNOeEDuf11QxB77ci0kuQVR79u1Z57ltzVUw0Ip21ZKjr69wmar927YqM1x09a4Dr+3t1qgiUJqPYTR1Qr6kD6vXM6/fqvx/7L1A4aX5iQl732vKcJigMzDGdsNOgbtVZz+3yWFQ3GBOmvawwJp+VRCO63uWGy4iGWs9rxZHGxFYnvwhdQZ25eIhuvCcRvddZz/SsK3c9Zs1rgFv71/lIXUVMH29NDDR6TZ5ypsJpC7NMpdGI6yQHs57JdTBi/4m9tf/E9AFqK+3fmZ9r/nw7AueFy4frgZfel5Qe4cOy3OsMW8TKvAGUeF/i/84tnWs7MptsfZZhPWt006qJ+tMFf5LU9ghYXmk6cjWwW7Xvds6V2V+xVz2P69Mpa7vQK6rmsB41aSveg/z0ZaN6pA0WB2FPGikG+4xr1D7jGl2fS0sRV4Dw+bXlMX39UPc+TlhuxQsy+Srjc0Lcjo9ELF2z/9i0xz5yLPDKtsrXPL/M4/mgyb316CuJfrmzDsyHAT5tMC+dKkv1DZc+qXPcwNnm9+IXpcdv0ql5bbGjRmUbT4lGLF134NiMx93qysHdq9OirK+a1k+vfbBZ33/o1YzXrhjbkNYGkYLVQW7MiEyzB3fNOkEzaBsprM8bE78Gd69Ou7ZkY1lWcuKzyZyAlY+V720Vjye239cOGa/fPvt25vPGv82UoG79NikxWSIIy7J09X5j9Pvn/qtPtu0MXF67f9zsUQ87Hy308OLnPPpV2filYbEsSz/3uAk3a3DXZBqpy/bOftN1cv/6jLRS+eKMbNLWTX14kdyotywrb5OvpET0oPc+2R7otT08+qTOSXr5iDZmHoNdqst826Zhx7eDjP2aCz/85NI+GtazJnRbe0iPGs+2gD3WHFaJx0QnSbpwz3ATGPOZytcsitlmqCwt8dzWX3CZcJmtTGcuHprq9zt+v9mudktRbbez1r/3ia7607rW70t/TZD5FtkWKEnpC+xPXTBYX77r35Kk6QOz153ZJlXmQy673ozcb75/ZGOt/nn5Mo267K6sn9GW+3N7j2tMTmxDeAdP6aMZg7pozvX3S/Ifg8iWZSVst9WMSGcf3odO7atDp4b7HKeZg7tqpmOCUjRi6ftHTda0L93btg9XfiZgVZWV6Eaf603EZUwvbfG3Yz81BVjccvbS8IsWr1g5Wrc8+nrW15l1tPMQMo8p81qVrzrNbcyTAFifDUU9AWvmzJn63ve+p5deeklDhw7Vc889p4cfflg33HCDJOnVV1/VO++8o8WLFyffU1dXp2nTpunRRx/1nIC1fft2bd+eauxv2pRIV9XU1KSmpibX96BjNTU1JWuleEuzmpqa1Nycnmc23rxTTU2ZVVfu+zReFMdDS3P64EtbytQST13own7Ozp2pcri9t7ml2ff5sNpj22/dvjP5PTuM70vUBYkOfbwltc1iUcu1XNnK2rwzcwAt8R3tM8AYNwY187VdzYHnluadGZ8bkdTcnHm87XC8Lj/lST9Xrbx9bngtxm/euTNzu7SV/XnOz7X/NuvFlpYWY7v7n7+hxAtfN8abm1O/qQDHb04cvbTmnc2hyhP29V5amlP7defO1P6Om/slnrnNzGPjvU+2JR9vMa+lzc1qirdkDIDb112beR7vdKnfsv6GeBv3pXG9cZbNtLPN27w42gH5Yvb3vH5X3Kg3ctG0M/w1MqiWltzaMAXdh1bbP98yzje366kbs06Pt563phbHeWGe0zs99nHY3+H3+rR2T9z9PIy3pF6Tz+ulWdfF45m/dWdzZnt1xw6jvC7b049XuZuamtTkqB+bd+5UU1P+73w693c2H21pW5/X/AVBj9lcteW4NPsm8RBtlxaP17Y4jqd/v/NJ1rJGA9QRbsfkrqC52WgX7Ej1nYrRzubw7QHXerKN7QpnmynbZ5njAM1GPZlWt7TslNfHFOPx5Hf9MfvdbvW3za/tafbF7G1mRu0Ls02278isK+MubWyzfRL2O4Iyf7OzLioWzTley7ftSL2npXmnmtT2NJpt0dzs304y+0GlHuNDbWF2wwJ9duvx0OzRTm52jCe25FAftoeWYunzG8z2rF+f09biGKMu1m3t5DXGVChu9Whb5eNzdrqMX7anSB76lcXOMur3fPch2vRZaeNfbRkDCn5sO/e3efz51R3Nxhhg4rqbes4K8P1u559znL6leaeaWlz6rG0YC87nvm4JOAaZNh6SNoaYfp0321h+4xLx3Wx8cFdjtmf86sts+8g53h2mnxhmTCFXYfuLbq9tampSJFri+lyun51Nc7JO966HtjcVftyj2Wd/mseNs31snvtWAdopO5szP6eljePv6FhB911RT8C64IILtGnTJg0fPlzRaFTNzc26+uqrtWrVKknSO++8I0nq0SN9BVyPHj2Sz7m55pprdPnll2c8/pe//EWVle2fvxvBtLRmzPznP/+ptR++oJfetiSlBnrvvuuu1pnI6Yf12rVrQ35T4v0bN2zM4b1tM64+ouc2pE/Kuf++e5NlilnxNpVpZMzS44pqSG1L6M/Z3KRkOdze+8J7qf2RexkTn9+nqm2/M9vn22Lvv6i1rRGaEn2dxPOPP3if7AUnd7+V+l0D4u8my7WkV0R3vx3Rwsbs2/ITY9vZ/vbXe+WyqKUg3ng9IjvjbL6263/eT/2eB/76V3VpXYTbsyKqd7Za6rblVUV3SJai6lud+t6dxnYe3yX8cWia2CWiZz6MaETE3i+Jz13Za1u7n7u2xLhh63H02GP6cF0+PjXxeZ1KU+fFlp2px+c3pLbjJ1tTj/ds+p/Wrv1vxutz3Ta9q6J6a7OlXk1vae3aN3P6DD/D6yJ68ePEcfrQfXcnV5Z0i0X1ybZE57+j9qsk9WtJv+Y888zTanot23qF1HkS7PXeyqJRbW+2tOPN57X2/eclSdEtqe/4+ONNye0zMJ4oa//q1DHzrnFsPPPGR8nHtxnHxp13/tm17L+7/3F9uC5V9mffya2+r41FtanJ0ujOcd19992B3+f04bZU+e67/wH1zGi6JZ57+5+Pa+1LuXxD4v1bt27t0GMu37ZujcqeOuH8XVErqua4pU3/eVZr33o25+8w940k7dG7bfW86V//DXPcpcpQyPZE886dbf78x19JXaPvufde1QUIDrJ+U6oMd/75z8bkusRjzz3/D1W9+3zy9dubUvt+TpctyTJXlkS1ZWfQ+jW1TbuW+bfTmlqk0khUcSXaVG6BwrY3pz7zoYce0itVWb4+oH+8mzpOSo12nu399zPbRN71oJfWbRF3bofE49u3JdohTY7zwby25Ufis//zn1e0dm1mFF2v10u5nhetdeOWzbKPp388/qBeyvu8mzDl9O73xY3rXlXzJ4E/a8vmLWmvHdM5on9sjGhyzaa0x597y+u7U4+/+87/tHZtZgQVU7i6rXg0m21eo+9UTDqVRvXRDktlH/xba9f+O8A7vI69xOMvvPCC1n6Qe2ThrUZdk/kdmTbtSL3+3nvvVW3r9eHvRr/7nr/8xbHtC339y0WiTCM6tbieJ/ZjsY9Tv6vrlje0du3rGZ9hvt6N2Rf7+6MPaF1UWtTD0m9ei2pqt2BtErtNtPHlZ7T2jfTnPv00sy1V+lGq3OPq89fuMZljMcOj7xfRvpWS2/vvf1ckhzbkK0ab5q477yxIuvtgEmVY/5//aO3al9Mek1L7+2XjOP3k4w153xdNTd7tdZM97tJ182tau/Y1jSu39HdFHeeZ9Nx76X3Y+++7T538g0N0iPGVll5QVCM7FeYcykWTMXZV+eFLWpulY7lhe+r1kvTss89Kb+468Q3a0j8PY1qdpVc/jGpsm+vL/F7vOn2S+Myu5YUaj3Y3pVtET74f0djSD4rm2C+UfxvXy7/ef38e6qL8HAP//W+qf/j2W29prfPiH9CCbpZu3xzVpK7ex/aM7hE9+l5ESxua0vstRvvl+cce0L89+lfvGf2bu//yFxkB7dVrR2L79qr0PoY3bsi8xrz5aeozJenPf07vDw+ti+iljyMaEQt2jI6tj+j5DRFN6dqiJz+IqHee7/F86nKPxY35nTuMsYdX//MfrW16Ofmc2XZ88qH79Zxj2/eqjOrtLZYat7+Z87GBtjPHtHdu/dS1r9avOvuxtmVL6hyQpFdeeVVr1/4ny7cnPv+tN9909E/yz7xvJuVWt6Wu5+mfs7yPpbVvRtMea7vEd7z5j8e18UVp4wbve5A9W/ehXx2Vq4gVVUvc0kfrn1H6LavUNihTc/J7nW225x9/SK+0JvioaL3XMrAmf+V0fp8kDYu+t9tf93dnW7ZsCfS6op6Addttt+lnP/uZbr31Vo0aNUp///vfdeaZZ6qxsVGrV6/O+XMvvPBCrVmzJvn3pk2b1KdPHy1dulS1teFSBKB9NDU16QcvJsIvjhkzWsun9NGbD76qP76RajCtWL6nIhFLZzz6l7T3Ll++PNR32e/v0qVey5dPaWPJw1m6rEWvb9iqPb7xSOqxJUt00VOJEJsrJ/TW8uWjcv785ZIOfX+z+tRX5BTefc6CbaqIRV3z9G5/9r/62X9eSHxPyG1uW7SkWQ++/KEWj+iW13DCNvPYuOPk6RrVmH6+z5y/XXGlhyt96d710puvSJJO2G+hutUkntszHtf69zdrUNeqQHnW587fpiN+9KTe2LBVkrTPXrlto1w88Yd10ruJ1keu+8bJ3JaLFi5IptVZuKRZ727arn6t6VsWLtiiLlWlaSlbZs7frlc+2KxJfTu3KXXNoqUtenPDlmRamalzt+vl9z7VjBChwAvhrMcS22ba9OmaNqDt4e3tbT2yTxctXz45+fi46Z/qn//dpJXjGpLny7amZl3990RdeeRe89SvPjUzZfZ87/M3iEVLmvW/TdvUv0ue7pK7fP5Tb3ykod2rk+eZJP1uw7N65d/vS8rf8ZuL5ZL2/2Czln49UT9PmjRJi0f4p6d7Kv6i/u+xNwK/3s/cRTv10ZYm9e6cnsLquucSx0enujotXz49WdYDPtisxk4VKmu9K/fah5v1pb+nri3mtpw1f5tKSyLqXJma+WGe49MmjdfycakUKh8+9ob06osZn5PN/MU79e5HW7TuqYe1ZMkSxWK5HYvbm5p1xbOJ43zOnLka0iM9/dasBU3asqNZDXX+6Vm82L+9oqJCy5fPzekzitFXXnxIG7YnrkHO/TZn4U59sq2pzSnS3ty4RVc8+7Ak6TcnTdPoxtq8Xc/f/dvruuP1xA30bMedefwWot6wP780FtPy5cva9FkP3/FP6d3EBI1Fixape032kejHX92gb/7zKUnSihWp32eXa/bUidpjVGqByoVP3yu1rsr/0tF7JPfJ1156WK99mOg0htmmF68cp+Vjevq+fsa87YrH42lpk0zbd7bovCfukSTNmTNHw3u2LT2ubfPTb+kXr/xLknT8QZm/6f/970lp00ZJ2etBL/a2iEQiafvffrzSqDsWLtiq5pa4qsui6pIlHH5Y9vcNHDhQy5e5p2J1e72U23lhv7+mulq/P2OKdrbEAx2vYS3bI657X3xPi4Z3z9pOzNbv+9LfE88P7d8nax8q9fuqtHz57OTjdv9sYNfKtPrM67u/uf4RrX9/sySpb5/eWr7cP830O4+8pjtef8m1/MWsqalJW3berblz56mhc2Hahm01f/FOffDpDvU12sN+vM6RZFt85Cgtn557SqhPtu3UBU/eJ0k6eFKvrMfkB59u1yVPPyBJWrJkcTK91SdPvSX9J1HP7dU6BpLtN3Qku0wnLh2fvHbYj8WiVrKc//t4m771rwclSccfsCSt/3jDvx/W6xuCXa9mzt+RVj/tGY/r+Pc3a0DXqkB9zzkLd2rTtib1cmkTfXP9I3p36+a0cozZuEXfWZdo+/zklMVp5c6n6XO36INPd2hCn04F+fxc2fty0sQJ2nO0f9vAzVOvb9TX//mkJGmvFR13zNq/Y4BxTbUfqyqLavnypZKUSP/5r6clST27d9Py5ZPyWo7zn7pHao1m5XesO8ddlks67P3N6usY69v89NvSf/6Zet+iheqZJYVlR1gu6QiX8ne0CTO3aOOWJo3rXZf1tW9/tFWXP/NQ6r0TJmRtLxeDpqYm3X333W3qn4exZzyuz32wRf3qK9qU2mfuop36+r3rdeLcAVlTTgW1YvEW9agty0hxWEiLd7bo9Q1bNKS7f0rx3UGXVzfo2+sSfdjFi4P1e/0s2yOue9a9p0XDu7XpWHrgNy/oyfcTi1f798veZ/CyZzyu47K0N5a1xPXqB5s1qFtVxjjJDEf7xc3rG7bo6r8n2hx7LFumCsdKp5UfblZDbbnKPI7hn/3vSf3nk/S+8PNvfSz94/Hka5zXnsVLW/TWxq0a2C1Ye9/sO72+YYtveXLx8dam5H0y08lzB+g7D6ZSQjt/x7lPJK7pgwYP1vLFg9OemzF/h+LxuGtdUuixcATz8nufSn//mySpX0M3LV+eSpE6d9FOPfPGR5o5sD5rXXDtvx6UdmxL/j1w4AAt38M/7Z3dHuzbN/f6IYyzH8+tP+e8ntvlXjG6p5YvH6s943Gd9v5mVZZGVVteoprytl/znePvv3z3Kb28aYNn2ffJUkflymtM2+wbd6mr1vLlsyQl+p2XP5Pod952/FRN6Nsp7X1LFmxR1+pSVeWpX2d+3wNnz9G2ppbAdSqKk51VL5uinoB17rnn6oILLkimEhwzZoxef/11XXPNNVq9erV69kx0ZN599101NKRuDL777rsaP3685+eWlZWprCzzghqLxdqls4G2iZWUKBaLKRpNVdSWJZWVud8wyXWfRiJWux8PsZg0vDH92CwrM8pgtb1Mwxo75fzePl28v7ukJLU/ci1jLBbT8nG9cnpvWOP7ZU7S6dk5s9xRI2dBSawk7beN7BUgTEWrvl1jqiqLSUrc/G7PY8syOn6F+N6y0tLk58ZiMdVUpgb0BvfIHKhq6BxTQ+e2Dy7EYtKIXqnzJV+fmy8lJSV53d6W4/wf2auzRvbqnPaaZqWO15jj+/3O3yBisZiGVBZusDYWi2n+8MwBSnNQoqOv0UMbOiX/HWT/ptUfbTweOsdi6lztPTnGeXyYZZUSE0VM5mt7Zzk2yksdZbeM4yzEb6qLxVRZWqJ1aluby4qkrjfOelmSuubpOHFu011d1OdaUB+Lqb6mbZOvJClWkl5HleaxUx2J5HbcFXIf5qOtWGK0Z4PWE5Gof5ur1HFemFHWS0tTbRcj20uo35FRJ7joVe//fCSa+vJoNH/Xy2iWbWOmtQ1TD7qxLPfvMOuOAd0LX4dEIpHQ268t29uyLPXoVLjBopikFeN65/Zer98Voj53ntdu/TO/7zbbLWUl0azfG4m0vQ/VUWpiUkPnqqItd10sprqq3K5tbr8pl3PNVGakcwlSj5aUpNLRlBrtJsu4HnqNgUjFdzxFopnnQ4mxTUtKUqkgEu3E1HCleYMx2+/q0Snz+REh+u1+bSK3fonZ9qkoK1WsQDfuB3av08Dc13IUnLPvGVTUSJFSDMes23leYbSrzPKWuBzTbRW0beYcd5Gk4S5jfVHHjchYSfGOe7uVv6MNchnP8lJSkp6KJBqgDVBM2vOeyPDG4HWyl86xmL64ckweSpMyuGfw/Z0vsZg0slcRhqUrgPLS1PFVmofjLSZpr/G59RlM5oSNaBvr9WztjZjPa9zaL05lRtkSY2Hpt3aH9Ozk+/6Iy5iQObZgPp76WxpWEfwYNftOQ3q2/Vx3Km12f7yzY/KU1360XMZwevps+0KPhSMY8zh1tr86x2JaNDJYn885NdKygvfv2toXDCoWtdSUCDed0/c5r+dmvzPMvcwgnOPvZrvTrezZ6qhcBRnTNsfvSmOpimRgj9qMsua7PWD2c2sqy9WvKv91I9pX4HqjwOVoky1btqTdbJESDaGW1tVAAwYMUM+ePXXvvfcmn9+0aZMef/xxzZgxo13LisKzxyHsC6W5UMC8sdSjNj8dFyvjktwxosYPLcQq83zpVLnrDCyEYU6gKG3jSrzmlpbsLyqA7jWF7Sh0XJqA4lZVmt85zg112TsTZr1YWoy5YHLQEi/OsP015eH2b9jXh9WnPktHow3XtBJHW8ycwNARzIlE5SWFW526u61wixQgsqRTmVHvtMPXdbgBXdt+jKx/75Pkv0sCXlCzXV9qHSvZvMppR00Iq1OAKFHZmD/VuXK3Leoq/MvWq3P+0s0P6uY+6bt/1/ZNad/eNXKxXpf9hClyvzbW/Q3GqsuSaPZzup7Bt11GfRsjbJjX4SDXZLPvaR5LLT7tsEGtK2mLsX9W47KC2Lw+mX2X6C7UiPistX281OYYZTleZNcUt/IMMK7rlUabxS1KWlsNzEPb0uRsF8XbvdXw2eEcfymyQxvocObkn7ZkQ8i32556K/nv3z7jnzq8o5n95lzG+Nzek8++eHvwakM7xy29dPBwJnJkjv326pT7fS5nXz/c4dA+9VY+xhlNn+X+SRBBx2HbwjzOdqV+LtquqCNg7b333rr66qvVt29fjRo1Ss8++6xuuOEGHXPMMZISq8/OPPNMXXXVVRoyZIgGDBigSy65RI2Njdp33307tvDIO7uishtaXpXVlStH64T/e7qdSlUYR83op1seTeQUjkYsff+oyfrT8//VKQsGZ3lnx5k/tLtWTeurUY3tv2IoqMOn9dWtj7+hv12wMPB7qo1JE2294bizg1r5x88ZqFc/2KxlowoT/rwQ6SJ3ZZfsNVJvb9yq0b3yk9L2/x07Tb986k19YfmIrK8tK4nq3GXDtHVHc6AJW7uCYuscX7lylNa/92no9JL5SEfp5ufHT9fPHn9dl+3tHwa5LadpzHEDubmDR5Mty9L5ewzXx1ub1DfHCSR+fn3SDP3kb6/p4hUj8/7ZHaodquruteX6/MLBKiuJqKyAk+OCOnJ6v4J87m9PmakfPPyqLtxzeJs/66nXNyb/HTRF3djedTp6Vv+MtFpXrhyll9/7VNMHptc3Nx8xSdfd9aJOmjso7fHrDxyrq/60TkfP7J/1O68/cKzO+/XzOnxa37zUZ5Zl6cI9h2vD5h15HWBaMrKHDpvaR+M9UjRdutdIxeNxHT4t9zRif/z8bH3ngf/ovGXpoepvP3mGfvTIa7p4RfbrdT4V283rYhTkhvNtJ87QLY++pkv3Clb3f2H5cH1p7YsZj5++cLAefCmROjnIjYCV4xv1+KsfatqAjk2hDW/XHTBGT7y6UXu0sS9ltsWCTMCqq4zpjEVDFLGstIm1fn3KH66eoi//5d86ed4gz9e0t2v2H6N/vP2x5g3tlnzsD6fN1s0P/kfnL0tdR7tWl+n0hYMVi0Z2qZuBdtunPBYtirZPe7ty39F66Z1PNHNQbnVYsV3BzEvqb06ZqR8+/GpaP3x8n04a2LVKr3ywWecs9U9Zk4vvHjlJ19+Vv3N46cgeaX+3x4KMz6ruNYm64Jv3rZdUfMc20NHSJ6J3YEF8bG3yCK9UJOy2UkmObSW3rsnwnvkZu24vXsdObDdZhAx3/btWaURDrdb9b5PWtKH99dWDx2nVDx7Xqx8kUoqHG0ppnyv7d4+crK/c9W+dPL94+nNBFds9wq7VZfrg0+0Zj5uLCiPtcEEyF1BFAyzSw+6jqCdgffOb39Qll1yiU045Re+9954aGxt14okn6tJLL02+5rzzztPmzZt1wgkn6KOPPtLs2bN15513qryc0JC7G7tetOtxc7WEmaO5a56iRHXk9cK8ERWxLC0Z2UNLHAMnxSYSsXT1fvkN/5xvX9pvjL4Usoz5vKnVUVFjKkqj+toh4wv2+cXace4ox84ekNfPmz2kq2YP6Rr49acW8UTNXBRbpI0jZ/TP6X2F6oTMGNRFMwLc8GhLh8L53o6OgCWpoB3Ryf3rNbl/YSbMdaT2uuFydgFuRuVq1uDCTGiY0Lezbjq8c/YXBpBLFWdZluukS6/6qW+XSt10+MSMxxvqKlwfd3Pw5D46eHKfUOXM5sQCTBCIRixds/9Yz+e71ZTpWwF/s5fRvepct9ukfvWa1K/96472rpI7/gqQgwCFnjqgXlNDTC70WnRiRoFxTmB2UxKN6PoDxwX+XrS/Q6b01SFTcp+0aTMvw0EDK5+1ZGjGY37nfP+uVYHr9fZy2NS+Oszx2Jje7vVoW26otAevplQxtX3aW6Emu3cU8/Sa2LezJjrae5Zl6b5z5hfs+/t1ye85HIlYOmHuQH3vwVckEQWh0M5eOiw1AavIxjGAjmYOK7XHDe/dVVvaSl5Rs24+YqJO+n/P5Py57clrXCvGMbXb+/MZc9r8GY2dKnT/OfPV/4I/SSrOyKADulbpplXF1Z/bVY1qrNUDrYvjTOa9pvaISGU2CYmA9dlS1BOwampqdOONN+rGG2/0fI1lWbriiit0xRVXtF/B0CGSKQhbKykzDL85gLk79HHNm9vFFJYXbVMMkxYKgWMUKH75PEv9Ut+geH0Wq+rdoU0IZNPux/kueF4Vosheg//m4yVtTF+O3Yt506st5y3tMOxOiq2tVmyLf/IhbPQ9ACiEsKmYkX9em313uPTR70Iuwh37u2a91Z6lLrYt5NWuNx9uj+uRWQ4uf58tXJmwy7DrKfsGolfDfXC36jZ9jx0toSNX8t334nvJf38Wb5gWk3wOwNkRW/Ya25C3zywGxRZeFLuXXXkQfJ/xjZKkgd3ym789F23pUIx2RPlYMioRkbFbniJOon0cP2egJGnxiOKOqOll/rDukqQ6I7qMF/twn9A3P1GqCun6A7yjNQF+BrZGzN1rXLB25XGtETpPXZBb5LHlYxLp106YOzCn9xdCtrKMakyk1DhwUu+8f7fXAgTzcVZi71pqywu7PtE8HO41+vthdXQq6M8yuy1V7NHJdyXDetZ0dBHS7I6n1/4TUtdAM50pCsOOfrk7RlQG2qJP50rFopY6VcZUTrq4DnFE670uZ9Tfif0S4ya7wvB+qWOiVUUsqq7VpWmpkA9y6fv1qa+QJO05um0pxQF4WzUtETU6TGTxQjrC4/6+eT+jtB2uRz1qU9nanHUYdm9FHQELMKUiYKX/X0q/sVxXGdOjFy7Uveve00GTww+2//hzU/Xmxi0a1MaJXG3x8dam5L+Z3LL7OHxqX00bUK/+XTp+MkZbHTd7gH7w8KuSmCSIwmpp6egS5G5i38766znz1bOu49Mim5eSqSEHg50TrYb3rNVD5y1Ql+rSfBQN7eTASb01oW9n9e9S2dFFycng7tV66LwFqq/Kftw9f9lSbdq2syjOvWwOntJHjZ0qNKKhuG5AovitPWOO3t20Tf0Ctiu/sHyEDpnSR4O759bH+cahE7RmyRYNKoJJxbbz9xieTKu0b+ukZ9PtJ8/U/z7elpbePV/McbOuxvUwSgSsXdbfL12qv/zrXS0c3r0gn2+OWWxvas75c3bXqMq7gl29LVWM6qtK9eiFC1VZWhzD07tj2rhhPWt0+8kz1bW6tF1uMn3WPXPJEm3atlO9OlV0dFGAolJXGdMD5y5QaUmENnIHWTaqp+49e576dE5vx/SoLdffLlio6gIvRsgHZ/rK+8+Zr1jUUpfqMj18/gK9/8l2je3dKeN9fzlznt77JHjfGZ8NYdp9u+ot2vYs91KPOqajLBvlPuGyPBbVExctUtSy2iWzT0Vp4vtKIhFS8H7GFP9VFWhlXw7tgUtzANNZUTbUVXjOcM2mtCTSoZOvJGln8+436LOryuf4m2VZGtx997jBWhZLdZYJHY1CKsZ87GH0L8BN31yYp6l5/uaqT31xdKYQXOIa1LHtm7YKetzVlMdUswut8J89pGtHFwG7oPJYNNQAciRiaUiP3NuhJdFI0dUhZh/QbdFKeSxakMlXUnr7tzwWNcqRek1JlDbyriQSsbRHAVfFm8dGrA2TIEhB2HF2h7ZUMWqoK56JKrvr2TWpX/FHhd1d7Gr9EKA9NTIxscN53fPaVfeNueiud+dK9faY+FFRGq7vjM+G3bXd15E6+r56UN1r2nfBbnt/H4oD082xy7AnwtiD6+ZwdnvMVG1P5Xm4OY78oCHmrlhWqGL3t6sOAhQb80Zx785sUwDA7sUM694ezBTJZhj59BSE9OmQYk4SbEsasM4BIkHubpj4j/ayGwbAAgBgt2JHGKwu494E2qZbdVn2F7XaVe8+M/EwoS/9SXQArlLYZSRTENr/N656u1sAnqE9avTcWx93dDEgBuC8dK5MDfxX0eFBAV28YqSamuM6ZHKfji7KLs28TJ40b1DW1w/vWaMX3/mkcAUCACAPfnDUZP3h+f/qtIWD2/V7t+5I5Ug2U/WaE7B2t0VCyJ8xvetyfu/Bk/vo2Tc+0tyhn53oiVfvN1plJZGco5wDQe3q0ZcBALk7a/HQji4CArjl2Km64S8vtXv/D7uPm4+YqLv++a6OmzMw8Ht2tfvP31k1UWtfeEdHzvhs959uO3GGbnn0NV2y18iOLgo+g7hrjl1IeupBcwVpdFe7AmbBkE/xYAAO6Fj1VaX65mETOroYuzzzmllRGvV5ZcL0gV2YgAUAKHqLR/bQ4pE92v17ze6nGWUyLc0cKQjhoS3jF6UlEX314HF5LE3x615Trm8dPrGji4HPADJ8AsBnV2MnUkTtCgZ1q9ZNq2gXInd7jG7QHqMbQr3H2sViYO05pkF7jgn3G3dHUwfUa+qA+o4uBj6j2hwTf9OmTbrjjju0bt26fJQH8GRHIrIXEu/OKQhbGPUpGkTAcrebzXkEdnvxkJVZC5UfAACevJrC5sSayG7WR0X+7G7jF8Dugi4QAHx2WQx2A/BA9QAgrNATsA4++GB961vfkiRt3bpVkydP1sEHH6yxY8fq9ttvz3sBAZud5MG+2JkrjSO72RXwgEm9JUmjGms7uCRYPCKxor5riJzQnwUzB3WRJFUGiKQDYNezz7hGSdLg7tUdXBIAAIqP1w2amvJY8t8bPt3RXsXBLoYJWEBxGdajRpK07/jGDi4JAKCjTCNKCgAHe1zcHicHgKBCpyB88MEHddFFF0mSfvvb3yoej+ujjz7ST3/6U1111VU64IAD8l5IwGQlUxCmHou0OZZbcZk1uKvuP2c+oW+LwLCeNXrw3AXqWlPa0UUpKv26VOmh8xaocxXbBdgVhF3JN7l/vf56znz1rOM6BACAk9dltbRkN+uYoiBKmIAFFJXfnTZL73y8Tf27VnV0UQAA7ai+qlQbNicWTfSpr+zg0gAoNn/8/GzaiAByEnp08OOPP1Z9fWI2+J133qkDDjhAlZWVWrFihV5++eW8FxCw2aHA7aFKM+pVdDeLgCVJA7pWqayE6ELFoG+XSlWWhp6vutvrU1+p6jK2C7ArCJuCUJL6d61SeYzrEAAAudgNu6jIE9JTAsWlPBblxhoAfAbRJAPghzYigFyFnoDVp08fPfroo9q8ebPuvPNOLV26VJK0ceNGlZcTJQGFY986jrhGwKK1DACAl5JoqslXGiU6BwAAbWEuQojLfZJzU3P4yc/4bNgdF5ABAADsagYwsQIAABRA6NAlZ555platWqXq6mr169dP8+fPl5RITThmzJh8lw9IsoN32OkGrd08AhYAAPlSVxHTWYuHqiUeV6dKUocCANAWoxprk/+25N4XJR0hvLCADAAAoOPdeOgEfWntOh07e0BHFwUAAOxGQk/AOuWUUzRt2jS98cYbWrJkiSKts2EGDhyoq6++Ou8FBGz2+mF7gNscsowwAQsAAF9nLB7S0UUAAGC3YC4GinjMs6oqJY0v3DF6AQAA0PF6darQTYdP7OhiAACA3UzoJZlXXHGFRowYof3220/V1dXJxxcuXKh77rknr4UDTMkJWK2jlZEAg94AAAAAABQKi4EAAAAAAAAASDlMwLr88sv16aefZjy+ZcsWXX755XkpFODGTkForzY2x7mjhPAHAAAAALSTGQO7SJJWTeuX9nhdRUySNGdot3YvE3YNTNoDAAAAAADYPYVOQRiPx9PC7duee+451dfX56VQgB97rhUpCAEAAAAAHeGnx0zVmxu3aFC36rTH/3bBQm3YvEN96is7qGQodgxfAAAAAAAA7J4CT8Dq3LmzLMuSZVkaOnRo2iSs5uZmffrppzrppJMKUkhAklpa/x9JRsAyUhAyggkAAAAAaCelJZGMyVeSVFVWoqqy0Gvd8BnC6AUAAAAAAMDuKfCo4I033qh4PK5jjjlGl19+uerq6pLPlZaWqn///poxY0ZBCglIRgrC1r9JQQgAAAAAAHYl9dWlHV0EAAAAAAAAFEDgCVirV6+WJA0YMECzZs1SSQkrOtEx7MhXESJgAQAAAACAXcCNh4zXw+s/0MGT+3R0UQAAAAAAAFAAkbBv2Lx5s+69996Mx++66y79+c9/zkuhADetAbCSka/MKVfR0EcyAAAAAABA+9h3Qi995aBxijGAAQAAAAAAsFsKPepzwQUXqLm5OePxeDyuCy64IC+FAtzYKQjtaFcR4+glAhYAAAAAAAAAAAAAAAA6QugJWC+//LJGjhyZ8fjw4cO1fv36vBQKcGNHwIokI2AZKQgjTMACAAAAAAAAAAAAAABA+ws9Aauurk6vvPJKxuPr169XVVVVXgoFuLEjYCVTEBpzrqJEwAIAAAAAAAAAAAAAAEAHCD0Ba+XKlTrzzDP1n//8J/nY+vXrdfbZZ2ufffbJa+EAkx0By2qdbGUZk66iRMACAAAAAAAAAAAAAABABwg9Aev6669XVVWVhg8frgEDBmjAgAEaMWKEunTpoq985SuFKCMgyZiA1fp/c84VAbAAAAAAAAAAAAAAAADQEUrCvqGurk5/+9vfdPfdd+u5555TRUWFxo4dq7lz5xaifECGiB0BS0YELGZgAQAAAAAAAAAAAAAAoAOEnoAlJVK/LV26VHPnzlVZWVlaKjigUFpaQ2DZE7DMCFikIAQAAAAAAAAAAAAAAEBHCJ2CsKWlRVdeeaV69eql6upqvfrqq5KkSy65RD/84Q/zXkDAlkxBaM+1SktByAQsAAAAAAAAAAAAAAAAtL/QE7Cuuuoq/eQnP9H111+v0tLS5OOjR4/WD37wg7wWDkjTOgPLnmtlpiAkABYAAAAAAAAAAAAAAAA6QugJWLfccou+973vadWqVYpGo8nHx40bpxdffDGvhQNMyQhYIgUhAAAAAAAAAAAAAAAAikPoCVhvv/22Bg8enPF4S0uLmpqa8lIowI09ASvSetSaaQcjpCAEAAAAAAAAAAAAAABABwg9AWvkyJF66KGHMh7/9a9/rQkTJuSlUICbeOsMLHuylRn0iglYAAAAAAAAAAAAAAAA6AglYd9w6aWXavXq1Xr77bfV0tKi3/zmN/r3v/+tW265RX/84x8LUUZAkpmCsPX/aROw2rs0AAAAAAAAAAAAAAAAQA4RsFauXKk//OEPuueee1RVVaVLL71U69at0x/+8ActWbKkEGUEJBkTsFpnXpkpCKPMwAIAAAAAAAAAAAAAAEAHCB0BS5LmzJmju+++O99lAXylUhAm/m9OubJIQQgAAAAAAAAAAAAAAIAOEDoCFtBRnBGwIsakKwJgAQAAAAAAAAAAAAAAoCMEioBVX1+vl156SV27dlXnzp19ow1VV1dr1KhRuu666zR27Ni8FRSwJ2DZk60ipCAEAAAAAAAAAAAAAABABws0AetrX/uaampqJEk33nij72u3b9+utWvX6uijj9bTTz/d5gICNjsFodWafNCcB0gKQgAAAAAAAAAAAAAAAHSEQBOwVq9e7fpvL3vuuacmTZqUe6kAH25zrf70/H+1ZsnQ9i8MAAAAAAAAAAAAAAAAPtMCTcBy89RTT2ndunWSpBEjRmjy5MnJ5/r06aP33nuv7aUDDMkIWFb635L0n/c3t3+BAAAAAAAAAAAAAAAA8JkXegLWW2+9pcMOO0yPPPKIOnXqJEn66KOPNHPmTP3iF79Q7969811GQJJkz7ey0w2SdRAAAAAAAAAAAAAAAAAdLRL2Dccdd5yampq0bt06bdiwQRs2bNC6devU0tKi4447rhBlBCSlJmBFmHgFAAAAAAAAAAAAAACAIhE6AtYDDzygv/3tbxo2bFjysWHDhumb3/ym5syZk9fCAaZkBCwxAwsAAAAAAAAAAAAAAADFIXQErD59+qipqSnj8ebmZjU2NualUICr1hlYpB4EAAAAAAAAAAAAAABAsQg9AevLX/6yPv/5z+upp55KPvbUU0/pjDPO0Fe+8pW8Fg4wJSNgMQELAAAAAAAAAAAAAAAARSJQCsLOnTvLMma9bN68WdOmTVNJSeLtO3fuVElJiY455hjtu+++BSkoEG9NPUgKQgAAAAAAAAAAAAAAABSLQBOwbrzxxgIXAwjOngvYEo8nH3vkgoUdVBoAAAAAAAAAAAAAAAB8lgWagLV69epClwPwFTcmW0VaZ2C1pB5SY115excJAAAAAAAAAAAAAAAACDYBy/T222/r9ttv10svvSRJGjZsmPbff3/16tUr74UDbOZkKyv5WOpBM0UmAAAAAAAAAAAAAAAA0F5CTcD69re/rTVr1mjHjh2qra2VJG3atEnnnnuubrjhBp1yyikFKSQQT5tslfj/oG7VHVQaAAAAAAAAAAAAAAAAICES9IV/+tOfdPrpp+u0007T22+/rY8++kgfffSR3n77bZ1yyik644wztHbt2kKWFZ9hRgCsZLSruoqYHrtwkf5+6ZKOKRQAAAAAAAAAAAAAAAA+8wJHwPryl7+sCy64QFdddVXa4w0NDbrhhhtUWVmp66+/XsuXL897IYG0FIRGtsGedeXtXxgAAAAAAAAAAAAAAACgVeAIWM8884yOPPJIz+ePPPJIPfPMM3kpFJDBTEHYgcUAAAAAAAAAAAAAAAAATIEnYDU3NysWi3k+H4vF1NzcnJdCAU5uKQgBAAAAAAAAAAAAAACAjhZ4AtaoUaP0u9/9zvP5O+64Q6NGjcpLoQAnIwCWIsy/AgAAAAAAAAAAAAAAQJEoCfrCU089VSeffLLKysp0wgknqKQk8dadO3fqu9/9ri6++GJ9+9vfLlhB8dnWkpaCkBlYAAAAAAAAAAAAAAAAKA6BJ2CtXr1a//jHP3Taaafpwgsv1KBBgxSPx/XKK6/o008/1emnn67Pfe5zBSwqPsvSUxB2WDEAAAAAAAAAAAAAAACANIEnYEnSV77yFR144IH6+c9/rpdfflmSNG/ePB166KGaPn16QQoISOkpCJmABQAAAAAAAAAAAAAAgGIRagKWJE2fPp3JVmh3cVIQAgAAAAAAAAAAAAAAoAhFOroA2bz99ts64ogj1KVLF1VUVGjMmDF66qmnks/H43FdeumlamhoUEVFhRYvXpyMzoXdBykIAQAAAAAAAAAAAAAAUIyKegLWxo0bNWvWLMViMf35z3/Wv/71L331q19V586dk6+5/vrr9Y1vfEM333yzHn/8cVVVVWnZsmXatm1bB5Yc+WamIIwwAwsAAAAAAAAAAAAAAABFInQKwvZ03XXXqU+fPvrxj3+cfGzAgAHJf8fjcd144426+OKLtXLlSknSLbfcoh49euiOO+7QoYce2u5lRmG0pKUgBAAAAAAAAAAAAAAAAIpDUU/A+v3vf69ly5bpoIMO0gMPPKBevXrplFNO0fHHHy9JevXVV/XOO+9o8eLFyffU1dVp2rRpevTRRz0nYG3fvl3bt29P/r1p0yZJUlNTk5qamgr4i5Arc7/s3NkkiyhYAADscuzrOe0tAAB2XVzPAQDY9XE9BwBg18f1HGg/Qc+zop6A9corr+g73/mO1qxZoy984Qt68skndfrpp6u0tFSrV6/WO++8I0nq0aNH2vt69OiRfM7NNddco8svvzzj8b/85S+qrKzM749AXnzSJNmH65///OcOLQsAAGibu+++u6OLAAAA2ojrOQAAuz6u5wAA7Pq4ngOFt2XLlkCvCzQBa8KECYEjDj3zzDOBXhdES0uLJk+erC996UvJcrzwwgu6+eabtXr16pw/98ILL9SaNWuSf2/atEl9+vTR0qVLVVtb2+ZyI//+u/FT6am/yZK0fPnyji4OAADIQVNTk+6++24tWbJEsViso4sDAABywPUcAIBdH9dzAAB2fVzPgfZjZ9XLJtAErH333Tf5723btunb3/62Ro4cqRkzZkiSHnvsMf3zn//UKaecEr6kPhoaGjRy5Mi0x0aMGKHbb79dktSzZ09J0rvvvquGhobka959912NHz/e83PLyspUVlaW8XgsFqNyKlIlJYn9YlliHwEAsIujzQUAwK6P6zkAALs+rucAAOz6uJ4DhRf0HAs0Aeuyyy5L/vu4447T6aefriuvvDLjNW+++WaIImY3a9Ys/fvf/0577KWXXlK/fv0kSQMGDFDPnj117733Jidcbdq0SY8//rhOPvnkvJYFHSsej0tS4EhsAAAAAAAAAAAAAAAAQHuIhH3Dr371Kx111FEZjx9xxBHJyFT5ctZZZ+mxxx7Tl770Ja1fv1633nqrvve97+nUU0+VlJiMc+aZZ+qqq67S73//e/3jH//QUUcdpcbGxrSoXdj1xVv/H2H+FQAAAAAAAAAAAAAAAIpIoAhYpoqKCj3yyCMaMmRI2uOPPPKIysvL81YwSZoyZYp++9vf6sILL9QVV1yhAQMG6MYbb9SqVauSrznvvPO0efNmnXDCCfroo480e/Zs3XnnnXkvCzpWPJ79NQAAAAAAAAAAAAAAAEB7Cz0B68wzz9TJJ5+sZ555RlOnTpUkPf744/rRj36kSy65JO8F3GuvvbTXXnt5Pm9Zlq644gpdccUVef9uFA9SEAIAAAAAAAAAAAAAAKAYhZ6AdcEFF2jgwIH6+te/rv/3//6fJGnEiBH68Y9/rIMPPjjvBQQkUhACAAAAAAAAAAAAAACgOIWegCVJBx98MJOt0K5a7AhYHVwOAAAAAAAAAAAAAAAAwBTJ5U0fffSRfvCDH+gLX/iCNmzYIEl65pln9Pbbb+e1cICtdf4VKQgBAAAAAAAAAAAAAABQVEJHwHr++ee1ePFi1dXV6bXXXtNxxx2n+vp6/eY3v9Ebb7yhW265pRDlxGecnYKQ+VcAAAAAAAAAAAAAAAAoJqEjYK1Zs0af+9zn9PLLL6u8vDz5+PLly/Xggw/mtXCALZ5MQcgMLAAAAAAAAAAAAAAAABSP0BOwnnzySZ144okZj/fq1UvvvPNOXgoFOKVSEHZsOQAAAAAAAAAAAAAAAABT6AlYZWVl2rRpU8bjL730krp165aXQgFOyQlYHVsMAAAAAAAAAAAAAAAAIE3oCVj77LOPrrjiCjU1NUmSLMvSG2+8ofPPP18HHHBA3gsISFJL6wysCCGwAAAAAAAAAAAAAAAAUERCT8D66le/qk8//VTdu3fX1q1bNW/ePA0ePFg1NTW6+uqrC1FGQK0BsEhBCAAAAAAAAAAAAAAAgKJSEvYNdXV1uvvuu/Xwww/r+eef16effqqJEydq8eLFhSgfkBDP/hIAAAAAAAAAAAAAAACgvYWegGWbPXu2Zs+enc+yAJ7iIgUhAAAAAAAAAAAAAAAAik9OE7Duvfde3XvvvXrvvffU0tKS9tyPfvSjvBQMMLW0RsBi/hUAAAAAAAAAAAAAAACKSegJWJdffrmuuOIKTZ48WQ0NDbKYEYN2ELcnYHVsMQAAAAAAAAAAAAAAAIA0oSdg3XzzzfrJT36iI488shDlAVyRghAAAAAAAAAAAAAAAADFKBL2DTt27NDMmTMLURbAkx0BixBYAAAAAAAAAAAAAAAAKCahJ2Add9xxuvXWWwtRFsATKQgBAAAAAAAAAAAAAABQjAKlIFyzZk3y3y0tLfre976ne+65R2PHjlUsFkt77Q033JDfEgIiBSEAAAAAAAAAAAAAAACKU6AJWM8++2za3+PHj5ckvfDCC2mPW0yOQYG02BGwOMQAAAAAAAAAAAAAAABQRAJNwLr//vsLXQ7AV7w1ByHzrwAAAAAAAAAAAAAAAFBMImHf8PHHH2vDhg0Zj2/YsEGbNm3KS6EAT4TAAgAAAAAAAAAAAAAAQBEJPQHr0EMP1S9+8YuMx2+77TYdeuiheSkU4BTv6AIAAAAAAAAAAAAAAAAALkJPwHr88ce1YMGCjMfnz5+vxx9/PC+FAjK0zsAi/hUAAAAAAAAAAAAAAACKSegJWNu3b9fOnTszHm9qatLWrVvzUijAyY6ARQZCAAAAAAAAAAAAAAAAFJPQE7CmTp2q733vexmP33zzzZo0aVJeCgU4xeOJKVgWMbAAAAAAAAAAAAAAAABQRErCvuGqq67S4sWL9dxzz2nRokWSpHvvvVdPPvmk/vKXv+S9gIBEBCwAAAAAAAAAAAAAAAAUp9ARsGbNmqVHH31Uffr00W233aY//OEPGjx4sJ5//nnNmTOnEGUE1BoAi/hXAAAAAAAAAAAAAAAAKCqhI2BJ0vjx4/Wzn/0s32UBsiICFgAAAAAAAAAAAAAAAIpJThOwbNu2bdOOHTvSHqutrW1TgQA38WQSQgAAAAAAAAAAAAAAAKB4hE5BuGXLFp122mnq3r27qqqq1Llz57T/gEKIJ+dfEQILAAAAAAAAAAAAAAAAxSP0BKxzzz1X9913n77zne+orKxMP/jBD3T55ZersbFRt9xySyHKCCSRghAAAAAAAAAAAAAAAADFJHQKwj/84Q+65ZZbNH/+fB199NGaM2eOBg8erH79+ulnP/uZVq1aVYhy4jPOjoDF/CsAAAAAAAAAAAAAAAAUk9ARsDZs2KCBAwdKkmpra7VhwwZJ0uzZs/Xggw/mt3RAq7gSM7CIgAUAAAAAAAAAAAAAAIBiEnoC1sCBA/Xqq69KkoYPH67bbrtNUiIyVqdOnfJaOMCWioDFDCwAAAAAAAAAAAAAAAAUj9ATsI4++mg999xzkqQLLrhAN910k8rLy3XWWWfp3HPPzXsBARMRsAAAAAAAAAAAAAAAAFBMSsK+4ayzzkr+e/HixXrxxRf19NNPa/DgwRo7dmxeCwfY4h1dAAAAAAAAAAAAAAAAAMBF6AlYTv369VO/fv3yURbAUyoFIQAAAAAAAAAAAAAAAFA8AqcgvO+++zRy5Eht2rQp47mPP/5Yo0aN0kMPPZTXwgG2uB0DixyEAAAAAAAAAAAAAAAAKCKBJ2DdeOONOv7441VbW5vxXF1dnU488UTdcMMNeS0ckEQELAAAAAAAAAAAAAAAABShwBOwnnvuOe2xxx6ezy9dulRPP/10XgoFOLXOvyIAFgAAAAAAAAAAAAAAAIpK4AlY7777rmKxmOfzJSUlev/99/NSKMApHk9MwWICFgAAAAAAAAAAAAAAAIpJ4AlYvXr10gsvvOD5/PPPP6+Ghoa8FArwYpGEEAAAAAAAAAAAAAAAAEUk8ASs5cuX65JLLtG2bdsyntu6dasuu+wy7bXXXnktHGCLZ38JAAAAAAAAAAAAAAAA0O5Kgr7w4osv1m9+8xsNHTpUp512moYNGyZJevHFF3XTTTepublZF110UcEKis+21gyEpCAEAAAAAAAAAAAAAABAUQk8AatHjx7629/+ppNPPlkXXnih4q0zYizL0rJly3TTTTepR48eBSsoPtvsCFjMvwIAAAAAAAAAAAAAAEAxCTwBS5L69euntWvXauPGjVq/fr3i8biGDBmizp07F6p8gCQlJ/wxAwsAAAAAAAAAAAAAAADFJNQELFvnzp01ZcqUfJcF8Jacf8UMLAAAAAAAAAAAAAAAABSPSEcXAAgimYKQ+VcAAAAAAAAAAAAAAAAoIkzAwi6F+VcAAAAAAAAAAAAAAAAoJkzAwi4hHs/+GgAAAAAAAAAAAAAAAKC9BZqANXHiRG3cuFGSdMUVV2jLli0FLRTgFG9NQmiRgxAAAAAAAAAAAAAAAABFJNAErHXr1mnz5s2SpMsvv1yffvppQQsFONkRsJh+BQAAAAAAAAAAAAAAgGJSEuRF48eP19FHH63Zs2crHo/rK1/5iqqrq11fe+mll+a1gIAk2RkICYAFAAAAAAAAAAAAAACAYhJoAtZPfvITXXbZZfrjH/8oy7L05z//WSUlmW+1LIsJWCiIuB0CCwAAAAAAAAAAAAAAACgigSZgDRs2TL/4xS8kSZFIRPfee6+6d+9e0IIBbixCYAEAAAAAAAAAAAAAAKCIBJqAZWppaSlEOYBAmH4FAAAAAAAAAAAAAACAYhJ6ApYk/ec//9GNN96odevWSZJGjhypM844Q4MGDcpr4QAbGQgBAAAAAAAAAAAAAABQjCJh33DXXXdp5MiReuKJJzR27FiNHTtWjz/+uEaNGqW77767EGUEZM+/IgMhAAAAAAAAAAAAAAAAiknoCFgXXHCBzjrrLF177bUZj59//vlasmRJ3goH2OKtIbCYfwUAAAAAAAAAAAAAAIBiEjoC1rp163TsscdmPH7MMcfoX//6V14KBTilImAxBQsAAAAAAAAAAAAAAADFI/QErG7duunvf/97xuN///vf1b1793yUydO1114ry7J05plnJh/btm2bTj31VHXp0kXV1dU64IAD9O677xa0HGh/rQGwiIAFAAAAAAAAAAAAAACAohI6BeHxxx+vE044Qa+88opmzpwpSXrkkUd03XXXac2aNXkvoO3JJ5/Ud7/7XY0dOzbt8bPOOkt/+tOf9Ktf/Up1dXU67bTTtP/+++uRRx4pWFnQ/uwIWMzAAgAAAAAAAAAAAAAAQDEJPQHrkksuUU1Njb761a/qwgsvlCQ1Njbqi1/8ok4//fS8F1CSPv30U61atUrf//73ddVVVyUf//jjj/XDH/5Qt956qxYuXChJ+vGPf6wRI0boscce0/Tp0wtSHnQcixlYAAAAAAAAAAAAAAAAKCKhJ2BZlqWzzjpLZ511lj755BNJUk1NTd4LZjr11FO1YsUKLV68OG0C1tNPP62mpiYtXrw4+djw4cPVt29fPfroo54TsLZv367t27cn/960aZMkqampSU1NTQX6FWiLnTt3SpLi8Rb2EQAAuyj7Gs61HACAXRfXcwAAdn1czwEA2PVxPQfaT9DzLPQELFOhJ15J0i9+8Qs988wzevLJJzOee+edd1RaWqpOnTqlPd6jRw+98847np95zTXX6PLLL894/C9/+YsqKyvbXGbk3wvvW5Ki2vDhh1q7dm1HFwcAALTB3Xff3dFFAAAAbcT1HACAXR/XcwAAdn1cz4HC27JlS6DXtWkCVqG9+eabOuOMM3T33XervLw8b5974YUXas2aNcm/N23apD59+mjp0qWqra3N2/cgf7Y89aa0fp26du2q5csnd3RxAABADpqamnT33XdryZIlisViHV0cAACQA67nAADs+rieAwCw6+N6DrQfO6teNkU9Aevpp5/We++9p4kTJyYfa25u1oMPPqhvfetbuuuuu7Rjxw599NFHaVGw3n33XfXs2dPzc8vKylRWVpbxeCwWo3IqUpFoJPH/iMU+AgBgF0ebCwCAXR/XcwAAdn1czwEA2PVxPQcKL+g5VtQTsBYtWqR//OMfaY8dffTRGj58uM4//3z16dNHsVhM9957rw444ABJ0r///W+98cYbmjFjRkcUGQUSjyf+b8nq2IIAAAAAAAAAAAAAAAAAhlATsJqamrTHHnvo5ptv1pAhQwpVpqSamhqNHj067bGqqip16dIl+fixxx6rNWvWqL6+XrW1tfr85z+vGTNmaPr06QUvH9pP3P4H868AAAAAAAAAAAAAAABQREJNwIrFYnr++ecLVZacfO1rX1MkEtEBBxyg7du3a9myZfr2t7/d0cVCgTD/CgAAAAAAAAAAAAAAAMUkdArCI444Qj/84Q917bXXFqI8Wf31r39N+7u8vFw33XSTbrrppg4pD9pHPJ79NQAAAAAAAAAAAAAAAEB7Cz0Ba+fOnfrRj36ke+65R5MmTVJVVVXa8zfccEPeCgekJGZgWYTAAgAAAAAAAAAAAAAAQBEJPQHrhRde0MSJEyVJL730UtpzFrNjUCB2BCyLJIQAAAAAAAAAAAAAAAAoIqEnYN1///2FKAfgy85AyBw/AAAAAAAAAAAAAAAAFJNIrm9cv3697rrrLm3dulWSFLdDFAEFkIqABQAAAAAAAAAAAAAAABSP0BOwPvzwQy1atEhDhw7V8uXL9b///U+SdOyxx+rss8/OewEBSYq3xsAizSUAAAAAAAAAAAAAAACKSegJWGeddZZisZjeeOMNVVZWJh8/5JBDdOedd+a1cAAAAAAAAAAAAAAAAABQzErCvuEvf/mL7rrrLvXu3Tvt8SFDhuj111/PW8EAExkuAQAAAAAAAAAAAAAAUIxCR8DavHlzWuQr24YNG1RWVpaXQgFO9vwrMhACAAAAAAAAAAAAAACgmISegDVnzhzdcsstyb8ty1JLS4uuv/56LViwIK+FA5JaQ2Ax/woAAAAAAAAAAAAAAADFJHQKwuuvv16LFi3SU089pR07dui8887TP//5T23YsEGPPPJIIcoIGBGwmIIFAAAAAAAAAAAAAACA4hE6Atbo0aP10ksvafbs2Vq5cqU2b96s/fffX88++6wGDRpUiDICdgAsImABAAAAAAAAAAAAAACgqISOgCVJdXV1uuiii/JdFgAAAAAAAAAAAAAAAADYpeQ0AWvjxo364Q9/qHXr1kmSRo4cqaOPPlr19fV5LRxgS6Ug7NBiAAAAAAAAAAAAAAAAAGlCpyB88MEH1b9/f33jG9/Qxo0btXHjRn3jG9/QgAED9OCDDxaijIDirTkILZIQAgAAAAAAAAAAAAAAoIiEjoB16qmn6pBDDtF3vvMdRaNRSVJzc7NOOeUUnXrqqfrHP/6R90ICdgQs5l8BAAAAAAAAAAAAAACgmISOgLV+/XqdffbZyclXkhSNRrVmzRqtX78+r4UDbK0BsJh/BQAAAAAAAAAAAAAAgKISegLWxIkTtW7duozH161bp3HjxuWlUAAAAAAAAAAAAAAAAACwKwiUgvD5559P/vv000/XGWecofXr12v69OmSpMcee0w33XSTrr322sKUEmhlEQILAAAAAAAAAAAAAAAARSTQBKzx48fLsizF7Txwks4777yM1x1++OE65JBD8lc6oJV97FkkIQQAAAAAAAAAAAAAAEARCTQB69VXXy10OQBf9tQ/ImABAAAAAAAAAAAAAACgmASagNWvX79ClwPwZQdfY/4VAAAAAAAAAAAAAAAAikmgCVhO//3vf/Xwww/rvffeU0tLS9pzp59+el4KBpjiimd/EQAAAAAAAAAAAAAAANDOQk/A+slPfqITTzxRpaWl6tKliywjJ5xlWUzAQkEkI2ARAgsAAAAAAAAAAAAAAABFJPQErEsuuUSXXnqpLrzwQkUikUKUCfDGDCwAAAAAAAAAAAAAAAAUkdAzqLZs2aJDDz2UyVdoV8kIWB1bDAAAAAAAAAAAAAAAACBN6FlUxx57rH71q18VoixAVgTAAgAAAAAAAAAAAAAAQDEJnYLwmmuu0V577aU777xTY8aMUSwWS3v+hhtuyFvhAFvcDoEFAAAAAAAAAAAAAAAAFJGcJmDdddddGjZsmCTJMkISWYQnQoHY068skhACAAAAAAAAAAAAAACgiISegPXVr35VP/rRj/S5z32uAMUB/DHHDwAAAAAAAAAAAAAAAMUkEvYNZWVlmjVrViHKAniyMxAy/woAAAAAAAAAAAAAAADFJPQErDPOOEPf/OY3C1EWwFMyBSEzsAAAAAAAAAAAAAAAAFBEQqcgfOKJJ3Tffffpj3/8o0aNGqVYLJb2/G9+85u8FQ6wxe0QWAAAAAAAAAAAAAAAAEARCT0Bq1OnTtp///0LURbAU2r6FSGwAAAAAAAAAAAAAAAAUDxCT8D68Y9/XIhyAP5aZ2CRghAAAAAAAAAAAAAAAADFJNLRBQDCYP4VAAAAAAAAAAAAAAAAiknoCFgDBgyQ5ROG6JVXXmlTgQA38dYQWETAAgAAAAAAAAAAAAAAQDEJPQHrzDPPTPu7qalJzz77rO68806de+65+SoXkCYe7+gSAAAAAAAAAAAAAAAAAJlCT8A644wzXB+/6aab9NRTT7W5QIAbe/6VRRJCAAAAAAAAAAAAAAAAFJFIvj5ozz331O23356vjwPS2BGwSEEIAAAAAAAAAAAAAACAYpK3CVi//vWvVV9fn6+PA1wx/wrA/2/v3qOsrOv9gb/3cL8NI3IZCC+YCOY9L0gXUkPAzCNFpeYy77YMNNQKzRQvR00tdWkiejqJnpVGtVIPihfyhhal0lFDjqQeQj2eQZRgQASGmf37o5ifE6A4Antvfb3WmuXs5/nuZ3+ePeBHtm8+XwAAAAAAAAAoJ+97C8K99torhXeMISoWi6mrq8uiRYsyadKkTVocrFVs3oQQAAAAAAAAAADKx/sOYI0ePbrF46qqqvTq1SsHHHBABg8evKnqgvWzByEAAAAAAAAAAGXkfQewJk6cuDnqgHdnABYAAAAAAAAAAGWoqtQFwPth/hUAAAAAAAAAAOVkoydgVVVVpfAe278VCoWsWbPmAxcF/8wALAAAAAAAAAAAytFGB7DuuOOODZ6bNWtWrr322jQ1NW2SomBD3iMDCAAAAAAAAAAAW9RGB7AOP/zwdY7NmzcvZ599dqZNm5ajjz46F1100SYtDtYqGoEFAAAAAAAAAEAZqmrNk1577bWcfPLJ2W233bJmzZo8/fTTueWWW7Lddttt6vogSVL8xyaEBmABAAAAAAAAAFBO3lcAa+nSpZkwYUJ23HHHPPfcc3nwwQczbdq07LrrrpurPmihYA9CAAAAAAAAAADKyEZvQXjFFVfk8ssvT21tbW6//fb1bkkIm4stCAEAAAAAAAAAKEcbHcA6++yz06lTp+y444655ZZbcsstt6x33W9+85tNVhz8M/OvAAAAAAAAAAAoJxsdwPrGN75h+zdKxgAsAAAAAAAAAADK0UYHsKZMmbIZy4CNIwMIAAAAAAAAAEA5qSp1AbAxikUzsAAAAAAAAAAAKD8CWAAAAAAAAAAAAK0kgAUAAAAAAAAAANBKAlhUlEKhUOoSAAAAAAAAAACgmQAWFaFYLHUFAAAAAAAAAACwLgEsKsLa/JX5VwAAAAAAAAAAlJOyDmBddtll2XfffdOtW7f07t07o0ePzrx581qsWblyZcaOHZutt946Xbt2zZgxY7Jw4cISVczmZgdCAAAAAAAAAADKSVkHsB599NGMHTs2f/jDHzJjxow0NDRkxIgReeutt5rXnHHGGZk2bVp+9atf5dFHH81rr72WL3/5yyWsms2haA9CAAAAAAAAAADKUNtSF/Bu7rvvvhaPp0yZkt69e2f27NkZNmxYli5dmn//93/PbbfdloMOOihJcvPNN2fnnXfOH/7wh+y///6lKJvNqGATQgAAAAAAAAAAykhZB7D+2dKlS5MkPXr0SJLMnj07DQ0NGT58ePOawYMHZ9ttt82sWbM2GMBatWpVVq1a1fy4vr4+SdLQ0JCGhobNVT4fQGNT0z/+2ehnBAAVam0P18sBoHLp5wBQ+fRzAKh8+jlsORv7+6xiAlhNTU0ZP358Pv3pT2fXXXdNktTV1aV9+/apqalpsbZPnz6pq6vb4LUuu+yyXHjhhescf+CBB9K5c+dNWjebxssLqpJU5a9//WumT/+fUpcDAHwAM2bMKHUJAMAHpJ8DQOXTzwGg8unnsPmtWLFio9ZVTABr7NixmTNnTh5//PEPfK1zzjknZ555ZvPj+vr6bLPNNhkxYkSqq6s/8PXZ9J6cNjepezUDtt8+Xxg1uNTlAACt0NDQkBkzZuTggw9Ou3btSl0OANAK+jkAVD79HAAqn34OW87aXfXeS0UEsMaNG5e77747M2fOTP/+/ZuP19bWZvXq1VmyZEmLKVgLFy5MbW3tBq/XoUOHdOjQYZ3j7dq18y+nMlVVVZUkadumjZ8RAFQ4/80FAJVPPweAyqefA0Dl089h89vY32NVm7mOD6RYLGbcuHG544478tBDD2XAgAEtzu+9995p165dHnzwweZj8+bNy8svv5yhQ4du6XLZjIqlLgAAAAAAAAAAANajrCdgjR07NrfddlvuuuuudOvWLXV1dUmS7t27p1OnTunevXtOPPHEnHnmmenRo0eqq6tz2mmnZejQodl///1LXD2bRaHUBQAAAAAAAAAAwP9X1gGsG264IUlywAEHtDh+880357jjjkuSXH311amqqsqYMWOyatWqjBw5MpMmTdrClbLZFc3AAgAAAAAAAACg/JR1AKu4EaGbjh075vrrr8/111+/BSqiVNb+SigYgQUAAAAAAAAAQBmpKnUB8H4U5K8AAAAAAAAAACgjAlhUBDsQAgAAAAAAAABQjgSwqCgGYAEAAAAAAAAAUE4EsKgIxRiBBQAAAAAAAABA+RHAoqIUjMACAAAAAAAAAKCMCGBREYoGYAEAAAAAAAAAUIYEsKgohRiBBQAAAAAAAABA+RDAoiIYgAUAAAAAAAAAQDkSwKKyGIAFAAAAAAAAAEAZEcCiIhSNwAIAAAAAAAAAoAwJYFEh/p7AMgALAAAAAAAAAIByIoBFRSkURLAAAAAAAAAAACgfAlhUBFsQAgAAAAAAAABQjgSwqCjmXwEAAAAAAAAAUE4EsKgIBmABAAAAAAAAAFCOBLCoKAUjsAAAAAAAAAAAKCMCWFSEohFYAAAAAAAAAACUIQEsKooBWAAAAAAAAAAAlBMBLCpCMUZgAQAAAAAAAABQfgSwqCiFghlYAAAAAAAAAACUDwEsKkLRACwAAAAAAAAAAMqQABYAAAAAAAAAAEArCWBREQzAAgAAAAAAAACgHAlgURn+sQdhoVDiOgAAAAAAAAAA4B0EsKgoAlgAAAAAAAAAAJQTASwqQtEehAAAAAAAAAAAlCEBLCpKIUZgAQAAAAAAAABQPgSwqAgGYAEAAAAAAAAAUI4EsKgoBQOwAAAAAAAAAAAoIwJYVISiEVgAAAAAAAAAAJQhASwqigFYAAAAAAAAAACUEwEsKkIxRmABAAAAAAAAAFB+BLCoKIWCGVgAAAAAAAAAAJQPASwqQtEALAAAAAAAAAAAypAAFhVB/goAAAAAAAAAgHIkgEVFsQMhAAAAAAAAAADlRACLymAEFgAAAAAAAAAAZUgAi4piABYAAAAAAAAAAOVEAIuKUDQCCwAAAAAAAACAMiSARUUpFMzAAgAAAAAAAACgfAhgURGKBmABAAAAAAAAAFCGBLCoKOZfAQAAAAAAAABQTgSwqAgGYAEAAAAAAAAAUI4EsKgoBSOwAAAAAAAAAAAoIwJYVIRi0QwsAAAAAAAAAADKjwAWFWFt/MoALAAAAAAAAAAAyokAFpXFHoQAAAAAAAAAAJQRASwqgh0IAQAAAAAAAAAoR21LXQC8H+ZfAQAAAAAAAEDlamxsTENDQ6nLgCRJmzZt0rZt2xQ+4I5sAlgAAAAAAAAAAGx2y5cvz6uvvpqibbAoI507d07fvn3Tvn37Vl9DAIuK8gEDhwAAAAAAAABACTQ2NubVV19N586d06tXrw88cQg+qGKxmNWrV2fRokWZP39+Bg4cmKqqqlZdSwCLiiD9CgAAAAAAAACVq6GhIcViMb169UqnTp1KXQ4kSTp16pR27dplwYIFWb16dTp27Niq67QutgUlUogELAAAAAAAAABUKpOvKDetnXrV4hqboA7Y7My/AgAAAAAAAACgHAlgUVEEYQEAAAAAAAAAKCcCWFSEohFYAAAAAAAAAEAZ23777XPNNdd84DVbWjnWtCHlWqsAFhWh+I9NCA3AAgAAAAAAAAC2pFdeeSUnnHBC+vXrl/bt22e77bbLt7/97bz55pvv+1pPPvlkTjnllE1W26YIJG2qml588cUcf/zx6d+/fzp06JABAwbkqKOOylNPPfWBr13uBLCoKLYgBAAAAAAAAAC2lP/5n//JPvvskxdeeCG33357XnzxxUyePDkPPvhghg4dmsWLF7+v6/Xq1SudO3feTNW2zqao6amnnsree++dv/zlL7nxxhszd+7c3HHHHRk8eHDOOuusTVRp+RLAoiLYghAAAAAAAAAAPjyKxWJWrF5Tkq/i+wghjB07Nu3bt88DDzyQz33uc9l2221zyCGH5Le//W3+93//N+eee26L9cuWLctRRx2VLl265GMf+1iuv/76Fuf/eWLVkiVLctJJJ6VXr16prq7OQQcdlGeeeabFc6ZNm5Z99903HTt2TM+ePfOlL30pSXLAAQdkwYIFOeOMM1IoFFL4x1SbBQsW5LDDDstWW22VLl26ZJdddsn06dM3eI//XFOhUMhPf/rTfOlLX0rnzp0zcODA/Od//ucGn18sFnPcccdl4MCBeeyxx3LooYfm4x//ePbcc89MnDgxd911V/PaCRMmZKeddkrnzp2zww475LzzzktDQ8NG3e9aK1asyAknnJBu3bpl2223zU033dTi/CuvvJKvfe1rqampSY8ePXL44Yfnr3/96wbr3xTabtarb0HXX399rrzyytTV1WWPPfbIddddl/3226/UZbHJGYEFAAAAAAAAAJXu7YbGfOL8+0vy2nMvGpnO7d87MrN48eLcf//9ueSSS9KpU6cW52pra3P00Udn6tSpmTRpUnP46corr8z3v//9XHjhhbn//vvz7W9/OzvttFMOPvjg9b7GV7/61XTq1Cn33ntvunfvnhtvvDGf//zn85e//CU9evTIPffcky996Us599xzc+utt2b16tXNYarf/OY32WOPPXLKKafk5JNPbr7m2LFjs3r16sycOTNdunTJ3Llz07Vr1/f1Hl144YW54oorcuWVV+a6667L0UcfnQULFqRHjx7rrH366afz3HPP5bbbbktV1bqzoGpqapq/79atW6ZMmZJ+/frlz3/+c04++eR069Yt3/ve95LkXe93rR//+Me5+OKL8/3vfz+//vWvc+qpp+Zzn/tcBg0alIaGhowcOTJDhw7NY489lrZt2+Zf//VfM2rUqDz77LNp3779+3ofNtaHIoA1derUnHnmmZk8eXKGDBmSa665JiNHjsy8efPSu3fvUpfHJmAAFgAAAAAAAACwJb3wwgspFovZeeed13t+5513zt/+9rcsWrSoOZ/y6U9/OmeffXaSZKeddsrvfve7XH311esNYD3++ON54okn8vrrr6dDhw5Jkh/96Ee588478+tf/zqnnHJKLrnkkhx55JG58MILm5+3xx57JEl69OiRNm3apFu3bqmtrW0+//LLL2fMmDHZbbfdkiQ77LDD+7734447LkcddVSS5NJLL821116bJ554IqNGjVrv+5QkgwcPfs/r/uAHP2j+fvvtt893vvOd/OIXv2gOYL3b/a71hS98Id/61reS/H2i1tVXX52HH344gwYNytSpU9PU1JSf/vSnzaG4m2++OTU1NXnkkUcyYsSI9/M2bLQPRQDrqquuysknn5zjjz8+STJ58uTcc889+dnPftb8i5oPh4IBWAAAAAAAAABQ8Tq1a5O5F40s2Wu/H+9ny8KhQ4eu8/id2/u90zPPPJPly5dn6623bnH87bffzksvvZTk79Ol3jndamOcfvrpOfXUU/PAAw9k+PDhGTNmTHbffff3dY13ru/SpUuqq6vz+uuvr3ft+3l/pk6dmmuvvTYvvfRSli9fnjVr1qS6urr5/Mbc7ztrKxQKqa2tba7tmWeeyYsvvphu3bq1eM7KlSub39PNoeIDWKtXr87s2bNzzjnnNB+rqqrK8OHDM2vWrPU+Z9WqVVm1alXz4/r6+iRJQ0PDOvtKUh6ampqSJI2NjX5GAFCh1vZwvRwAKpd+DgCVTz8HgMpXqf28oaEhxWIxTU1NzRmAjm3X3a5uSygWixsVGtphhx1SKBQyd+7cHH744eucnzt3brbaaqtsvfXWzfe09h7f+VpJ1jnW1NSUZcuWpW/fvnnooYfWuXZNTU2amprSqVOnFu/Zhu7nnedPOOGEHHzwwbnnnnsyY8aMXHbZZfnRj36UcePGbfQ12rRp0+JxoVDImjVr1lvHjjvu2Px+/PO0qneaNWtWjj766FxwwQUZMWJEunfvnqlTp+aqq65qvu7G3G/btm3Xqa2xsbH5Pd17773zH//xH+s8r1evXuu9blNTU4rFYhoaGtKmTctw3sb+Pqv4ANYbb7yRxsbG9OnTp8XxPn365Pnnn1/vcy677LIWo8rWeuCBB9K5c+fNUicfzBtvVCWpytznnsv0RXNKXQ4A8AHMmDGj1CUAAB+Qfg4AlU8/B4DKV2n9vG3btqmtrc3y5cuzevXqUpezUdq1a5cDDzwwkyZNygknnJBOnTo1n1u4cGFuu+22HHHEEVm2bFmSvwd5Hn/88eZBQEny2GOPZccdd2w+1tTUlJUrV6a+vj6DBg1KXV1dVq5cmW233Xad16+vr88nPvGJ3H///RkzZsx6a2zbtm3eeuutFq+ZJN27d8/Xv/71fP3rX8+FF16YG2+8Md/4xjfWe4131rTW22+/3eJxsVhcZ81aO+ywQwYPHpwf/ehHOeSQQ1JV1TJYt3Tp0nTv3j0PP/xwttlmmxZBsBdffDHFYrH5uu91v+urtbGxMatWrUp9fX123nnnTJ06NR07dmwxWWut9dW/evXqvP3225k5c2bWrFnT4tyKFSvWW8c/q/gAVmucc845OfPMM5sf19fXZ5tttsmIESPW++ZTev13W5wHH/9jvjbys/lYj66lLgcAaIWGhobMmDEjBx98cNq1a1fqcgCAVtDPAaDy6ecAUPkqtZ+vXLkyr7zySrp27ZqOHTuWupyNNmnSpHzmM5/JEUcckYsuuigDBgzIc889lwkTJuRjH/tYrrjiiuasSVVVVZ544onceOONOfzww/Pb3/42d911V6ZNm9Zizdpw0L/8y79k6NCh+cY3vpEf/vCH2WmnnfLaa69l+vTpGT16dPbZZ59ceOGFOfjggzN48OAcccQRWbNmTe69995873vfS5IMGDAgTzzxRJYtW5YOHTqkZ8+eOeOMMzJq1KjstNNO+dvf/pZZs2Zll1122WAm5p01rdWpU6cWjwuFwgZDTUly8803Z8SIETnssMNyzjnnZPDgwVm+fHnuvvvuzJgxIw8//HB23XXXvPrqq5k+fXr23XffTJ8+Pffcc08KhULzdd/rftdXa5s2bdKhQ4dUV1fnxBNPzPXXX59jjz02F1xwQfr3758FCxbkjjvuyHe/+930799/ndpXrlyZTp06ZdiwYev82lxfYGt9Kj6A1bNnz7Rp0yYLFy5scXzhwoWpra1d73M6dOiQDh06rHO8Xbt2FfUvp4+S3bfpkVe7F/OxHl39jACgwvlvLgCofPo5AFQ+/RwAKl+l9fPGxsYUCoVUVVWtMyGpnA0aNChPPfVUJk6cmCOPPDKLFy9ObW1tRo8enYkTJ2brrbdusf6ss87K7Nmzc9FFF6W6ujpXXXVVDjnkkBZr1r4PSTJ9+vSce+65OfHEE7No0aLU1tZm2LBh6du3b6qqqnLQQQflV7/6VS6++OJcfvnlqa6uzrBhw5qff/HFF+eb3/xmBg4cmFWrVjVvJXjaaafl1VdfTXV1dUaNGpWrr776Xd/3d9aUZL0/p3f72e2///556qmncskll+Sb3/xm3njjjfTt2zef+tSncs0116SqqiqjR4/OGWeckdNPPz2rVq3KoYcemvPOOy8XXHBB83Xf637XV+s7j3Xt2jUzZ87MhAkT8pWvfCXLli3Lxz72sXz+859PTU3NeuuvqqpKoVBY7++pjf09VihuzKaWZW7IkCHZb7/9ct111yX5+7ixbbfdNuPGjcvZZ5/9ns+vr69P9+7ds3TpUhOwylRDQ0OmT5+eL3zhCxXVQACA/08/B4DKp58DQOXTzwGg8lVqP1+5cmXmz5+fAQMGVNQErE2tb9++ufjii3PSSSeVuhT+4d1+bW5spqjiJ2AlyZlnnpljjz02++yzT/bbb79cc801eeutt3L88ceXujQAAAAAAAAAAD7iVqxYkd/97ndZuHBhdtlll1KXwyb2oQhgHXHEEVm0aFHOP//81NXVZc8998x9992XPn36lLo0AAAAAAAAAAA+4m666aZcfPHFGT9+fIYOHVrqctjEPhQBrCQZN25cxo0bV+oyAAAAAAAAAACghfHjx2f8+PGlLoPNpKrUBQAAAAAAAAAAAFQqASwAAAAAAAAAALaIYrFY6hKghU3xa1IACwAAAAAAAACAzapNmzZJktWrV5e4EmhpxYoVSZJ27dq1+hptN1UxAAAAAAAAAACwPm3btk3nzp2zaNGitGvXLlVVZgZRWsViMStWrMjrr7+empqa5pBgawhgAQAAAAAAAACwWRUKhfTt2zfz58/PggULSl0ONKupqUltbe0HuoYAFgAAAAAAAAAAm1379u0zcOBA2xBSNtq1a/eBJl+tJYAFAAAAAAAAAMAWUVVVlY4dO5a6DNikbKgJAAAAAAAAAADQSgJYAAAAAAAAAAAArSSABQAAAAAAAAAA0EptS11AOSgWi0mS+vr6ElfChjQ0NGTFihWpr69Pu3btSl0OANAK+jkAVD79HAAqn34OAJVPP4ctZ22WaG22aEMEsJIsW7YsSbLNNtuUuBIAAAAAAAAAAKCcLFu2LN27d9/g+ULxvSJaHwFNTU157bXX0q1btxQKhVKXw3rU19dnm222ySuvvJLq6upSlwMAtIJ+DgCVTz8HgMqnnwNA5dPPYcspFotZtmxZ+vXrl6qqqg2uMwErSVVVVfr371/qMtgI1dXVGggAVDj9HAAqn34OAJVPPweAyqefw5bxbpOv1tpwNAsAAAAAAAAAAIB3JYAFAAAAAAAAAADQSgJYVIQOHTpk4sSJ6dChQ6lLAQBaST8HgMqnnwNA5dPPAaDy6edQfgrFYrFY6iIAAAAAAAAAAAAqkQlYAAAAAAAAAAAArSSABQAAAAAAAAAA0EoCWAAAAAAAAAAAAK0kgAUAAAAAAAAAANBKAlhUhOuvvz7bb799OnbsmCFDhuSJJ54odUkAQJILLrgghUKhxdfgwYObz69cuTJjx47N1ltvna5du2bMmDFZuHBhi2u8/PLLOfTQQ9O5c+f07t073/3ud7NmzZotfSsA8JExc+bMHHbYYenXr18KhULuvPPOFueLxWLOP//89O3bN506dcrw4cPzwgsvtFizePHiHH300amurk5NTU1OPPHELF++vMWaZ599Np/97GfTsWPHbLPNNrniiis2960BwEfGe/Xz4447bp0/r48aNarFGv0cAErnsssuy7777ptu3bqld+/eGT16dObNm9dizab6fP2RRx7JJz/5yXTo0CE77rhjpkyZsrlvDz6SBLAoe1OnTs2ZZ56ZiRMn5k9/+lP22GOPjBw5Mq+//nqpSwMAkuyyyy75v//7v+avxx9/vPncGWeckWnTpuVXv/pVHn300bz22mv58pe/3Hy+sbExhx56aFavXp3f//73ueWWWzJlypScf/75pbgVAPhIeOutt7LHHnvk+uuvX+/5K664Itdee20mT56cP/7xj+nSpUtGjhyZlStXNq85+uij89xzz2XGjBm5++67M3PmzJxyyinN5+vr6zNixIhst912mT17dq688spccMEFuemmmzb7/QHAR8F79fMkGTVqVIs/r99+++0tzuvnAFA6jz76aMaOHZs//OEPmTFjRhoaGjJixIi89dZbzWs2xefr8+fPz6GHHpoDDzwwTz/9dMaPH5+TTjop999//xa9X/goKBSLxWKpi4B3M2TIkOy77775yU9+kiRpamrKNttsk9NOOy1nn312iasDgI+2Cy64IHfeeWeefvrpdc4tXbo0vXr1ym233ZavfOUrSZLnn38+O++8c2bNmpX9998/9957b774xS/mtddeS58+fZIkkydPzoQJE7Jo0aK0b99+S94OAHzkFAqF3HHHHRk9enSSv0+/6tevX84666x85zvfSfL3nt6nT59MmTIlRx55ZP77v/87n/jEJ/Lkk09mn332SZLcd999+cIXvpBXX301/fr1yw033JBzzz03dXV1zf387LPPzp133pnnn3++JPcKAB9W/9zPk79PwFqyZMk6k7HW0s8BoLwsWrQovXv3zqOPPpphw4Ztss/XJ0yYkHvuuSdz5sxpfq0jjzwyS5YsyX333VeSe4UPKxOwKGurV6/O7NmzM3z48OZjVVVVGT58eGbNmlXCygCAtV544YX069cvO+ywQ44++ui8/PLLSZLZs2enoaGhRR8fPHhwtt122+Y+PmvWrOy2227NfzhMkpEjR6a+vj7PPffclr0RACDz589PXV1di/7dvXv3DBkypEX/rqmpaf6ftUkyfPjwVFVV5Y9//GPzmmHDhrUIU48cOTLz5s3L3/72ty10NwDw0fbII4+kd+/eGTRoUE499dS8+eabzef0cwAoL0uXLk2S9OjRI8mm+3x91qxZLa6xdo3/1w6bngAWZe2NN95IY2Nji6aRJH369EldXV2JqgIA1hoyZEimTJmS++67LzfccEPmz5+fz372s1m2bFnz35Ctqalp8Zx39vG6urr19vm15wCALWtt/323P4fX1dWld+/eLc63bds2PXr00OMBoEyMGjUqt956ax588MFcfvnlefTRR3PIIYeksbExiX4OAOWkqakp48ePz6c//ensuuuuSbLJPl/f0Jr6+vq8/fbbm+N24COrbakLAACgch1yyCHN3+++++4ZMmRItttuu/zyl79Mp06dSlgZAAAAfHQdeeSRzd/vtttu2X333fPxj388jzzySD7/+c+XsDIA4J+NHTs2c+bMyeOPP17qUoAPwAQsylrPnj3Tpk2bLFy4sMXxhQsXpra2tkRVAQAbUlNTk5122ikvvvhiamtrs3r16ixZsqTFmnf28dra2vX2+bXnAIAta23/fbc/h9fW1ub1119vcX7NmjVZvHixHg8AZWqHHXZIz5498+KLLybRzwGgXIwbNy533313Hn744fTv37/5+Kb6fH1Da6qrq/0latjEBLAoa+3bt8/ee++dBx98sPlYU1NTHnzwwQwdOrSElQEA67N8+fK89NJL6du3b/bee++0a9euRR+fN29eXn755eY+PnTo0Pz5z39u8aHvjBkzUl1dnU984hNbvH4A+KgbMGBAamtrW/Tv+vr6/PGPf2zRv5csWZLZs2c3r3nooYfS1NSUIUOGNK+ZOXNmGhoamtfMmDEjgwYNylZbbbWF7gYAWOvVV1/Nm2++mb59+ybRzwGg1IrFYsaNG5c77rgjDz30UAYMGNDi/Kb6fH3o0KEtrrF2jf/XDpteoVgsFktdBLybqVOn5thjj82NN96Y/fbbL9dcc01++ctf5vnnn19nv1oAYMv6zne+k8MOOyzbbbddXnvttUycODFPP/105s6dm169euXUU0/N9OnTM2XKlFRXV+e0005Lkvz+979PkjQ2NmbPPfdMv379csUVV6Suri7HHHNMTjrppFx66aWlvDUA+NBavnx58/SLvfbaK1dddVUOPPDA9OjRI9tuu20uv/zy/PCHP8wtt9ySAQMG5Lzzzsuzzz6buXPnpmPHjkn+vg3xwoULM3ny5DQ0NOT444/PPvvsk9tuuy1JsnTp0gwaNCgjRozIhAkTMmfOnJxwwgm5+uqrc8opp5Ts3gHgw+Ld+nmPHj1y4YUXZsyYMamtrc1LL72U733ve1m2bFn+/Oc/p0OHDkn0cwAopW9961u57bbbctddd2XQoEHNx7t37948mWpTfL4+f/787Lrrrhk7dmxOOOGEPPTQQzn99NNzzz33ZOTIkVv4ruHDTQCLivCTn/wkV155Zerq6rLnnnvm2muvbf5bOABA6Rx55JGZOXNm3nzzzfTq1Suf+cxncskll+TjH/94kmTlypU566yzcvvtt2fVqlUZOXJkJk2a1GKrggULFuTUU0/NI488ki5duuTYY4/ND3/4w7Rt27ZUtwUAH2qPPPJIDjzwwHWOH3vssZkyZUqKxWImTpyYm266KUuWLMlnPvOZTJo0KTvttFPz2sWLF2fcuHGZNm1aqqqqMmbMmFx77bXp2rVr85pnn302Y8eOzZNPPpmePXvmtNNOy4QJE7bIPQLAh9279fMbbrgho0ePzn/9139lyZIl6devX0aMGJGLL764xV9q1s8BoHQKhcJ6j99888057rjjkmy6z9cfeeSRnHHGGZk7d2769++f8847r/k1gE1HAAsAAAAAAAAAAKCVqkpdAAAAAAAAAAAAQKUSwAIAAAAAAAAAAGglASwAAAAAAAAAAIBWEsACAAAAAAAAAABoJQEsAAAAAAAAAACAVhLAAgAAAAAAAAAAaCUBLAAAAAAAAAAAgFYSwAIAAAAAAAAAAGglASwAAAAAKt5xxx2X0aNHl+z1jznmmFx66aUbtfbII4/Mj3/8481cEQAAAABbSqFYLBZLXQQAAAAAbEihUHjX8xMnTswZZ5yRYrGYmpqaLVPUOzzzzDM56KCDsmDBgnTt2vU918+ZMyfDhg3L/Pnz07179y1QIQAAAACbkwAWAAAAAGWtrq6u+fupU6fm/PPPz7x585qPde3adaOCT5vLSSedlLZt22by5Mkb/Zx99903xx13XMaOHbsZKwMAAABgS7AFIQAAAABlrba2tvmre/fuKRQKLY517dp1nS0IDzjggJx22mkZP358ttpqq/Tp0yf/9m//lrfeeivHH398unXrlh133DH33ntvi9eaM2dODjnkkHTt2jV9+vTJMccckzfeeGODtTU2NubXv/51DjvssBbHJ02alIEDB6Zjx47p06dPvvKVr7Q4f9hhh+UXv/jFB39zAAAAACg5ASwAAAAAPpRuueWW9OzZM0888UROO+20nHrqqfnqV7+aT33qU/nTn/6UESNG5JhjjsmKFSuSJEuWLMlBBx2UvfbaK0899VTuu+++LFy4MF/72tc2+BrPPvtsli5dmn322af52FNPPZXTTz89F110UebNm5f77rsvw4YNa/G8/fbbL0888URWrVq1eW4eAAAAgC1GAAsAAACAD6U99tgjP/jBDzJw4MCcc8456dixY3r27JmTTz45AwcOzPnnn58333wzzz77bJLkJz/5Sfbaa69ceumlGTx4cPbaa6/87Gc/y8MPP5y//OUv632NBQsWpE2bNundu3fzsZdffjldunTJF7/4xWy33XbZa6+9cvrpp7d4Xr9+/bJ69eoW2ysCAAAAUJkEsAAAAAD4UNp9992bv2/Tpk223nrr7Lbbbs3H+vTpkyR5/fXXkyTPPPNMHn744XTt2rX5a/DgwUmSl156ab2v8fbbb6dDhw4pFArNxw4++OBst9122WGHHXLMMcfk5z//efOUrbU6deqUJOscBwAAAKDyCGABAAAA8KHUrl27Fo8LhUKLY2tDU01NTUmS5cuX57DDDsvTTz/d4uuFF15YZwvBtXr27JkVK1Zk9erVzce6deuWP/3pT7n99tvTt2/fnH/++dljjz2yZMmS5jWLFy9OkvTq1WuT3CsAAAAApSOABQAAAABJPvnJT+a5557L9ttvnx133LHFV5cuXdb7nD333DNJMnfu3BbH27Ztm+HDh+eKK67Is88+m7/+9a956KGHms/PmTMn/fv3T8+ePTfb/QAAAACwZQhgAQAAAECSsWPHZvHixTnqqKPy5JNP5qWXXsr999+f448/Po2Njet9Tq9evfLJT34yjz/+ePOxu+++O9dee22efvrpLFiwILfeemuampoyaNCg5jWPPfZYRowYsdnvCQAAAIDNTwALAAAAAJL069cvv/vd79LY2JgRI0Zkt912y/jx41NTU5Oqqg1/jHbSSSfl5z//efPjmpqa/OY3v8lBBx2UnXfeOZMnT87tt9+eXXbZJUmycuXK3HnnnTn55JM3+z0BAAAAsPkVisVisdRFAAAAAEClevvttzNo0KBMnTo1Q4cOfc/1N9xwQ+6444488MADW6A6AAAAADY3E7AAAAAA4APo1KlTbr311rzxxhsbtb5du3a57rrrNnNVAAAAAGwpJmABAAAAAAAAAAC0kglYAAAAAAAAAAAArSSABQAAAAAAAAAA0EoCWAAAAAAAAAAAAK0kgAUAAAAAAAAAANBKAlgAAAAAAAAAAACtJIAFAAAAAAAAAADQSgJYAAAAAAAAAAAArSSABQAAAAAAAAAA0EoCWAAAAAAAAAAAAK30/wBF0hX4glGKdwAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAACWAAAAHWCAYAAADzMbJhAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy80BEi2AAAACXBIWXMAAA9hAAAPYQGoP6dpAADNFklEQVR4nOzdd3wUdf7H8ffupvdGKoGE0HtTlK7SRFFsYO/lLKeep556NuxdrKfe2ctZUX82ECtWUJHeOwQIpPe2u78/NjPZlpDEhCTn6/l4+JDszs5+Z3bmO9/vdz7z+VqcTqdTAAAAAAAAAAAAAAAAAIBms7Z3AQAAAAAAAAAAAAAAAACgsyIACwAAAAAAAAAAAAAAAABaiAAsAAAAAAAAAAAAAAAAAGghArAAAAAAAAAAAAAAAAAAoIUIwAIAAAAAAAAAAAAAAACAFiIACwAAAAAAAAAAAAAAAABaiAAsAAAAAAAAAAAAAAAAAGghArAAAAAAAAAAAAAAAAAAoIUIwAIAAAAAAAAAAAAAAACAFiIACwAAAAAAoIm++eYbWSwWvfvuu+1dlCbJycnRySefrPj4eFksFs2dO7fV1r1t2zZZLBY99NBDB1z29ttvl8ViabXvPhgsFotuv/329i5Gq7BYLLriiivauxidWkZGhs4999z2LgYAAAAAAOigCMACAAAAAAAdyksvvSSLxaKQkBBlZ2f7vD9x4kQNHDiwHUrW+fztb3/TggULdOONN+rVV1/VtGnTGl2+rKxMd955pwYPHqywsDBFR0dr3LhxeuWVV+R0Og9SqZvv008/7TTBUt98841OPPFEJScnKygoSImJiZoxY4bmzZvX3kVrFTU1NXr88cd1yCGHKDIyUhERETrkkEP0+OOPq6ampr2LZzKCKZvyHwAAAAAAwIEEtHcBAAAAAAAA/KmqqtJ9992nJ554or2L0ml99dVXOv7443XttdcecNmcnBwdddRRWrt2rU499VRdccUVqqys1HvvvadzzjlHn376qV5//XXZbLZml+Pmm2/WDTfc0JJNaJJPP/1UTz31VKsGYVVUVCggoHWHzm677Tbdcccd6tWrly655BJ1795deXl5+vTTT3XSSSfp9ddf1+mnn96q33kwlZWV6ZhjjtG3336rY489Vueee66sVqvmz5+vq666SvPmzdMnn3yi8PDw9i6q+vXrp1dffdXjtRtvvFERERH65z//6bP8+vXrZbXyLCsAAAAAAPCPACwAAAAAANAhDR06VP/+97914403KjU1tb2Lc1CVlZW1SpDKvn37FBMT06RlzznnHK1du1bvv/++jjvuOPP1K6+8Utddd50eeughDRs2TP/4xz+aXY6AgIBWD2ZqayEhIa26vnfffVd33HGHTj75ZL3xxhsKDAw037vuuuu0YMGCDpUhqiWuueYaffvtt3riiSc8pjy89NJL9dRTT+mKK67Qtddeq3/9618HrUxOp1OVlZUKDQ31eD0pKUlnnnmmx2v33XefEhISfF6XpODg4DYtJwAAAAAA6Nx4bAsAAAAAAHRIN910k+x2u+67775Gl9u2bZssFoteeukln/csFotHVqTbb79dFotFGzZs0Jlnnqno6Gh16dJFt9xyi5xOp3bu3Knjjz9eUVFRSk5O1sMPP+z3O+12u2666SYlJycrPDxcxx13nHbu3Omz3OLFizVt2jRFR0crLCxMEyZM0A8//OCxjFGmNWvW6PTTT1dsbKzGjh3b6DZv2bJFp5xyiuLi4hQWFqbDDjtMn3zyifm+MY2j0+nUU089dcCp1H7++WctWLBA5557rkfwleHee+9Vr169dP/996uiosLn/UcffVTdu3dXaGioJkyYoFWrVvndRm+vvfaaRowYodDQUMXFxenUU09tcD9Onz5dsbGxCg8P1+DBg/XYY49Jks4991w99dRTkuR32rg333xTI0aMUGRkpKKiojRo0CDzs41p6NjZtGmTzj33XMXExCg6OlrnnXeeysvLD7i+W265RXFxcXrhhRc8gq8MU6dO1bHHHitJqq6u1q233qoRI0YoOjpa4eHhGjdunL7++mufzzkcDj322GMaNGiQQkJC1KVLF02bNk2//vqrz7IffPCBBg4cqODgYA0YMEDz58/3WSY7O1vnn3++kpKSzOVeeOGFA27frl279Pzzz+vII4/0CL4yXH755TriiCP0n//8R7t27ZIkDRw4UEcccYTfbUpLS9PJJ5/s8drcuXM1YMAAhYSEKCkpSZdccokKCgo8PpuRkaFjjz1WCxYs0MiRIxUaGqpnn332gOU/kIyMDJ177rnm38Y59v333+vKK69Uly5dFBMTo0suuUTV1dUqLCzU2WefrdjYWMXGxur666/3mcazqdsEAAAAAAA6PgKwAAAAAABAh5SZmamzzz5b//73v7V79+5WXffs2bPlcDh03333adSoUbrrrrs0d+5cTZ48WWlpabr//vvVs2dPXXvttVq0aJHP5++++2598skn+sc//qErr7xSCxcu1KRJkzyCk7766iuNHz9excXFuu2223TPPfeosLBQRx55pJYsWeKzzlNOOUXl5eW65557dNFFFzVY9pycHI0ePVoLFizQZZddprvvvluVlZU67rjj9P7770uSxo8fb06vNnnyZL366qs+0625++ijjyRJZ599tt/3AwICdPrpp6ugoMAngOyVV17R448/rssvv1w33nijVq1apSOPPFI5OTkNfp/k2odnn322evXqpUceeURXX321vvzyS40fP16FhYXmcgsXLtT48eO1Zs0aXXXVVXr44Yd1xBFH6OOPP5YkXXLJJZo8ebIkmdtpbOvChQt12mmnKTY2Vvfff7/uu+8+TZw40WcbmmPWrFkqKSnRvffeq1mzZumll17SnDlzGv3Mxo0btW7dOs2cOVORkZEH/I7i4mL95z//0cSJE3X//ffr9ttv1/79+zV16lQtW7bMY9kLLrhAV199tdLT03X//ffrhhtuUEhIiH7++WeP5b7//ntddtllOvXUU/XAAw+osrJSJ510kvLy8sxlcnJydNhhh+mLL77QFVdcoccee0w9e/bUBRdcoLlz5zZa5s8++0x2u73BY0hyHV+1tbVm4Nfs2bO1aNEi7d2716esu3fv1qmnnmq+dskll+i6667TmDFj9Nhjj+m8887T66+/rqlTp/pkDlu/fr1OO+00TZ48WY899piGDh3aaNn/iL/+9a/auHGj5syZo+OOO07PPfecbrnlFs2YMUN2u1333HOPxo4dqwcffNDnHGzONgEAAAAAgA7OCQAAAAAA0IG8+OKLTknOX375xbl582ZnQECA88orrzTfnzBhgnPAgAHm31u3bnVKcr744os+65LkvO2228y/b7vtNqck58UXX2y+Vltb6+zatavTYrE477vvPvP1goICZ2hoqPOcc84xX/v666+dkpxpaWnO4uJi8/W3337bKcn52GOPOZ1Op9PhcDh79erlnDp1qtPhcJjLlZeXOzMzM52TJ0/2KdNpp53WpP1z9dVXOyU5v/vuO/O1kpISZ2ZmpjMjI8Npt9s9tv/yyy8/4DpnzpzplOQsKChocJl58+Y5JTkff/xxp9NZv99DQ0Odu3btMpdbvHixU5Lzb3/7m882GrZt2+a02WzOu+++2+M7Vq5c6QwICDBfr62tdWZmZjq7d+/uUzb3/Xr55Zc7/Q1zXXXVVc6oqChnbW3tAfeBt4aOnfPPP99juRNOOMEZHx/f6Lo+/PBDpyTno48+2qTvrq2tdVZVVXm8VlBQ4ExKSvL4/q+++sopyeP8MLjvH0nOoKAg56ZNm8zXli9f7pTkfOKJJ8zXLrjgAmdKSoozNzfXY12nnnqqMzo62lleXt5gmY3j8vfff29wmaVLlzolOa+55hqn0+l0rl+/3qcMTqfTedlllzkjIiLM7/vuu++ckpyvv/66x3Lz58/3eb179+5OSc758+c3WI6GDBgwwDlhwgS/73Xv3t2jLjDqKe9z/PDDD3daLBbnX/7yF/M1o45xX3dztgkAAAAAAHR8ZMACAAAAAAAdVo8ePXTWWWfpueee0549e1ptvRdeeKH5b5vNppEjR8rpdOqCCy4wX4+JiVGfPn20ZcsWn8+fffbZHpmMTj75ZKWkpOjTTz+VJC1btkwbN27U6aefrry8POXm5io3N1dlZWU66qijtGjRIjkcDo91/uUvf2lS2T/99FMdeuihHtMURkRE6OKLL9a2bdu0Zs2apu0ENyUlJZLUaHYm473i4mKP12fOnKm0tDTz70MPPVSjRo0y94U/8+bNk8Ph0KxZs8x9k5ubq+TkZPXq1cucau/333/X1q1bdfXVVysmJsZjHY1NqWiIiYlRWVmZFi5ceMBlm8r7dxo3bpzy8vJ89os7472mZL+SXMdkUFCQJNc0dfn5+aqtrdXIkSO1dOlSc7n33ntPFotFt912m886vPfPpEmTlJWVZf49ePBgRUVFmce30+nUe++9pxkzZsjpdHr8LlOnTlVRUZHHd3tryTHUu3dvDR06VG+99Za5jN1u17vvvqsZM2YoNDRUkvTOO+8oOjpakydP9ijXiBEjFBER4TM1Y2ZmpqZOndpgOVrTBRdc4LGvR40a5VOXGHWMe13S3G0CAAAAAAAdW0B7FwAAAAAAAKAxN998s1599VXdd999euyxx1plnd26dfP4Ozo6WiEhIUpISPB53X2KNkOvXr08/rZYLOrZs6e2bdsmyTXlnCSdc845DZahqKhIsbGx5t+ZmZlNKvv27ds1atQon9f79etnvj9w4MAmrctgBMaUlJT4BDoZGgqw8d4Xkiuw5u23327w+zZu3Cin0+n3s5IUGBgoSdq8ebMkNXt7DJdddpnefvttHX300UpLS9OUKVM0a9YsTZs2rUXrk3yPHeM3LCgoUFRUlN/PGK8b+7ApXn75ZT388MNat26dx3R07sfJ5s2blZqaqri4uGaX2yh7QUGBJGn//v0qLCzUc889p+eee87vOvbt29fg+t2PoYb4O4Zmz56tm266SdnZ2UpLS9M333yjffv2afbs2eYyGzduVFFRkRITE5tUrqaeS63BX10iSenp6T6vG/taav42AQAAAACAjo0ALAAAAAAA0KH16NFDZ555pp577jndcMMNPu83lAnJbrc3uE6bzdak1yRXZqDmMrJbPfjggxo6dKjfZSIiIjz+NrL9tId+/frpgw8+0IoVKzR+/Hi/y6xYsUKS1L9//z/8fQ6HQxaLRZ999pnf/e69b1oqMTFRy5Yt04IFC/TZZ5/ps88+04svvqizzz5bL7/8covW2ZLjpG/fvpKklStXNuk7XnvtNZ177rmaOXOmrrvuOiUmJspms+nee+81g9Ka60DlNo7ZM888s8HAwcGDBze4fiMAcMWKFQ0e8/6OodmzZ+vGG2/UO++8o6uvvlpvv/22oqOjPYLkHA6HEhMT9frrr/tdb5cuXTz+PpjnUkP71d/r7sdIc7cJAAAAAAB0bARgAQAAAACADu/mm2/Wa6+9pvvvv9/nPSMDUWFhocfr27dvb7PyGBmuDE6nU5s2bTIDVIyp3qKiojRp0qRW/e7u3btr/fr1Pq+vW7fOfL+5jj32WN1777165ZVX/AZg2e12vfHGG4qNjdWYMWM83vPeF5K0YcMGZWRkNPh9WVlZcjqdyszMVO/evRtdTpJWrVrV6H5sbDrCoKAgzZgxQzNmzJDD4dBll12mZ599Vrfccot69uzZ4OdaU+/evdWnTx99+OGHeuyxxw4YYPbuu++qR48emjdvnse2eU81mJWVpQULFig/P79JWbAa06VLF0VGRsput7fomD366KNls9n06quv6uyzz/a7zCuvvKKAgACP4KrMzEwdeuiheuutt3TFFVdo3rx5mjlzpoKDg81lsrKy9MUXX2jMmDHtGqjYmv4XtwkAAAAAgD8za3sXAAAAAAAA4ECysrJ05pln6tlnn9XevXs93ouKilJCQoIWLVrk8frTTz/dZuV55ZVXPKZae/fdd7Vnzx4dffTRkqQRI0YoKytLDz30kEpLS30+v3///hZ/9/Tp07VkyRL99NNP5mtlZWV67rnnlJGR0aIMVaNHj9akSZP04osv6uOPP/Z5/5///Kc2bNig66+/3idY5IMPPlB2drb595IlS7R48WJzX/hz4oknymazac6cOT6Zo5xOpznt4/Dhw5WZmam5c+f6BNi5fy48PFySbxCe9/SRVqvVDJKrqqpqsHxtYc6cOcrLy9OFF16o2tpan/c///xzc98b2ZPct3Hx4sUev7kknXTSSXI6nZozZ47P+pqbuc1ms+mkk07Se++9p1WrVvm8f6BjNj09Xeedd56++OIL/etf//J5/5lnntFXX32lCy64QF27dvV4b/bs2fr555/1wgsvKDc312P6QUmaNWuW7Ha77rzzTp/11tbW+vzuncH/4jYBAAAAAPBnRgYsAAAAAADQKfzzn//Uq6++qvXr12vAgAEe71144YW67777dOGFF2rkyJFatGiRNmzY0GZliYuL09ixY3XeeecpJydHc+fOVc+ePXXRRRdJcgX6/Oc//9HRRx+tAQMG6LzzzlNaWpqys7P19ddfKyoqSh999FGLvvuGG27Qf//7Xx199NG68sorFRcXp5dffllbt27Ve++9J6u1Zc/bvfLKKzrqqKN0/PHH6/TTT9e4ceNUVVWlefPm6ZtvvtHs2bN13XXX+XyuZ8+eGjt2rC699FJVVVVp7ty5io+P1/XXX9/gd2VlZemuu+7SjTfeqG3btmnmzJmKjIzU1q1b9f777+viiy/WtddeK6vVqn/961+aMWOGhg4dqvPOO08pKSlat26dVq9erQULFkhyBbxJ0pVXXqmpU6fKZrPp1FNP1YUXXqj8/HwdeeSR6tq1q7Zv364nnnhCQ4cONafMO1hmz56tlStX6u6779bvv/+u0047Td27d1deXp7mz5+vL7/8Um+88YYkV0ayefPm6YQTTtAxxxyjrVu36plnnlH//v09AvqOOOIInXXWWXr88ce1ceNGTZs2TQ6HQ999952OOOIIXXHFFc0q43333aevv/5ao0aN0kUXXaT+/fsrPz9fS5cu1RdffKH8/PxGP//oo49q3bp1uuyyyzR//nwz09WCBQv04YcfasKECXr44Yd9Pjdr1ixde+21uvbaaxUXF+eTgWvChAm65JJLdO+992rZsmWaMmWKAgMDtXHjRr3zzjt67LHHdPLJJzdrW9vb/+I2AQAAAADwZ0YAFgAAAAAA6BR69uypM888Uy+//LLPe7feeqv279+vd999V2+//baOPvpoffbZZ0pMTGyTstx0001asWKF7r33XpWUlOioo47S008/rbCwMHOZiRMn6qefftKdd96pJ598UqWlpUpOTtaoUaN0ySWXtPi7k5KS9OOPP+of//iHnnjiCVVWVmrw4MH66KOPdMwxx7R4vSkpKVqyZIkefvhhvfPOO3rvvfcUEBCgwYMH66WXXtLZZ5/td6q/s88+W1arVXPnztW+fft06KGH6sknn1RKSkqj33fDDTeod+/eevTRR80MTunp6ZoyZYqOO+44c7mpU6fq66+/1pw5c/Twww/L4XAoKyvLDHaTXBm1/vrXv+rNN9/Ua6+9JqfTqVNPPVVnnnmmnnvuOT399NMqLCxUcnKyZs+erdtvv73FgWp/xF133aUjjzxSjz/+uP71r38pPz9fsbGxOuyww/Thhx+a233uuedq7969evbZZ7VgwQL1799fr732mt555x198803Hut88cUXNXjwYD3//PO67rrrFB0drZEjR2r06NHNLl9SUpKWLFmiO+64Q/PmzdPTTz+t+Ph4DRgwwO/0n94iIiL05Zdf6umnn9Zrr72m6667Tk6nU3379tXcuXN12WWXKTAw0OdzXbt21ejRo/XDDz/owgsv9LvMM888oxEjRujZZ5/VTTfdpICAAGVkZOjMM8/0mRazs/hf3CYAAAAAAP6sLM7m5iMHAAAAAAAAmuGWW27Rvffe63fqPQAAAAAAAKCzO/iP+gEAAAAAAOBPZc+ePUpISGjvYgAAAAAAAABtgikIAQAAAAAA0Ca2bNmi999/X++8846OPfbY9i4OAAAAAAAA0CbIgAUAAAAAAIA2sWjRIs2ZM0cTJkzQI4880t7FAQAAAAAAANqExel0Otu7EAAAAAAAAAAAAAAAAADQGZEBCwAAAAAAAAAAAAAAAABaiAAsAAAAAAAAAAAAAAAAAGihgPYuQEfgcDi0e/duRUZGymKxtHdxAAAAAAAAAAAAAAAAALQzp9OpkpISpaamymptOM8VAViSdu/erfT09PYuBgAAAAAAAAAAAAAAAIAOZufOneratWuD7xOAJSkyMlKSa2dFRUW1c2ngT01NjT7//HNNmTJFgYGB7V0cAEAnwfUDANBSXEMAAC3B9QMA0BJcPwAALcH1Azg4iouLlZ6ebsYWNYQALMmcdjAqKooArA6qpqZGYWFhioqK4uIBAGgyrh8AgJbiGgIAaAmuHwCAluD6AQBoCa4fwMFlxBY1pOHJCQEAAAAAAAAAAAAAAAAAjSIACwAAAAAAAAAAAAAAAABaiAAsAAAAAAAAAAAAAAAAAGghArAAAAAAAAAAAAAAAAAAoIUIwAIAAAAAAAAAAAAAAACAFiIACwAAAAAAAAAAAAAAAABaiAAsAAAAAAAAAAAAAAAAAGghArAAAAAAAAAAAAAAAAAAoIUIwAIAAAAAAAAAAAAAAACAFiIACwAAAAAAAAAAAAAAAABaqF0DsBYtWqQZM2YoNTVVFotFH3zwgcf7TqdTt956q1JSUhQaGqpJkyZp48aNHsvk5+frjDPOUFRUlGJiYnTBBReotLT0IG4FAAAAAAAAAAAAAAAAgD+rdg3AKisr05AhQ/TUU0/5ff+BBx7Q448/rmeeeUaLFy9WeHi4pk6dqsrKSnOZM844Q6tXr9bChQv18ccfa9GiRbr44osP1iYAAAAAAAAAAAAAAAAA+BMLaM8vP/roo3X00Uf7fc/pdGru3Lm6+eabdfzxx0uSXnnlFSUlJemDDz7QqaeeqrVr12r+/Pn65ZdfNHLkSEnSE088oenTp+uhhx5SamrqQdsWAAAAAAAAAAAAAAAAAH8+7RqA1ZitW7dq7969mjRpkvladHS0Ro0apZ9++kmnnnqqfvrpJ8XExJjBV5I0adIkWa1WLV68WCeccILfdVdVVamqqsr8u7i4WJJUU1OjmpqaNtoi/BHG7+Lv93E6nbr5wzVavqvIfC0k0Kabp/fR0PQYj2UfXrhRX6/f7/Ga1WLRBWMz5HA49cKP2+V0OhssR2RIgCwWi4or6ssRFx6kB08aqKSoEO0trtT1761Sfll1SzazSYamx+iQ7jF6/oftcjRS1rZisVh03uhuGto1Rv/8cLVKKms93l+f45oCtEdCuAJtFp/X+yRFKCM+TI/OGqxAm28Svo9W7NG/v9t2wG1LiAhWcWWNUqJDdO/MAbr2vZXaXVgpi8WiEd1itHpPsSqq7R7f2xQOp1Mb95Xpb0f11F/GZ+q691ZpfU5Jkz7rLjjAquun9tbm/WX675Kd8t4am9Wiyyf20JT+Sfps1V49s2irggOsun1GP/VPiaovj8Op6+et0rq9rjKEBdl0+4x+6pEQrqvfXqFdBRUNlqGwokY5xVXqkxShYwcla9bIrrrmnZXKLa3StrxyWSxS97iwZm+b5Nr/0wYk6b+/7JTd4ftblVXbFREcYJ5PCRHB+mFzniRp1a1HKTjQ5vOZnQXluu3/1urCsRkqqazV099u8bvu9uZ0Shv2lSotJkTvXjJKCRHBkqQv1u7TvxZt0XmHd9exg1MkSQ8s2KBFG3N91tErMUIPnTxINmv9OfLe0my99NMOnzpo8/4y1TqcjR7DRp2XV1qtJ77ZrFp70/ebRdIpI7tqf0mVT/1YUlmr2PBAVVQ7tCW3TFLTzyVJyuoSrgdOHKjr3ltlft5boM2qq47K0sTeXczXSqtqdfVbK7S3uNJj2fU5peoSEaT+KVGaO3uw7l+wQb/vKGzwPLdaLNqWV66YQJue2vyDLBbX/rZYLDp2ULJ+2Jyn6lqH7jy+v3YXVuipb7boLxN66Mg+XeSt1u7Qte+u0qb9ru+KDg3UzoIKRYV4NqV25JcrOjRQ0aGBPutYn1OqEd1i9Ncjs/Tcoq3Kc7tWBAdadeO0PhrZPVZS0+tCbzOHpuqQjFjd9ek6VVTbm/QZi8Wicw7vppOHp5mv2R1OXffeSm3I8Z3WuVtcmB49ZZBu/GC1Nu4r09mHddMpI9KUV1qla95dqbzS+u3alleuqlqHz28TExao+04YqK6xoQ2W665P1+nnLflN2obmyimuUmFFTYPHs81q0aUTemjagCSf9+75bL1+rKvPmiosyKbbju2nAamu+t3pdOof769WZnyYLp3Qw1zOeH3Nblfb1Di2eyWGy2qx+K7YS1RooO6dOUDd48P09q+79OrinT51ikXSaYem6/RD0/2uw+l06ob3V2u1Vxn6JEWoutahrXnligwJUEllrcf+s1osumR8po4ZlKwl2/J1/4INmti7i/56RJa5THZhhW6Yt0oJEcEKCrCa3+GtsLxGJVW1So8N1aEZsZo2MEn3L9igqhqH3+WLK2u1p6iy0frJXz0RGRKgu48foB5dwv1+psbu0N/eXqFteeUer1stFg3vFqPt+eW6eXpfZXl9fmNOqW75vzUqrfJsI0nS8G4xOmtUN01/8kdJ0sDUKF19VJYm9Patd178cbvmLc2Ws4HyN3U7GzM0PUZ3HtdP/7d8j0/b0ntdxt+9EyNkHI67CiqUHhem0qpajzbJ+F7xmjtriB5auEG/bS/0+d6M+DCN6B6r33cU6uFTBpltwts/Wqtftxc0qewH2uYThqXquMEpuvbdlcovr9G5h3fT0QOTdPXbK7Qzv0Kb9pd5tFeDA626YWofHZIRa65j494iPb6q/hoyKC1a98zsb15PjLoyOSpE10/t7bd8FdV2Xf32CmUX+m+z2awW2awWVdfWH9/+tqlbnKv9HBzg2leVNXZd9dYKZSaE6YZpfSRJT3+zRZ+u2uvzHf1TozTn2H762zuNtx29GeWYOSRFD5w00Nxuf7zrxv4pkbr3hIG6Yd4qrd3bcFvafVu7xobqsVmDFRxoU0F5ta55Z6X2l1RpfU6pwoJsmtIvUfefOFBWa+P14YLVOXr55x26aVofZRdW6Jb/WyOb1aL48CCfZfskRerBk1zrvG/+en2/yX/9PiozTrcc01eLt7rqt5XZxeqVGK4ukcF65ORBio8I1uKt+XpgwQZV1f2WTqcUFmxTRbVdoUE23XpMXw1Ki5Yk3b9gg77bmKv4iCA9fPIg5ZZW67aP1qrMrd5Yn1Mqi0U6YWhqg/WlITIkQHfM6K+5X23S9rxy87O9E33rgsiQAN0zc4AyE+rrrl+2Fei+BesbrGebYn1OqXonRmjDvlIF2izqkeC/bpWk+PAg3XZsP93z2XrtLa5UfHiQHjx5kIrKaxqsP5tqeLcYzZnRz+N4feSLjfpq3X6fZZOjQnRE3y5665ddGpIerRHdYvTCD9uVER+myJAALVy7TwXlNZrQO0Ebc0pVUWNXUmSwdhZWqGtMw20Y9/U/OmuwIuvai2VVtbrq7RXaW1Spcb0StGZ3sdkeNM6FrjEhCg/2HarrHh+m/LJqn/63JNU6nHI4nAoKqO9fRwQH6LZj++nZ77Zq075SBQdaNSg1Wmv2FOu6Kb3Num7Ox2tVVevQ3cf399hndodT1767Uhv3+bYFDbml1corq1bvxAjFhgeqW1yYVtSNy4QHB+iOGf3UJznS53OvL96hN3/Z5dFHjgkL1ITeCfpo+d5WG+fwd91yN2Nwii4Zn+nT526MxWLR8G7RWrunROUNtLVtVosuGdtdkucYVmNtSGMcwjCpbxfNnTVYm/aXac7Haxv8rj+qKe0Gi6TSarvCg3z78N7GZMVr475S7Sup8nkvKMCqv0/upTFZ8ZJk1plbcsuVGh3i8RsZdW52YYX+MW+VsgsqFBES2Oh4nSTFRwTp75N66YHPN6iwvEZTByQpNNCmD5btbvRzRh/fKGdmfJi5b4y/G2KRtLOgotF+jWFyv0RFhgRo3u8Nlyck0KYLx2bond92aWr/JH20Yo8Kyps2Vj2pX6KuPqqnvlq/X//8YLVyS6sVGxaoxMhgj+UqauzakV/h87vvKqxQWZXrWDuiT4Iqaxzm+GZUaKAcDmeT6+fYsEA9ePIglVbW6pb/W6PKGoeuPDJLR/Tpoke/2KQv1+3zWD4uPEgPnDRQyVEhevmn7Xr3t2yzjpg2IEnLdhVpb5FrfCCrS7iyCytVWWNXZkK47j6+v/7+7krtKapUUwUHWjU2K0GLNuaqxu669hVX1io+PMj8270tmdfAOO/6nFKlRIf4jAs0ZnyvBJ92Y25plf7u1pfuFhemubMGe9Tr7u74ZJ3Kq2t178wBHnX3Jyv36tlFW+VwOs1jWHKd43ll1cotrVZEcIDSYkIaLN/2/HJV1rUHQgKt5r+N9RxIdmGleiSE6dRDuur9ZXvMMfTm9lMM/VMidf+JA3Xv/A2N9sMtks4Y1U2nHtJVklRV42qD7yyoUGF5jXJKqpQRH6bqWodiwwPNcTPv/dQYm9WiYekxWpldpKpahxIigvXwKYP8tjEN3u1L9zahd9vRImnWiFTFS3rmm036eNU+/ys9AO993TspQg+eVD8G+Z/vt+n+BRskeY41GHVhQ/thav8kVdba9e2GXE3tn6S/Hpnl8X5xRY3+9s4K5RR7XgMCbVZdM6mnhqZH6+q3Xe9P6Z+oSyf08Nvfbk3rc0oVHx6khIggDUqL1p6iSp0wLFXHD0kxlymprNXf3q4fg/RuS9baHbrmnZUe45oWSSeNSNO5h3f3+L4Pl+3W8z9slyRdMKa7jh+aqpd+2q733Oo0b93rrjHb3fZDj4RwnX14N903f4MqazzbAEPTo3Xncf0b7Jt9uHyPnv9+m9buLVF6bKjC/Fy/1+eUNtjm9Hb80BSt3l2iTftKtb+0SvllNT73fRpjsVh07uHddJLbmKNha26ZbvrA9/5SUw1Nj9aW3HKPe3XeYsICdf2U3nr4i40edezfjuqp2z5eq+KKGsWEBeqyCT305DdbGl2X+zon9E7Qxyv2HvDexcZ9pXI4feuXsT3jzX685LoH9A+vvvOO/HJV1DgabMtKrv175qh0zR7Z1eN1436Td/mCAqy6bkovDU+P0cA7vpRUXzaLXGPyfZMjdduMfrph3mrllrrO5/U5pcqIDzPHIxqTHB2iWrvT/KxPmeUalwy0WfTKz65xS/fxzIb65UbddkhGrOYc20+PfrlJO/IPXH9YJE0flKxfthV4tFGbcl1y79O3VI3dqS25Zeb3GGOKK3cXqarGofjwIF08PlNPfLVZpVW1mtI/UTnFVR73u60Wiy4al6EZdfecft1eoAc/36jU6BBtzStTrd0pp9OpktL68av48CBNH5Ss//6y0+81r7Ftt0g6eUSaznGr4/YUVer691aqoLxGkSEBuvO4/urpNt5Qa3foktd/16KNeQqwWlTrcCo2LFBpMaG66qgsbc0tN8c4/wijzbh4a4Ge/77heydD06NltVi0dEdh/XZZLDr1kK76ev1+fbsh19wH63NKNSgtSvefMFB7iiv16BebzPag9zrPG52hm+vuiydFBWvurMGKDAnUsp2FuuvT9T519voc133EiLr6NikqWCO6xeqzVXsb3BcfXna4x31DdCxNjSOyOA/Uez1ILBaL3n//fc2cOVOS9OOPP2rMmDHavXu3UlLqG0SzZs2SxWLRW2+9pXvuuUcvv/yy1q9f77GuxMREzZkzR5deeqnf77r99ts1Z84cn9ffeOMNhYW1LBgB7Se/Spqz1LexODrJodk96ivJWof098X+G5Xp4U45nFJ2ecsqtVk97BqT5NT3ey16Z+uBB6X+qIhAp0pr2q8CTglzamicQ5/tavm2Xj2wVpm+Y7F6ZKVN20ubt21T0hz6PLv1Z1T9x5Ba3b+85XGqIxIc2lZiUV6V/+3pFeXQFQMcmrvKpq0lrmWOSHFoZkb9cbu3XLrXqwxHpDjUL9app9c0ff8HWZ2a1cOh1za1/fF5ICdl2DU+xffS88RqmzYVu/ZDzyiHNhW36yy5TXJall2HJbq25ZZfbSqusSjQ4tRDh9lVbZeuW9Lw8XP94Fqlud2XuneZTXsrWn5ej0lyKK9SWlfU/P0WEeBUaW3b1CmnZNoPWC/2j3Hokn71x/3KfIv+s77xzzRlvU01Jc2hxfstKqq2KCLQqbtH+naqdpZKD61snbj1hurwQ7s4dEZP135oSV0oSWEBTg2Pd+r7nOYdB8mhTt04tH67d5dJ969oeHvd939SqFM3DbVr8T6L3tjc9N9kZne7jkj13wwtq5Fu+rV9nxPIinTqyoGex0JFrXTDLy0r14QUh06sq9+3lkhzV7nW89jh9QNN+yqku5f9se2e0c2uSWlO3f27Tfsq/R9DccFO3Tbc/+DB/grprhaWISPCqb8Nsuu5dVatLnAdg3MPqzUHir7dY9G8bc0/b/vHOLSmsG2uCcek2zWlq//jcFuJ9OiqxvdFYohT/xzmuS8/2WFttF1yWKJDP++rf39ArEMX9/Xt2P/zV9tBae/NGV6rf6+3aVdZ635XU+vpM3vadUgXp4qrpVt+a73zPizAqeO7O/TfunopOdT197PrGi7TIV0cOrNn/W/x+S6LPtnpufwtw2qVUHfPanup9EjdteHBQ2vl7970ukKL/rW2da5Xfx1Qq551cfprCizmtjxwaK2CbdK1P9tU4/T/O/7R6+Y/h9YqsYF7y+W10o1+6sYL+tj1/AGu594u729X72infsu16JWNvp+9cUitkg/QZf/bTzY5ZFGvKIc2NqE9ecOQWsUFS9c30m6TpHtG1uq9bVb9luu5zjOy7Do00alXN1r1a27D3zcu2aGTMx0+bcQzsuzaW2HRl7v/WD3XnLpyerpdU93qvtc3WbVk/8Fte/eLcWitW3ln97CroMrSKv26O0bUKrruXqjdKf39Z5ucOnAd1xb97Av62DU4zrWvVxVY9O9G6qDW5r2PDd0jnLpmkF0lNdLNde2tW4fVKt7tfnx2mfRAI23Bpjgq1aHjuvte3+YstSm/gT7ywRRsc+qBQ+1++9x/VM8op/46oL590FA92ZjL+9u1usCib/Z0/H5xUw2Jc+j8Pq5j4kB15j0ja7Vor1XzdzVv+9PCnObYntXiVLBVqrC3//EmSRY5FRoglbdR39sipx45zNUW93fuH2ynZNpVUmMxf8N+Ma427zUN1Mmze9g1Oslpjq001dQ0hxa0wZhgWIBTx3Vz6M0trV9ve7cbf95nMdushisH1CorSj7c+8o3D61VF7f22aMrbdrWgnGEju6aQbVmm7sxCSFO3VLXN9tYZNGTzRg3bSmjL+NPld1/+3J8skMnZTr0ykbfdqXRV79hia1V6y73Mcgbl9hU3grrdh/LkKRleRa9uMH/Ph8U69DILk7zfatc4y1zD9DfbivuZV+Rb/Hps7i3Jd37fO6iAp2602v88MEV9f3qruFOXTfY3uw6zeB+PfN2+/BaxQb7fUsPrbBpZyv37f8o7zFHg7/+dlvoGu70Ge/wbie3x/02ox8v+b8H1FRdQpy62Wtc6vFVNm0u8b89w+Id6hXt1NuNXN8Gxzm0Ir/t2hLxwU4FWKUct3shx3aza3yy84D9cqltxwnbQ1OOv27hTv19sOt3bul9g+bwruO8731P6+rQ0en1fb2G6krJ9XvtLLOopJXOsVk97Popx9rqdV2/GIdsFmlVQdPHdM/vbdeQeKfe3mLVD828H9OQRw+rFfFXHVd5eblOP/10FRUVKSrKT2O9TofNgNWWbrzxRl1zzTXm38XFxUpPT9eUKVMa3VloPzU1NVq4cKEmT56swEDPrCJr95RIS39SdGiAHps9RAvX7NPrS3Yqtkuqpk8fbC6XX1YtLf5GkvTCOcNltVi0aV+p7vp0vazB4XI4HFJ5pW47tq/H08CGd3/L1scrXU+UR4UE6PFTh+g/32/T95vy1C2rr6aPz9SOb7dIWzdpfK94nT8mo9X3w1/fXK6SylrzYnzLMb5ZF9rSttwy3f7xOlkCQ5XcLUnatV3HDEzWKSPrn2A496XfJLmeMr1puiuKv7C8Rle/vcJjXQOHHeI328PcDd9LpeW66eg+6u0nAru4okZXvuW5rrCENCl7jwJtFtW4Zf4JCrCa2QReOndEk7bRKL8kDRpxmLT8VyVHBeu+Ewc26fOS9N3GXD3/w3ZFxiWqprRQUq3uPWGAUqJdI9ordxXp4S82KTA8WtOnH64nNv0glbieoumSmq7p0weY6/pte4G0/BclRQZrXK8Evbs0Wwmp6erXK0Fas9xjP7vLLqjQPz9cY/5d7bCoW6/+0ibPgNVTRqTpmEHJTd42SXrqmy36ZVt9doprJ/fSwDRX3VleZddl/11mvvfP6X1096ee35mW2VvTvZ6SkqR7V38ryfUUQmBYtFRc4rHujuKWD9doZ132iMze/TV9tOtJgKt++lySVOO0aPr06dpfUiUt+VYWi/TC2SPMAIQb31+tPUWVGjzyMI3KjDPXe8/qb6WKKt0+o58y6p5+2pBTqns+c+2/E4am6PihvlPrGnVeTGKqSvLLpaJiXX2U68myA8ktqdK1763yCL4y6sfL31imMj9Pd1gt0gvnHPh8uvmD1dpVWKmYtCxp6zZ1iwvVHcf191jmt+0FeuLrLQqNitP06Year1f+ni2tX61BaVH6++RekqTnv9+m79yefjHW6+6Fs4ebWTG27C/THZ+skySF2Jx68rShCggI0NbcMs35eJ3H55K6dldR9k5JUmmN6/fz9uPmPGnlbz6vd40J0V0zXefsiz9s17d1Gc/OODRdk/snmsu51y1GHT4mK14XjcvQN+v366Wfdig6IVnTpw+VJD16gLrQm1E3Vjmsik5MknL26vRDu2pKf98MTu6255Xrto/WyhkQounTJ5ivL9mWL63wrf/u+HittuSWe+x/47M5P26XNq/XYZmx+ktdVidju43MX5L06s879OW6/eqa2UvTj+rpt1w78sulX79XcIBVz5457IDb3xzfb8rTf753lX1K/0SfTFCrdxfrwc83KjAsUtOnj/Z4L7uwQvrlOwXaLPr3WcOb9H2frtyrt3/LVnxyV02f7tqXi7fmS6t+lSRNmjLNfLJ52c5CadkSJUQE6aGTB5n7L6tLuG45pm+j3/PGkp36fM0+pXbvqelTeumOFd9IqtZdx/c3n8jfW1SpG95frVpLoKZPn+p3PSuzi6RlixUXHqgLx2bogQUbJUmPzx7sc/09sk8XnX14N63fW6J752+QNSRC06eP0Rt7f5EKXNeJIydPVWjd3YVt32yRtm0yPx8bFqhHZw32WOdnq/bqrV+zPV5zBEdJKtV5o7trQu8EnzIb+8nf+iRXJquLXv1dknTxuAyNzorX64t3auHafereo5emT/J/HC7amCutWqrucWGac1w/Sa6nF92va/sqfeuMJR+tlbJ36vghKTphWH29ffl/l6msyi5rRIK0rz67m3cdKLkykV275AtJTj100kBd+94q17Ye3k0T/WTpk6Qv1+3Xqz/vkCQ9csogxTXyJLZU364cOXqc/r11mVRWYbYtl2wt0NPfbpEkPX/2cNmsFnM/j8qM1aUTeujW/1ujHfkNZ1My6onwYJueOm2o+fpt/7dW292eUkzv2U/Tx2Ro8/4y6bcfFB5k01OnD/VdoR+/7yjUY19tliT9+6xhCrRZVVReo6vedtWH3Xv1kTa7nu52Boaoz6De0rqVHut46dwR+nZDrl78cbui45M0fXp9nfP7J2ulnTs1rX+iFm8rUEF5jUYcNtbMZrd4a7600nUuj554lE+GCUlyrtwrrV2hvsmRumGaZ7aD81/+TcYDqReNzdCYnvH6v+V7zMwY950wQMnRIbrj43XaklumAUNG6qh+rmtLwJocad1ySdLhE45UbGigan5yPcH6zOlDFVJ33v39HVfWBuP36JMUoRuP9m07NrZvJemQw+u329uuAs+68bp3V2p/abWSs/pL69crMTJYD5zk25Y26lt3/YcM15T+SSr+ZZe0cY3PZ4YdOlrDusU0WnajTVbkDJXRtpSkk4en6djB9e3ef7y3SjklVRp6yOFKiw2VliySzWrR82d71u+XvPa7qmodGjVuohYUr5NyPbObZvTpr+mHd9cHry2VcnN1wZju+mTlXu2te/o/PMimsmq74pLSNH36INdTt0u+NT+f1XeAanNKpd27zCfyf9ycp+e+22Yu492edPfWL7v02eocVQdGSvLMOOpdb7796y59uipHKd16aLrbE9cfvf67tH9/g/VsY9zrWHcN9b/+/d02VxZSr/J279VXgYWVUvZOHTc4RScO9233HsgV/12u0qpajRw9Xr3qnsYtKK+W8+dvJHm2FR9YsEFr9nhmPGruTRejfvTnkS82asWuYvXqP1jT6574r162W1q3ymO5MVnxmtSvi0f79KGTBiqhrj5xOqXzXq5vRx4zKFmnjKjvf7/443bz6V2jbfnB77v1wfI9fo8JSSp2BGn69CO0ZX+Z9OsPkqSRh49Tv5T6J6QWb3W1BVOjQ3TPCQN81iF5tm/dHTMoWZ+s3Ksuad00fXp/n/f/ufQrSbW6/8QBSqrLdvP1+vrz6sZpvf1mzmouo3yT+nbRmYd1M18vrazVFW8uV5XdoqnTjna1v+r63Pf7qasMuwoqdLNbH3v2yDQdPdCzL70qu1gPLdwoW2ikpEJzDMu7nmyorO76Dxmuvev3S3t2t6jffiC7Cyt10werJbmydIzr5Xvu7ymq1I3vrzb/fvLUIYrwk+mnstquv7yxzPzbve0vST9vydczi7YqPCZB06e7ZjF4/9WlHvWpUYa/vP67KmscOnTcRG1eslPatd1c5o7j+qlbA1m8n120VT9tyVeJI1CS68a6w2lRRV2X9vHZgxXlJ0uxJD333Vb9uLm+bXbT0X3MfrjUcH3m3l7KiA/T7TP6+V3OqCedsqi87p7/3FmDFRPmWR6jb+9tQq8EnTemu8/rBrvDqQteWSqnLBp/5GS9nL1UKqzPmuBefmMcVJIGp0Xpmrr+tns70t34XvFyOmX2xbvGhuqu433Pa3cv/LBNizbmqXvPvtpfWiXtcq03JDJW444cLufPX0uqr0Of+XaLft5aoJ59XdfTf/z6hSSHz3hSclSweW11F1o3JjggNVLXTfGfkdSd0f82XDahh95YslOFdVlPzhyVrtcW76xvS27ZoNFZcbp4XKbHev729gozO1lTxhydTun8V36T0ymNPeIoM5u6JO39YZu0eYMO7xGnnOJKbckt18Bhh+gIP+3+7XmuvrIkjfRqnz2+6Qep1Lfef+ncER71TGPlbahul6RLJ2R6jGO5c+9nu5vSP1HHDU7RFW+62q3NGee79t2Vyi2tVkb/4dLKFQ3WobsLK3TTB2tkt7qub5IrI6rWLFevxHCPDIOGU0akKTMhzOzvSq4sdWeM8p8peu2eEjNrlLvMPgM03e0a425PUaVH+/KzVTl669ddZptw3qv1bcdeiRFmX93htJvBV43VXf4YfXPJVWf+69ut2lNUqaGHHK5DMmLlcDh19c8LzeUPyYjV5RM9x28kz2Okutahi1/zbetNnjrNY3aLst92SRvWuDJd1Y31GPVkaHS8evVPkTa4rqMOWdRjwHBp1YpG688/wrhv4497H75iqWsMcnBalLbklvu0Jb/blCutXKr02FDdeXx/5ZZW69p3V6rKafMZV3lw3XdSWV0fOShM06eP03W/uOq0h08epPgIzz66+xizUb8arxnXs7NGpZt9wCvfXK7iylodMnqceif5bys9vN6tDHKNzfdyy1JjtFElzzanN+/7OanRIdrtlmmwKfWeMeaoQM8xR8OK+eulnds1fWCSZnllcGqM9/2howckafYhvp9/5acd+mr9fpU5gyTV6JCMWOWVVmtLbplPO9noB0wbkGRm0vPHGNM03DCtt/o20G417hFJ0uyRXXX0QNcY7YWvLFWtw6nDJxyp5CjX/aKlOwql5Us8+s7GOdnQvSnj/o/dVl/3GZ7e8qNUUqrrpvQyrxM/bMrTv7/fpsi4LuqRFS9tcdUVrky40k0f1LdzAyLipPxCjeweo/yyGjMD3FOnDWk0c5rRx5akkd1jdMURnveAjLal3RqkgECrVFGlvsmRWre3RKnds3TYqG5+++Xr9pbovvn1dbDx+/VICNetxzY8XmqMgxqGd4vRlUdm6aMVe/TeUte4y4vn+O9nG/dwJPlkzmsq9/ozKSpYF4zJ8GhjGvz1Q2NCAzV39mDz/pA1JFzTp4+VJN2+/GtJ9Vl4rjoyS4NSI7T0t6UaPmK4XvxplzkbjfF+REiAz3067/pBklnHVcuzjjPufRuS0zM0fXr9vjfqSn9Co+JUWVIkydmk8cqGGG32zF799EvRLqnM/70To66UXJmhnzxtiN97Qt7214aoZ5dwqaBAl47P1Kge9W2eq95arqKKWp8x3Z79B2v6iDR99e5KKWePx7k+98tNWrbT1SZ/8KSBen3JTvNv47Uufurg0T3iGs1Aj/ZlzKp3IB02ACs52TWwkJOT45EBKycnR0OHDjWX2bfPMxVrbW2t8vPzzc/7ExwcrOBg34M6MDDQJ7gHHYu/3yivwlWRxoUHa2LfZO0rrdHrS3Zqe0G5vqwbxIuPCDbTY4YF2XRkP9cxlRxTLH263uMm0LjeSR6pEw2r95SaAVix4UGa2DdZ32zI0/eb8rR6T4m+XJ9rDpJnJUZqYt/WHRyTpNiwtR4pWcf1Tmywsd0WNu8vlT5ep91FlWbnoF9qlN9t7ZNS/7orRbnnTdvF2wqVmRilrC6e+3prXbrdsb0S1d/PTZ7yat91/bTVdcGLDw/2mLIsLizI/Lslv8e3G12NlC6RIc36fFm1U8//sF3ZhZVmevYj+yUrqa5BHRESJH2xSftLq/Xl+lzlu6WT/2V7oXmM5xRX6sctrhvYCZHBGpgWrXeXZuu9pdnKLnRtV1psqN+y7Soolz70vGn1q58pgAZ3jWn2vvl0VY5HANboXl00vJtrCotau0PSMvO9qQNSfRp2VQ6n9pbUaPXuIpVW2RUcYFWgzeIxkGak2z28ZxeN6B6rjiRt0Vbz+F+5u0Rfrs/zmK5Ikr5cn2umtI0IDtAR/er3cWLkJu0pqtRPWwtUWl3/lEBxXV02oU+SGQTaJapIqmuUD0jz/1vtK3HVeTvyK7S/xJVK+bCsBB3WI/6A25JfVi29V38TyL1+jAkLUlm17431QJu1ScdMYtRm7Sqs1IpsV4MkOcr3WLXZbNLXW7S3uMqsryXp952uz3SLCzc/882GPI8ArH/7Gdg7sn99eyEttkSqC8AKD3Dt18DAQHXdVyLJs7G9cb/nYJx7WQzujWPP7ayvH77blG8GYA3pFnvA/ZSVGKGJfZNVVGnXSz/t0Pb8cv37h+3qkRBuDuQ2VBd6M+pGu8PpCmKQNCT9wGXYllsmfbRWRZU1+nJ9rsKDA3R4j3gt2Vbks32S9Nx327Qlt9z8XSWpqML1WWOwNbOL7zUwNTbMfO3nrYX6ct1+rcsp9dnXxZW1CrBaPKa6aO3raUWN0yxr32Tfa1hUWLD0+UblllVr/pr9qqp1KKLukTRj30aFNL1cOwsq9fZv2dqaV98ucT+ePluz31z/2robwQkRwR7rz4gPP+D3Ld1RpM/X7NP6fa79arQXJvRJUnrdjaqc4krp/dUqrao1yxIVGqhRmfGyWS1avbtI321y1e/x4cEa2q2+ozllYKrkFYDVK9n1WydEhkrzNyi/vO66VlZ/XZu/dr85JceHK/Z4fD6urj3lbnt+pSTPAKx1dSmyh3ePa3Q/xPpZn6S66WpcAx5GXfpD3U22z1bn6Ih+SYoLD9LGuimHU2NCNbhrjFlHJ0fXnwdJ0cWSPK9rtU6rQoNscjic+mVbvjbVHScD0qI9yhMTGqSyqgqzrWPwrgMl13RSRlD5lEGpZl3dv4FrgSTtKa6fGuWo/il+p0J1Z7Qrv9mYr6K6OsdoWxZX1V+fjurvOcjUo+4cT/5ma6MBWEY9ERPq+bskfbvVo+39244idU/INaeeiAnz/zv64z5TwaT+KbJYLHVTuLnqwzeW7DLfL6qo0W87fOvyiX2TVVzl0Is/btfG/WVmO2zlriJtynWVqU9ypDbuL1NBeY3eX7ZHocFB2lNUodKq+kDlL9blKizIpuzCCmUmhJt9D+M7u/pps0UEB5iDQsPqju/NuRVmANaR/ZKVGBWi/3y/XVtyy7R4e6FktSo8OEDlNfUPHXy5LtdjEHTywFQzKCQ+Yr3yyqrN3yPNrT5uTK3Dc7Dns9X7FBEapJ6J9X2PgrJqLd6ab06vGF1XZ8dHbND+0mp9tGJvXRmC/X5ndF19K7mmcSgsr9FX6/N09KA0VTUwnfL3WwqUX1H/w1fVOhqcBsF7CqxBXu3ehMiNyimp0g9bCjQ03fV9kSEBvteF0EDXVM0b8rS70Hd6o3V7y2SX1QwgGd49Xku2FZpt27TYUG3IKdW2/Aotzy5RZIjnufntxjx9u8E1iD+w7hyvqHFK2mYu492edLd8V4k+W53jcUPEMMyr3lyRXaJPV+Vow74yfbk+T32SI7Uhp0SL69r23ss3hXsd666h9Xy1Plc/bM4zr6mG1btLlVfm2mfe9WdTxYS5pi/8dmO+tuRVKKe4SiGBruMjJNDq0VZ8bfFOnwCs5vKuH929s3S3Vuwq1u87ixUT7hp/WuqnPdkzMUKjeybKvX16VP8UxboNSocF2cwp6Pqneu6b7zflmwFYRtty475yfbB8j9/jVZIKyl1tN/epbr7dmKfuXSK1eEueHE6nOZVgl6jm9YVtVouGdYvVJyv3asv+cn2xLldbcssUExYop9M1/WRZtescPqJfshIjQ/TTlgKPAKwxvRI1MO3AD5M01aCunm3iqlq7JFcgQHG1Q2V19WlCpP+6yrAzv1xSfR/be72SFBkaLC3cqLyyai3Ps8i2IV8BATaz/x7djLbtnuJqLVjtGvNsSb/9gOsvqpDqArBGZsT7Xb9ryrf6m1aTB6YoOMA3W4Jreptl5t/dEzzbrrUOi7Roq/a4tXmyvY7P4d1dZYgKCVRlTZW+2ZCn7V7tjAl9ktQ93v9DiJ+v3a+ftuSb11Vvkwekmg8FeFuwZr9HANaYXl3MfrjUcH3mtFilugAs9/aiz3JOpwKsy1TrNg3QpAEp5lQkBmM801vPpAOPMQbZrKq2O7Rgba72eQUpuX82JaZEqhujSXfrY+SV1foNwMpKjPQIwEpuQp3w7cY8LdqYpzd/3aUCt6n79pVU6/O1rt8/KMBq1qEfrciRthao1mGR02Izp7ybNtBzPKlbXLjfACyjr5Aee+A+kySz/204tEe8PludYwZgje7ZRa8t3im7w6mftrquj1l++rgxYevMfntTz8+IoACVVNVqyfYihQTa1CsxQpv2lWrlbtf1qEeXCFksFm3JLddnq/epb0qMdhdVKDYsSKVVtXI6nfrdbSqd3LJaBQa6puf8bXuBeW2NDg1Ukds0Wt7la2l94qor/D/k5d7Pdtc3OcrVl6yrd4d0i9W4Xv4fKPGWELFBuaXV+r7u/GyoH+5qi67x6Of+WtcGT40J8xuANahrjAZ3jZHcArB6Jzd8rsWGh0huAVjGPl6RXawv1+cqq0uEermN0e8rrtRXdWUx2pfZRVV669dd2ppfoS/X55rX6REZ8a6xz7q++tLc+nb4lIGpCglseoYgo28uuerMd5fu1p6iSs1fs08OWZVXViX3+XAGpPpvc7m/5nQ6ZbMu85nK7LPV+xUebFNaTJhyy6r07+9dgSbd3eoWo57cW1xljvUZjN+1sfrzj/h6fW6DAVju95eM8zw9Plz55TVmW3JHQaW255Wb9xaMchaWV0taqapah+yyqqrWYbaf3Kd7Lyyv0edrc82Hwyf1T1G0V+Bt8jdbzDHmpLr61XjNuJ4N6VbfPo8NX6viylp9uylf/VJjZbVatDW3TOv31u9b72lrx/VOVN/k+nHFt37NNgOwjuyf0mAghPf9nMSo+gAsf2M5/mytG3PcW1wli9Umm9WiX7cXyGqR9pdUaUPdudk3pXltf9d0cPVla+jzP20t0Ffr95v7pFtcuIICrNqSW9ZgO7lviv97XQZjTNMwpmeiBnX1324tr3GaAViD0+vbchEhASosr9HCtbnqnxqlwvJqrambct57PFByjVE1dv+npNJV93WNDdPAtGg53aahHd2zi4bV3beprHWNpy/amCdZ6vvQE/sl1+WlrG/nGtO2ZSZEqNZRP23dlIGpHoGX3uIjNpoBWBkJET7lNtqWhRU1Ut3p0jMxQuv2lmh9TplPvWmIiwiRVF8HG8diQ/vGsK9uHNRgjK9u3FcuyTXu0lA/u0vdPRypvp/eXO595YjgAJ82pjEO4o9xniVGFUufrVd+WbV5jfM+zw/L6qKR3aJUttmpCX2StGhzoUcA1qisBMWGBcl7PPOwHl18jl9X222lKmscWrguVwFWiw7LijfvUxo+WL5Hf5viCsBavCVPW3Mbng5yd1GlOcbZlPHKhny+1tVm/78Ve82x1cOzfLfBqCsl1z6e2DfZ7z0h433jN8gtdU3XLEnDvdo8sWFrVVRR6zOmu2xXkUZlJaiyrq4f6NZve+e33eY9gCP7Jeu7Tfke9wSO7Jes+Aj/QbDouJoaR9RhA7AyMzOVnJysL7/80gy4Ki4u1uLFi82pBQ8//HAVFhbqt99+04gRrojrr776Sg6HQ6NGjWqvouMg+9c3riezQ+s6IzF1lfeq7GL95TXfiFv3ea9jQn0bmA1V/u5PphnLGP//bNVefbZqr/l+ZBPmz26JmLBA7agfE2rxhaql3L/vi7WugcDQIP/b2i2uPgd2uNs+N54A//d3W/Xqz9v1yz8nmTch1rvNcR0V6n+9oYE2c2DJYMwtHxMW6BGAlZEQ5vF3U/RPidKaPa4G77+/2yqp+fvZOFY27qtvnEa53Wgx3t9fUuVzjG7NLdO23DJlJITr1Od+dnVU6soQE+Y6Xh3Oumw8kkfGL3f+yvz5mhxJrmh7Y5815ymq+vJ7njfu3xVgs3rcIIgJD/TIRCZJX6/bp7d/2enTUPS/HR3vMtU7KVI/b3GdiB8t362Plu/2efLd/XeN8rrJFl23/576erP8cd+f7vu6od/K6LyvzK5vvHl/Z0MiQwJkscgcfHH/7ujQQPOGqruEJjYKjbIvrguQ9Fd+ow7OLqzwW19HhfqeN03lPqjhfhj5K4fxexr8laUhHmUM9b1OGOLCg8ygIvOzIZ7Xkg05pXpgvmdHyHtwpiGhgTYzC+C6urq0KXWXsUxljcPc7jMP66bX6gbfvddh/A7G7yq5bn6777NwPzc2jAyA7uv4Yu0+81pyoPK1Jvd96v+4dL2WW1qtv/7X94aypAZv3vj/Ptdx/vuOQr/H1rXvLPd5zbtcRgarpnzPN+v365v19YNB7uuKrAuEcjg9j/NHZw/RiG5xOubx7+vXFxqoyOD6z/ob9A0LDDCXlVwDjN7beP27K3w+5/4d3hrbtwe6ZjWUEcH9qSHjO42bh1tzy3TKMz/5fOazq8bpl22u49yj7ejnnLzn07W6c+ZAfbVuny585df68ob4nj/ZhRXmAI5hV4H/OlByZR0Md2trxTSyD9wDcLxv6PljtCsfXFBf7xj7xwgK9Mc4nw9UPxn1hPfv7F22z9fkmG0UqXltE/ffxvid3V/b4RboVVnj0OuLPW8sGhmrjHNje155XSBrqWY86Xk+BFhdg4wv/7RdL/+0Xd5u+7/VPq+587ddYUH1AVjGse++7402srGvX/xhm178YZvPdt7+0Rq3zwR4tEuMa615PfaTuaQp5X120RY9u2iLlt062bzGX/r6bx7XUOOYN8pmBHCENXBeu7dzusWFqbC8SO8t3aXxvRPqBtV9Pf7lRr+vN4V3/WKcz098Vf8UZ5ifui6mLgDrrk/W+l3ve0t3Kdarr+h+3HeLC9OGnFIt31mok5/5SYO9BgeN4Cvjs/7K2tj10NiOcj/7rKHr+Hcbc/XdRt+A89Bm3OAzNPfJzIbq+U9W1gfptvT6HxPmyjR0/3zfgVXvOtl4irulDlTPGvX1W7/u1Fu/+gZUGKJDA33OEe8MQzGhgebv631u+h2nqHutosb/eST5tncfXrhBc7/c6HNztbHfwmqRvBZXVEiAeW4v2ZbvyqragCivOq4p39kS7u1QydUGsFktsjucmvvFRsXVlbehusosVxPKafweuaXVemGDTS9s8GznNXSNS4gIVm6pZ2CJe53Tkn77gbifEw1lMnAflwmwWvwGX0muwLuokPprWkN1z9bcsgbbPMZnYsICta+BOrfRurCR94JsVjMY058ubhlJQgKtPmMeTfnOxspmsVgUExZo3tAJsFr89pka2oamnBNRoYHKLa3STe97Zvr0zsrhr85o7Du8X29KWYy2h3sgguTq9xvlc19PcN1vU13r0Jdr69uESVEh5rkquYIf/GlO/9ffct7XbffvWVR3jfZ3jnSPDzPH7JoqMsQVgHXVm8saLJvxG73/e7be/z3b73KGp7/ZpEn9k/Tj5jyd8Z/F5usp0SEeAViSlBARpNzSap86sTliG8lY0VDfICo00Mz4LDWtn2Kus+53efvXXR5/N7Rcjd3pU8dEhQYqMyHc57eKDg30OecaO4a83+sWF6aV2UX6cNlufbhstwJtFv1841HmjdQzn1+sDXUBEGb9VnduLN/pOTYQHRpo1skOp/TqJlf9EBxgbVbwlXc53Y/tV37arlf89GHSYurHGozxdu9sHBaLRdGhgT5jWn/3M5Yhed97cX3/jvxyj76ZVP+7NnUMs7ka+z3X7C5W/9QordhVqA+X7TaXb6wtWd9Xrj+G31i8Qz9uztMXbnWXobSqVpe/4fqdrRbf9p13GevvNzU87h4TGqjtkh6Yv169EyM1pmeCjn38O78zGPj7vOTqgxoaOx/Dg2wKsFrM4OHo0EDznsLwA2QkNrj3Pf+7ZIfS48J07ou/HLCMBxISaPW439DQ/QPfbbeZ56HRTna/T9KUsniPCTV0D0vyvK573BsKdQV83PGxb8Zn9+83zsk+bgF0/pZ1r/u+vnaiK+jIz/rcy77IrQ8aHmRTQANBVd7XyMaCr7y/w9++9Le/jOvStxv2m31jn7ak13lh9I0O9Ht5t6GNv72z0fnTlHbSgbj3lePCg3zamMlRIQ0GYBmJHYx9WlxZe8B2dGN/+xvP9Pd7uN8vuux11/elRIeYY5nGOVNYXqNr31muGrvDYxzaH+OzVkvz2gHejPGatXvqg079jS8YdaVUvy8a6k8ZY1E+3+U9JhMWJOWVm9ti7KO3f92lj5bvMbNJu48pua8jMsTzN7BY5PNwHv63tOud7dLSUm3aVD/YuXXrVi1btkxxcXHq1q2brr76at11113q1auXMjMzdcsttyg1NVUzZ86UJPXr10/Tpk3TRRddpGeeeUY1NTW64oordOqppyo1tfnp6tG5GSnqx/RM0DGDU5RTVxFuyS3z6CAc0ad+Sqjk6BBdNC7TDLSR5DflnyRN6Z+sb9fvV2FFjTm94MxhaVqxq1AllbUeN9SmDWx+OsqmuGxill74YZscDqeGd481MyodLP4CL/p5DeY8e9YIfbpyjy6bWD+dj8Vi0T+n99OGnBKdMCxNT369SUu25quyxqGc4irzQrM9r74z7N4BdGexWHT9tD6av2qvlu4o8Bjw7Z8aZQ68SNJTpw/X3Z+s1RF9E/2syb/bjxugWc+6bsSO7B6rAJtFF43v0eTPS9LIjFjNHJpqDjaN69XFoyGQ1SVCZx7WTevcnrjuFhemeXUDK9vzy9UtLkzb6vbHyO6xunh8Dw1Lj9WwbjEeT7u5B6K5iwwJ1JVH9dLynYWup+7r9kt4cID+emRPvfCD65if2Kfp+8Zw8oiuWr+3RGVVteqfGqUeXlN2/mNaX320fLdGZ8UrKiRQo7PiPRphEcEB5iCEYUjXaC3fVeTzmneGtI7g8iN66uctedqQU6oBqVFavbvY40bF8G4xstY1ri0WafYhnqnILxybqepau2r9BM8dmhnn8eRRanSILhibqeyCCk3q5/8pw7FedV6vpMgGUx97C7RZde2UPvp63T5ZLNIpI+pTrV9xZE+99MM2ZSWGa/qgFJ31/BJJ0i3HNj7dgOGCsZmqqLarxu5QoM2q88dm+CzTPzVKs0emu7LreQkNsumMUfX7bubQNC3fWah9JVUqKKs2n3Q567DuqnU4NKRrjMfnEyNDdMn4Hlq6o0ADg3I9Xj/78O4eA08ju8fK4XRq6Y5CDesWI1sDNxIDbBYdkhGn7zfl6vcdhUqJDtGFY+vrh+OHpun3nYUKDbJpbE/PKTzuPXGQHl24Qev2lmhk91hFhAToxLrpaA7rEa/jhqTq/5bv9ijTkPQYpTZxcNRisegf0/pqfl0wcFJUiMY24anS2PAgXX5ElhZvyTevY1+7Pcl14TjP+u/c0ZkqLK9Rda1DATaLKqrtCrRZlV9Wbd7InDKg/omgh08ZogWr9+r8MfXTNRw7OEW/bM33GRAurKjRprrA1QGpUQoPCtAZDaTy/yNGdo/TCcPSVFJZo2MG+16vMxPCdfbh3bV8V5GW7yyU5LomVdsdrqlFJTPrX1NM6N1F0wclm0+il1fbzUBfV3k812WzWnRJ3RSOL553iOYtzdY1kw88Xdj0Qcn6aXNe3dOYLodnxXt0usOCAnTN5N7mQMuO/HLtK6nS1txyxddl5wgLsmlQWrQuGtdDA9OidN6YDHWNdQU2PX7aML39y05ZLK6BoJPqpkDqGhuq88ZkaKVbPf7r9gIN7hqtILfBmV+31z8tNSozzuf4Mr7fn+OHpjY43cWTpw/Tu7/t0nVTG95Pd58wUKt3F2t83XkR5CdjToDVopBAm0qrarUjv9y8yeierSA5KkQXjs3UwrU5ZuYQ43ptDOrHhwdpZEasJntNAXr5ET310o+udtyv2ws0qV+SYsMCG71xM6l/kmxWi+47cZCW7yrUUQ1cCyRpcr8kzRiSqgGpUQ1OieXOvV0pyaNtObF3ok47tJuGuAWKPHPmCH22ao8urJt+5bwxGSqtrFV6XKiOH5qmp752PR3YPzVKxRU1qqi2y2qx6FyvablPPSRdX62rD750PwesFovOGe25fGPG9kzQ6aO6eUy94h0MkhwVomHdYszzNyTQpvG9E/T9pjxdVLct7tk2S6tqzd82PMimHuE1mtI/UQ8tbDzwx7st475dwYFWnXWY79RBk/onmgGvxiDN1AHJ+nrdfvVPjTLbj+eOzlBBWbX2lVSZ9aR7sI37dx3nNV3xJRN6yGJxZScJDrTq7Cbu30MyYtU1NtTn5unuwkpz0NA4dvunRCkiuL7OrqjxbJ8GNTBImxEfpnMO7y6nXOf4Sf9ytcG35Zarsta1fUcPTFaN3akau0OVNXaPNpd7nSLV74eSylqtzynRiO6xrum863i3FS4a10N2h9MjiMxf5pQrjuyp13/eIUddxPqW3DL1TIzQUX0Tde9nrpszS3fUf88hmbGyO3uo1uFQTGiQ/nlMPwUH2PTj5lwVlNd49AG8HVXXb3G/2ZbVJVyXuvWtvE0bmKzvN+WqoKxaQQFWXTguU+/9lq0Am8Wn3pw2IFnfbczVnqIKrcou9lmXMQ12c919wkB9+PtuTejTRauyizRzWFqDyxrBu4brpvbRr9vyzcyN8RFBmnSAKZQbcvnEnnrRrZ41HJIRq5NHeE4l4p4hpnt8mJKiQuRwOOsyXwbI7nTq0Iw4Pfn1JnNwdVyvBPVNjtSynYU6cXjj06Scdmg37cgv9wkmDA2yKTo0UHuLKhUZEqAThndVelyYxvfuokUb9uu6qX18bmxcPam33vltp2LDgjR1gOe+OW5ImpbuKJTD6dQJdft9Ur8kTRuQrNzSKgXYLLpwbA/93/Ld2ppbppXZRRrRPVZGTem+n4zzq09SpCJDAlx9Ya8pt9w9c+YIvfXLTp1V17YurqjRzGFpOqpvovn93ufpgNQohQbaNKF3F/M4nzE4Vb9tK1BRRY0GdY1uUuB5Uzwya4h+3JynE4b7Ho+96p60zy+tVpe6cY7KGv99a0NUSKCuPLKnftycp8SoYE3wMzVYj7p25OrsIuUXFCguNta8Llktlgbbtg+ePFj/+X6LdhVUKK+02rzhYmhJv/1AwoMDdPWkXtqeV+4xvYa7sKAA/W1Sb323cb+mD2p8nOvaqX30f8t2Kyw4QLMP8ZzCa0h6jE4a3tVjzEeSckurlBgZotSYEB2S6arDrziyl177abtZ57ofQ40FRp04vKvW7ClWaWWtokID1SspQr/VZfebNjC50WDRiydk6ZsN+7Vub4nmXTqmyX2wQWnROmVEV+0qqNB5Yxo+VyTpb5N76/2lrjGfKQOS/JbHGM/cXVih33cUqktksAalRev4oQce4/77lN6at3SX+XBVZa1d6bFhuuHovh7LJUWF6OLxPbR2T7FOP7T+eBzdM17HDk7Rx3UZawd3jVZ8eJBmDnWdP8t3FqqyxqELxja+nZI0c1iqHv2iPktFjy7h6pEQYfZTLBZ51KFGO6Habvd4UCEowKrrp/bRwjU5Cg2y6YKxmR595sdOHao3l+xUjd2hkEBbk/uORv97d13W0kFp0bp0Ypae/36ruseFaXBatKYOSHJNYVfHu+6VpOunuvat9/WlMVcc2csnSE6SeidFKDUmVCcO76r8smp9unKvn0+7xIYFmg80GseRe1DxeWMydPTAFD0wf51+3V6gx09zTa/92oWj9MSXm/S3yY1P0/jGhaN0+n8Wa0h6jG6Y1levLd6urjGhqqp1aFh6TIOfM/rZ2QUV2ldSqYSIYMWEBZp97ttm9Nf2vHINbWQd3ox+sd3hlNVi0emj/P/GEcEBuuqoXvphk2dweXCgVeeOdrXBn/12i47om6iPV+x2ZSPsnaio0ACdc3h3vfzTdo3v3UXHDG74XOseH6ZzR2doVXaR0uPCdOG4TD0wf73Kqmq1IrtI1bUO7S6sVHxEsJxOp9lOHpoeo7MPd5VhfO8EHTMoxZWZuk7X2FCNzIhVcIBN10zurW/X7zOvH9MbKU9DjL55WJBNMWFBunBcD4+g+4SIYGXEh6nW4XRds0bX91EemT1Er/+8Q+f7Oc+vmdxbH/yeLYtFHrMi+ON+zTLqSWN/hAbZ1C0uzHwIO9BmPWD92VInDO+qldlF6p0cqe5x4Xr/911m2bfllal/apRHX/z0Q7tpXM8Ev23Jw3vEm+NaATarQgNtqqixK6ekUltzfcc0Lxnfw6MfclS/JL999PPHZqqsLquyUb+ePzZDZVW1qrE7lBwdojE962c4uHRiT/3ltd/MbeidFKmyarusFs9xqqAAq2xWi/omRyol2rNddd6YDO0rqdRhPeL9josYjHswn6/OcbUnx2Uq0GbVC99v9bm2NMQ9s8vW3HJV1Xq2tYZ1i1FCRLCmeU3pfCAWi0XXT3XdH4oJC9LRDbRRZgxO9XjQNSzIphlDMlRQXq3qWodiwoJ06cQeevrrzSqqqHGt6wD39dzHNAemRTf4IKAkjciI1QnD0lRVa/doN155VC9d83Z9AGNMWKB6domQzWrRxRPqx8meOWu43v5ll648yn9f0Lj/8+OmXK3ZU6zyart25pdrt9sD1Zlu9238jWUO6Rpttq+untRLc7/wHPc4ZWS6SqtqZXc4zakwG3PR+B51Yw82zRrpO6VrWFCAzzX2pBFdtTW33KOdcNqhnvV9elyozh2dUTc+4VRheY2CAqwHHD8KCbSZ46DubdTjhqTqp815jc4gctG4Hqqxu/r0RzXj/qK3u2YO1Kcr9+iqo3qZ93qW7yxUakyoUmJCPO5nXjultx763NWGMjJ6u+4/ZLqmTa/jlPTb9gINTIvSoLQY9U2OlN1e3384YViax4Nm/ZKjZLFI54/JNO8LXjoxy29m2QCbVddN7aOv1u4zx1bc22dPnzFc5774i0oqa7Utt8xnfF9yjdPOW5qtSf2StHxnoXnvxxjjbCl/Y8b+Xrt0Yv39z3PrjpHEyBBdMqGHfttWoNAgm5xOKTUmRGcdlqEb5q3Q6t3FSowMNve7d2DXpROy9MIPW+VwOBUXHqTTR3XT899v1U+b81RRYzfHEd3Lc+6YDO0trq9vZx+Srq25ZaqotuuIvomN1sHo/CxOp9P3DvBB8s033+iII47wef2cc87RSy+9JKfTqdtuu03PPfecCgsLNXbsWD399NPq3bu+o5Cfn68rrrhCH330kaxWq0466SQ9/vjjioho+k374uJiRUdHq6ioSFFRTZuDHAdXTU2NPv30U02fPt0nvdvRj32ntXuK9fL5h2pCb98BsBveW6E3f6l/4vSzq8apX4rn7zzyri/Mpw233XdMi8r43yU7dOM8Vyd6673T/2fnaJ351A8eF/ufbzyqwafQGjPmvq+UXVih9y8bbaZB/XBZtq56c5lGZ8XrjYsOO+A6CsurNfSO+nnrnzx9mK54w5Wt5PIjsnTd1KZ1BjqKWc/+pCVb8/Xk6cM0vncXDb79c0nSujunmYPTpVW1GnjbAvMznWE7l2zNN4PaJNeNUO/MZKvmTNXmfaU6/qkfzNe+/PuEDhmA5W5XQbnG3v+1+fcxg1L01BnDG/kEWsO+kkodeveXkqSPrhjbYKpnyf/1w+l0KvPGTyVJ95wwqMFBvIMt44ZPJLk6ld9df+RB//6nv9mkB+avN28yju/dRa+cf2iTPvvZyj26tO6pmA13Hd2iDsSPm3J1et1Tu99df4Q5bV57Kauq1YC6+vbaKb1VVFFjBmy/dfFhGtWEaT792ZZbpokPfSPJNRj50V/Htkp5W+K+z9bpmW836/wxmRrRPVaXv7FUh2bE6e2/HN4m32cc46cdmq57Txzsd5n5q/aaA4ruWto+a8gz327WfZ95PtWaFhOqjIQw/bApT3NnD9WPm3P19q+uwK7Lj/Ad8Fq4JkcXvfKrhqTH6MPLx+iRz9fr8a826azDuuvOmQNbtbz/Sypr7Op7y3xJrhs8o70CVlvDiU//YKbM//a6iQ1OV+Su9z8/U7Xdoe//cYR+216gq95cpsMyY3Va8n5Nnz5d57z0m5mB1NvlR2Tp4nFZGnLH5+ZrTTlmN+aUaPKjiyQd+HomedaThsbOp9ZgnLcG9/qv/63zVV5t99nHd3+yxuMBl5uP6ec34NLbPZ+u1XOLtuiicZmqsTv10o/bGm3rupctMTJYS/45yWeZ/3y3xcyismrOVL9PWw6+fYEZeHXs4BQ9eXrT23JD5nyuoooas3376OwhOmGY/xuxf397ud5bWj8tpnHjxjC2Z4Jeu9CVyXvxljzNfu5nSdLaO6Y1K/NiU+wurNDo+77yef33WyY3mt2iNRh1p+G3mye1Sdp94/gY1i1G7182xuf9vrd8ZgbctPY1prO57cNVHpn9Prh8TLNukDfGuw754YYjG3zY6mD64PdsXf3WMo3pGa8+SVF64Yet+suErCbfUDyQxsawDuTnLXk6te78l5peh/6vOvKhb8zgkoN5rk559FvzwbE/ex3REnO/2GDexF1y01FKbOQB0ns/XatnF23RhWMzFRUaqEcWbmiwfeNep2y+Z/ofuonXmHV7izVt7nfm35vuPrrB7CDN1fvmzzyyxEvSvMtGe9wYf3PJDt0wzzdQS3IFfM0cmqYzn1+sPkmRWvC38WZf/qThXfXwrCGtUk403eRHvtXGfaVm38a9v7Py9inNynDxR64fDXn5x21mtt7zxmTothkD/tD6Rty5UHl1D7u7Z6kzuGfM7WjOf+kXfbVun+4/aZBmH9JNry/ern++v0qT+yfp32eP9Fh29rM/mVmEva8DRh13+qhu+mJNjsfU53+b1FtXTerVZttw8wcr9drPO3TlUb00pX+Sjn3i+wb7Qh3BU19v0oML1uuUEV2VkRDukYG7NevWhsxbussMdrp6Ui9dPanxINSD5blFm3XPp64xqROHpemR2UP/0PqMMZBnzhyhnfnluvvTtZo5NFVzTx3msZzR55ZcD1keN8Qz0PPCl381M7q9efFhjQYotdSOvHKNf7D+fsr6u6Y1mGX1f92C1Xt1yauuMVBj7NFo64zKjNNblzR9fNb7+uHeZmppW3bFrkId92T9/Tqjrly5q0gznvxeyVEhqnU4zCyvkitg98qj2qYONNo77lrzmvPElxv18EJXANz8q8d5TN/aEOM+t+Gl8w5pk4dn0HE0NaaoXTNgTZw4UY3Ff1ksFt1xxx264447GlwmLi5Ob7zxRlsUD52EkW4wsoHpNLxf9zfo3tqxUv+rwVeS7/5saL83dT0nPP2jJFdadCPa+0Cp/w3ev6WRvcP1XudL32ik5b3ijd/NDEauVPluaSu9Uk8H2Tp+49T7GPE3LWR4kM1MO9/Q5zoi70GUP5JCFU3nnra5JdVtR6+jG8oU0taM49lomrX0HGzp0xshHml52/9c8r4WuZ/vfyRFsPu2Bdja91g0yvLe0l36bNUej9fakvcArTvHQXo2JNjPcRoZEqDQuswsizbu17y6LAUN1e3G68t3FmryI9+ag9Ad4fjtyNz3fVs97eU+TUxTA1ciQwKUV1btEVjd9M8G+p1Soimfa853+at7QgMP7vH293eW+2TF8j5HvMvZ5KmR69bzzm/1GTzCGpjuvKncM9j5m+5JcpXXCMBqbv0eGRKgoooa5ZS42reRjfRBvOuGpKhgbcurn4qloeZJY9NmtVRD9VRLjuM/+t0H4zv9aexa9Gfjfdy35XUs4g+e063F2MbftheY2eA6yvW7tcZcgPbknlX6QNdWo2347tJd5ueacj1uq+Ar7+8Pa2RqppYIdps2y+A9RXRj7cLIkACzXtiSW6ppcxeZ46nUF+3DaMsYD0r0THQ9TGrxmk6+vbgfF5GtMG6Z75Z1OyU6xKdv0NC0th2BsS/+8d5K/eO9lT5T0rtraNYJ1/KuOuLj5bt9sla29Xlo3PN47eft+qBuNo32ak83hbE/3vltl897bR18JXn2VZt6z+lg8Bxj/OO/n9Fvdn+g0d+11H1/+Pte9/szbXUsex+v7TUO3hG418nebYE/ynjA+o9oqJ9o/H9fie99vrasA/1tT2s+rOZedu/M3U35jPTHx7Dwv+PPW7Phf0JVbf0Tw10aeGq2V2L9VFzRoYF+pxg0prnyl1K6qYzppuLb+Inh9ua+P1OjQ1rccDUyjhncU22GNvEiFWCzmtPfhQRa1Tc50rzgGZ3dzsT9BpGxP7K8tsNqtahHl/oMA81N0dseUmNC/TakjZtJPRLCZbFYPFIiRwQHKLaDPi3lLjI4QMluT3L2Sup8x11n5H7zvnsLp8pJqJvr3XuqwPZ0TF3K7MsamWaoLfXyqm96NiMD3fC6aZ9CA1ve6cmID1eQzar48KAOMQe6xWJRVl19O6pHvLl/Am2WP5S5ITq0fs73zIQDZ+VpS8Y2FVXUmOmk2/L6aWQqNaYy8WdQWrSsFtfUvLPr0pWf24wp6Zoqw8++75kYYbZrjOAryffcMLhfjzfuKzWnvO6MbZCDyT0ItldS06bMbS73QfCmDn509ZN1z/3mYWPTyzicTo+bgMY15kDiwoMUFRKg4ACrkqIOnAHI37Rc7sdhWxjhNU2q9w0WSR5TnUq+54x3e7YhRjuqsLzGTGPvPdW1uxPdprlraHqmQzJizfU0FIDt3n5r7vlrbKsxENjY7+HdTpw6wLMdf6LbNGl93KaTbovA8fCgAKV4ZTHuGhvqM/VdW8hMCDeDzbrFhbXZ087GNLDu00W7M6aOOudw3+lB/2zcj83wIJtH/+aPumSC5/7vKDcIs7pEyGJxTTto1Dcd5frdNSbMI/CyZ2LbXCs7i8vqspDOGNL8qbj+iEvGZ0n6Y+OEf2ZGVs/kqJADBhIb7fLC8hrzgYaG+qLDu8VIkgamte0MFvHhQeZN0dauG7xnZQgJtCrZa4qwxtqvPRMjlB4XpqAAq2rsTo/x1Ka2udC6duaXe/xtTBme1SVC1jYMFGwq92O4NY4R9xvg/rLjHIz2ZEt591OMzFX+znNjysFJfqZdM9ZTXFkrh9MVQGL81G3dnuhd127LL6vWjrpjrznjdwdbrwbaMf1TDs5MRO6/R4+EjrOf3I/F1jhm/AWh+Ftv7yT3/eHbd82sy2wdYLWoa0zbzEwQHRpo3kPN6tJwP/3PINNt/MCon4+om67yj07PeuWRrixUZ/+B/m5SVLBHkJhxTCVFhSgyJEAOp+T9XFNb1oED0zyzxidHhbRqAJ8xRhkaaFNCZNPG9dy312a1NDotKf5c2nUKwo6CKQg7vobS7+aVVmnEXV9Iajj1tNPp1PJdRSqtrFWvpAgl+RlMtDucWrGrUP1SojyyDTXXzvxyxYQFdogbx22lxu7Q0u0FqrE71S8lssXTRfztrWV6//dsv+/NHpmu+09u2lQqheXVWpVdrKzEcKVEh2pfSaX2l1Spf0pUp2u8fbk2Rxe8XD8dxz+n99OsQ9J9bmoVlddo9e4ipcWGNmlKnY7ASMNZU+vQroIKWSzS0PQYZRdWKCkyRNF1wQjb88q0MrtIh2bGKTGy9Qb+21JeaZXW7ilRaJBNw9JjOsTgyp9Bflm1auwOv3W6u4auHyWVNSosr2n3ae7c1dgd2p5XVndDqH2Oo3V7i5VbUq2QQKuGdYtt1lPF2YUViggO8KmzmmNXQblCAm1KaIOpiFqiqNyV1aR3UqScTqdW7y5WbHjQH546Z39JlTbtK9Xw7jHtmmbb2KbCcteNx6AAq4Z3i2mzpxDLq2uVXVBxwKCbHXnligoNUFhQgFbtLtKgtOhWH8R1Op1au6dE8RFB2lNUqfLqWg3vFqvb/2+1x9TVB5pO0H2Kq79P7qOo0AANSovudG2Qg62grFpVtY4WTWPdFMZUElLTp6cprqwxp382TOydoBPi92r69OkKCAjQ6t3Fio8I0uZ9Zbrz4zVan+O64WWk5i8sr9a6vSUa3DW6yYFf+0oqZXc4PQLRG7OroFxLtuarS2SwIoIDNDQ9pk2Pt1q7Q1+v36+U6BCVVNbqxR+26vM1Oeb7F4zN1C3H9vf4jFG3bM0tU++kSI9gosZ410kxYYEakNpwm76q1q7fthXIZrVoRPfYBuuujTklSnRrb3orr67Vsh2FCgmyaWjX5rXljM86nFJqTIh6NHLzw+FwavmuQpVV2ZUQGaQ+SZFas6dYZVV2hQXZfLZ1T1GFwgIDGiz3H2W0YZOjQ5RTXKn+KVFtPv2gYUdeuXbkl2tAatt9Z3WtQzvyyxsc1Hc6ndq0r1Q9ukS0aRaVzsDpdGpldpGKK2rNfnVrcTic2ry/VNGhgbJZLW0y3WRLbdlfqt2FrgD0A9U3zfVHp5DKLqzQ1v1l6hIZ3OQ69H+V0+k6hrrHhx/Um/rt9b3/K5xOV2BQUlSI4g5Qz7vXQZIrk8Dgrv7b06VVtVqxs1CDuka3+djrvuJKbcgp1eD06CZn82yK0qpaLd9ZqOToEO0prPRb736/MVdnPu/KppQQEazHTxsqq8WikECbBqdFy2q1aFdBubblluu8l5aoxu66vbPlnumMSbWDC1/+RV+s3Wf+nRIdogdPHqKBaVHNnhapLaYglFzt4coahwam/fFrndEHDrBatOaOaVq6o0BdIoMVHhSgkEBrh51+UHLdA/po+W5d/dYySdLMoak66/DuGpruf/xr075SdY8P87kOGOMJ3g9h5ZdVq19KZJv2z5xOp1bsKlJJXQZfq1Ualh7b6lOWtyZjGkLDySO66tYZ/Vu1bm3Mlv2lqqixd7j7Rev3lqi8ulZDmtkH9eeqN3/Xh8t2m38HWC3acNfRPus1+tzhwQF+HwqttTv0+85CpcaEtum04bmlVVq3p0SD0qLbrL/bWWzPK1N5td0M0Db6sc0NZPK+ftgdTq3eXaR+KVF/qC27t6hSm/aVKjTI6lFXGq9LMscUYsOC2rwOXLunWElRIcovq1ZceNAB25ktWX9sWFCTxysra+xauqNADofrAbNuLUwWgM6jU0xBCPxRxlQR4UG2BgdNLRaLhqbHNLoem9WiYd1iG12mKTrSjfy2EmizalQrzP3snRmgS2Sw9tc9ddKcDkNMWJDG9qrPYJMYGdJpAne8eXdQR/WI8xvIEB0WqNEdKGtPU7g32N2zjvT2ugnfPT680wSVGeIjgjW2V8e5kfBn8Ucb15EhHS9YNtBmbfcn3PsmR0ktTKzXGh3zrrEd6zoaHRZoDgRYLBafJ21aqktksN+MnAdba25TU4QFBTQp45F7Z3V4K7TP/LFYLOqf6uokuQdyerdBRmY07fv7Jkd5tEfQuLYO8ghxC2xsamCFv8Ff9ykx3c+XlOhQTezbxQzAMjKwxoQF+X0KvDHNbbd2jQ07qHVlgM1qZhKSpO837fcIwPKXTc7YV82tX5pbJwUH2JrUJj5QvRMWFNDitnVzPmv10+cckNrw9rZmEIw/7m3Yg535p1t82w9MBgVYG90ui8XSZln4OhuLxaLBXWPaZN1Wa8fdzz26RDQaNNme0tr4pldnYrFY2qWP1F7f+7/CYrH4ZHpqbNmm1kERwS2/ZjdXYlSIElsxI6AhIjhAY+q2IauBOsi9TzJ1QJJGZ/lus9EmDAsKMDP5EXzVPrxvbMeFB3W4vmFbXItTY0IVFGBtdv+nPdmsFk2syy4jufbLiO5xDS7fUFvSfTzBXVs9YOT93UMOcK+roxnplVV5Ur+kgxZ8JanDtvdaM8jee5aasb0S/F4TDtTnDrBZdUhGw+dEa0ngforJ+17YgfqxTWWztk4fLzk6xG/d5v36wRpTMNqXrR145b3+pgoJtPltpwE8woNO7ftNuZKaPmUdOg7vYKPubsFrbT1XekflHWx1MDsiAABAHqm1JSmqiRnd/E0Nh/YT18QpAA+ksUwt7u22P1ObLSbUc9/+kayHAAAA8OU+Lnqg/ghT3bS/VK+A2f/1AFqj/d/ZgoAMEW59fu+gFbQN7wxH7PfWF+E1lhX6B2b5AQD8cX/OKAf8z6iodmXAsjsc7VwSNNdxQ1L12/YCfbVun84bk6GTR3TVfZ+tk81q0QnD0tq7eO0iq0u4zjqsu9buKdbAtGh1J10lAAAH1QnDu2pFtmvq6tSYUB1+gKd5nz5juBauydEFYzMPUgnRFBN6ddEZo7o1+8m1B08erG837NchGXH6Zv0+/WVcptb9ssPvsjMGp+q3bQXqHh/+pwrAO2Zwir7blKtFG/br6IHJmtC7y4E/BAAAgCbrlRihM0Z1U3ZhhU4a3rXRZW85tr+e+GqjThmZfpBKB28XjsvUzvxyVdtd9yeumdK7nUvUtp48fZhe+3m7rp/ap72L0iIBNquun9ZHy3cWasaQ1PYuzp9Cb6+MkgRgtb5TRqbrhR+2ye5wZfF2z+YNADj4CMBCp2bMdU1jufNJjwvTC+ce4vHaqxeMaqfSdAwWi0V3zhzY3sUAAOBPKzMhXC+dd2iTl58+KEXTB6W0YYnQElarRXefMKjZnztlZLp58+qc0RmqqanRugaWTY8L0/Nebdk/g9SYUL1yftPPEQAAADSPxdL0tuyhmXF/+vHU9pYSHarnzh7Z3sU4aMb16qJxvTr3QxiXTezZ3kX4U7FaLRreLUZLdxRK8pxmFa2jd1KkVtw2RQNuWyBJGtTINIMAgLbHFITo1J74apOkP++UdQAAAAAAAAAAAEBHFBlSPw1hWBD38tqCe2YxEmABQPsiAAudVlWt3fx3WgxTtQEAAAAAAAAAAAAdRa/ECElSSKBViZHB7Vya/00Wi0VZXcIlSaN6xLdzaQDgz41QY3RapXXTD0rSrJFd27EkAAAAAAAAAAAAANz94+i+mjIgWd3iwhQezG3ptjLv0jHKKalU76TI9i4KAPypcaVDp1VSF4AVHmRTgI1kbgAAAAAAAAAAAEBHEWiz6tDMuPYuxv+86LBARYcFHnhBAECbImoFndb6nBJJUihzRgMAAAAAAAAAAAAAAKCdEICFTqui2i5JKq6oaeeSAAAAAAAAAAAAAAAA4M+KACx0WiWVrsCrI/smtnNJAAAAAAAAAAAAAAAA8GdFABY6rSXbCiRJESFMQQgAAAAAAAAAAAAAAID2QQAWOq1Am0WSVMQUhAAAAAAAAAAAAAAAAGgnBGCh06qssUuSRmfFt3NJAAAAAAAAAAAAAAAA8GdFABY6rfJqVwBWeDBTEAIAAAAAAAAAAAAAAKB9EICFTssIwAoLsrVzSQAAAAAAAAAAAAAAAPBnRQAWOq0KArAAAAAAAAAAAAAAAADQzgjAQqdVXl0rSQoNZApCAAAAAAAAAAAAAAAAtA8CsNAp7S6s0Ob9ZZLIgAUAAAAAAAAAAAAAAID2QwAWOqUv1uaY/+4aG9qOJQEAAAAAAAAAAAAAAMCfGQFY6JSKymskSeN6JSg+IridSwMAAAAAAAAAAAAAAIA/KwKw0CltzXVNP9g3ObKdSwIAAAAAAAAAAAAAAIA/MwKw0CnN+z1bkhQaaGvnkgAAAAAAAAAAAAAAAODPjAAsdEphQa7Aq0Mz49u5JAAAAAAAAAAAAAAAAPgzIwALnU6t3aHyarskqX9qVDuXBgAAAAAAAAAAAAAAAH9mBGCh0ymsqDH/HREc0I4lAQAAAAAAAAAAAAAAwJ8dAVjodLbnlZn/DgrgEAYAAAAAAAAAAAAAAED7IXoFnU5VrUOSlBgZ3M4lAQAAAAAAAAAAAAAAwJ8dAVjodKpqXAFYSVEh7VwSAAAAAAAAAAAAAAAA/NkRgIVOp7LGLkkKZvpBAAAAAAAAAAAAAAAAtDMiWNDpVNa6ArBCAm3tXBIAAAAAAAAAAAAAAAD82RGAhU7HmIIwJJDDFwAAAAAAAAAAAAAAAO2LCBZ0OuYUhGTAAgAAAAAAAAAAAAAAQDsjAAudTmWtKwNWcACHLwAAAAAAAAAAAAAAANoXESzodIwMWCFkwAIAAAAAAAAAAAAAAEA7IwALnU5VXQaskAACsAAAAAAAAAAAAAAAANC+CMBCp1OfAYvDFwAAAAAAAAAAAAAAAO2LCBZ0OpU1rgxYwWTAAgAAAAAAAAAAAAAAQDsjAAudThUZsAAAAAAAAAAAAAAAANBBEMGCTqeq1pUBKySQDFgAAAAAAAAAAAAAAABoXwRgodOpJAMWAAAAAAAAAAAAAAAAOggiWNDpVNa6ArCCA8iABQAAAAAAAAAAAAAAgPZFABY6nfV7SySRAQsAAAAAAAAAAAAAAADtjwgWdCqlVbXKLa2WJIUFBbRzaQAAAAAAAAAAAAAAAPBnRwAWOpXc0irz34dmxrVjSQAAAAAAAAAAAAAAAAACsNDJlFfbJUldIoMVEmhr59IAAAAAAAAAAAAAAADgz44ALHQqFXUBWGFBBF8BAAAAAAAAAAAAAACg/RGAhU6lvMYVgBVK9isAAAAAAAAAAAAAAAB0AARgoVMhAxYAAAAAAAAAAAAAAAA6EgKw0KmUVtVKksKCAtq5JAAAAAAAAAAAAAAAAAABWOhklu0skiQF2CztXBIAAAAAAAAAAAAAAACAACx0MlEhgZKk8ip7O5cEAAAAAAAAAAAAAAAAIAALnUytwyFJGtotpn0LAgAAAAAAAAAAAAAAAIgALHQyNXanJCnAyhSEAAAAAAAAAAAAAAAAaH8EYKFTsTvqArBsHLoAAAAAAAAAAAAAAABof0SxoFMxpiAMJAMWAAAAAAAAAAAAAAAAOgACsNCpmFMQkgELAAAAAAAAAAAAAAAAHUCHjmKx2+265ZZblJmZqdDQUGVlZenOO++U0+k0l3E6nbr11luVkpKi0NBQTZo0SRs3bmzHUqMt1dYFYAXayIAFAAAAAAAAAAAAAACA9tehA7Duv/9+/etf/9KTTz6ptWvX6v7779cDDzygJ554wlzmgQce0OOPP65nnnlGixcvVnh4uKZOnarKysp2LDnaijEFoY0pCAEAAAAAAAAAAAAAANABBLR3ARrz448/6vjjj9cxxxwjScrIyNB///tfLVmyRJIr+9XcuXN188036/jjj5ckvfLKK0pKStIHH3ygU089td3KjrbBFIQAAAAAAAAAAAAAAADoSDp0ANbo0aP13HPPacOGDerdu7eWL1+u77//Xo888ogkaevWrdq7d68mTZpkfiY6OlqjRo3STz/91GAAVlVVlaqqqsy/i4uLJUk1NTWqqalpwy1CSxm/S63dLkmyOh38VgCAAzKuFVwzAADNxTUEANASXD8AAC3B9QMA0BJcP4CDo6nnWIcOwLrhhhtUXFysvn37ymazyW636+6779YZZ5whSdq7d68kKSkpyeNzSUlJ5nv+3HvvvZozZ47P659//rnCwsJacQvQ2vbu2y/JqjWrVurTfSvauzgAgE5i4cKF7V0EAEAnxTUEANASXD8AAC3B9QMA0BJcP4C2VV5e3qTlOnQA1ttvv63XX39db7zxhgYMGKBly5bp6quvVmpqqs4555wWr/fGG2/UNddcY/5dXFys9PR0TZkyRVFRUa1RdLSympoaLVy4UHFx8VJhgYYNHaLpQ1Pbu1gAgA7OuH5MnjxZgYGB7V0cAEAnwjUEANASXD8AAC3B9QMA0BJcP4CDw5hV70A6dADWddddpxtuuMGcSnDQoEHavn277r33Xp1zzjlKTk6WJOXk5CglJcX8XE5OjoYOHdrgeoODgxUcHOzzemBgIBVTB+eURZIUGBjAbwUAaDKu8QCAluIaAgBoCa4fAICW4PoBAGgJrh9A22rq+WVt43L8IeXl5bJaPYtos9nkcDgkSZmZmUpOTtaXX35pvl9cXKzFixfr8MMPP6hlxcFhdzolSVaLpZ1LAgAAAAAAAAAAAAAAAHTwDFgzZszQ3XffrW7dumnAgAH6/fff9cgjj+j888+XJFksFl199dW666671KtXL2VmZuqWW25RamqqZs6c2b6FR5twuOKvZLMSgAUAAAAAAAAAAAAAAID216EDsJ544gndcsstuuyyy7Rv3z6lpqbqkksu0a233mouc/3116usrEwXX3yxCgsLNXbsWM2fP18hISHtWHK0FYfDyIDVzgUBAAAAAAAAAAAAAAAA1MEDsCIjIzV37lzNnTu3wWUsFovuuOMO3XHHHQevYGg3TEEIAAAAAAAAAAAAAACAjsTa3gUAmsNRF4DFFIQAAAAAAAAAAAAAAADoCAjAQqficLj+TwYsAAAAAAAAAAAAAAAAdAQEYKFTsTvqpiAkAxYAAAAAAAAAAAAAAAA6AAKw0Kk4jSkIyYAFAAAAAAAAAAAAAACADoAALHQq9roALBJgAQAAAAAAAAAAAAAAoCMgAAudit3h+j9TEAIAAAAAAAAAAAAAAKAj+MMBWMXFxfrggw+0du3a1igP0CiHMQUhAVgAAAAAAAAAAAAAAADoAJodgDVr1iw9+eSTkqSKigqNHDlSs2bN0uDBg/Xee++1egEBdw6mIAQAAAAAAAAAAAAAAEAH0uwArEWLFmncuHGSpPfff19Op1OFhYV6/PHHddddd7V6AQF3DocRgEUEFgAAAAAAAAAAAAAAANpfswOwioqKFBcXJ0maP3++TjrpJIWFhemYY47Rxo0bW72AgDu7K/6KKQgBAAAAAAAAAAAAAADQITQ7ACs9PV0//fSTysrKNH/+fE2ZMkWSVFBQoJCQkFYvIOCufgpCArAAAAAAAAAAAAAAAADQ/gKa+4Grr75aZ5xxhiIiItS9e3dNnDhRkmtqwkGDBrV2+QAPTEEIAAAAAAAAAAAAAACAjqTZAViXXXaZRo0apR07dmjy5MmyWl1JtHr06KG777671QsIuLPXZcBiCkIAAAAAAAAAAAAAAAB0BM2egvCOO+5Qv379dMIJJygiIsJ8/cgjj9QXX3zRqoUDvNXFX4n4KwAAAAAAAAAAAAAAAHQEzQ7AmjNnjkpLS31eLy8v15w5c1qlUEBD7MYUhERgAQAAAAAAAAAAAAAAoANodgCW0+mUxeIb/LJ8+XLFxcW1SqGAhphTEPo5BgEAAAAAAAAAAAAAAICDLaCpC8bGxspischisah3794eQVh2u12lpaX6y1/+0iaFBAz1UxASgAUAAAAAAAAAAAAAAID21+QArLlz58rpdOr888/XnDlzFB0dbb4XFBSkjIwMHX744W1SSMBQPwVhOxcEAAAAAAAAAAAAAAAAUDMCsM455xxJUmZmpsaMGaOAgCZ/FGg1DmMKQisZsAAAAAAAAAAAAAAAAND+mp1HqKysTF9++aXP6wsWLNBnn33WKoUCGuJgCkIAAAAAAAAAAAAAAAB0IM0OwLrhhhtkt9t9Xnc6nbrhhhtapVBAQ8wpCAnAAgAAAAAAAAAAAAAAQAfQ7ACsjRs3qn///j6v9+3bV5s2bWqVQgH+GNmvJKYgBAAAAAAAAAAAAAAAQMfQ7ACs6Ohobdmyxef1TZs2KTw8vFUKBfjjdAvAIv4KAAAAAAAAAAAAAAAAHUGzA7COP/54XX311dq8ebP52qZNm/T3v/9dxx13XKsWDnDnFn8lKxFYAAAAAAAAAAAAAAAA6ACaHYD1wAMPKDw8XH379lVmZqYyMzPVr18/xcfH66GHHmqLMgKSvKYgtBCABQAAAAAAAAAAAAAAgPYX0NwPREdH68cff9TChQu1fPlyhYaGavDgwRo/fnxblA8wOdz+bSMDFgAAAAAAAAAAAAAAADqAZgdgSZLFYtGUKVM0fvx4BQcHy0I2IhwETrcMWBxyAAAAAAAAAAAAAAAA6AiaPQWhw+HQnXfeqbS0NEVERGjr1q2SpFtuuUXPP/98qxcQMDAFIQAAAAAAAAAAAAAAADqaZgdg3XXXXXrppZf0wAMPKCgoyHx94MCB+s9//tOqhQPcucVfMQUhAAAAAAAAAAAAAAAAOoRmB2C98soreu6553TGGWfIZrOZrw8ZMkTr1q1r1cIB7hweUxASgAUAAAAAAAAAAAAAAID21+wArOzsbPXs2dPndYfDoZqamlYpFOCPEX9F9isAAAAAAAAAAAAAAAB0FM0OwOrfv7++++47n9ffffddDRs2rFUKBfhjZMCykf0KAAAAAAAAAAAAAAAAHURAcz9w66236pxzzlF2drYcDofmzZun9evX65VXXtHHH3/cFmUEJNVnwCL+CgAAAAAAAAAAAAAAAB1FszNgHX/88froo4/0xRdfKDw8XLfeeqvWrl2rjz76SJMnT26LMgKS3DJgMQUhAAAAAAAAAAAAAAAAOohmZ8CSpHHjxmnhwoWtXRagUUxBCAAAAAAAAAAAAAAAgI6m2RmwgPbCFIQAAAAAAAAAAAAAAADoaJqUASsuLk4bNmxQQkKCYmNjZWkkAiYiIkIDBgzQ/fffr8GDB7daQQEnUxACAAAAAAAAAAAAAACgg2lSANajjz6qyMhISdLcuXMbXbaqqkqffvqpzjvvPP32229/uICAwUEAFgAAAAAAAAAAAAAAADqYJgVgnXPOOX7/3ZCjjz5aI0aMaHmpAD/qpyAkAAsAAAAAAAAAAAAAAAAdQ5MCsPz59ddftXbtWklSv379NHLkSPO99PR07du374+XDnBjZsAiAAsAAAAAAAAAAAAAAAAdRLMDsHbt2qXTTjtNP/zwg2JiYiRJhYWFGj16tN5880117dq1tcsISJIcdf9nCkIAAAAAAAAAAAAAAAB0FNbmfuDCCy9UTU2N1q5dq/z8fOXn52vt2rVyOBy68MIL26KMgCTJWZcBiwRYAAAAAAAAAAAAAAAA6CianQHr22+/1Y8//qg+ffqYr/Xp00dPPPGExo0b16qFA9zVxV+RAQsAAAAAAAAAAAAAAAAdRrMzYKWnp6umpsbndbvdrtTU1FYpFOCPoy4Cy0YKLAAAAAAAAAAAAAAAAHQQzQ7AevDBB/XXv/5Vv/76q/nar7/+qquuukoPPfRQqxYOcOdwugKviL8CAAAAAAAAAAAAAABAR9GkKQhjY2NlcYt6KSsr06hRoxQQ4Pp4bW2tAgICdP7552vmzJltUlCAKQgBAAAAAAAAAAAAAADQ0TQpAGvu3LltXAzgwIwpCK2kwAIAAAAAAAAAAAAAAEAH0aQArHPOOaetywEckJMALAAAAAAAAAAAAAAAAHQwTQrAcpedna333ntPGzZskCT16dNHJ554otLS0lq9cIA7R93/mYIQAAAAAAAAAAAAAAAAHUWzArCefvppXXPNNaqurlZUVJQkqbi4WNddd50eeeQRXXbZZW1SSEByy4BFABYAAAAAAAAAAAAAAAA6CGtTF/zkk0905ZVX6oorrlB2drYKCwtVWFio7OxsXXbZZbrqqqv06aeftmVZ8SdnZMAi/goAAAAAAAAAAAAAAAAdRZMzYD344IO64YYbdNddd3m8npKSokceeURhYWF64IEHNH369FYvJCDVZ8CyWYjAAgAAAAAAAAAAAAAAQMfQ5AxYS5cu1VlnndXg+2eddZaWLl3aKoUC/DEzYJECCwAAAAAAAAAAAAAAAB1EkwOw7Ha7AgMDG3w/MDBQdru9VQoF+GNkwPr/9u48zMq67h/4ewaGfRNkVSRMFPd9Qc1MEVwfLSotM3e7DFTAx4RMDXctl0cD0UrN35NL9qiluRGaqA8qYopbqGlq+YAayogIDMz5/SFzZAJ0ZpxhztjrdV1zzTnf+z73fO6ZM3wu4e3nK38FAAAAAAAAAECpqHMAa9NNN83vfve71R6//fbbs+mmmzZKUbAq1TVbEEpgAQAAAAAAAABQIlrX9cSRI0fm+OOPT9u2bXPccceldeuPXrp06dJcddVV+dGPfpRJkyY1WaGwPH+V8jIBLAAAAAAAAAAASkOdA1iHH354nnnmmYwaNSrjx4/PF7/4xRQKhbzyyitZsGBBTjzxxBxxxBFNWCr/7qqLWxAKYAEAAAAAAAAAUBrqHMBKkp/+9Kf5+te/nhtvvDEvvfRSkuTLX/5yDjnkkOy0005NUiDUsAUhAAAAAAAAAAClpl4BrCTZaaedhK1oFrYgBAAAAAAAAACg1JQ3dwGf5h//+Ee+853vpEePHmnfvn0233zzPPHEE8XjhUIhZ5xxRvr27Zv27dtn6NChxelcfL58PAGreesAAAAAAAAAAIAaJR1leffdd7PLLrukoqIid999d55//vlcfPHFWWuttYrnXHTRRbn88sszefLkPPbYY+nYsWOGDx+eRYsWNWPlNAUTsAAAAAAAAAAAKDX13oJwTbrwwgvTv3//XHvttcW1gQMHFh8XCoVcdtll+dGPfpQDDzwwSXL99dend+/euf3223PIIYes8ZppOoXlCazycgEsAAAAAAAAAABKQ0kHsH7/+99n+PDh+cY3vpEHH3ww66yzTr7//e/n2GOPTZK8+uqrmTNnToYOHVp8TdeuXbPjjjtm+vTpqw1gLV68OIsXLy4+r6ysTJJUVVWlqqqqCe+Ihqqqqkr18sdlhYKfEwB1UtMv9A0A6ksPAaAh9A8AGkL/AKAh9A9YM+r6O1bSAaxXXnklV155ZcaOHZsf/vCHmTFjRk488cS0adMmhx9+eObMmZMk6d27d63X9e7du3hsVc4///xMmDBhpfX77rsvHTp0aNyboNFUFz6afPV///dm7rrr781cDQAtyZQpU5q7BABaKD0EgIbQPwBoCP0DgIbQP6BpLVy4sE7n1SmAtfXWW6esrG7bvj355JN1Oq8uqqurs9122+W8884r1vHss89m8uTJOfzwwxt83fHjx2fs2LHF55WVlenfv3+GDRuWLl26fOa6aXxVVVWZet0fkyTrrbtO9t1382auCICWoKqqKlOmTMlee+2VioqK5i4HgBZEDwGgIfQPABpC/wCgIfQPWDNqdtX7NHUKYB100EHFx4sWLcqkSZOyySabZMiQIUmSRx99NM8991y+//3v17/ST9C3b99ssskmtdY23njj/M///E+SpE+fPkmSuXPnpm/fvsVz5s6dm6222mq1123btm3atm270npFRYU/mEpYzRaErVu18nMCoF70eAAaSg8BoCH0DwAaQv8AoCH0D2hadf39qlMA68wzzyw+PuaYY3LiiSfm7LPPXumcN954ox4lfrpddtkls2fPrrX24osvZsCAAUmSgQMHpk+fPpk6dWoxcFVZWZnHHnssxx9/fKPWQvMrFD76XF7HaWwAAAAAAAAAANDUyuv7gltuuSXf/e53V1r/zne+U5xM1VjGjBmTRx99NOedd15efvnl3HDDDbn66qszcuTIJElZWVlGjx6dc845J7///e/zzDPP5Lvf/W769etXa2oXnw/L81cpLxfAAgAAAAAAAACgNNRpAtaK2rdvn0ceeSSDBg2qtf7II4+kXbt2jVZYkmy//fa57bbbMn78+Jx11lkZOHBgLrvsshx66KHFc37wgx/kgw8+yHHHHZf33nsvu+66a+65555Gr4XmV134KHjVqt6xQQAAAAAAAAAAaBr1DmCNHj06xx9/fJ588snssMMOSZLHHnss11xzTU4//fRGL3D//ffP/vvvv9rjZWVlOeuss3LWWWc1+temtFTbghAAAAAAAAAAgBJT7wDWuHHjsv766+e//uu/8t///d9Jko033jjXXnttvvnNbzZ6gVCjuAWhABYAAAAAAAAAACWi3gGsJPnmN78pbMUaVzMBq1W5ABYAAAAAAAAAAKWhvCEveu+99/KLX/wiP/zhDzNv3rwkyZNPPpl//OMfjVocrKhQ3IKweesAAAAAAAAAAIAa9Z6ANWvWrAwdOjRdu3bN3/72txxzzDHp3r17br311rz++uu5/vrrm6JOSPXyz+USWAAAAAAAAAAAlIh6T8AaO3ZsjjjiiLz00ktp165dcX3ffffNtGnTGrU4WFHNBKxWZQJYAAAAAAAAAACUhnoHsGbMmJHvfe97K62vs846mTNnTqMUBatSnIAlgAUAAAAAAAAAQImodwCrbdu2qaysXGn9xRdfTM+ePRulKFiV6uUTsGxBCAAAAAAAAABAqah3AOs//uM/ctZZZ6WqqipJUlZWltdffz2nnnpqRowY0egFQo3l+StbEAIAAAAAAAAAUDLqHcC6+OKLs2DBgvTq1SsffvhhvvzlL2eDDTZI586dc+655zZFjZAkKdRMwJK/AgAAAAAAAACgRLSu7wu6du2aKVOm5OGHH86sWbOyYMGCbLPNNhk6dGhT1AdFtiAEAAAAAAAAAKDU1DuAVWPXXXfNrrvu2pi1wCcqbkEogAUAAAAAAAAAQIloUABr6tSpmTp1at56661UV1fXOnbNNdc0SmHwr6ptQQgAAAAAAAAAQImpdwBrwoQJOeuss7Lddtulb9++KSuThmHN+DiA5T0HAAAAAAAAAEBpqHcAa/Lkybnuuuty2GGHNUU9sFq2IAQAAAAAAAAAoNSU1/cFS5Ysyc4779wUtcAnKpiABQAAAAAAAABAial3AOuYY47JDTfc0BS1wCeqXv653AQsAAAAAAAAAABKRJ22IBw7dmzxcXV1da6++ur88Y9/zBZbbJGKiopa515yySWNWyEsVzMBq5UJWAAAAAAAAAAAlIg6BbD+/Oc/13q+1VZbJUmeffbZWutlgjE0oeIELG8zAAAAAAAAAABKRJ0CWA888EBT1wGfqnr5BCxbEAIAAAAAAAAAUCrK6/uC+fPnZ968eSutz5s3L5WVlY1SFKyKLQgBAAAAAAAAACg19Q5gHXLIIbnppptWWv/Nb36TQw45pFGKglUpbkFY73ctAAAAAAAAAAA0jXpHWR577LF85StfWWl99913z2OPPdYoRcGq1EzAKjcBCwAAAAAAAACAElHvANbixYuzdOnSldarqqry4YcfNkpRsCqFfBS8alUugAUAAAAAAAAAQGmodwBrhx12yNVXX73S+uTJk7Pttts2SlGwKtXLJ2C1MgELAAAAAAAAAIAS0bq+LzjnnHMydOjQPP3009lzzz2TJFOnTs2MGTNy3333NXqBUKMmgFUmgAUAAAAAAAAAQImo9wSsXXbZJdOnT0///v3zm9/8JnfccUc22GCDzJo1K1/60peaokZIkizPX9mCEAAAAAAAAACAklHvCVhJstVWW+XXv/51Y9cCn6i4BWG9Y4MAAAAAAAAAANA0GhTAqrFo0aIsWbKk1lqXLl0+U0GwOjUTsGxBCAAAAAAAAABAqaj3LKGFCxdm1KhR6dWrVzp27Ji11lqr1gc0lcLyBFa5ABYAAAAAAAAAACWi3gGsU045Jffff3+uvPLKtG3bNr/4xS8yYcKE9OvXL9dff31T1AhJkurln8vlrwAAAAAAAAAAKBH13oLwjjvuyPXXX5/dd989Rx55ZL70pS9lgw02yIABA/LrX/86hx56aFPUCcU9CE3AAgAAAAAAAACgVNR7Ata8efOy/vrrJ0m6dOmSefPmJUl23XXXTJs2rXGrgxUsz19F/AoAAAAAAAAAgFJR7wDW+uuvn1dffTVJMnjw4PzmN79J8tFkrG7dujVqcbCiYgDLBCwAAAAAAAAAAEpEvQNYRx55ZJ5++ukkybhx4zJx4sS0a9cuY8aMySmnnNLoBUKNQnELwuatAwAAAAAAAAAAarSu7wvGjBlTfDx06ND85S9/ycyZM7PBBhtkiy22aNTiYFVMwAIAAAAAAAAAoFTUO4D1rwYMGJABAwY0Ri3wiaqXfzYBCwAAAAAAAACAUlHnLQjvv//+bLLJJqmsrFzp2Pz587PpppvmoYceatTiYEU1WxAagAUAAAAAAAAAQKmocwDrsssuy7HHHpsuXbqsdKxr16753ve+l0suuaRRi4NVsQUhAAAAAAAAAAClos4BrKeffjp77733ao8PGzYsM2fObJSiYFWWD8CK+BUAAAAAAAAAAKWizgGsuXPnpqKiYrXHW7dunbfffrtRioJVqdmCsNwELAAAAAAAAAAASkSdA1jrrLNOnn322dUenzVrVvr27dsoRcGq1EzAEsACAAAAAAAAAKBU1DmAte++++b000/PokWLVjr24Ycf5swzz8z+++/fqMXBiopbEMpfAQAAAAAAAABQIlrX9cQf/ehHufXWW7Phhhtm1KhR2WijjZIkf/nLXzJx4sQsW7Ysp512WpMVCjVbEApgAQAAAAAAAABQKuocwOrdu3f+93//N8cff3zGjx+fwvI0TFlZWYYPH56JEyemd+/eTVYo1CiLBBYAAAAAAAAAAKWhzgGsJBkwYEDuuuuuvPvuu3n55ZdTKBQyaNCgrLXWWk1VHxRVL/9cXueNMwEAAAAAAAAAoGnVK4BVY6211sr222/f2LXAJypuQWgCFgAAAAAAAAAAJcIsIVqccvkrAAAAAAAAAABKhAAWLUZxAlaZBBYAAAAAAAAAAKVBAIsWY3n+KvJXAAAAAAAAAACUijoFsLbZZpu8++67SZKzzjorCxcubNKiYFVqAljlElgAAAAAAAAAAJSIOgWwXnjhhXzwwQdJkgkTJmTBggVNWhSsSnECVrNWAQAAAAAAAAAAH2tdl5O22mqrHHnkkdl1111TKBTy05/+NJ06dVrluWeccUajFgg1CssTWCZgAQAAAAAAAABQKuoUwLruuuty5pln5s4770xZWVnuvvvutG698kvLysoEsGhy8lcAAAAAAAAAAJSKOgWwNtpoo9x0001JkvLy8kydOjW9evVq0sLgX9VMwBLAAgAAAAAAAACgVNQpgLWi6urqpqgDPtXy/JUtCAEAAAAAAAAAKBn1DmAlyV//+tdcdtlleeGFF5Ikm2yySU466aR88YtfbNTiYEU1ASz5KwAAAAAAAAAASkV5fV9w7733ZpNNNsnjjz+eLbbYIltssUUee+yxbLrpppkyZUpT1AhJPt6C0AQsAAAAAAAAAABKRb0nYI0bNy5jxozJBRdcsNL6qaeemr322qvRioMVFSdgNWsVAAAAAAAAAADwsXpPwHrhhRdy9NFHr7R+1FFH5fnnn2+UomBVCsujV2UmYAEAAAAAAAAAUCLqHcDq2bNnnnrqqZXWn3rqqfTq1asxalqtCy64IGVlZRk9enRxbdGiRRk5cmR69OiRTp06ZcSIEZk7d26T1sGaV6jZfzCJ/BUAAAAAAAAAAKWi3lsQHnvssTnuuOPyyiuvZOedd06SPPLII7nwwgszduzYRi+wxowZM3LVVVdliy22qLU+ZsyY/OEPf8gtt9ySrl27ZtSoUfna176WRx55pMlqYc1bIX+VcgksAAAAAAAAAABKRL0DWKeffno6d+6ciy++OOPHj0+S9OvXLz/+8Y9z4oknNnqBSbJgwYIceuih+fnPf55zzjmnuD5//vz88pe/zA033JA99tgjSXLttddm4403zqOPPpqddtqpSephzVshf5Vy+SsAAAAAAAAAAEpEvQNYZWVlGTNmTMaMGZP3338/SdK5c+dGL2xFI0eOzH777ZehQ4fWCmDNnDkzVVVVGTp0aHFt8ODBWW+99TJ9+vTVBrAWL16cxYsXF59XVlYmSaqqqlJVVdVEd8FnsXjJkuLjpUuXpqpKCguAT1fT1/V3AOpLDwGgIfQPABpC/wCgIfQPWDPq+jtW7wDWipo6eJUkN910U5588snMmDFjpWNz5sxJmzZt0q1bt1rrvXv3zpw5c1Z7zfPPPz8TJkxYaf2+++5Lhw4dPnPNNL6l1UnN2/WPU6ak/Wd65wLw72bKlCnNXQIALZQeAkBD6B8ANIT+AUBD6B/QtBYuXFin80o6xvLGG2/kpJNOypQpU9KuXbtGu+748eMzduzY4vPKysr0798/w4YNS5cuXRrt69B4Fny4KHlsWpJk2LBh6dyupN+6AJSIqqqqTJkyJXvttVcqKiqauxwAWhA9BICG0D8AaAj9A4CG0D9gzajZVe/TlHSKZebMmXnrrbeyzTbbFNeWLVuWadOm5Wc/+1nuvffeLFmyJO+9916tKVhz585Nnz59Vnvdtm3bpm3btiutV1RU+IOpRLVasqz4uG2bilRUlPRbF4ASo8cD0FB6CAANoX8A0BD6BwANoX9A06rr71dJp1j23HPPPPPMM7XWjjzyyAwePDinnnpq+vfvn4qKikydOjUjRoxIksyePTuvv/56hgwZ0hwl00QKKRQfl5U1YyEAAAAAAAAAALCCegWwqqqqsvfee2fy5MkZNGhQU9VU1Llz52y22Wa11jp27JgePXoU148++uiMHTs23bt3T5cuXXLCCSdkyJAh2WmnnZq8Ptac6o/zVymXwAIAAAAAAAAAoETUK4BVUVGRWbNmNVUtDXLppZemvLw8I0aMyOLFizN8+PBMmjSpucuikRVWCGDJXwEAAAAAAAAAUCrqvQXhd77znfzyl7/MBRdc0BT1fKo//elPtZ63a9cuEydOzMSJE5ulHtaMwgoJrLJIYAEAAAAAAAAAUBrqHcBaunRprrnmmvzxj3/Mtttum44dO9Y6fskllzRacVBjhQFYKZe/AgAAAAAAAACgRNQ7gPXss89mm222SZK8+OKLtY6V2RuOJlK94gQs7zMAAAAAAAAAAEpEvQNYDzzwQFPUAZ9ohfyVCVgAAAAAAAAAAJSM8oa+8OWXX869996bDz/8MElSWDEhA42sYAIWAAAAAAAAAAAlqN4BrH/+85/Zc889s+GGG2bffffN//3f/yVJjj766Jx88smNXiAkSfXy/JXsFQAAAAAAAAAApaTeAawxY8akoqIir7/+ejp06FBcP/jgg3PPPfc0anFQo2b+VbkEFgAAAAAAAAAAJaR1fV9w33335d577826665ba33QoEF57bXXGq0wWFH18i0Ixa8AAAAAAAAAACgl9Z6A9cEHH9SafFVj3rx5adu2baMUBf+qYAtCAAAAAAAAAABKUL0DWF/60pdy/fXXF5+XlZWluro6F110Ub7yla80anHwr8oksAAAAAAAAAAAKCH13oLwoosuyp577pknnngiS5YsyQ9+8IM899xzmTdvXh555JGmqBFsQQgAAAAAAAAAQEmq9wSszTbbLC+++GJ23XXXHHjggfnggw/yta99LX/+85/zxS9+sSlqBFsQAgAAAAAAAABQkuo9AStJunbtmtNOO62xa4HVKsQELAAAAAAAAAAASk+DAljvvvtufvnLX+aFF15IkmyyySY58sgj071790YtDmrUTMAqNwILAAAAAAAAAIASUu8tCKdNm5YvfOELufzyy/Puu+/m3XffzeWXX56BAwdm2rRpTVEjFANYRmABAAAAAAAAAFBK6j0Ba+TIkTn44INz5ZVXplWrVkmSZcuW5fvf/35GjhyZZ555ptGLhI+3IJTAAgAAAAAAAACgdNR7AtbLL7+ck08+uRi+SpJWrVpl7Nixefnllxu1OKhRMwHLDoQAAAAAAAAAAJSSegewttlmm7zwwgsrrb/wwgvZcsstG6Uo+FfFAFbzlgEAAAAAAAAAALXUaQvCWbNmFR+feOKJOemkk/Lyyy9np512SpI8+uijmThxYi644IKmqZJ/e8vzVyk3AgsAAAAAAAAAgBJSpwDWVlttlbKyshRqxhAl+cEPfrDSed/+9rdz8MEHN151sFz18vee/BUAAAAAAAAAAKWkTgGsV199tanrgE9W+PRTAAAAAAAAAABgTatTAGvAgAFNXQd8okJMwAIAAAAAAAAAoPTUKYD1r9588808/PDDeeutt1JdXV3r2IknntgohcGKana/LJfAAgAAAAAAAACghNQ7gHXdddfle9/7Xtq0aZMePXqkbIVATFlZmQAWTaJ6eQBL/AoAAAAAAAAAgFJS7wDW6aefnjPOOCPjx49PeXl5U9QEK/l4C0IRLAAAAAAAAAAASke9E1QLFy7MIYccInzFGlUwAQsAAAAAAAAAgBJU7xTV0UcfnVtuuaUpaoFPJ4EFAAAAAAAAAEAJqfcWhOeff37233//3HPPPdl8881TUVFR6/gll1zSaMVBjZoJWOW2IAQAAAAAAAAAoIQ0KIB17733ZqONNkqSlK0QiCkTjqGJVC9PYHmHAQAAAAAAAABQSuodwLr44otzzTXX5IgjjmiCcmDVlg/AiowfAAAAAAAAAAClpLy+L2jbtm122WWXpqgFVqtgAhYAAAAAAAAAACWo3gGsk046KVdccUVT1AKr9fEELBEsAAAAAAAAAABKR723IHz88cdz//33584778ymm26aioqKWsdvvfXWRisOaiwfgGULQgAAAAAAAAAASkq9A1jdunXL1772taaoBVbr4y0IJbAAAAAAAAAAACgd9Q5gXXvttU1RB3yij7cgbNYyAAAAAAAAAACglvLmLgDqorgFYfOWAQAAAAAAAAAAtdR7AtbAgQNT9gljiF555ZXPVBCsSmH5DKxPeu8BAAAAAAAAAMCaVu8A1ujRo2s9r6qqyp///Ofcc889OeWUUxqrLqilOAFL/goAAAAAAAAAgBJS7wDWSSedtMr1iRMn5oknnvjMBcGq2IIQAAAAAAAAAIBSVN5YF9pnn33yP//zP411Oajl4y0Im7kQAAAAAAAAAABYQaMFsH7729+me/fujXU5qKVmAla5BBYAAAAAAAAAACWk3lsQbr311ilbIQRTKBQyZ86cvP3225k0aVKjFgc1qm1BCAAAAAAAAABACap3AOuggw6q9by8vDw9e/bM7rvvnsGDBzdWXVBLzRaE9iAEAAAAAAAAAKCU1DuAdeaZZzZFHfDJTMACAAAAAAAAAKAElTd3AVAXy/NXBmABAAAAAAAAAFBS6jwBq7y8PGWfkn4pKyvL0qVLP3NR8K8KhY8iWOUSWAAAAAAAAAAAlJA6B7Buu+221R6bPn16Lr/88lRXVzdKUfCvqmu2IJS/AgAAAAAAAACghNQ5gHXggQeutDZ79uyMGzcud9xxRw499NCcddZZjVoc1ChuQdisVQAAAAAAAAAAQG3lDXnRm2++mWOPPTabb755li5dmqeeeiq/+tWvMmDAgMauD5J8vAWhBBYAAAAAAAAAAKWkXgGs+fPn59RTT80GG2yQ5557LlOnTs0dd9yRzTbbrKnqg48sz1+V24MQAAAAAAAAAIASUuctCC+66KJceOGF6dOnT2688cZVbkkITaXaACwAAAAAAAAAAEpQnQNY48aNS/v27bPBBhvkV7/6VX71q1+t8rxbb7210YqDGoXlI7DKTMACAAAAAAAAAKCE1DmA9d3vflf4hWZTMAELAAAAAAAAAIASVOcA1nXXXdeEZcAnW56/igwgAAAAAAAAAAClpLy5C4C6KBRsQQgAAAAAAAAAQOkRwKJFsAUhAAAAAAAAAAClSACLFsEWhAAAAAAAAAAAlCIBLFqE4haEzVwHAAAAAAAAAACsSACLFqFmAla5EVgAAAAAAAAAAJQQASxahOriHoTNWgYAAAAAAAAAANRS0gGs888/P9tvv306d+6cXr165aCDDsrs2bNrnbNo0aKMHDkyPXr0SKdOnTJixIjMnTu3mSqmyRS3IJTAAgAAAAAAAACgdJR0AOvBBx/MyJEj8+ijj2bKlCmpqqrKsGHD8sEHHxTPGTNmTO64447ccsstefDBB/Pmm2/ma1/7WjNWTVMoDsCSvwIAAAAAAAAAoIS0bu4CPsk999xT6/l1112XXr16ZebMmdltt90yf/78/PKXv8wNN9yQPfbYI0ly7bXXZuONN86jjz6anXbaqTnKpgksH4Bl/hUAAAAAAAAAACWlpANY/2r+/PlJku7duydJZs6cmaqqqgwdOrR4zuDBg7Peeutl+vTpqw1gLV68OIsXLy4+r6ysTJJUVVWlqqqqqcrnM1i6bOnyRwU/IwDqrKZn6B0A1JceAkBD6B8ANIT+AUBD6B+wZtT1d6zFBLCqq6szevTo7LLLLtlss82SJHPmzEmbNm3SrVu3Wuf27t07c+bMWe21zj///EyYMGGl9fvuuy8dOnRo1LppHM+8VZakVf75zju56667mrscAFqYKVOmNHcJALRQeggADaF/ANAQ+gcADaF/QNNauHBhnc5rMQGskSNH5tlnn83DDz/8ma81fvz4jB07tvi8srIy/fv3z7Bhw9KlS5fPfH0aX+Xjryd//Ut69uyZfffdtrnLAaCFqKqqypQpU7LXXnuloqKiucsBoAXRQwBoCP0DgIbQPwBoCP0D1oyaXfU+TYsIYI0aNSp33nlnpk2blnXXXbe43qdPnyxZsiTvvfderSlYc+fOTZ8+fVZ7vbZt26Zt27YrrVdUVPiDqUS1alWeJCkvL/MzAqDe9HgAGkoPAaAh9A8AGkL/AKAh9A9oWnX9/Spv4jo+k0KhkFGjRuW2227L/fffn4EDB9Y6vu2226aioiJTp04trs2ePTuvv/56hgwZsqbLpQkVCh99Li8ra95CAAAAAAAAAABgBSU9AWvkyJG54YYb8rvf/S6dO3fOnDlzkiRdu3ZN+/bt07Vr1xx99NEZO3Zsunfvni5duuSEE07IkCFDstNOOzVz9TSm6uUBLPErAAAAAAAAAABKSUkHsK688sokye67715r/dprr80RRxyRJLn00ktTXl6eESNGZPHixRk+fHgmTZq0hiulqRXyUQKrzAQsAAAAAAAAAABKSEkHsAo1+859gnbt2mXixImZOHHiGqiI5lKHtwIAAAAAAAAAAKxx5c1dANRFTf7KACwAAAAAAAAAAEqJABYtQnX1RxGsVhJYAAAAAAAAAACUEAEsWoTq5XsQlpcLYAEAAAAAAAAAUDoEsGgRlg/AivwVAAAAAAAAAAClRACLFqE4AcsWhAAAAAAAAAAAlBABLFqEZdW2IAQAAAAAAAAAoPQIYNEiFGxBCAAAAAAAAABACRLAokWomYDVyhaEAAAAAAAAAACUEAEsWoTq5SOwygSwAAAAAAAAAAAoIQJYtAg1ASxbEAIAAAAAAAAAUEoEsGgRlu9AmHITsAAAAAAAAAAAKCECWLQIJmABAAAAAAAAAFCKBLBoGZZPwIoJWAAAAAAAAAAAlBABLFqEYv6qWasAAAAAAAAAAIDaBLBoEZbvQGgAFgAAAAAAAAAAJUUAixahsHwGlvwVAAAAAAAAAAClRACLFuHjCVgiWAAAAAAAAAAAlA4BLFqE5fkrE7AAAAAAAAAAACgpAli0CIXlI7AMwAIAAAAAAAAAoJQIYAEAAAAAAAAAADSQABYtSpkRWAAAAAAAAAAAlBABLFqE5TsQRvwKAAAAAAAAAIBSIoBFi7A8fxUDsAAAAAAAAAAAKCUCWLQIheUjsMrMwAIAAAAAAAAAoIQIYNEimIAFAAAAAAAAAEApEsCiRVg+AMv8KwAAAAAAAAAASooAFi1CzQQsCSwAAAAAAAAAAEqJABYtw/IRWGUSWAAAAAAAAAAAlBABLFqEmglYZfJXAAAAAAAAAACUEAEsWoTlA7DMvwIAAAAAAAAAoKQIYNEiFJbPwDIBCwAAAAAAAACAUiKARYvw8QQsCSwAAAAAAAAAAEqHABYtQqHmgfwVAAAAAAAAAAAlRACLFuHjCVgAAAAAAAAAAFA6BLBoIT5KYJWViWABAAAAAAAAAFA6BLBoEUzAAgAAAAAAAACgFAlg0SIsz1/FACwAAAAAAAAAAEqJABYtgglYAAAAAAAAAACUIgEsWoRCcQYWAAAAAAAAAACUDgEsWoTiBCx7EAIAAAAAAAAAUEIEsGgRzL8CAAAAAAAAAKAUCWDRMiwfgWUAFgAAAAAAAAAApUQAixbh4y0Im7cOAAAAAAAAAABYkQAWLULNFoRlkcACAAAAAAAAAKB0CGDRIpiABQAAAAAAAABAKRLAokUoLJ+BJX8FAAAAAAAAAEApEcCiRfh4ApYIFgAAAAAAAAAApUMAixah0NwFAAAAAAAAAADAKrRu7gKgTooTsJq3DAAAAAAAAACg4ZYtW5aqqqrmLgOSJK1atUrr1q0/845sAli0CIXlCSz5KwAAAAAAAABomRYsWJC///3vKRTsg0Xp6NChQ/r27Zs2bdo0+BoCWLQIheIELBEsAAAAAAAAAGhpli1blr///e/p0KFDevbs6d//aXaFQiFLlizJ22+/nVdffTWDBg1KeXl5g64lgEWLUJN99ccvAAAAAAAAALQ8VVVVKRQK6dmzZ9q3b9/c5UCSpH379qmoqMhrr72WJUuWpF27dg26TsNiW7CG1YwfFIAFAAAAAAAAgJbL5CtKTUOnXtW6RiPUAU3OBCwAAAAAAAAAAEqRABYtQqGYwBLBAgAAAAAAAACgdAhg0aKIXwEAAAAAAAAApegLX/hCLrvsss98zppWijWtTqnWKoBFi2IAFgAAAAAAAACwJr3xxhs56qij0q9fv7Rp0yYDBgzISSedlH/+85/1vtaMGTNy3HHHNVptjRFIaqyaXn755Rx55JFZd91107Zt2wwcODDf+ta38sQTT3zma5c6ASxahMLyPQjLzMACAAAAAAAAANaQV155Jdttt11eeuml3HjjjXn55ZczefLkTJ06NUOGDMm8efPqdb2ePXumQ4cOTVRtwzRGTU888US23XbbvPjii7nqqqvy/PPP57bbbsvgwYNz8sknN1KlpUsAixahsPyzCVgAAAAAAAAA0PIVCoUsXLK0WT5qhsDUxciRI9OmTZvcd999+fKXv5z11lsv++yzT/74xz/mH//4R0477bRa57///vv51re+lY4dO2adddbJxIkTax3/14lV7733Xo455pj07NkzXbp0yR577JGnn3661mvuuOOObL/99mnXrl3WXnvtfPWrX02S7L777nnttdcyZsyYlJWVpWx5qOK1117LAQcckLXWWisdO3bMpptumrvuumu19/ivNZWVleUXv/hFvvrVr6ZDhw4ZNGhQfv/736/29YVCIUcccUQGDRqUhx56KPvtt1+++MUvZquttsqZZ56Z3/3ud8VzTz311Gy44Ybp0KFD1l9//Zx++umpqqqq0/3WWLhwYY466qh07tw56623Xq6++upax994441885vfTLdu3dK9e/cceOCB+dvf/rba+htD6ya9+ho0ceLE/OQnP8mcOXOy5ZZb5oorrsgOO+zQ3GXRSGr+7JO/AgAAAAAAAICW78OqZdnkjHub5Ws/f9bwdGjz6ZGZefPm5d577825556b9u3b1zrWp0+fHHroobn55pszadKkYvjpJz/5SX74wx9mwoQJuffee3PSSSdlww03zF577bXKr/GNb3wj7du3z913352uXbvmqquuyp577pkXX3wx3bt3zx/+8Id89atfzWmnnZbrr78+S5YsKYapbr311my55ZY57rjjcuyxxxavOXLkyCxZsiTTpk1Lx44d8/zzz6dTp071+h5NmDAhF110UX7yk5/kiiuuyKGHHprXXnst3bt3X+ncp556Ks8991xuuOGGlJevPAuqW7duxcedO3fOddddl379+uWZZ57Jsccem86dO+cHP/hBknzi/da4+OKLc/bZZ+eHP/xhfvvb3+b444/Pl7/85Wy00UapqqrK8OHDM2TIkDz00ENp3bp1zjnnnOy9996ZNWtW2rRpU6/vQ119LgJYN998c8aOHZvJkydnxx13zGWXXZbhw4dn9uzZ6dWrV3OXRyMoLJ+BZQIWAAAAAAAAALAmvPTSSykUCtl4441XeXzjjTfOu+++m7fffruYT9lll10ybty4JMmGG26YRx55JJdeeukqA1gPP/xwHn/88bz11ltp27ZtkuSnP/1pbr/99vz2t7/Ncccdl3PPPTeHHHJIJkyYUHzdlltumSTp3r17WrVqlc6dO6dPnz7F46+//npGjBiRzTffPEmy/vrr1/vejzjiiHzrW99Kkpx33nm5/PLL8/jjj2fvvfde5fcpSQYPHvyp1/3Rj35UfPyFL3wh//mf/5mbbrqpGMD6pPutse++++b73/9+ko8mal166aV54IEHstFGG+Xmm29OdXV1fvGLXxRDcddee226deuWP/3pTxk2bFh9vg119rkIYF1yySU59thjc+SRRyZJJk+enD/84Q+55pprim9qWraPp/9JYAEAAAAAAABAS9e+olWeP2t4s33t+qjPloVDhgxZ6fmK2/ut6Omnn86CBQvSo0ePWusffvhh/vrXvyb5aLrUitOt6uLEE0/M8ccfn/vuuy9Dhw7NiBEjssUWW9TrGiue37Fjx3Tp0iVvvfXWKs+tz/fn5ptvzuWXX56//vWvWbBgQZYuXZouXboUj9flflesraysLH369CnW9vTTT+fll19O586da71m0aJFxe9pU2jxAawlS5Zk5syZGT9+fHGtvLw8Q4cOzfTp01f5msWLF2fx4sXF55WVlUmSqqqqlfaVpDRUV1cv/7zMzwiAOqvpGXoHAPWlhwDQEPoHAA2hfwDQEC2xf1RVVaVQKKS6urqYAWjXeuXt6taEQqFQp9DQ+uuvn7Kysjz//PM58MADVzr+/PPPZ6211kqPHj2K91Rzjyt+rSQrrVVXV+f9999P3759c//996907W7duqW6ujrt27ev9T1b3f2sePyoo47KXnvtlT/84Q+ZMmVKzj///Pz0pz/NqFGj6nyNVq1a1XpeVlaWpUuXrrKODTbYoPj9+NdpVSuaPn16Dj300Pz4xz/OsGHD0rVr19x888255JJLitety/22bt16pdqWLVtW/J5uu+22+X//7/+t9LqePXuu8rrV1dUpFAqpqqpKq1a1w3l1/R1r8QGsd955J8uWLUvv3r1rrffu3Tt/+ctfVvma888/v9aoshr33XdfOnTo0CR18tm8/U55kvI8/9xzuevtZ5u7HABamClTpjR3CQC0UHoIAA2hfwDQEPoHAA3RkvpH69at06dPnyxYsCBLlixp7nLqpKKiIl/5ylcyadKkHHXUUWnfvn3x2Ny5c3PDDTfk4IMPzvvvv5/koyDPww8/XBwElCQPPfRQNthgg+JadXV1Fi1alMrKymy00UaZM2dOFi1alPXWW2+lr19ZWZlNNtkk9957b0aMGLHKGlu3bp0PPvig1tdMkq5du+bb3/52vv3tb2fChAm56qqr8t3vfneV11ixphoffvhhreeFQmGlc2qsv/76GTx4cH76059mn332SXl57WDd/Pnz07Vr1zzwwAPp379/rSDYyy+/nEKhULzup93vqmpdtmxZFi9enMrKymy88ca5+eab065du1qTtWqsqv4lS5bkww8/zLRp07J06dJaxxYuXLjKOv5Viw9gNcT48eMzduzY4vPKysr0798/w4YNW+U3n+a37ubzMvWhx/LNvb+Udbp3au5yAGghqqqqMmXKlOy1116pqKho7nIAaEH0EAAaQv8AoCH0DwAaoiX2j0WLFuWNN95Ip06d0q5du+Yup84mTZqUXXfdNQcffHDOOuusDBw4MM8991xOPfXUrLPOOrnooouKWZPy8vI8/vjjueqqq3LggQfmj3/8Y373u9/ljjvuqHVOTTjoP/7jPzJkyJB897vfzQUXXJANN9wwb775Zu66664cdNBB2W677TJhwoTstddeGTx4cA4++OAsXbo0d999d37wgx8kSQYOHJjHH38877//ftq2bZu11147Y8aMyd57750NN9ww7777bqZPn55NN910tZmYFWuq0b59+1rPy8rKVhtqSpJrr702w4YNywEHHJDx48dn8ODBWbBgQe68885MmTIlDzzwQDbbbLP8/e9/z1133ZXtt98+d911V/7whz+krKyseN1Pu99V1dqqVau0bds2Xbp0ydFHH52JEyfm8MMPz49//OOsu+66ee2113LbbbfllFNOybrrrrtS7YsWLUr79u2z2267rfTeXFVga1VafABr7bXXTqtWrTJ37txa63Pnzk2fPn1W+Zq2bdumbdu2K61XVFS0mD+Y/t1s0b97/t6tkHW6d/IzAqDe9HgAGkoPAaAh9A8AGkL/AKAhWlL/WLZsWcrKylJeXr7ShKRSttFGG+WJJ57ImWeemUMOOSTz5s1Lnz59ctBBB+XMM89Mjx49ap1/8sknZ+bMmTnrrLPSpUuXXHLJJdlnn31qnVPzfUiSu+66K6eddlqOPvrovP322+nTp09222239O3bN+Xl5dljjz1yyy235Oyzz86FF16YLl26ZLfddiu+/uyzz873vve9DBo0KIsXLy5uJXjCCSfk73//e7p06ZK99947l1566Sd+31esKckqf06f9LPbaaed8sQTT+Tcc8/N9773vbzzzjvp27dvdt5551x22WUpLy/PQQcdlDFjxuTEE0/M4sWLs99+++X000/Pj3/84+J1P+1+V1XrimudOnXKtGnTcuqpp+brX/963n///ayzzjrZc889061bt1XWX15enrKyslX+PtX196usUJdNLUvcjjvumB122CFXXHFFko/Gja233noZNWpUxo0b96mvr6ysTNeuXTN//nwTsEpUVVVV7rrrruy7774tpnkA0Pz0DwAaSg8BoCH0DwAaQv8AoCFaYv9YtGhRXn311QwcOLBFTcBqbH379s3ZZ5+dY445prlLYblPem/WNVPU4idgJcnYsWNz+OGHZ7vttssOO+yQyy67LB988EGOPPLI5i4NAAAAAAAAAIB/cwsXLswjjzySuXPnZtNNN23ucmhkn4sA1sEHH5y33347Z5xxRubMmZOtttoq99xzT3r37t3cpQEAAAAAAAAA8G/u6quvztlnn53Ro0dnyJAhzV0OjexzEcBKklGjRmXUqFHNXQYAAAAAAAAAANQyevTojB49urnLoImUN3cBAAAAAAAAAAAALZUAFgAAAAAAAAAAa0ShUGjuEqCWxnhPCmABAAAAAAAAANCkWrVqlSRZsmRJM1cCtS1cuDBJUlFR0eBrtG6sYgAAAAAAAAAAYFVat26dDh065O23305FRUXKy80MonkVCoUsXLgwb731Vrp161YMCTaEABYAAAAAAAAAAE2qrKwsffv2zauvvprXXnutucuBom7duqVPnz6f6RoCWAAAAAAAAAAANLk2bdpk0KBBtiGkZFRUVHymyVc1BLAAAAAAAAAAAFgjysvL065du+YuAxqVDTUBAAAAAAAAAAAaSAALAAAAAAAAAACggQSwAAAAAAAAAAAAGqh1cxdQCgqFQpKksrKymSthdaqqqrJw4cJUVlamoqKiucsBoIXQPwBoKD0EgIbQPwBoCP0DgIbQP2DNqMkS1WSLVkcAK8n777+fJOnfv38zVwIAAAAAAAAAAJSS999/P127dl3t8bLCp0W0/g1UV1fnzTffTOfOnVNWVtbc5bAKlZWV6d+/f95444106dKlucsBoIXQPwBoKD0EgIbQPwBoCP0DgIbQP2DNKBQKef/999OvX7+Ul5ev9jwTsJKUl5dn3XXXbe4yqIMuXbpoHgDUm/4BQEPpIQA0hP4BQEPoHwA0hP4BTe+TJl/VWH00CwAAAAAAAAAAgE8kgAUAAAAAAAAAANBAAli0CG3bts2ZZ56Ztm3bNncpALQg+gcADaWHANAQ+gcADaF/ANAQ+geUlrJCoVBo7iIAAAAAAAAAAABaIhOwAAAAAAAAAAAAGkgACwAAAAAAAAAAoIEEsAAAAAAAAAAAABpIAAsAAAAAAAAAAKCBBLBoESZOnJgvfOELadeuXXbcccc8/vjjzV0SAM3k/PPPz/bbb5/OnTunV69eOeiggzJ79uxa5yxatCgjR45Mjx490qlTp4wYMSJz586tdc7rr7+e/fbbLx06dEivXr1yyimnZOnSpWvyVgBoRhdccEHKysoyevTo4pr+AcDq/OMf/8h3vvOd9OjRI+3bt8/mm2+eJ554oni8UCjkjDPOSN++fdO+ffsMHTo0L730Uq1rzJs3L4ceemi6dOmSbt265eijj86CBQvW9K0AsIYsW7Ysp59+egYOHJj27dvni1/8Ys4+++wUCoXiOfoHANOmTcsBBxyQfv36paysLLfffnut443VK2bNmpUvfelLadeuXfr375+LLrqoqW8N/u0IYFHybr755owdOzZnnnlmnnzyyWy55ZYZPnx43nrrreYuDYBm8OCDD2bkyJF59NFHM2XKlFRVVWXYsGH54IMPiueMGTMmd9xxR2655ZY8+OCDefPNN/O1r32teHzZsmXZb7/9smTJkvzv//5vfvWrX+W6667LGWec0Ry3BMAaNmPGjFx11VXZYostaq3rHwCsyrvvvptddtklFRUVufvuu/P888/n4osvzlprrVU856KLLsrll1+eyZMn57HHHkvHjh0zfPjwLFq0qHjOoYcemueeey5TpkzJnXfemWnTpuW4445rjlsCYA248MILc+WVV+ZnP/tZXnjhhVx44YW56KKLcsUVVxTP0T8A+OCDD7Lllltm4sSJqzzeGL2isrIyw4YNy4ABAzJz5sz85Cc/yY9//ONcffXVTX5/8O+krLBi1B5K0I477pjtt98+P/vZz5Ik1dXV6d+/f0444YSMGzeumasDoLm9/fbb6dWrVx588MHstttumT9/fnr27JkbbrghX//615Mkf/nLX7Lxxhtn+vTp2WmnnXL33Xdn//33z5tvvpnevXsnSSZPnpxTTz01b7/9dtq0adOctwRAE1qwYEG22WabTJo0Keecc0622mqrXHbZZfoHAKs1bty4PPLII3nooYdWebxQKKRfv345+eST85//+Z9Jkvnz56d379657rrrcsghh+SFF17IJptskhkzZmS77bZLktxzzz3Zd9998/e//z39+vVbY/cDwJqx//77p3fv3vnlL39ZXBsxYkTat2+f//7v/9Y/AFhJWVlZbrvtthx00EFJGu+/Na688sqcdtppmTNnTvHvr8aNG5fbb789f/nLX5rlXuHzyAQsStqSJUsyc+bMDB06tLhWXl6eoUOHZvr06c1YGQClYv78+UmS7t27J0lmzpyZqqqqWr1j8ODBWW+99Yq9Y/r06dl8882L/3ieJMOHD09lZWWee+65NVg9AGvayJEjs99++9XqE4n+AcDq/f73v892222Xb3zjG+nVq1e23nrr/PznPy8ef/XVVzNnzpxaPaRr167Zcccda/WQbt26Ff9BJEmGDh2a8vLyPPbYY2vuZgBYY3beeedMnTo1L774YpLk6aefzsMPP5x99tknif4BwKdrrF4xffr07LbbbrX+58Hhw4dn9uzZeffdd9fQ3cDnX+vmLgA+yTvvvJNly5bV+geOJOndu7c0LgCprq7O6NGjs8suu2SzzTZLkuL/wdGtW7da5/bu3Ttz5swpnrOq3lJzDIDPp5tuuilPPvlkZsyYsdIx/QOA1XnllVdy5ZVXZuzYsfnhD3+YGTNm5MQTT0ybNm1y+OGHF3vAqnrEij2kV69etY63bt063bt310MAPqfGjRuXysrKDB48OK1atcqyZcty7rnn5tBDD00S/QOAT9VYvWLOnDkZOHDgSteoObbi9upAwwlgAQAt1siRI/Pss8/m4Ycfbu5SAChxb7zxRk466aRMmTIl7dq1a+5yAGhBqqurs9122+W8885Lkmy99dZ59tlnM3ny5Bx++OHNXB0Apeo3v/lNfv3rX+eGG27IpptumqeeeiqjR49Ov3799A8AgM8hWxBS0tZee+20atUqc+fOrbU+d+7c9OnTp5mqAqAUjBo1KnfeeWceeOCBrLvuusX1Pn36ZMmSJXnvvfdqnb9i7+jTp88qe0vNMQA+f2bOnJm33nor22yzTVq3bp3WrVvnwQcfzOWXX57WrVund+/e+gcAq9S3b99ssskmtdY23njjvP7660k+7gGf9PdXffr0yVtvvVXr+NKlSzNv3jw9BOBz6pRTTsm4ceNyyCGHZPPNN89hhx2WMWPG5Pzzz0+ifwDw6RqrV/g7LVgzBLAoaW3atMm2226bqVOnFteqq6szderUDBkypBkrA6C5FAqFjBo1Krfddlvuv//+lcbmbrvttqmoqKjVO2bPnp3XX3+92DuGDBmSZ555ptZ/lEyZMiVdunRZ6R9WAPh82HPPPfPMM8/kqaeeKn5st912OfTQQ4uP9Q8AVmWXXXbJ7Nmza629+OKLGTBgQJJk4MCB6dOnT60eUllZmccee6xWD3nvvfcyc+bM4jn3339/qqurs+OOO66BuwBgTVu4cGHKy2v/M1yrVq1SXV2dRP8A4NM1Vq8YMmRIpk2blqqqquI5U6ZMyUYbbWT7QWhEtiCk5I0dOzaHH354tttuu+ywww657LLL8sEHH+TII49s7tIAaAYjR47MDTfckN/97nfp3LlzcQ/zrl27pn379unatWuOPvrojB07Nt27d0+XLl1ywgknZMiQIdlpp52SJMOGDcsmm2ySww47LBdddFHmzJmTH/3oRxk5cmTatm3bnLcHQBPp3LlzNttss1prHTt2TI8ePYrr+gcAqzJmzJjsvPPOOe+88/LNb34zjz/+eK6++upcffXVSZKysrKMHj0655xzTgYNGpSBAwfm9NNPT79+/XLQQQcl+Whi1t57751jjz02kydPTlVVVUaNGpVDDjkk/fr1a8a7A6CpHHDAATn33HOz3nrrZdNNN82f//znXHLJJTnqqKOS6B8AfGTBggV5+eWXi89fffXVPPXUU+nevXvWW2+9RukV3/72tzNhwoQcffTROfXUU/Pss8/mv/7rv3LppZc2xy3D51ZZoVAoNHcR8Gl+9rOf5Sc/+UnmzJmTrbbaKpdffrn/uwPg31RZWdkq16+99tocccQRSZJFixbl5JNPzo033pjFixdn+PDhmTRpUq1Ruq+99lqOP/74/OlPf0rHjh1z+OGH54ILLkjr1vLpAP8udt9992y11Va57LLLkugfAKzenXfemfHjx+ell17KwIEDM3bs2Bx77LHF44VCIWeeeWauvvrqvPfee9l1110zadKkbLjhhsVz5s2bl1GjRuWOO+5IeXl5RowYkcsvvzydOnVqjlsCoIm9//77Of3003PbbbflrbfeSr9+/fKtb30rZ5xxRtq0aZNE/wAg+dOf/pSvfOUrK60ffvjhue666xqtV8yaNSsjR47MjBkzsvbaa+eEE07IqaeeukbuEf5dCGABAAAAAAAAAAA0UPmnnwIAAAAAAAAAAMCqCGABAAAAAAAAAAA0kAAWAAAAAAAAAABAAwlgAQAAAAAAAAAANJAAFgAAAAAAAAAAQAMJYAEAAAAAAAAAADSQABYAAAAAAAAAAEADCWABAAAAAAAAAAA0kAAWAAAAAC3eEUcckYMOOqjZvv5hhx2W8847r07nHnLIIbn44oubuCIAAAAA1pSyQqFQaO4iAAAAAGB1ysrKPvH4mWeemTFjxqRQKKRbt25rpqgVPP3009ljjz3y2muvpVOnTp96/rPPPpvddtstr776arp27boGKgQAAACgKQlgAQAAAFDS5syZU3x8880354wzzsjs2bOLa506dapT8KmpHHPMMWndunUmT55c59dsv/32OeKIIzJy5MgmrAwAAACANcEWhAAAAACUtD59+hQ/unbtmrKyslprnTp1WmkLwt133z0nnHBCRo8enbXWWiu9e/fOz3/+83zwwQc58sgj07lz52ywwQa5++67a32tZ599Nvvss086deqU3r1757DDDss777yz2tqWLVuW3/72tznggANqrU+aNCmDBg1Ku3bt0rt373z961+vdfyAAw7ITTfd9Nm/OQAAAAA0OwEsAAAAAD6XfvWrX2XttdfO448/nhNOOCHHH398vvGNb2TnnXfOk08+mWHDhuWwww7LwoULkyTvvfde9thjj2y99dZ54okncs8992Tu3Ln55je/udqvMWvWrMyfPz/bbbddce2JJ57IiSeemLPOOiuzZ8/OPffck912263W63bYYYc8/vjjWbx4cdPcPAAAAABrjAAWAAAAAJ9LW265ZX70ox9l0KBBGT9+fNq1a5e11147xx57bAYNGpQzzjgj//znPzNr1qwkyc9+9rNsvfXWOe+88zJ48OBsvfXWueaaa/LAAw/kxRdfXOXXeO2119KqVav06tWruPb666+nY8eO2X///TNgwIBsvfXWOfHEE2u9rl+/flmyZEmt7RUBAAAAaJkEsAAAAAD4XNpiiy2Kj1u1apUePXpk8803L6717t07SfLWW28lSZ5++uk88MAD6dSpU/Fj8ODBSZK//vWvq/waH374Ydq2bZuysrLi2l577ZUBAwZk/fXXz2GHHZZf//rXxSlbNdq3b58kK60DAAAA0PIIYAEAAADwuVRRUVHreVlZWa21mtBUdXV1kmTBggU54IAD8tRTT9X6eOmll1baQrDG2muvnYULF2bJkiXFtc6dO+fJJ5/MjTfemL59++aMM87Illtumffee694zrx585IkPXv2bJR7BQAAAKD5CGABAAAAQJJtttkmzz33XL7whS9kgw02qPXRsWPHVb5mq622SpI8//zztdZbt26doUOH5qKLLsqsWbPyt7/9Lffff3/x+LPPPpt11103a6+9dpPdDwAAAABrhgAWAAAAACQZOXJk5s2bl29961uZMWNG/vrXv+bee+/NkUcemWXLlq3yNT179sw222yThx9+uLh255135vLLL89TTz2V1157Lddff32qq6uz0UYbFc956KGHMmzYsCa/JwAAAACangAWAAAAACTp169fHnnkkSxbtizDhg3L5ptvntGjR6dbt24pL1/9X6Mdc8wx+fWvf1183q1bt9x6663ZY489svHGG2fy5Mm58cYbs+mmmyZJFi1alNtvvz3HHntsk98TAAAAAE2vrFAoFJq7CAAAAABoqT788MNstNFGufnmmzNkyJBPPf/KK6/Mbbfdlvvuu28NVAcAAABAUzMBCwAAAAA+g/bt2+f666/PO++8U6fzKyoqcsUVVzRxVQAAAACsKSZgAQAAAAAAAAAANJAJWAAAAAAAAAAAAA0kgAUAAAAAAAAAANBAAlgAAAAAAAAAAAANJIAFAAAAAAAAAADQQAJYAAAAAAAAAAAADSSABQAAAAAAAAAA0EACWAAAAAAAAAAAAA0kgAUAAAAAAAAAANBAAlgAAAAAAAAAAAAN9P8BvbqykyPNpZIAAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -1334,7 +893,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAtUAAAIoCAYAAACmvxesAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy80BEi2AAAACXBIWXMAAA9hAAAPYQGoP6dpAABvdUlEQVR4nO3df3zN9f//8fs5m7PN2A8z+4FmhWF+RmaSkmX6yDvSD1KE8jukIp93Sb/eSu9+UEr6QT8U1TuKSolQbfktTLwpv8I2P/aDYb/O8/uHz87XaaPZeWUbt+vlssvFeT4f53We57Ez7nt5neexGWOMAAAAAJSZvbwXAAAAAFR2hGoAAADAQ4RqAAAAwEOEagAAAMBDhGoAAADAQ4RqAAAAwEOEagAAAMBDhGoAAADAQ4RqAAAAwEOEagAowT333CObzabdu3d7fKzdu3fLZrPpnnvu8fhYAICKiVAN4IIqCphdu3Yt76XAAitXrpTNZpPNZtMnn3xS3supcDIyMvT0008rPj5eISEhqlKlikJDQ5WQkKBXXnlFx48fL+8lntN1110nm81W3ssAKgVCNQCgzN5++21Jks1m0zvvvFPOq6lYli5dqvr16+uxxx5TVlaWbrvtNo0bN069evXSgQMHNGrUKLVo0aK8lwnAIt7lvQAAQOWUnZ2tTz/9VM2bN1dYWJi+/fZb7du3T3Xr1i3vpZW7X375Rd27d5ckffDBB+rbt2+xmuXLl2vChAkXemkA/iacqQZQYWVlZem5557Ttddeq8jISDkcDkVGRqpfv3767bffitVPmjRJNptNy5cv16xZs9SsWTP5+fkpOjpa06ZNkyQZY/TCCy8oJiZGvr6+atCggd57772zrsHpdGrKlClq0KCBfH19FR0drSeffFL5+fnFagsLC/Xcc8+pfv368vX1Vf369TV58mQ5nc4Sj/39999r4MCBiomJUbVq1VStWjW1adNGM2fOLHWPOnfuLLvdrj179pQ4P2rUKNlsNi1ZssQ19p///EfXXnutatWqJV9fX0VGRiohIUH/+c9/Sv24kvTRRx/pxIkT6tevn/r16yen06nZs2eftT49PV0PPvigYmJi5Ofnpxo1aiguLk7//ve/i9X+8ssv6tu3r+rUqSMfHx9FRESoa9euWrhwYbHazz//XJ07d1ZwcLB8fX3VtGlT/fvf/1ZhYaFbndPp1FtvvaW2bduqRo0a8vPzU506ddS9e3ctX77crdbTHo0aNUonT57UK6+8UmKglk5fWvHnx5WkWbNmKS4uzvWaiIuLK7Gvs2fPls1mK3Fu+fLlstlsmjRpktu4zWbTddddp7S0NPXv3181a9aUn5+f2rVrV2wtNptNK1ascP256Iv3BgBnYQDgAtq1a5eRZBITE/+yNjk52TgcDpOYmGiGDx9uHn74YdO9e3fj5eVlatSoYXbv3u1W//jjjxtJ5uabbzaBgYGmX79+ZtSoUaZ27dpGknnzzTfN8OHDTVhYmBk0aJAZNmyYCQ4ONpLMihUr3I7Vv39/I8l0797d1KhRwwwdOtQ89NBDJiYmxkgyvXr1KrbegQMHGkkmOjrajB071gwfPtzUrFnT3HTTTUaS6d+/v1t9YmKiueKKK0zfvn3N+PHjzZAhQ0xUVJSRZMaOHVuqfs6aNctIMs8880yxufz8fBMaGmoiIyNNYWGhMcaY1157zUgyERERZvDgwWbChAlmwIABJjY21vTt27dUj1nkqquuMl5eXubgwYMmJyfHVKtWzURHRxun01msdtu2bSYiIsJIMh06dDDjxo0zI0aMMNddd50JDg52q/3000+Nw+EwVapUMbfccouZMGGCGTRokGnatKm5+eab3WofeeQRI8nUrl3bDBw40DzwwAOmTZs2RpK59dZb3WrHjRtnJJkrrrjCjBgxwjzyyCPm7rvvNtHR0eaf//ynq87THu3YscNIMnXr1nX1vbTuv/9+1/MZNWqU2+t31KhRbrVF3/tZs2YVO873339vJJnHH3/cbVySadGihalfv75p3bq1GTNmjLnzzjuNl5eXcTgcZvPmza7axx9/3PV6fPzxx11f8+fPP6/nBFwqCNUALqjzCdWZmZnmyJEjxcaXLVtm7Ha7uffee93Gi0J1jRo1zG+//eYa37t3r3E4HCYwMNA0bNjQpKenu+Z+/vlnV3g+U1GoDg0NNfv27XON5+bmmo4dOxpJ5tNPP3WNF4WYFi1amOPHj7vG//jjD1OzZs0SQ/Xvv/9e7Lnl5+ebG264wXh5eZk9e/b8RYeMyc7ONn5+fqZJkybF5hYuXGgkmYceesg1duWVVxqHw2HS0tKK1R8+fPgvH6/Ipk2bin0f+/XrZySZ7777rlh9UdCdOXNmsbkz+5uammr8/f2Nv7+/Wb9+/Tlrv/32W9cazuy50+k0Q4cOLfY9qlGjhomMjDQ5OTnFjnvm68zTHs2ePdtIMnfddddf1p5pxYoVRpJp3LixyczMdI0fPXrUNGzY0EgyK1eudI2XNVRLMsOHD3cL/G+99ZaRZIYMGeJWf+211xrOvwGlw+UfACqswMBA1ahRo9h4p06dFBsbq++++67E+40ePVqXX36563bdunXVoUMHZWVl6Z///KdCQ0Ndc3Fxcbr88sv1yy+/nPVYderUcd12OBx65plnJMntv92LLiGZOHGi/P39XeO1a9fW6NGjSzx2dHR0sTFvb28NHTpUhYWF+v7770u835mqV6+uHj16aOvWrVq/fr3b3Pvvvy9Juuuuu9zGq1SpoipVqhQ7VkhIyF8+XpGiNyj269fPNVb056K5IqtXr9batWvVsWNH3XfffcWOdWZ/3333XeXk5OjBBx9Uq1atzln76quvSpJmzpzp1nObzaZnn31WNptNH330kdv9HQ6HvLy8ih33z68zT3qUmppabK2l8e6770o6fRlTYGCgazw4OFiPP/64JJ3z8prS8vf313PPPSe7/f9HgP79+8vb21tr1qzx+PjApYo3KgKo0JYvX66XX35Zq1at0uHDh1VQUOCaczgcJd6nZcuWxcYiIiLOObdq1aoSj3XNNdcUG4uPj5e3t7c2bNjgGisK5SXVlzQmSceOHdO///1vLViwQL/99ptycnLc5g8cOFDi/f7s7rvv1kcffaT3339fV155paTTbyJcuHChmjVr5rbDRO/evTVu3Dg1bdpUd955pzp16qQOHTooICCgVI8lSbm5ufrggw9UvXp19ezZ0zXeqVMn1a1bV/Pnz1dGRoaCg4MlnQ7VktSlS5e/PPb51P7888/y9/c/664jfn5+2rZtm+t279699dprr6lp06bq3bu3OnXqpPj4ePn5+bndz4oelUXR6+m6664rNtepUydJ0saNGz1+nIYNG6patWpuY97e3goLC1NmZqbHxwcuVYRqABXWJ598ojvuuEPVqlVTYmKi6tWrp6pVq7renHW2N+eVFH68vb3POXdmWD9TWFhYsTEvLy+FhIQoKyvLNZaVlSW73a6aNWuW6hh5eXm67rrrtH79erVq1Up33323QkJC5O3trd27d+vdd99Vbm5uiWv6sy5duigsLExz587Vv//9b3l5eenTTz/VyZMndffdd7vVPvTQQwoJCdHrr7+uF154Qf/+97/l7e2tbt266aWXXirx7PmfLViwQEeOHNGAAQPcAqndblffvn317LPP6sMPP9SIESNcvZFOn7X/K+dTe/ToURUUFOiJJ544a82Zv6hMnTpV0dHRmjVrlp5++mk9/fTT8vX11e23364XXnjB9b3ztEfh4eGSpP379//lczhTdna27Ha72/+kFAkLC5PNZlN2dvZ5HbMkZ/vlwNvbu9ibOwGUHqEaQIU1adIk+fr6at26dWrQoIHb3Ny5cy/IGtLS0hQTE+M2VlhYqCNHjriF5cDAQDmdTh0+fLhYKEpLSyt23M8//1zr16/XoEGD9NZbb7nNzZ0713UpQGl4eXmpT58+evnll/Xdd98pMTFR77//vux2u+688063WpvNpoEDB2rgwIE6cuSIfvjhB3300Uf6+OOPtWPHDm3atKnEyyPOVHR5x6xZszRr1qyz1hSF6qCgIEmlC5ln1tarV++ctQEBAbLZbDp8+PBfHlc6HRofeughPfTQQzpw4IBWrFihWbNm6b333lNqaqq++eYbSZ736Oqrr5Z0+n9ZnE6n22UWf/V8nE6nDh06pFq1arnNpaenyxjjFoiLjlvSL4Rn/sIH4MLgmmoAFdZvv/2mxo0bFwvUBw8e1O+//35B1vDDDz8UG0tOTlZBQYHbNb9Fl1iUVF/SWNGWgDfffHOp6v9K0RnpDz74QPv27dOKFSvUqVOnc57xDQkJUY8ePTRv3jxdf/312rp1q3bu3HnOx9mzZ4+WLl2qsLAwDRo0qMSv6OhobdiwwXU5Q9u2bSVJ33777V8+j/OpjYuL05EjR7Rjx46/rP2zyMhI9enTR4sXL1b9+vX13Xff6eTJk8XqytKj+vXrq2PHjtq3b99f/nJ05v9GFL2eStpmr2jszMuXii6vKemXlTMvTfJE0S8PnMEG/hqhGkCFFRUVpZ07d7qd6T116pSGDRtW4j7Rf4epU6fqjz/+cN3Oy8vTP//5T0ly26+3KNQ++eSTbpcc7N+/X1OnTi123KioKEnSjz/+6Da+YsUKvfnmm+e9ziuvvFJNmjTR/Pnz9cYbb8gYU+zSD+l0ODPGuI3l5+fr6NGjkiRfX99zPs6sWbPkdDo1ZMgQvfXWWyV+PfLII5L+/xntq666SldddZVWrlxZ4nM7MxT2799f1apV0wsvvFDi9cNn1o4aNUqSXGeU/yw1NVW//vqrpNPhNSkpqVhNTk6Ojh8/ripVqrjO/HraI+n068bPz08jR47UvHnzSqz54YcfdP3117tu9+/fX5L0xBNPuF3mkZWV5brEpahGklq3bi2bzaa5c+fq1KlTrvEdO3aU+Jori6I3cO7bt8+S4wEXMy7/AFAuNm/efNYPkWjUqJEeeeQR3X///br//vvVqlUr3XrrrSooKNCSJUtkjFGLFi3OumOHldq1a6cWLVrojjvukL+/vxYuXKjt27frlltuUa9evVx1nTp10oABA1wfOtOzZ0/l5uZq3rx5ateunRYtWuR23O7du6tevXqaMmWKtmzZoqZNm2r79u1atGiRevbsqU8//fS813r33XdrwoQJmjJliqpWreq2viI9evRQQECA2rVrp6ioKOXn52vJkiXaunWrbr31VlfYL4nT6dSsWbP+8gNA7rjjDo0ZM0Zz5szRv//9b/n6+mrOnDm67rrrNHjwYL3//vuKj4/XqVOnlJKSog0bNrhCca1atfTee++pd+/eatu2rf7xj38oJiZGhw8f1qpVq1SvXj0tWLBAktS1a1c99thjeuqpp1S/fn117dpVUVFROnLkiHbu3KkffvhBTz/9tBo3bqyTJ0/q6quvVsOGDdW6dWtddtllOn78uBYtWqTU1FQ99NBD8vHx8bhHRVq2bKmFCxfq9ttvV+/evfXkk0+qY8eOqlGjho4ePaqffvpJmzdvVv369V336dixo+6//3698soratq0qXr16iVjjP7zn//ojz/+0KhRo9SxY0dXfdHZ9g8//FCtW7dW165dlZ6ervnz56tr167n/WE+Jbn++uv16aefqlevXrrxxhvl6+urFi1auD4tEsAZynM/PwCXnqJ9qs/1de211xpjTu83PGPGDBMbG2t8fX1NeHi4GTRokElPTy9x/9yifaq///77Yo9btO/0rl27is2VdKyi+t9++808++yzpn79+sbhcJioqCgzadIkk5ubW+w4BQUFZvLkyebyyy83DofDXH755eZf//qX2blz51n3qe7Vq5cJDQ01VatWNVdddZWZO3fuWfcY/it79+41drvdSDJ9+vQpsea1114z//jHP0xUVJTx9fU1ISEhpm3btub11183eXl55zz+N9984/b9OZe+ffsaSWbOnDmusdTUVDN69GhXf2rUqGHi4uLMiy++WOz+GzZsMLfffrsJCwszVapUMREREebGG280ixYtKla7ZMkS0717dxMaGmqqVKliwsPDTXx8vHnqqafM3r17jTHG5OXlmeeee8506dLF1KlTxzgcDhMWFmY6duxoPvzwQ7cPrPGkR3925MgR89RTT5l27dqZ4OBg4+3tbUJCQsx1111npk2b5ra/dpF33nnHXHXVVaZq1aqu18U777xT4vFPnDhhRo0aZcLCwoyPj49p3ry5mTNnzjn3qT7b9y8qKspERUW5jeXn55tx48aZyy67zHh7e5f4OgZwms2YP/0fFwAAAIDzwjXVAAAAgIcI1QAAAICHCNUAAACAhwjVAAAAgIcI1QAAAICHCNUAAACAh/jwl3LkdDp14MABVa9eXTabrbyXAwAAgD8xxujYsWOKjIx0ffJqSQjV5ejAgQOqW7dueS8DAAAAf2Hfvn2qU6fOWecJ1eWoevXqkk5/kwICAjw+ntPp1KFDhxQaGnrO36Tw1+ildeilNeijdeildeildeildazuZXZ2turWrevKbWdDqC5HRZd8BAQEWBaqT506pYCAAH4gPUQvrUMvrUEfrUMvrUMvrUMvrfN39fKvLtXluwYAAAB4iFANAAAAeIhQDQAAAHiIUA0AAAB4iFANAAAAeIhQDQAAAHiIUA0AAAB4iFANAAAAeIhQDQAAAHiIUA0AAAB4iFANAAAAeIhQDQAAAHiIUA0AAAB4yLu8FwAAAACUhtPpVEpKijIyMhQcHKzY2FjZ7RXjHDGhGgAAABVeUlKSps+Yqe279yuvoFAOby/F1KutEUMHq3379uW9PC7/AAAAQMWWlJSkcY89qW3HfVXvxiFqNeBJ1btxiLbn+GrcY08qKSmpvJdIqAYAAEDF5XQ6NX3GTJ0MrKcW3QcqMCJK3lV8FBgRpeY3DdSpoHp67Y035XQ6y3WdhGoAAABUWCkpKdq+e7+ir0qQzWZzm7PZbIpq01nbdv2hlJSUclrhaYRqAAAAVFgZGRnKKyiUf83wEuerhYQrr6BQGRkZF3hl7gjVAAAAqLCCg4Pl8PZSzuHUEuePH0mVw9tLwcHBF3hl7gjVAAAAqLBiY2MVU6+2dq/9TsYYtzljjPasXapG0XUUGxtbTis8jVANAACACstut2vE0MHyzdytTYveUebB3SrIO6XMg6dv+2bu1vAh95X7ftXsUw0AAIAKrX379pry1MTT+1R/PdO1T3Wj6Doa/uDECrFPNaEaAAAAFV779u3Vrl07PlERAAAA8ITdblezZs3KexklqhjRHgAAAKjECNUAAACAhwjVAAAAgIcI1QAAAICHCNUAAACAhypUqF65cqW6d++uyMhI2Ww2LViw4Ky1Q4cOlc1m08svv+w2fvToUfXt21cBAQEKCgrSoEGDdPz4cbeaTZs26ZprrpGvr6/q1q2rKVOmFDv+J598okaNGsnX11fNmjXTV1995TZvjNHEiRMVEREhPz8/JSQkaMeOHWV+7gAAAKi8KlSozsnJUYsWLTR9+vRz1s2fP18///yzIiMji8317dtXKSkpWrJkiRYtWqSVK1dq8ODBrvns7Gx16dJFUVFRWrdunZ5//nlNmjRJM2fOdNUkJSWpT58+GjRokDZs2KAePXqoR48e2rJli6tmypQpmjZtmmbMmKFVq1bJ399fiYmJOnXqlAWdAAAAQKViKihJZv78+cXG//jjD1O7dm2zZcsWExUVZV566SXX3NatW40ks2bNGtfY119/bWw2m9m/f78xxpjXXnvNBAcHm9zcXFfN+PHjTUxMjOv27bffbrp16+b2uHFxcWbIkCHGGGOcTqcJDw83zz//vGs+MzPT+Pj4mI8++qjUzzErK8tIMllZWaW+z7kUFhaagwcPmsLCQkuOdymjl9ahl9agj9ahl9ahl9ahl9axupelzWuV6sNfnE6n7r77bj388MOKjY0tNp+cnKygoCC1adPGNZaQkCC73a5Vq1apZ8+eSk5OVseOHeVwOFw1iYmJeu6551yfzpOcnKyxY8e6HTsxMdF1OcquXbuUmpqqhIQE13xgYKDi4uKUnJys3r17l7j+3Nxc5ebmum5nZ2e7npfT6Tz/hvyJ0+mUMcaSY13q6KV16KU16KN16KV16KV16KV1rO5laY9TqUL1c889J29vb40aNarE+dTUVNWqVcttzNvbWzVq1FBqaqqrJjo62q0mLCzMNRccHKzU1FTX2Jk1Zx7jzPuVVFOSyZMn64knnig2fujQIUsuG3E6ncrKypIxpsJ8ZGdlRS+tQy+tQR+tQy+tQy+tQy+tY3Uvjx07Vqq6ShOq161bp6lTp2r9+vWy2WzlvZwymTBhgtsZ8OzsbNWtW1ehoaEKCAjw+PhOp1M2m02hoaH8QHqIXlqHXlqDPlqHXlqHXlqHXlrH6l76+vqWqq7ShOoffvhB6enpuuyyy1xjhYWFevDBB/Xyyy9r9+7dCg8PV3p6utv9CgoKdPToUYWHh0uSwsPDlZaW5lZTdPuvas6cLxqLiIhwq2nZsuVZn4OPj498fHyKjdvtdst+gGw2m6XHu5TRS+vQS2vQR+vQS+vQS+vQS+tY2cvSHqPSfNfuvvtubdq0SRs3bnR9RUZG6uGHH9Y333wjSYqPj1dmZqbWrVvnut+yZcvkdDoVFxfnqlm5cqXy8/NdNUuWLFFMTIyCg4NdNUuXLnV7/CVLlig+Pl6SFB0drfDwcLea7OxsrVq1ylUDAACAS0eFOlN9/Phx7dy503V7165d2rhxo2rUqKHLLrtMISEhbvVVqlRReHi4YmJiJEmNGzdW165ddd9992nGjBnKz8/XyJEj1bt3b9f2e3feeaeeeOIJDRo0SOPHj9eWLVs0depUvfTSS67jjh49Wtdee61eeOEFdevWTXPnztXatWtd2+7ZbDaNGTNGTz/9tBo0aKDo6Gg99thjioyMVI8ePf7mLgEAAKCiqVCheu3aterUqZPrdtH1x/3799fs2bNLdYw5c+Zo5MiR6ty5s+x2u3r16qVp06a55gMDA/Xtt99qxIgRat26tWrWrKmJEye67WXdvn17ffjhh3r00Uf1v//7v2rQoIEWLFigpk2bumrGjRunnJwcDR48WJmZmerQoYMWL15c6utuAAAAcPGwGWNMeS/iUpWdna3AwEBlZWVZ9kbF9PR01apVi+uxPEQvrUMvrUEfrUMvrUMvrUMvrWN1L0ub1/iuAQAAAB4iVAMAAAAeIlQDAAAAHiJUAwAAAB4iVAMAAAAeIlQDAAAAHiJUAwAAAB4iVAMAAAAeIlQDAAAAHiJUAwAAAB4iVAMAAAAeIlQDAAAAHiJUAwAAAB4iVAMAAAAeIlQDAAAAHiJUAwAAAB4iVAMAAAAeIlQDAAAAHiJUAwAAAB4iVAMAAAAeIlQDAAAAHiJUAwAAAB4iVAMAAAAeIlQDAAAAHiJUAwAAAB4iVAMAAAAeIlQDAAAAHiJUAwAAAB4iVAMAAAAeIlQDAAAAHiJUAwAAAB4iVAMAAAAeIlQDAAAAHiJUAwAAAB4iVAMAAAAeIlQDAAAAHiJUAwAAAB4iVAMAAAAeIlQDAAAAHiJUAwAAAB4iVAMAAAAeIlQDAAAAHiJUAwAAAB4iVAMAAAAeIlQDAAAAHiJUAwAAAB4iVAMAAAAeIlQDAAAAHqpQoXrlypXq3r27IiMjZbPZtGDBAtdcfn6+xo8fr2bNmsnf31+RkZHq16+fDhw44HaMo0ePqm/fvgoICFBQUJAGDRqk48ePu9Vs2rRJ11xzjXx9fVW3bl1NmTKl2Fo++eQTNWrUSL6+vmrWrJm++uort3ljjCZOnKiIiAj5+fkpISFBO3bssK4ZAAAAqDQqVKjOyclRixYtNH369GJzJ06c0Pr16/XYY49p/fr1+uyzz7R9+3b94x//cKvr27evUlJStGTJEi1atEgrV67U4MGDXfPZ2dnq0qWLoqKitG7dOj3//POaNGmSZs6c6apJSkpSnz59NGjQIG3YsEE9evRQjx49tGXLFlfNlClTNG3aNM2YMUOrVq2Sv7+/EhMTderUqb+hMwAAAKjQTAUlycyfP/+cNatXrzaSzJ49e4wxxmzdutVIMmvWrHHVfP3118Zms5n9+/cbY4x57bXXTHBwsMnNzXXVjB8/3sTExLhu33777aZbt25ujxUXF2eGDBlijDHG6XSa8PBw8/zzz7vmMzMzjY+Pj/noo49K/RyzsrKMJJOVlVXq+5xLYWGhOXjwoCksLLTkeJcyemkdemkN+mgdemkdemkdemkdq3tZ2rzmXa6J3kNZWVmy2WwKCgqSJCUnJysoKEht2rRx1SQkJMhut2vVqlXq2bOnkpOT1bFjRzkcDldNYmKinnvuOWVkZCg4OFjJyckaO3as22MlJia6LkfZtWuXUlNTlZCQ4JoPDAxUXFyckpOT1bt37xLXm5ubq9zcXNft7OxsSZLT6ZTT6fSoF0XHMcZYcqxLHb20Dr20Bn20Dr20Dr20Dr20jtW9LO1xKm2oPnXqlMaPH68+ffooICBAkpSamqpatWq51Xl7e6tGjRpKTU111URHR7vVhIWFueaCg4OVmprqGjuz5sxjnHm/kmpKMnnyZD3xxBPFxg8dOmTJZSNOp1NZWVkyxshur1BX9lQ69NI69NIa9NE69NI69NI69NI6Vvfy2LFjpaqrlKE6Pz9ft99+u4wxev3118t7OaU2YcIEtzPg2dnZqlu3rkJDQ12/GHjC6XTKZrMpNDSUH0gP0Uvr0Etr0Efr0Evr0Evr0EvrWN1LX1/fUtVVulBdFKj37NmjZcuWuYXR8PBwpaenu9UXFBTo6NGjCg8Pd9WkpaW51RTd/quaM+eLxiIiItxqWrZseda1+/j4yMfHp9i43W637AfIZrNZerxLGb20Dr20Bn20Dr20Dr20Dr20jpW9LO0xKtV3rShQ79ixQ999951CQkLc5uPj45WZmal169a5xpYtWyan06m4uDhXzcqVK5Wfn++qWbJkiWJiYhQcHOyqWbp0qduxlyxZovj4eElSdHS0wsPD3Wqys7O1atUqVw0AAAAuHRUqVB8/flwbN27Uxo0bJZ1+Q+DGjRu1d+9e5efn69Zbb9XatWs1Z84cFRYWKjU1VampqcrLy5MkNW7cWF27dtV9992n1atX66efftLIkSPVu3dvRUZGSpLuvPNOORwODRo0SCkpKZo3b56mTp3qdlnG6NGjtXjxYr3wwgvatm2bJk2apLVr12rkyJGSTv/2M2bMGD399NP64osvtHnzZvXr10+RkZHq0aPHBe0ZAAAAKgBL9hqxyPfff28kFfvq37+/2bVrV4lzksz333/vOsaRI0dMnz59TLVq1UxAQIAZMGCAOXbsmNvj/PLLL6ZDhw7Gx8fH1K5d2zz77LPF1vLxxx+bhg0bGofDYWJjY82XX37pNu90Os1jjz1mwsLCjI+Pj+ncubPZvn37eT1fttSruOildeilNeijdeildeildeildcprSz2bMcaUS5qHsrOzFRgYqKysLMveqJienq5atWpxPZaH6KV16KU16KN16KV16KV16KV1rO5lafMa3zUAAADAQ4RqAAAAwEOEagAAAMBDhGoAAADAQ4RqAAAAwEOEagAAAMBDhGoAAADAQ4RqAAAAwEOEagAAAMBDhGoAAADAQ4RqAAAAwEOEagAAAMBDhGoAAADAQ4RqAAAAwEOEagAAAMBDhGoAAADAQ4RqAAAAwEOEagAAAMBDhGoAAADAQ4RqAAAAwEOEagAAAMBDhGoAAADAQ4RqAAAAwEOEagAAAMBDhGoAAADAQ4RqAAAAwEOEagAAAMBDhGoAAADAQ4RqAAAAwEOEagAAAMBDhGoAAADAQ4RqAAAAwEOEagAAAMBDhGoAAADAQ4RqAAAAwEOEagAAAMBDhGoAAADAQ4RqAAAAwEOEagAAAMBDhGoAAADAQ4RqAAAAwEOEagAAAMBDhGoAAADAQ4RqAAAAwEOEagAAAMBDhGoAAADAQ4RqAAAAwEMVKlSvXLlS3bt3V2RkpGw2mxYsWOA2b4zRxIkTFRERIT8/PyUkJGjHjh1uNUePHlXfvn0VEBCgoKAgDRo0SMePH3er2bRpk6655hr5+vqqbt26mjJlSrG1fPLJJ2rUqJF8fX3VrFkzffXVV+e9FgAAAFwaKlSozsnJUYsWLTR9+vQS56dMmaJp06ZpxowZWrVqlfz9/ZWYmKhTp065avr27auUlBQtWbJEixYt0sqVKzV48GDXfHZ2trp06aKoqCitW7dOzz//vCZNmqSZM2e6apKSktSnTx8NGjRIGzZsUI8ePdSjRw9t2bLlvNYCAACAS4SpoCSZ+fPnu247nU4THh5unn/+eddYZmam8fHxMR999JExxpitW7caSWbNmjWumq+//trYbDazf/9+Y4wxr732mgkODja5ubmumvHjx5uYmBjX7dtvv91069bNbT1xcXFmyJAhpV5LaWRlZRlJJisrq9T3OZfCwkJz8OBBU1hYaMnxLmX00jr00hr00Tr00jr00jr00jpW97K0ec27fCN96e3atUupqalKSEhwjQUGBiouLk7Jycnq3bu3kpOTFRQUpDZt2rhqEhISZLfbtWrVKvXs2VPJycnq2LGjHA6HqyYxMVHPPfecMjIyFBwcrOTkZI0dO9bt8RMTE12Xo5RmLSXJzc1Vbm6u63Z2drYkyel0yul0lr05/8fpdMoYY8mxLnX00jr00hr00Tr00jr00jr00jpW97K0x6k0oTo1NVWSFBYW5jYeFhbmmktNTVWtWrXc5r29vVWjRg23mujo6GLHKJoLDg5WamrqXz7OX62lJJMnT9YTTzxRbPzQoUOWXDbidDqVlZUlY4zs9gp1ZU+lQy+tQy+tQR+tQy+tQy+tQy+tY3Uvjx07Vqq6ShOqLwYTJkxwOwOenZ2tunXrKjQ0VAEBAR4f3+l0ymazKTQ0lB9ID9FL69BLa9BH69BL69BL69BL61jdS19f31LVVZpQHR4eLklKS0tTRESEazwtLU0tW7Z01aSnp7vdr6CgQEePHnXdPzw8XGlpaW41Rbf/qubM+b9aS0l8fHzk4+NTbNxut1v2A2Sz2Sw93qWMXlqHXlqDPlqHXlqHXlqHXlrHyl6W9hiV5rsWHR2t8PBwLV261DWWnZ2tVatWKT4+XpIUHx+vzMxMrVu3zlWzbNkyOZ1OxcXFuWpWrlyp/Px8V82SJUsUExOj4OBgV82Zj1NUU/Q4pVkLAAAALh0VKlQfP35cGzdu1MaNGyWdfkPgxo0btXfvXtlsNo0ZM0ZPP/20vvjiC23evFn9+vVTZGSkevToIUlq3Lixunbtqvvuu0+rV6/WTz/9pJEjR6p3796KjIyUJN15551yOBwaNGiQUlJSNG/ePE2dOtXtsozRo0dr8eLFeuGFF7Rt2zZNmjRJa9eu1ciRIyWpVGsBAADAJcSSvUYs8v333xtJxb769+9vjDm9ld1jjz1mwsLCjI+Pj+ncubPZvn272zGOHDli+vTpY6pVq2YCAgLMgAEDzLFjx9xqfvnlF9OhQwfj4+NjateubZ599tlia/n4449Nw4YNjcPhMLGxsebLL790my/NWv4KW+pVXPTSOvTSGvTROvTSOvTSOvTSOuW1pZ7NGGPKMdNf0rKzsxUYGKisrCzL3qiYnp6uWrVqcT2Wh+ildeilNeijdeildeildeildazuZWnzGt81AAAAwEOEagAAAMBDhGoAAADAQ4RqAAAAwEOEagAAAMBDhGoAAADAQ4RqAAAAwEOEagAAAMBDhGoAAADAQ4RqAAAAwEOEagAAAMBDhGoAAADAQ4RqAAAAwEOEagAAAMBDhGoAAADAQ2UK1Xv37tXJkyfPOn/y5Ent3bu3zIsCAAAAKpMyhero6GjNnz//rPNffPGFoqOjy7woAAAAoDIpU6g2xpxzPj8/X3Y7V5YAAADg0uBd2sLs7GxlZma6bh85cqTESzwyMzM1d+5cRUREWLJAAAAAoKIrdah+6aWX9OSTT0qSbDabxowZozFjxpRYa4zR008/bckCAQAAgIqu1KG6S5cuqlatmowxGjdunPr06aMrr7zSrcZms8nf31+tW7dWmzZtLF8sAAAAUBGVOlTHx8crPj5ekpSTk6NevXqpadOmf9vCAAAAgMqi1KH6TI8//rjV6wAAAAAqrTKFaknKyMjQRx99pN9//10ZGRnFdgSx2Wx6++23PV4gAAAAUNGVKVR/8803uvXWW5WTk6OAgAAFBwcXq7HZbB4vDgAAAKgMyhSqH3zwQYWHh+uzzz5Ts2bNrF4TAAAAUKmU6RNadu7cqVGjRhGoAQAAAJUxVDdo0EDHjh2zei0AAABApVSmUP3000/rtdde0+7duy1eDgAAAFD5lOma6qVLlyo0NFSNGzfWDTfcoLp168rLy8utxmazaerUqZYsEgAAAKjIyhSqX331VdefFy1aVGINoRoAAACXijKFaqfTafU6AAAAgEqrTNdUAwAAAPj/CNUAAACAh8p0+Yfdbi/VJyYWFhaW5fAAAABApVKmUD1x4sRiobqwsFC7d+/WggULFBMTo5tuusmSBQIAAAAVXZlC9aRJk846d/DgQbVr104NGzYs65oAAACASsXya6ojIiI0dOhQPfXUU1YfGgAAAKiQ/pY3Kvr7+2vXrl1/x6EBAACACsfyUL1lyxZNmzaNyz8AAABwySjTNdXR0dEl7v6RmZmprKwsVa1aVQsWLPB0bQAAAEClUKZQfe211xYL1TabTcHBwbriiivUu3dv1ahRw5IFAgAAABVdmUL17NmzLV4GAAAAUHlZck31yZMndfLkSSsOBQAAAFQ6ZQ7Ve/fu1YABAxQWFqZq1aqpWrVqCgsL08CBA7Vnzx4r1wgAAABUaGW6/GPbtm3q0KGDMjMzdcMNN6hx48au8ffee08LFy7Ujz/+qJiYGEsXCwAAAFREZQrVjzzyiOx2uzZs2KBmzZq5zW3ZskWdO3fWI488ovnz51uySAAAAKAiK9PlHytWrNCoUaOKBWpJatq0qUaOHKnly5d7ujYAAACgUihTqM7Pz5efn99Z56tWrar8/PwyL+psCgsL9dhjjyk6Olp+fn664oor9NRTT8kY46oxxmjixImKiIiQn5+fEhIStGPHDrfjHD16VH379lVAQICCgoI0aNAgHT9+3K1m06ZNuuaaa+Tr66u6detqypQpxdbzySefqFGjRvL19VWzZs301VdfWf6cAQAAUPGVKVS3atVKb731lrKysorNZWdn6+2339aVV17p8eL+7LnnntPrr7+uV199Vb/++quee+45TZkyRa+88oqrZsqUKZo2bZpmzJihVatWyd/fX4mJiTp16pSrpm/fvkpJSdGSJUu0aNEirVy5UoMHD3Z7Dl26dFFUVJTWrVun559/XpMmTdLMmTNdNUlJSerTp48GDRqkDRs2qEePHurRo4e2bNli+fMGAABAxWYzZ57mLaVly5apa9euCgkJ0YABA1wfSb59+3a9++67OnLkiBYvXqxOnTpZutibbrpJYWFhevvtt11jvXr1kp+fnz744AMZYxQZGakHH3xQDz30kCQpKytLYWFhmj17tnr37q1ff/1VTZo00Zo1a9SmTRtJ0uLFi/U///M/+uOPPxQZGanXX39d//znP5WamiqHwyHp9HXkCxYs0LZt2yRJd9xxh3JycrRo0SLXWtq1a6eWLVtqxowZpXo+2dnZCgwMVFZWlgICAjzuj9PpVHp6umrVqiW73fJPoL+k0Evr0Etr0Efr0Evr0Evr0EvrWN3L0ua1Mr1R8frrr9dXX32lhx9+WM8++6zbXMuWLfX+++9bHqglqX379po5c6b++9//qmHDhvrll1/0448/6sUXX5Qk7dq1S6mpqUpISHDdJzAwUHFxcUpOTlbv3r2VnJysoKAgV6CWpISEBNntdq1atUo9e/ZUcnKyOnbs6ArUkpSYmKjnnntOGRkZCg4OVnJyssaOHeu2vsTExHN+PHtubq5yc3Ndt7OzsyWd/uY7nU6PelN0HGOMJce61NFL69BLa9BH69BL69BL69BL61jdy9Iep0yhWjodRDds2KDU1FTXvtRRUVEKDw8v6yH/0iOPPKLs7Gw1atRIXl5eKiws1DPPPKO+fftKklJTUyVJYWFhbvcLCwtzzaWmpqpWrVpu897e3qpRo4ZbTXR0dLFjFM0FBwcrNTX1nI9TksmTJ+uJJ54oNn7o0CG3y1PKyul0KisrS8YYfsv1EL20Dr20xqXQR6fTqb179+r48eOqVq2aLrvssr/luV4KvbxQ6KV16KV1rO7lsWPHSlVX5lBdJDw8/G8N0mf6+OOPNWfOHH344YeKjY3Vxo0bNWbMGEVGRqp///4XZA2emDBhgtvZ7ezsbNWtW1ehoaGWXf5hs9kUGhrKD6SH6KV16KU1LvY+Jicn6/WZb2n77v3KLyhUFW8vxdSrrWGD71V8fLylj3Wx9/JCopfWoZfWsbqXvr6+paordajesWOHmjVrplGjRpW4E0aRhx9+WK+++qq2bt1a7Gyvpx5++GE98sgj6t27tySpWbNm2rNnjyZPnqz+/fu7wn1aWpoiIiJc90tLS1PLli0lnf4lID093e24BQUFOnr0qOv+4eHhSktLc6spuv1XNef6BcPHx0c+Pj7Fxu12u2U/QDabzdLjXcropXXopTUu1j4mJSVp/MSndDKwnqK7DpZ/zXDlHE7VtrXfafzEpzTlqYlq3769pY95sfayPNBL69BL61jZy9Ieo9SPNG3aNIWHh+uZZ545Z90zzzyj8PBwTZs2rbSHLrUTJ04Ue2JeXl6ua12io6MVHh6upUuXuuazs7O1atUq15mO+Ph4ZWZmat26da6aZcuWyel0Ki4uzlWzcuVKt20BlyxZopiYGAUHB7tqznycohqrz6gAwMXM6XRq+oyZOhlYTy26D1RgRJS8q/goMCJKzW8aqFNB9fTaG29ynSmACq/Uofrbb79V7969VaVKlXPWORwO9e7dW19//bXHi/uz7t2765lnntGXX36p3bt3a/78+XrxxRfVs2dPSad/KxkzZoyefvppffHFF9q8ebP69eunyMhI9ejRQ5LUuHFjde3aVffdd59Wr16tn376SSNHjlTv3r0VGRkpSbrzzjvlcDg0aNAgpaSkaN68eZo6darbpRujR4/W4sWL9cILL2jbtm2aNGmS1q5dq5EjR1r+vAHgYpWSkqLtu/cr+qoE2Ww2tzmbzaaoNp21bdcfSklJKacVAkDplPryj7179yomJqZUtQ0aNHC9edFKr7zyih577DENHz5c6enpioyM1JAhQzRx4kRXzbhx45STk6PBgwcrMzNTHTp00OLFi92uh5kzZ45Gjhypzp07y263q1evXm5n1gMDA/Xtt99qxIgRat26tWrWrKmJEye67WXdvn17ffjhh3r00Uf1v//7v2rQoIEWLFigpk2bWv68AeBilZGRobyCQvnXLPnSuWoh4corKFRGRsYFXhkAnJ9Sh2ofH59inzp4Njk5OW7b0VmlevXqevnll/Xyyy+ftcZms+nJJ5/Uk08+edaaGjVq6MMPPzznYzVv3lw//PDDOWtuu+023XbbbeesAQCcXXBwsBzeXso5nKrAiKhi88ePpMrh7eW69A4AKqpSX/7RqFEjfffdd6WqXbp0qRo3blzmRQEALg2xsbGKqVdbu9d+pz9/FpkxRnvWLlWj6DqKjY0tpxUCQOmUOlTfcccdWrRo0Tk/3ESSPv/8cy1atEh33HGHp2sDAFzk7Ha7RgwdLN/M3dq06B1lHtytgrxTyjx4+rZv5m4NH3IfuyEAqPBK/bfU8OHD1apVK912220aNmyYfvrpJ2VnZ8sYo+zsbP30008aNmyYbr31VrVo0ULDhw//O9cNALhItG/fXlOemqgY/1Pa8/VMbZj9uPZ8PVONquX+LdvpAcDf4byuqf7mm2/Uv39/vfHGG5o5c2axGmOMunbtqvfee6/E/ZgBAChJ+/bt1a5dO6WkpCgjI0PBwcGKjY3lDDWASuO8PlExJCREixYt0urVq/XFF1/o119/VXZ2tgICAtSoUSN1795d7dq1+7vWCgC4iNntdjVr1qy8lwEAZVKmjylv27at2rZta/VaAAAAgEqJ/1cDAAAAPESoBgAAADxEqAYAAAA8RKgGAAAAPESoBgAAADxkaaj+/fff9euvv1p5SAAAAKDCK1OonjZtmnr37u02NmDAADVo0EBNmzZVmzZtlJ6ebskCAQAAgIquTKH6rbfeUlhYmOv2N998o3fffVeDBw/WK6+8ot9//11PPPGEZYsEAAAAKrIyffjLnj171LhxY9ftjz/+WNHR0Xr99dclSampqXr//fetWSEAAABQwZXpTLUxxu32t99+qxtvvNF1u169ekpNTfVsZQAAAEAlUaZQ3bBhQ82fP1/S6Us/Dhw44Baq//jjDwUFBVmyQAAAAKCiK9PlHw899JDuvPNOBQcHKycnR40bN1ZiYqJrftmyZWrZsqVVawQAAAAqtDKF6t69eyskJERfffWVgoKCNHz4cHl7nz7U0aNHVaNGDd19992WLhQAAACoqMoUqiXphhtu0A033FBsvEaNGvrss888WhQAAABQmZQ5VP/ZiRMnNHfuXOXm5up//ud/FBUVZdWhAQAAgAqtTKF60KBBWrVqlbZs2SJJysvLU7t27Vy3AwMDtWzZMrVq1cq6lQIAAAAVVJl2//j+++91yy23uG5/+OGH2rJli+bMmaMtW7YoPDycD38BAADAJaNMoTo1NVX16tVz3V6wYIHatGmjPn36qEmTJrrvvvu0atUqq9YIAAAAVGhlCtX+/v7KzMyUJBUUFGj58uVuW+pVr15dWVlZliwQAAAAqOjKdE31lVdeqTfffFOdOnXSF198oWPHjql79+6u+d9++01hYWGWLRIAAACoyMoUqp955hklJiaqTZs2Msbo1ltvVdu2bV3z8+fP19VXX23ZIgEAAICKrEyhuk2bNtq2bZuSkpIUFBSka6+91jWXmZmp4cOHu40BAAAAF7My71MdGhqqm2++udh4UFCQRo8e7dGiAAAAgMqkTG9UlKTCwkLNnTtXQ4YMUc+ePbV582ZJUlZWlj777DOlpaVZtkgAAACgIitTqM7MzNTVV1+tO++8Ux999JG++OILHTp0SJJUrVo1jRo1SlOnTrV0oQAAAEBFVaZQ/cgjjyglJUXffPONfv/9dxljXHNeXl669dZb9dVXX1m2SAAAAKAiK1OoXrBgge6//37dcMMNstlsxeYbNmyo3bt3e7o2AAAAoFIoU6jOyspSdHT0Wefz8/NVUFBQ5kUBAAAAlUmZQvUVV1yh9evXn3X+22+/VZMmTcq8KAAAAKAyKVOovvfee/XOO+9o3rx5ruupbTabcnNz9c9//lOLFy/WkCFDLF0oAAAAUFGVaZ/q0aNHKyUlRX369FFQUJAk6c4779SRI0dUUFCgIUOGaNCgQVauEwAAAKiwyhSqbTab3nzzTfXv31+ffvqpduzYIafTqSuuuEK33367OnbsaPU6AQAAgAqrzJ+oKEkdOnRQhw4drFoLAAAAUCmV6ZrqXbt2aeHChWedX7hwIVvqAQAA4JJRpjPVDz30kLKzs9W9e/cS56dPn66goCDNnTvXo8UBAAAAlUGZzlQnJyfrhhtuOOt8586d9cMPP5R5UQAAAEBlUqZQnZGRoerVq591vlq1ajpy5EiZFwUAAABUJmUK1Zdddpl++umns87/8MMPqlOnTpkXBQAAAFQmZQrVffr00UcffaRp06bJ6XS6xgsLCzV16lTNmzdPd955p2WLBAAAACqyMr1RccKECfrxxx81ZswYPfPMM4qJiZEkbd++XYcOHdJ1112nf/7zn5YuFAAAAKioynSm2sfHR99++63efvtttW3bVocPH9bhw4fVtm1bvfPOO/ruu+/k4+Nj9VoBAACACqlMoVqS7Ha7BgwYoIULF2rr1q3aunWrFi5cqHvuuUd2e5kP+5f279+vu+66SyEhIfLz81OzZs20du1a17wxRhMnTlRERIT8/PyUkJCgHTt2uB3j6NGj6tu3rwICAhQUFKRBgwbp+PHjbjWbNm3SNddcI19fX9WtW1dTpkwptpZPPvlEjRo1kq+vr5o1a6avvvrq73nSAAAAqNDKlH6PHj2qTZs2nXV+8+bNysjIKPOiziYjI0NXX321qlSpoq+//lpbt27VCy+8oODgYFfNlClTNG3aNM2YMUOrVq2Sv7+/EhMTderUKVdN3759lZKSoiVLlmjRokVauXKlBg8e7JrPzs5Wly5dFBUVpXXr1un555/XpEmTNHPmTFdNUlKS+vTpo0GDBmnDhg3q0aOHevTooS1btlj+vAEAAFDBmTLo16+fiYuLO+t8fHy8GThwYFkOfU7jx483HTp0OOu80+k04eHh5vnnn3eNZWZmGh8fH/PRRx8ZY4zZunWrkWTWrFnjqvn666+NzWYz+/fvN8YY89prr5ng4GCTm5vr9tgxMTGu27fffrvp1q2b2+PHxcWZIUOGlPr5ZGVlGUkmKyur1Pc5l8LCQnPw4EFTWFhoyfEuZfTSOvTSGvTROvTSOvTSOvTSOlb3srR5rUxvVFy2bJmGDRt21vnu3btrxowZZUv55/DFF18oMTFRt912m1asWKHatWtr+PDhuu+++ySd/vj01NRUJSQkuO4TGBiouLg4JScnq3fv3kpOTlZQUJDatGnjqklISJDdbteqVavUs2dPJScnq2PHjnI4HK6axMREPffcc8rIyFBwcLCSk5M1duxYt/UlJiZqwYIFZ11/bm6ucnNzXbezs7MlSU6n020XlbJyOp0yxlhyrEsdvbQOvbQGfbQOvbQOvbQOvbSO1b0s7XHKFKoPHTqkmjVrnnU+JCRE6enpZTn0Of3+++96/fXXNXbsWP3v//6v1qxZo1GjRsnhcKh///5KTU2VJIWFhbndLywszDWXmpqqWrVquc17e3urRo0abjXR0dHFjlE0FxwcrNTU1HM+TkkmT56sJ554otj4oUOH3C5PKSun06msrCwZY/7W69ovBfTSOvTSGvTROvTSOvTSOvTSOlb38tixY6WqK1OojoiI0IYNG846v27dOoWGhpbl0OfkdDrVpk0b/etf/5IktWrVSlu2bNGMGTPUv39/yx/PahMmTHA7u52dna26desqNDRUAQEBHh/f6XTKZrMpNDSUH0gP0Uvr0Etr0Efr0Evr0Evr0EvrWN1LX1/fUtWVKVT36NFD06dP14033qh//OMfbnOff/65Zs2adc7LQ8oqIiJCTZo0cRtr3Lix/vOf/0iSwsPDJUlpaWmKiIhw1aSlpally5aumj+fRS8oKNDRo0dd9w8PD1daWppbTdHtv6opmi+Jj49PiVsN2u12y36AbDabpce7lNFL69BLa9BH69BL69BL69BL61jZy9Ieo0yPNGnSJMXExKhnz5668sor1a9fP/Xr109XXnmlbrnlFjVs2LDEyxw8dfXVV2v79u1uY//9738VFRUlSYqOjlZ4eLiWLl3qms/OztaqVasUHx8vSYqPj1dmZqbWrVvnqlm2bJmcTqfi4uJcNStXrlR+fr6rZsmSJYqJiXHtNBIfH+/2OEU1RY8DAACAS0eZQnVgYKB+/vlnPfroo8rPz9enn36qTz/9VPn5+Xrssce0atUqBQUFWbxU6YEHHtDPP/+sf/3rX9q5c6c+/PBDzZw5UyNGjJB0+reSMWPG6Omnn9YXX3yhzZs3q1+/foqMjFSPHj0knT6z3bVrV913331avXq1fvrpJ40cOVK9e/dWZGSkJOnOO++Uw+HQoEGDlJKSonnz5mnq1Klul26MHj1aixcv1gsvvKBt27Zp0qRJWrt2rUaOHGn58wYAAEAFZ8leIyU4evTo33LchQsXmqZNmxofHx/TqFEjM3PmTLd5p9NpHnvsMRMWFmZ8fHxM586dzfbt291qjhw5Yvr06WOqVatmAgICzIABA8yxY8fcan755RfToUMH4+PjY2rXrm2effbZYmv5+OOPTcOGDY3D4TCxsbHmyy+/PK/nwpZ6FRe9tA69tAZ9tA69tA69tA69tE55balnM8YYqwJ6bm6uvvjiC82ZM0eLFy+2ZEeLi1l2drYCAwOVlZVl2RsV09PTVatWLa7H8hC9tA69tAZ9tA69tA69tA69tI7VvSxtXivTGxXPZIzR0qVLNWfOHM2fP1/Z2dkKDQ3VnXfe6emhAQAAgEqhzKF63bp1mjNnjubOnavU1FTZbDb17t1bI0eOVLt27WSz2axcJwAAAFBhnVeo/v333zVnzhzNmTNHO3bsUO3atdW3b1+1bdtWd9xxh3r16sXuFwAAALjklDpUx8fHa/Xq1apZs6ZuvfVWvfXWW+rQoYMk6bfffvvbFggA5cnpdColJUUZGRkKDg5WbGws1zsCAIopdahetWqVoqOj9eKLL6pbt27y9vb4cmwAqNCSkpI0fcZMbd+9X3kFhXJ4eymmXm2NGDpY7du3L+/lAQAqkFKfbnn11VcVERGhnj17Kjw8XEOGDNH3338vCzcPAYAKIykpSeMee1Lbjvuq3o1D1GrAk6p34xBtz/HVuMeeVFJSUnkvEQBQgZQ6VA8fPlw//vijfvvtN40ZM0Y//PCDOnfurNq1a2vixImy2Wy8ORHARcHpdGr6jJk6GVhPLboPVGBElLyr+CgwIkrNbxqoU0H19Nobb8rpdJb3UgEAFcR5XxgYHR2tRx99VFu3btWaNWvUu3dvLV++XMYYDR8+XIMHD9aiRYvYoxpApZWSkqLtu/cr+qqEYicLbDabotp01rZdfyglJaWcVggAqGg8erdN69at9eKLL2rfvn369ttvlZiYqHnz5ukf//iHatasadUaAeCCysjIUF5Bofxrhpc4Xy0kXHkFhcrIyLjAKwMAVFSWvIXdbrcrISFBs2fPVlpamj766CN17tzZikMDwAUXHBwsh7eXcg6nljh//EiqHN5eCg4OvsArAwBUVJbvC+Xr66s77rhDn3/+udWHBoALIjY2VjH1amv32u+KvRnbGKM9a5eqUXQdxcbGltMKAQAVDZutAsCf2O12jRg6WL6Zu7Vp0TvKPLhbBXmnlHnw9G3fzN0aPuQ+9qsGALiw2TQAlKB9+/aa8tTE0/tUfz3TtU91o+g6Gv7gRPapBgC4IVQDwFm0b99e7dq14xMVAQB/iVANAOdgt9vVrFmz8l4GAKCC43QLAAAA4CFCNQAAAOAhQjUAAADgIUI1AAAA4CFCNQAAAOAhQjUAAADgIUI1AAAA4CFCNQAAAOAhQjUAAADgIUI1AAAA4CFCNQAAAOAhQjUAAADgIUI1AAAA4CFCNQAAAOAhQjUAAADgIUI1AAAA4CFCNQAAAOAhQjUAAADgIUI1AAAA4CFCNQAAAOAhQjUAAADgIUI1AAAA4CFCNQAAAOAhQjUAAADgIUI1AAAA4CFCNQAAAOAhQjUAAADgIUI1AAAA4CFCNQAAAOAhQjUAAADgIUI1AAAA4CFCNQAAAOAhQjUAAADgoUodqp999lnZbDaNGTPGNXbq1CmNGDFCISEhqlatmnr16qW0tDS3++3du1fdunVT1apVVatWLT388MMqKChwq1m+fLmuvPJK+fj4qH79+po9e3axx58+fbrq1asnX19fxcXFafXq1X/H0wQAAEAFV2lD9Zo1a/TGG2+oefPmbuMPPPCAFi5cqE8++UQrVqzQgQMHdMstt7jmCwsL1a1bN+Xl5SkpKUnvvvuuZs+erYkTJ7pqdu3apW7duqlTp07auHGjxowZo3vvvVfffPONq2bevHkaO3asHn/8ca1fv14tWrRQYmKi0tPT//4nDwAAgAqlUobq48ePq2/fvnrzzTcVHBzsGs/KytLbb7+tF198Uddff71at26tWbNmKSkpST///LMk6dtvv9XWrVv1wQcfqGXLlrrxxhv11FNPafr06crLy5MkzZgxQ9HR0XrhhRfUuHFjjRw5Urfeeqteeukl12O9+OKLuu+++zRgwAA1adJEM2bMUNWqVfXOO+9c2GYAAACg3HmX9wLKYsSIEerWrZsSEhL09NNPu8bXrVun/Px8JSQkuMYaNWqkyy67TMnJyWrXrp2Sk5PVrFkzhYWFuWoSExM1bNgwpaSkqFWrVkpOTnY7RlFN0WUmeXl5WrdunSZMmOCat9vtSkhIUHJy8lnXnZubq9zcXNft7OxsSZLT6ZTT6SxbM87gdDpljLHkWJc6emkdemkN+mgdemkdemkdemkdq3tZ2uNUulA9d+5crV+/XmvWrCk2l5qaKofDoaCgILfxsLAwpaamumrODNRF80Vz56rJzs7WyZMnlZGRocLCwhJrtm3bdta1T548WU888USx8UOHDunUqVNnvV9pOZ1OZWVlyRgju71S/idEhUEvrUMvrUEfrUMvrUMvrUMvrWN1L48dO1aqukoVqvft26fRo0dryZIl8vX1Le/lnLcJEyZo7NixrtvZ2dmqW7euQkNDFRAQ4PHxnU6nbDabQkND+YH0EL20Dr20Bn20Dr20Dr20Dr20jtW9LG3mrFShet26dUpPT9eVV17pGissLNTKlSv16quv6ptvvlFeXp4yMzPdzlanpaUpPDxckhQeHl5sl46i3UHOrPnzjiFpaWkKCAiQn5+fvLy85OXlVWJN0TFK4uPjIx8fn2Ljdrvdsh8gm81m6fEuZfTSOvTSGvTROvTSOvTSOvTSOlb2srTHqFTftc6dO2vz5s3auHGj66tNmzbq27ev689VqlTR0qVLXffZvn279u7dq/j4eElSfHy8Nm/e7LZLx5IlSxQQEKAmTZq4as48RlFN0TEcDodat27tVuN0OrV06VJXDQAAAC4dlepMdfXq1dW0aVO3MX9/f4WEhLjGBw0apLFjx6pGjRoKCAjQ/fffr/j4eLVr106S1KVLFzVp0kR33323pkyZotTUVD366KMaMWKE6yzy0KFD9eqrr2rcuHEaOHCgli1bpo8//lhffvml63HHjh2r/v37q02bNmrbtq1efvll5eTkaMCAAReoGwAAAKgoKlWoLo2XXnpJdrtdvXr1Um5urhITE/Xaa6+55r28vLRo0SINGzZM8fHx8vf3V//+/fXkk0+6aqKjo/Xll1/qgQce0NSpU1WnTh299dZbSkxMdNXccccdOnTokCZOnKjU1FS1bNlSixcvLvbmRQAAAFz8bMYYU96LuFRlZ2crMDBQWVlZlr1RMT09XbVq1eJ6LA9dCr10Op1KSUlRRkaGgoODFRsb+7c810uhlxcCfbQOvbQOvbQOvbSO1b0sbV676M5UA/hrSUlJmj5jprbv3q+8gkI5vL0UU6+2RgwdrPbt25f38gAAqHT4VQi4xCQlJWncY09q23Ff1btxiFoNeFL1bhyi7Tm+GvfYk0pKSirvJQIAUOkQqoFLiNPp1PQZM3UysJ5adB+owIgoeVfxUWBElJrfNFCngurptTfe5BO9AAA4T4Rq4BKSkpKi7bv3K/qqBNlsNrc5m82mqDadtW3XH0pJSSmnFQIAUDkRqoFLSEZGhvIKCuVfs+QPKaoWEq68gkJlZGRc4JUBAFC5EaqBS0hwcLAc3l7KOZxa4vzxI6lyeHspODj4Aq8MAIDKjVANXEJiY2MVU6+2dq/9Tn/eTdMYoz1rl6pRdB3FxsaW0woBAKicCNXAJcRut2vE0MHyzdytTYveUebB3SrIO6XMg6dv+2bu1vAh97FHKgAA54l9qoFLTPv27TXlqYmn96n+eqZrn+pG0XU0/MGJ7FMNAEAZEKqBS1D79u3Vrl27C/KJigAAXAoI1cAlym63q1mzZuW9DAAALgqclgIAAAA8xJlqoBJyOp1cugEAQAVCqAYqmaSkpNNvMty93/Umw5h6tTVi6GDeZAgAQDnh1BZQiSQlJWncY09q23Ff1btxiFoNeFL1bhyi7Tm+GvfYk0pKSirvJQIAcEkiVAOVhNPp1PQZM3UysJ5adB+owIgoeVfxUWBElJrfNFCngurptTfelNPpLO+lAgBwySFUA5VESkqKtu/er+irEmSz2dzmbDabotp01rZdfyglJaWcVggAwKWLUA1UEhkZGcorKJR/zfAS56uFhCuvoFAZGRkXeGUAAIBQDVQSwcHBcnh7Kedwaonzx4+kyuHtpeDg4Au8MgAAQKgGKonY2FjF1Kut3Wu/kzHGbc4Yoz1rl6pRdB3FxsaW0woBALh0EaqBSsJut2vE0MHyzdytTYveUebB3SrIO6XMg6dv+2bu1vAh97FfNQAA5YB9qoFKpH379pry1MTT+1R/PdO1T3Wj6Doa/uBE9qkGAKCcEKqBSqZ9+/Zq164dn6gIAEAFQqgGKiG73a5mzZqV9zIAAMD/4dQWAAAA4CFCNQAAAOAhQjUAAADgIUI1AAAA4CFCNQAAAOAhQjUAAADgIUI1AAAA4CFCNQAAAOAhQjUAAADgIUI1AAAA4CFCNQAAAOAhQjUAAADgIUI1AAAA4CFCNQAAAOAhQjUAAADgIUI1AAAA4CFCNQAAAOAhQjUAAADgIUI18CdOp1NbtmxxfTmdzvJeEgAAqOC8y3sBQEWSlJSkV19/Q5t/3aF69S7T7t171axxA40cNkTt27cv7+UBAIAKilAN/J+kpCQNHfWA9h85Li9ff9VyVlFaToEO/LhWW37dphnTXiJYAwCAEnH5B6DTl3xMevJp7U7NkO/lbRSeOFShV9+u8MSh8r28jXanZuiJp57hUhAAAFAiQjUgafPmzVq3KUX+V1yl8Gv7yiekjmxe3vIJqaPwa/uq6hVttO6XLdq8eXN5LxUAAFRAlSpUT548WVdddZWqV6+uWrVqqUePHtq+fbtbzalTpzRixAiFhISoWrVq6tWrl9LS0txq9u7dq27duqlq1aqqVauWHn74YRUUFLjVLF++XFdeeaV8fHxUv359zZ49u9h6pk+frnr16snX11dxcXFavXq15c8ZF8b69euV67QpuEUn2Ww2tzmbzaYaza/XKadN69evL6cVAgCAiqxSheoVK1ZoxIgR+vnnn7VkyRLl5+erS5cuysnJcdU88MADWrhwoT755BOtWLFCBw4c0C233OKaLywsVLdu3ZSXl6ekpCS9++67mj17tiZOnOiq2bVrl7p166ZOnTpp48aNGjNmjO6991598803rpp58+Zp7Nixevzxx7V+/Xq1aNFCiYmJSk9PvzDNgOVsXt7yqhpU4pxX1UDZvHgLAgAAKJnNGGPKexFldejQIdWqVUsrVqxQx44dlZWVpdDQUH344Ye69dZbJUnbtm1T48aNlZycrHbt2unrr7/WTTfdpAMHDigsLEySNGPGDI0fP16HDh2Sw+HQ+PHj9eWXX2rLli2ux+rdu7cyMzO1ePFiSVJcXJyuuuoqvfrqq5JOX5Nbt25d3X///XrkkUdKtf7s7GwFBgYqKytLAQEBHvfD6XQqPT1dtWrVkt1eqX5fumCcTqdSUlKUkZGh4OBgxcbGym6365dfflHCP25T1Q79VbNRW9llVL96oXYe85JTNh3etkonfnxP333xiVq0aFHeT6NS4XVpDfpoHXppHXppHXppHat7Wdq8VqlPvWVlZUmSatSoIUlat26d8vPzlZCQ4Kpp1KiRLrvsMleoTk5OVrNmzVyBWpISExM1bNgwpaSkqFWrVkpOTnY7RlHNmDFjJEl5eXlat26dJkyY4Jq32+1KSEhQcnLyWdebm5ur3Nxc1+3s7GxJp7/5VrwBzul0yhjDm+nOIjk5Wa/PfEvbd+9XfkGhqnh7KaZebQ0bfK/i4uLUOjZG63ck61hwmKoHhUrVveXMzdOxzEM6ueNntW4ao9jYWPp7nnhdWoM+WodeWodeWodeWsfqXpb2OJU2VDudTo0ZM0ZXX321mjZtKklKTU2Vw+FQUFCQW21YWJhSU1NdNWcG6qL5orlz1WRnZ+vkyZPKyMhQYWFhiTXbtm0765onT56sJ554otj4oUOHdOrUqVI863NzOp3KysqSMYbfcv/k119/1ew5c1UYWFdX33qTfAKClZudobSdv2jmrPeUl5en8Q+P1etvzVJW1kZVcUSpRm6IIk4cUc2sPQpsUEPD7h2gw4cPl/dTqXR4XVqDPlqHXlqHXlqHXlrH6l4eO3asVHWVNlSPGDFCW7Zs0Y8//ljeSym1CRMmaOzYsa7b2dnZqlu3rkJDQy27/MNmsyk0NJQfyDM4nU69Pfs9bTvuqxZXd9Nxm03HjaTq1VS1ZR1t+nK23nn3fc16a6YcDodee+NNpfy0UF716umP3bvVtNEVGjZ0iOLj48v7qVRKvC6tQR+tQy+tQy+tQy+tY3UvfX19S1VXKUP1yJEjtWjRIq1cuVJ16tRxjYeHhysvL0+ZmZluZ6vT0tIUHh7uqvnzLh1Fu4OcWfPnHUPS0tIUEBAgPz8/eXl5ycvLq8SaomOUxMfHRz4+PsXG7Xa7ZT9ANpvN0uNdDFJSUrRt1x+qd+MQyWaX25sIbDZd1vp6/fr1TP3666+6+uqrFR8fry1btriux2ratCn99BCvS2vQR+vQS+vQS+vQS+tY2cvSHqNSfdeMMRo5cqTmz5+vZcuWKTo62m2+devWqlKlipYuXeoa2759u/bu3es6yxgfH6/Nmze77dKxZMkSBQQEqEmTJq6aM49RVFN0DIfDodatW7vVOJ1OLV26lLOZFVBGRobyCgrlX7PkX3iqhYQrr6BQGRkZkk7/8DRt2tT1xV9uAADgr1SqM9UjRozQhx9+qM8//1zVq1d3XQMdGBgoPz8/BQYGatCgQRo7dqxq1KihgIAA3X///YqPj1e7du0kSV26dFGTJk109913a8qUKUpNTdWjjz6qESNGuM4iDx06VK+++qrGjRungQMHatmyZfr444/15ZdfutYyduxY9e/fX23atFHbtm318ssvKycnRwMGDLjwjYFLSbt7BAcHy+HtpZzDqQqMiCp2n+NHUuXw9lJwcHA5rBgAAFwMKlWofv311yVJ1113ndv4rFmzdM8990iSXnrpJdntdvXq1Uu5ublKTEzUa6+95qr18vLSokWLNGzYMMXHx8vf31/9+/fXk08+6aqJjo7Wl19+qQceeEBTp05VnTp19NZbbykxMdFVc8cdd+jQoUOaOHGiUlNT1bJlSy1evLjYmxdx4SQlJWn6jJnavnu/8goK5Thjd4+YerW1fe13an7TQLcPdzHGaM/apWoUXUexsbHluHoAAFCZVep9qis79qm2TlJSksY99qROBtZT9FUJ8q8ZrpzDqdq99jv5Zu7W3bf31Psfz9epoHqKatNZ1ULCdfxIqvasXSrfzN2a8tREtW/f3nW8S7mXVqOX1qCP1qGX1qGX1qGX1mGfaqCMnE6nps+YqZOB9dSi+/8/Ex0YEaXmNw3UpkXv6Iekn/XsE4+e3qf665muM9mNouto+IPugRoAAOB8EapR6aWkpGj77v2KvnGI26Ud0ul3/0a16axtX89UYGCg3p/9TomfqAgAAOAJQjUqvfPZ3cNut6tZs2YXeIUAAOBixyk6VHpn7u5REnb3AAAAfzdCNSq92NhYxdSrrd1rv9Of33fL7h4AAOBCIFSj0rPb7RoxdLB8M3dr06J3lHlwtwryTinz4Onbvpm7NXzIfVw7DQAA/jZcU42LQvv27TXlqYmn96lmdw8AAHCBEapx0Wjfvr3atWvH7h4AAOCCI1TjosLuHgAAoDxwCg8AAADwEKEaAAAA8BChGgAAAPAQoRoAAADwEKEaAAAA8BChGgAAAPAQW+rhgnE6newhDQAALkqEalwQSUlJeuW1Gfpp7S86lV8g3yreurpNC90/fCifdggAACo9QjX+dklJSbqj3yBl+kXK54rr5VWthk4cP6pFG3/Rj/0Gad57bxOsAQBApUaoxt/K6XTqvqHDleEbqepX9VSVwFqyO3zlzDulKmFXKGP1fN03dLg2b1zPpSAAAKDSIsXgb7Vx40bt2Juqqo2ulm+taHn5+Mtm85KXj798a0Wrakx77diXqo0bN5b3UgEAAMqMUI2/1dtvvy3jVUU+EQ1LnHdENpSxV9Hbb799gVcGAABgHS7/gGUKCgr0+eef68CBA4qMjNTNN9+szMxMyVko58lsyT+42H3MiWOSs/B0HQAAQCVFqIYl3njjDf1rygtKO5otYySbTQobN0FXtWouZ16OjqcsV3DHfrLZbK77GGN0fOtyOfNy1KpVq3JcPQAAgGcI1fDYG2+8odEP/6+cjmqy+9eQzauKVJivg1k5WvjtMnkVFujkzlWyeztUtVEHeQfUUkF2uk5s+1End66Sj5dNo0aNKu+nAQAAUGaEanikoKBA4yY8qkKHv6o2jJd/k46qEhiu/KxU5WxdoRP/TZY9P1eFJ7KUs/0nndq3WTYvh0xhngpPZMt5IksjRwyWw+Eo76cCAABQZoRqeOTTTz/V8VO5qtb8WgVdc5fr8g5HzShVueZumcJC5Wxeov+5/hot+yFJebnHZWx22YxTPnaj4SMGa8qUKeX8LAAAADxDqIZH5s2bJ5uPv/xjO7ldLy1JNptN1WKv04n//iRvb29lpB/Uq6++qj179igqKkojR47kDDUAALgoEKrhkby8PNns3vKqGlTivN0/WDa7t/Ly8uRwODR27NgLu0AAAIALgH2qUWonTpzQPffco2uvvVb33HOPTpw4oU6dOskU5Cn34A7JGPc7GKO8g/+VKchTp06dymfRAAAAFwBnqlEqXbp00dIVP8nmV102b4d++mW73v8oVJ2uiZd34Smd2P6jvIPC5R0QIpu3j0xBrgqyj+jE9p/kXXiK3T0AAMBFjVCNv9SlSxctS16nqrGd5N+ssxw16ijv6B/K2fydlq/6WbVDgnRg9wZlS/Kt10re1Wqo4PhRndq9Qbm7N+iB4UO4dhoAAFzUCNU4pxMnTui7FT/JP7aTgjsPlt1ul2w2+YY3kKPWFZKkfVuX6/4h9+rt9z5Q9h9bJHsVyZkvHxXogWGD2N0DAABc9AjVOKdhw4bJ7ldd/s06y+7l9f8nbDbZvbzkH9tZJ39fp8zMTB1NY3cPAABwaSJU45xSUlJk83bIUaNuifNVQurI5u1QSkoKu3sAAIBLFrt/QJK0c+dOORwO2Ww2ORwO7dy5U5IUGhoqU5CnvKP7Srxf/tE/ZAryFBoaeiGXCwAAUKFwphqy2WyyOfxkr1pD3t4OOQvy1DC2uUzeSf3888/6pmMn5WxeKkdY/dPXVP8fp9OpnC3L5DyZrUmTJpXfEwAAAChnhOpLnM1mk1e1GvJrEH96Z4+Quso7sk85m5fq5I5ktWvXTmHhkTq8I1mS5N/0elWpUVf5R/cpZ8synfxvkmqFBOuqq64q52cCAABQfgjVl7CdO3fK5vCTX4N4BScMcZ2F9o1oKEdYfUlSTsoyPT/lWd0/eqyyU77Xyd/XyubtkCnIk/PUMQVUrarPPv3E7Qw2AADApYYkdAlr0qSJ7H4Bp3f2+FMottvt8m96vex+ARo0aJC+WvS5br2lhwJ9veTIP65AXy/ddktPfbXoc7Vv376cngEAAEDFwJnqS1h+fr68vR1yhJxlZ48adWXzdig/P1/t27dXu3btlJKSooyMDAUHBys2NpYz1AAAAOJM9SVj7ty5p9+Q+H9fc+fOVZUqVU7v7HHkbDt77JMpyFOVKlUknT573axZM3Xs2FHNmjUjUAMAAPwfzlRfAmw2m+TtI7t/DdnsdhmnU33uvkcqyJftZPZf7uyxbevW8ls8AABAJUCovsjZbDbZfKvLyz9Ydl9/2byqyBTmy3nquApzMmVOHdPJc+zsYfJOqn79+uX8LAAAACo2QvVFbO7cuZKXQ17+QaraMF7+TTrKOzBcBVmpytm6Uif+m6SC/FwVHj+qnJRl7jt7nMyWyTspY0x5Pw0AAIAKj4tiL2J9+vSRrYqP/Oq3VWCHvnLUjJK9io8cNaMU2KGv/Oq3la2KryTpvymbZD9xVAVH9sl+4qj+m7KJQA0AAFBKnKm+yNl9/VWtSaeSt8xrfJ1ObP9JhaeyVb9+feXl5ZXTKgEAACo3zlRf5Gx2b9n9g0qc86oWJJud36sAAAA8Rai+iNlsNpmCXOUd3FHsUg5jzOnxgtzTu4MAAACgzAjVHpo+fbrq1asnX19fxcXFafXq1eW9JJe9e/eq8ES2Tmz/UXlH9smZe0LGWShn7gnlHdl3+tKPE9nau3dveS8VAACgUuP//j0wb948jR07VjNmzFBcXJxefvllJSYmavv27apVq1Z5L0916tRRFZtTJ39fJ0nyrddKXtVqqPD4UZ3avUEnf1+nKjan6tSpU84rBQAAqNwI1R548cUXdd9992nAgAGSpBkzZujLL7/UO++8o0ceeaScV3daXl6eHA6Hcrb9qFN7N8vmXUWmIF+FJ7JVxVbImxMBAAAsQKguo7y8PK1bt04TJkxwjdntdiUkJCg5ObnE++Tm5io3N9d1Ozs7W9LpTy90Op0er8npdMoYU+xYp06d0v79+9W8eXPlHMtQNX9/bfr9v6pdu7Ylj3sxOlsvcf7opTXoo3XopXXopXXopXWs7mVpj0OoLqPDhw+rsLBQYWFhbuNhYWHatm1bifeZPHmynnjiiWLjhw4d0qlTpzxek9PpVFZWlowxxbbQq1Klin799Ve3sfT0dI8f82J1rl7i/NBLa9BH69BL69BL69BL61jdy2PHjpWqjlB9AU2YMEFjx4513c7OzlbdunUVGhqqgIAAj4/vdDpls9kUGhrKD6SH6KV16KU16KN16KV16KV16KV1rO6lr69vqeoI1WVUs2ZNeXl5KS0tzW08LS1N4eHhJd7Hx8dHPj4+xcbtdrtlP0A2m83S413K6KV16KU16KN16KV16KV16KV1rOxlaY/Bd62MHA6HWrduraVLl7rGnE6nli5dqvj4+HJcGQAAAC40zlR7YOzYserfv7/atGmjtm3b6uWXX1ZOTo5rNxAAAABcGgjVHrjjjjt06NAhTZw4UampqWrZsqUWL15c7M2LAAAAuLgRqj00cuRIjRw5sryXAQAAgHLENdUAAACAhwjVAAAAgIcI1QAAAICHCNUAAACAhwjVAAAAgIcI1QAAAICHCNUAAACAh9inuhwZYyRJ2dnZlhzP6XTq2LFj8vX1teSz7i9l9NI69NIa9NE69NI69NI69NI6VveyKKcV5bazIVSXo2PHjkmS6tatW84rAQAAwLkcO3ZMgYGBZ523mb+K3fjbOJ1OHThwQNWrV5fNZvP4eNnZ2apbt6727dungIAAC1Z46aKX1qGX1qCP1qGX1qGX1qGX1rG6l8YYHTt2TJGRkec8882Z6nJkt9tVp04dy48bEBDAD6RF6KV16KU16KN16KV16KV16KV1rOzluc5QF+GiHQAAAMBDhGoAAADAQ4Tqi4iPj48ef/xx+fj4lPdSKj16aR16aQ36aB16aR16aR16aZ3y6iVvVAQAAAA8xJlqAAAAwEOEagAAAMBDhGoAAADAQ4RqAAAAwEOE6ovE9OnTVa9ePfn6+iouLk6rV68u7yVVeCtXrlT37t0VGRkpm82mBQsWuM0bYzRx4kRFRETIz89PCQkJ2rFjR/kstoKbPHmyrrrqKlWvXl21atVSjx49tH37dreaU6dOacSIEQoJCVG1atXUq1cvpaWlldOKK67XX39dzZs3d31oQXx8vL7++mvXPH0sm2effVY2m01jxoxxjdHL0ps0aZJsNpvbV6NGjVzz9LL09u/fr7vuukshISHy8/NTs2bNtHbtWtc8//aUTr169Yq9Jm02m0aMGCGpfF6ThOqLwLx58zR27Fg9/vjjWr9+vVq0aKHExESlp6eX99IqtJycHLVo0ULTp08vcX7KlCmaNm2aZsyYoVWrVsnf31+JiYk6derUBV5pxbdixQqNGDFCP//8s5YsWaL8/Hx16dJFOTk5rpoHHnhACxcu1CeffKIVK1bowIEDuuWWW8px1RVTnTp19Oyzz2rdunVau3atrr/+et18881KSUmRRB/LYs2aNXrjjTfUvHlzt3F6eX5iY2N18OBB19ePP/7omqOXpZORkaGrr75aVapU0ddff62tW7fqhRdeUHBwsKuGf3tKZ82aNW6vxyVLlkiSbrvtNknl9Jo0qPTatm1rRowY4bpdWFhoIiMjzeTJk8txVZWLJDN//nzXbafTacLDw83zzz/vGsvMzDQ+Pj7mo48+KocVVi7p6elGklmxYoUx5nTvqlSpYj755BNXza+//mokmeTk5PJaZqURHBxs3nrrLfpYBseOHTMNGjQwS5YsMddee60ZPXq0MYbX5Pl6/PHHTYsWLUqco5elN378eNOhQ4ezzvNvT9mNHj3aXHHFFcbpdJbba5Iz1ZVcXl6e1q1bp4SEBNeY3W5XQkKCkpOTy3FllduuXbuUmprq1tfAwEDFxcXR11LIysqSJNWoUUOStG7dOuXn57v1s1GjRrrsssvo5zkUFhZq7ty5ysnJUXx8PH0sgxEjRqhbt25uPZN4TZbFjh07FBkZqcsvv1x9+/bV3r17JdHL8/HFF1+oTZs2uu2221SrVi21atVKb775pmuef3vKJi8vTx988IEGDhwom81Wbq9JQnUld/jwYRUWFiosLMxtPCwsTKmpqeW0qsqvqHf09fw5nU6NGTNGV199tZo2bSrpdD8dDoeCgoLcaulnyTZv3qxq1arJx8dHQ4cO1fz589WkSRP6eJ7mzp2r9evXa/LkycXm6OX5iYuL0+zZs7V48WK9/vrr2rVrl6655hodO3aMXp6H33//Xa+//roaNGigb775RsOGDdOoUaP07rvvSuLfnrJasGCBMjMzdc8990gqv59v77/tyAAuSSNGjNCWLVvcrrfE+YmJidHGjRuVlZWlTz/9VP3799eKFSvKe1mVyr59+zR69GgtWbJEvr6+5b2cSu/GG290/bl58+aKi4tTVFSUPv74Y/n5+ZXjyioXp9OpNm3a6F//+pckqVWrVtqyZYtmzJih/v37l/PqKq+3335bN954oyIjI8t1HZypruRq1qwpLy+vYu9oTUtLU3h4eDmtqvIr6h19PT8jR47UokWL9P3336tOnTqu8fDwcOXl5SkzM9Otnn6WzOFwqH79+mrdurUmT56sFi1aaOrUqfTxPKxbt07p6em68sor5e3tLW9vb61YsULTpk2Tt7e3wsLC6KUHgoKC1LBhQ+3cuZPX5XmIiIhQkyZN3MYaN27supSGf3vO3549e/Tdd9/p3nvvdY2V12uSUF3JORwOtW7dWkuXLnWNOZ1OLV26VPHx8eW4ssotOjpa4eHhbn3Nzs7WqlWr6GsJjDEaOXKk5s+fr2XLlik6OtptvnXr1qpSpYpbP7dv3669e/fSz1JwOp3Kzc2lj+ehc+fO2rx5szZu3Oj6atOmjfr27ev6M70su+PHj+u3335TREQEr8vzcPXVVxfbbvS///2voqKiJPFvT1nMmjVLtWrVUrdu3Vxj5faa/NveAokLZu7cucbHx8fMnj3bbN261QwePNgEBQWZ1NTU8l5ahXbs2DGzYcMGs2HDBiPJvPjii2bDhg1mz549xhhjnn32WRMUFGQ+//xzs2nTJnPzzTeb6Ohoc/LkyXJeecUzbNgwExgYaJYvX24OHjzo+jpx4oSrZujQoeayyy4zy5YtM2vXrjXx8fEmPj6+HFddMT3yyCNmxYoVZteuXWbTpk3mkUceMTabzXz77bfGGProiTN3/zCGXp6PBx980Cxfvtzs2rXL/PTTTyYhIcHUrFnTpKenG2PoZWmtXr3aeHt7m2eeecbs2LHDzJkzx1StWtV88MEHrhr+7Sm9wsJCc9lll5nx48cXmyuP1ySh+iLxyiuvmMsuu8w4HA7Ttm1b8/PPP5f3kiq877//3kgq9tW/f39jzOmtjR577DETFhZmfHx8TOfOnc327dvLd9EVVEl9lGRmzZrlqjl58qQZPny4CQ4ONlWrVjU9e/Y0Bw8eLL9FV1ADBw40UVFRxuFwmNDQUNO5c2dXoDaGPnriz6GaXpbeHXfcYSIiIozD4TC1a9c2d9xxh9m5c6drnl6W3sKFC03Tpk2Nj4+PadSokZk5c6bbPP/2lN4333xjJJXYn/J4TdqMMebvOw8OAAAAXPy4phoAAADwEKEaAAAA8BChGgAAAPAQoRoAAADwEKEaAAAA8BChGgAAAPAQoRoAAADwEKEaAAAA8BChGgDwt6lXr55uuummMt9/9uzZstls2r17t3WLAoC/AaEaAC4yRUF07dq15b0UALhkEKoBAAAADxGqAQAAAA8RqgHgEpOXl6eJEyeqdevWCgwMlL+/v6655hp9//33bnW7d++WzWbTv//9b02fPl2XX365qlatqi5dumjfvn0yxuipp55SnTp15Ofnp5tvvllHjx4t8TG//fZbtWzZUr6+vmrSpIk+++yzYjUpKSm6/vrr5efnpzp16ujpp5+W0+ksVvf555+rW7duioyMlI+Pj6644go99dRTKiwstKZBAFAGNmOMKe9FAACsM3v2bA0YMEBr1qxRmzZtis0fPnxYzZs3V58+fdSgQQMdO3ZMb7/9tn7//XetXr1aLVu2lHQ6VEdHR6tly5bKy8vTvffeq6NHj2rKlCm68sordf3112v58uXq3bu3du7cqVdeeUX33HOP3nnnHddj1atXTz4+PkpPT9fQoUNVq1YtzZo1SykpKVq8eLFuuOEGSVJqaqqaN2+ugoICjR49Wv7+/po5c6b8/Py0adMm7dq1S/Xq1ZMk9ezZUw6HQ1dddZWqVaumZcuW6ZNPPtFDDz2k559//m/vLwCUyAAALiqzZs0yksyaNWtKnC8oKDC5ubluYxkZGSYsLMwMHDjQNbZr1y4jyYSGhprMzEzX+IQJE4wk06JFC5Ofn+8a79Onj3E4HObUqVOusaioKCPJ/Oc//3GNZWVlmYiICNOqVSvX2JgxY4wks2rVKtdYenq6CQwMNJLMrl27XOMnTpwo9pyGDBliqlat6vbYAHAhcfkHAFxivLy85HA4JElOp1NHjx5VQUGB2rRpo/Xr1xerv+222xQYGOi6HRcXJ0m666675O3t7Tael5en/fv3u90/MjJSPXv2dN0OCAhQv379tGHDBqWmpkqSvvrqK7Vr105t27Z11YWGhqpv377F1uPn5+f687Fjx3T48GFdc801OnHihLZt23ZevQAAqxCqAeAS9O6776p58+by9fVVSEiIQkND9eWXXyorK6tY7WWXXeZ2uyhg161bt8TxjIwMt/H69evLZrO5jTVs2FCSXPtP79mzRw0aNCj22DExMcXGUlJS1LNnTwUGBiogIEChoaG66667JKnE9QPAheD91yUAgIvJBx98oHvuuUc9evTQww8/rFq1asnLy0uTJ0/Wb7/9Vqzey8urxOOcbdz8jW/VyczM1LXXXquAgAA9+eSTuuKKK+Tr66v169dr/PjxJb6xEQAuBEI1AFxiPv30U11++eX67LPP3M4gP/7443/L4+3cuVPGGLfH+u9//ytJrjcfRkVFaceOHcXuu337drfby5cv15EjR/TZZ5+pY8eOrvFdu3b9DSsHgNLj8g8AuMQUnWE+84zyqlWrlJyc/Lc83oEDBzR//nzX7ezsbL333ntq2bKlwsPDJUn/8z//o59//lmrV6921R06dEhz5sz5y7Xn5eXptdde+1vWDgClxZlqALhIvfPOO1q8eHGx8euuu06fffaZevbsqW7dumnXrl2aMWOGmjRpouPHj1u+joYNG2rQoEFas2aNwsLC9M477ygtLU2zZs1y1YwbN07vv/++unbt6ralXlRUlDZt2uSqa9++vYKDg9W/f3+NGjVKNptN77///t96yQkAlAahGgAuUq+//nqJ43v37tXx48f1xhtv6JtvvlGTJk30wQcf6JNPPtHy5cstX0eDBg30yiuv6OGHH9b27dsVHR2tefPmKTEx0VUTERGh77//Xvfff7+effZZhYSEaOjQoYqMjNSgQYNcdSEhIVq0aJEefPBBPfroowoODtZdd92lzp07ux0PAC40PvwFAAAA8BDXVAMAAAAeIlQDAAAAHiJUAwAAAB4iVAMAAAAeIlQDAAAAHiJUAwAAAB4iVAMAAAAeIlQDAAAAHiJUAwAAAB4iVAMAAAAeIlQDAAAAHiJUAwAAAB76fxTESeCyZoiWAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAs0AAAIoCAYAAACSxtawAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy80BEi2AAAACXBIWXMAAA9hAAAPYQGoP6dpAABuJUlEQVR4nO3deVyU5f7/8fcMMIAgiIgsLkBpmrhrKraaJPX1eNKso2ZpauWCmVJ58ndK0+rY8bRZuWSWtlianbS0cknT6kDunRSXY6VZKeDCoiQgzPX7wy/zdQIdxDsH9fV8PHg8nPv6zDXXfBj0ze0919iMMUYAAAAATsvu7QUAAAAA1R2hGQAAAPCA0AwAAAB4QGgGAAAAPCA0AwAAAB4QmgEAAAAPCM0AAACAB4RmAAAAwANCMwAAAOABoRnAJemee+6RzWbT3r17z3muvXv3ymaz6Z577jnnuQAA1ROhGYClygLkzTff7O2lwAJffvmlbDabbDabFi5c6O3lVDs5OTl66qmnlJiYqPDwcPn5+SkiIkJJSUl6+eWXdezYMW8v8YxuuOEG2Ww2by8DuCAQmgEAp/X6669Lkmw2m9544w0vr6Z6WbVqlRo1aqTHH39ceXl5uuOOOzR27Fj17t1b+/fv16hRo9SqVStvLxOARXy9vQAAQPWUn5+vDz74QC1btlRkZKRWrFihn3/+WQ0aNPD20rzuP//5j3r06CFJeuedd9S/f/9yNWvWrNG4cePO99IA/EE40wzAa/Ly8vSPf/xD119/vWJiYuRwOBQTE6MBAwbohx9+KFf/xBNPyGazac2aNZozZ45atGihwMBAxcfH66WXXpIkGWP03HPPqUmTJgoICFDjxo311ltvnXYNTqdTU6ZMUePGjRUQEKD4+HhNmjRJJ06cKFdbWlqqf/zjH2rUqJECAgLUqFEjTZ48WU6ns8K5v/jiCw0ePFhNmjRRcHCwgoOD1b59e82aNavSPeratavsdrt++umnCsdHjRolm82mlStXuo7961//0vXXX6+6desqICBAMTExSkpK0r/+9a9KP64kvffee/rtt980YMAADRgwQE6nU3Pnzj1tfXZ2th566CE1adJEgYGBql27tjp27Khnn322XO1//vMf9e/fX/Xr15e/v7+io6N18803a8mSJeVqP/roI3Xt2lVhYWEKCAhQ8+bN9eyzz6q0tNStzul0avbs2erQoYNq166twMBA1a9fXz169NCaNWvcas+1R6NGjdLx48f18ssvVxiYpZOXPvz+cSVpzpw56tixo+s10bFjxwr7OnfuXNlstgrH1qxZI5vNpieeeMLtuM1m0w033KCsrCwNHDhQderUUWBgoDp16lRuLTabTWvXrnX9ueyLa/OB0zAAYKE9e/YYSSY5OdljbXp6unE4HCY5OdmMGDHCPPLII6ZHjx7Gx8fH1K5d2+zdu9etfsKECUaSufXWW01oaKgZMGCAGTVqlKlXr56RZF577TUzYsQIExkZaYYMGWKGDx9uwsLCjCSzdu1at7kGDhxoJJkePXqY2rVrm2HDhpmHH37YNGnSxEgyvXv3LrfewYMHG0kmPj7epKammhEjRpg6deqYP/3pT0aSGThwoFt9cnKyufzyy03//v3NX//6VzN06FATGxtrJJnU1NRK9XPOnDlGknn66afLjZ04ccJERESYmJgYU1paaowxZvr06UaSiY6ONvfff78ZN26cGTRokElISDD9+/ev1GOWueqqq4yPj485cOCAKSgoMMHBwSY+Pt44nc5ytTt37jTR0dFGkrnmmmvM2LFjTUpKirnhhhtMWFiYW+0HH3xgHA6H8fPzM7fddpsZN26cGTJkiGnevLm59dZb3WofffRRI8nUq1fPDB482IwZM8a0b9/eSDK33367W+3YsWONJHP55ZeblJQU8+ijj5q7777bxMfHm7/97W+uunPt0e7du40k06BBA1ffK+uBBx5wPZ9Ro0a5vX5HjRrlVlv2vZ8zZ065eb744gsjyUyYMMHtuCTTqlUr06hRI9OuXTszevRoc+eddxofHx/jcDjM1q1bXbUTJkxwvR4nTJjg+lq0aNFZPSfgUkFoBmCpswnNubm55vDhw+WOr1692tjtdnPvvfe6HS8LzbVr1zY//PCD6/i+ffuMw+EwoaGh5oorrjDZ2dmusW+++cYVjk9VFpojIiLMzz//7DpeVFRkrrvuOiPJfPDBB67jZSGlVatW5tixY67jv/zyi6lTp06FofnHH38s99xOnDhhbrrpJuPj42N++uknDx0yJj8/3wQGBppmzZqVG1uyZImRZB5++GHXsbZt2xqHw2GysrLK1R86dMjj45X57rvvyn0fBwwYYCSZzz//vFx9WZCdNWtWubFT+5uZmWmCgoJMUFCQ2bx58xlrV6xY4VrDqT13Op1m2LBh5b5HtWvXNjExMaagoKDcvKe+zs61R3PnzjWSzF133eWx9lRr1641ksyVV15pcnNzXcePHDlirrjiCiPJfPnll67jVQ3NksyIESPcAv3s2bONJDN06FC3+uuvv95w/gyoHC7PAOA1oaGhql27drnjXbp0UUJCgj7//PMK7/fggw/qsssuc91u0KCBrrnmGuXl5elvf/ubIiIiXGMdO3bUZZddpv/85z+nnat+/fqu2w6HQ08//bQkuf23eNklHuPHj1dQUJDreL169fTggw9WOHd8fHy5Y76+vho2bJhKS0v1xRdfVHi/U9WsWVM9e/bU9u3btXnzZrext99+W5J01113uR338/OTn59fubnCw8M9Pl6ZsjcADhgwwHWs7M9lY2XWr1+vjRs36rrrrtN9991Xbq5T+/vmm2+qoKBADz30kNq0aXPG2ldeeUWSNGvWLLee22w2PfPMM7LZbHrvvffc7u9wOOTj41Nu3t+/zs6lR5mZmeXWWhlvvvmmpJOXGYWGhrqOh4WFacKECZJ0xstfKisoKEj/+Mc/ZLf/3z/xAwcOlK+vrzZs2HDO8wOXKt4ICMCr1qxZoxdffFHr1q3ToUOHVFJS4hpzOBwV3qd169bljkVHR59xbN26dRXOde2115Y7lpiYKF9fX23ZssV1rCx0V1Rf0TFJOnr0qJ599lktXrxYP/zwgwoKCtzG9+/fX+H9fu/uu+/We++9p7fffltt27aVdPJNekuWLFGLFi3cdmjo27evxo4dq+bNm+vOO+9Uly5ddM011ygkJKRSjyVJRUVFeuedd1SzZk316tXLdbxLly5q0KCBFi1apJycHIWFhUk6GZolqVu3bh7nPpvab775RkFBQafdtSMwMFA7d+503e7bt6+mT5+u5s2bq2/fvurSpYsSExMVGBjodj8relQVZa+nG264odxYly5dJEnffvvtOT/OFVdcoeDgYLdjvr6+ioyMVG5u7jnPD1yqCM0AvGbhwoXq06ePgoODlZycrLi4ONWoUcP15qfTvfmtonDj6+t7xrFTw/ipIiMjyx3z8fFReHi48vLyXMfy8vJkt9tVp06dSs1RXFysG264QZs3b1abNm109913Kzw8XL6+vtq7d6/efPNNFRUVVbim3+vWrZsiIyM1f/58Pfvss/Lx8dEHH3yg48eP6+6773arffjhhxUeHq4ZM2boueee07PPPitfX191795dL7zwQoVnv39v8eLFOnz4sAYNGuQWOO12u/r3769nnnlG7777rlJSUly9kU6edffkbGqPHDmikpISTZw48bQ1p/4iMnXqVMXHx2vOnDl66qmn9NRTTykgIEB/+ctf9Nxzz7m+d+fao6ioKEnSr7/+6vE5nCo/P192u93tf0LKREZGymazKT8//6zmrMjpwr+vr2+5N08CqDxCMwCveeKJJxQQEKBNmzapcePGbmPz588/L2vIyspSkyZN3I6Vlpbq8OHDbmE4NDRUTqdThw4dKhd6srKyys370UcfafPmzRoyZIhmz57tNjZ//nzXf9VXho+Pj/r166cXX3xRn3/+uZKTk/X222/LbrfrzjvvdKu12WwaPHiwBg8erMOHD+urr77Se++9p/fff1+7d+/Wd999V+HlC6cqu/xizpw5mjNnzmlrykJzrVq1JFUuRJ5aGxcXd8bakJAQ2Ww2HTp0yOO80slQ+PDDD+vhhx/W/v37tXbtWs2ZM0dvvfWWMjMztXz5cknn3qOrr75a0sn/JXE6nW6XQXh6Pk6nUwcPHlTdunXdxrKzs2WMcQu8ZfNW9Avfqb/QATg/uKYZgNf88MMPuvLKK8sF5gMHDujHH388L2v46quvyh1LT09XSUmJ2zW3ZZdAVFRf0bGyLfNuvfXWStV7UnZG+Z133tHPP/+stWvXqkuXLmc8YxseHq6ePXtqwYIFuvHGG7V9+3Z9//33Z3ycn376SatWrVJkZKSGDBlS4Vd8fLy2bNniutygQ4cOkqQVK1Z4fB5nU9uxY0cdPnxYu3fv9lj7ezExMerXr5+WLVumRo0a6fPPP9fx48fL1VWlR40aNdJ1112nn3/+2eMvP6f+b0LZ66mibejKjp16eVHZ5S8V/TJy6qVD56LslwPOQAOeEZoBeE1sbKy+//57tzO1hYWFGj58eIX7JP8Rpk6dql9++cV1u7i4WH/7298kyW2/2rLQOmnSJLdLAn799VdNnTq13LyxsbGSpK+//trt+Nq1a/Xaa6+d9Trbtm2rZs2aadGiRXr11VdljCl3aYZ0MnwZY9yOnThxQkeOHJEkBQQEnPFx5syZI6fTqaFDh2r27NkVfj366KOS/u+M9FVXXaWrrrpKX375ZYXP7dTQN3DgQAUHB+u5556r8PrdU2tHjRolSa4zwr+XmZmpHTt2SDoZTtPS0srVFBQU6NixY/Lz83OduT3XHkknXzeBgYEaOXKkFixYUGHNV199pRtvvNF1e+DAgZKkiRMnul2GkZeX57oEpaxGktq1ayebzab58+ersLDQdXz37t0VvuaqouwNkj///LMl8wEXMy7PAPCH2Lp162k/JKFp06Z69NFH9cADD+iBBx5QmzZtdPvtt6ukpEQrV66UMUatWrU67Y4XVurUqZNatWqlPn36KCgoSEuWLNGuXbt02223qXfv3q66Ll26aNCgQa4PVenVq5eKioq0YMECderUSUuXLnWbt0ePHoqLi9OUKVO0bds2NW/eXLt27dLSpUvVq1cvffDBB2e91rvvvlvjxo3TlClTVKNGDbf1lenZs6dCQkLUqVMnxcbG6sSJE1q5cqW2b9+u22+/3RXmK+J0OjVnzhyPH3DRp08fjR49WvPmzdOzzz6rgIAAzZs3TzfccIPuv/9+vf3220pMTFRhYaEyMjK0ZcsWV+itW7eu3nrrLfXt21cdOnTQn//8ZzVp0kSHDh3SunXrFBcXp8WLF0uSbr75Zj3++ON68skn1ahRI918882KjY3V4cOH9f333+urr77SU089pSuvvFLHjx/X1VdfrSuuuELt2rVTw4YNdezYMS1dulSZmZl6+OGH5e/vf849KtO6dWstWbJEf/nLX9S3b19NmjRJ1113nWrXrq0jR47o3//+t7Zu3apGjRq57nPdddfpgQce0Msvv6zmzZurd+/eMsboX//6l3755ReNGjVK1113nau+7Gz5u+++q3bt2unmm29Wdna2Fi1apJtvvvmsP6ymIjfeeKM++OAD9e7dW7fccosCAgLUqlUr16cdAjiFN/e7A3DxKdun+Uxf119/vTHm5H67M2fONAkJCSYgIMBERUWZIUOGmOzs7Ar3jy3bp/mLL74o97hl+y7v2bOn3FhFc5XV//DDD+aZZ54xjRo1Mg6Hw8TGxponnnjCFBUVlZunpKTETJ482Vx22WXG4XCYyy67zPz9738333///Wn3ae7du7eJiIgwNWrUMFdddZWZP3/+affY9WTfvn3GbrcbSaZfv34V1kyfPt38+c9/NrGxsSYgIMCEh4ebDh06mBkzZpji4uIzzr98+XK378+Z9O/f30gy8+bNcx3LzMw0Dz74oKs/tWvXNh07djTPP/98uftv2bLF/OUvfzGRkZHGz8/PREdHm1tuucUsXbq0XO3KlStNjx49TEREhPHz8zNRUVEmMTHRPPnkk2bfvn3GGGOKi4vNP/7xD9OtWzdTv35943A4TGRkpLnuuuvMu+++6/aBLOfSo987fPiwefLJJ02nTp1MWFiY8fX1NeHh4eaGG24wL730ktv+0mXeeOMNc9VVV5kaNWq4XhdvvPFGhfP/9ttvZtSoUSYyMtL4+/ubli1bmnnz5p1xn+bTff9iY2NNbGys27ETJ06YsWPHmoYNGxpfX98KX8cATrIZ87v/owIAAADghmuaAQAAAA8IzQAAAIAHhGYAAADAA0IzAAAA4AGhGQAAAPCA0AwAAAB4wIeb/EGcTqf279+vmjVrymazeXs5AAAA+B1jjI4ePaqYmBjXp4aeDqH5D7J//341aNDA28sAAACABz///LPq169/xhpC8x+kZs2akk5+E0JCQs55PqfTqYMHDyoiIsLjb0I4M3ppHXppHXppHXppDfpoHXppHat7mZ+frwYNGrhy25kQmv8gZZdkhISEWBaaCwsLFRISwg/cOaKX1qGX1qGX1qGX1qCP1qGX1vmjelmZS2n5zgEAAAAeEJoBAAAADwjNAAAAgAeEZgAAAMADQjMAAADgAaEZAAAA8IDQDAAAAHhAaAYAAAA8IDQDAAAAHhCaAQAAAA8IzQAAAIAHhGYAAADAA0IzAAAA4IGvtxcAAAAAOJ1OZWRkKCcnR2FhYUpISJDdXn3O7xKaAQAA4FVpaWmaNnOWdu39VcUlpXL4+qhJXD2lDLtfnTt39vbyJHF5BgAAALwoLS1NYx+fpJ3HAhR3y1C1GTRJcbcM1a6CAI19fJLS0tK8vURJhGYAAAB4idPp1LSZs3Q8NE6tegxWaHSsfP38FRodq5Z/GqzCWnGa/uprcjqd3l4qoRkAAADekZGRoV17f1X8VUmy2WxuYzabTbHtu2rnnl+UkZHhpRX+H0IzAAAAvCInJ0fFJaUKqhNV4XhweJSKS0qVk5NznldWHqEZAAAAXhEWFiaHr48KDmVWOH7scKYcvj4KCws7zysrj9AMAAAAr0hISFCTuHrau/FzGWPcxowx+mnjKjWNr6+EhAQvrfD/EJoBAADgFXa7XSnD7ldA7l59t/QN5R7Yq5LiQuUeOHk7IHevRgy9r1rs18w+zQAAAPCazp07a8qT40/u0/zZLNc+zU3j62vEQ+OrzT7NhGYAAAB4VefOndWpUyc+ERAAAAA4E7vdrhYtWnh7GadVfeI7AAAAUE0RmgEAAAAPCM0AAACAB4RmAAAAwANCMwAAAOABoRkAAADwoFqF5ri4ONlstnJfKSkpkqTCwkKlpKQoPDxcwcHB6t27t7Kystzm2Ldvn7p3764aNWqobt26euSRR1RSUuJWs2bNGrVt21b+/v5q1KiR5s6dW24t06ZNU1xcnAICAtSxY0etX7/+D3veAAAAqN6qVWjesGGDDhw44PpauXKlJOmOO+6QJI0ZM0ZLlizRwoULtXbtWu3fv1+33Xab6/6lpaXq3r27iouLlZaWpjfffFNz587V+PHjXTV79uxR9+7d1aVLF3377bcaPXq07r33Xi1fvtxVs2DBAqWmpmrChAnavHmzWrVqpeTkZGVnZ5+nTgAAAKBaMdXYgw8+aC6//HLjdDpNbm6u8fPzMwsXLnSN79ixw0gy6enpxhhjPv30U2O3201mZqarZsaMGSYkJMQUFRUZY4wZO3asSUhIcHucPn36mOTkZNftDh06mJSUFNft0tJSExMTYyZPnlzptefl5RlJJi8v7+ye9GmUlpaaAwcOmNLSUkvmu5TRS+vQS+vQS+vQS2vQR+vQS+tY3cuzyWvV9hMBi4uL9c477yg1NVU2m02bNm3SiRMnlJSU5Kpp2rSpGjZsqPT0dHXq1Enp6elq0aKFIiMjXTXJyckaPny4MjIy1KZNG6Wnp7vNUVYzevRo1+Nu2rRJ48aNc43b7XYlJSUpPT39tOstKipSUVGR63Z+fr4kyel0yul0nlMvyuYxxlgy16WOXlqHXlqHXlqHXlqDPlqHXlrH6l6ezTzVNjQvXrxYubm5uueeeyRJmZmZcjgcqlWrlltdZGSkMjMzXTWnBuay8bKxM9Xk5+fr+PHjysnJUWlpaYU1O3fuPO16J0+erIkTJ5Y7fvDgQRUWFnp+wh44nU7l5eXJGFOtPof9QkQvrUMvrUMvrUMvrUEfrUMvrWN1L48ePVrp2mobml9//XXdcsstiomJ8fZSKmXcuHFKTU113c7Pz1eDBg0UERGhkJCQc57f6XTKZrMpIiKCH7hzRC+tQy+tQy+tQy+tQR+tQy+tY3UvAwICKl1bLUPzTz/9pM8//1wffvih61hUVJSKi4uVm5vrdrY5KytLUVFRrprf73JRtrvGqTW/33EjKytLISEhCgwMlI+Pj3x8fCqsKZujIv7+/vL39y933G63W/YDYrPZLJ3vUkYvrUMvrUMvrUMvrUEfrUMvrWNlL89mjmr5nZszZ47q1q2r7t27u461a9dOfn5+WrVqlevYrl27tG/fPiUmJkqSEhMTtXXrVrddLlauXKmQkBA1a9bMVXPqHGU1ZXM4HA61a9fOrcbpdGrVqlWuGgAAAFxaqt2ZZqfTqTlz5mjgwIHy9f2/5YWGhmrIkCFKTU1V7dq1FRISogceeECJiYnq1KmTJKlbt25q1qyZ7r77bk2ZMkWZmZl67LHHlJKS4joLPGzYML3yyisaO3asBg8erNWrV+v999/XJ5984nqs1NRUDRw4UO3bt1eHDh304osvqqCgQIMGDTq/zQAAAEC1UO1C8+eff659+/Zp8ODB5cZeeOEF2e129e7dW0VFRUpOTtb06dNd4z4+Plq6dKmGDx+uxMREBQUFaeDAgZo0aZKrJj4+Xp988onGjBmjqVOnqn79+po9e7aSk5NdNX369NHBgwc1fvx4ZWZmqnXr1lq2bFm5NwcCAADg0mAzxhhvL+JilJ+fr9DQUOXl5Vn2RsDs7GzVrVuX66HOEb20Dr20Dr20Dr20Bn20Dr20jtW9PJu8xncOAAAA8IDQDAAAAHhAaAYAAAA8IDQDAAAAHhCaAQAAAA8IzQAAAIAHhGYAAADAA0IzAAAA4AGhGQAAAPCA0AwAAAB4QGgGAAAAPCA0AwAAAB4QmgEAAAAPCM0AAACAB4RmAAAAwANCMwAAAOABoRkAAADwgNAMAAAAeEBoBgAAADwgNAMAAAAeEJoBAAAADwjNAAAAgAeEZgAAAMADQjMAAADgAaEZAAAA8IDQDAAAAHhAaAYAAAA8IDQDAAAAHhCaAQAAAA8IzQAAAIAHhGYAAADAA0IzAAAA4AGhGQAAAPCA0AwAAAB4QGgGAAAAPCA0AwAAAB4QmgEAAAAPCM0AAACAB4RmAAAAwANCMwAAAOABoRkAAADwgNAMAAAAeEBoBgAAADwgNAMAAAAeEJoBAAAADwjNAAAAgAeEZgAAAMCDaheaf/31V911110KDw9XYGCgWrRooY0bN7rGjTEaP368oqOjFRgYqKSkJO3evdttjiNHjqh///4KCQlRrVq1NGTIEB07dsyt5rvvvtO1116rgIAANWjQQFOmTCm3loULF6pp06YKCAhQixYt9Omnn/4xTxoAAADVWrUKzTk5Obr66qvl5+enzz77TNu3b9dzzz2nsLAwV82UKVP00ksvaebMmVq3bp2CgoKUnJyswsJCV03//v2VkZGhlStXaunSpfryyy91//33u8bz8/PVrVs3xcbGatOmTfrnP/+pJ554QrNmzXLVpKWlqV+/fhoyZIi2bNminj17qmfPntq2bdv5aQYAAACqD1ON/PWvfzXXXHPNacedTqeJiooy//znP13HcnNzjb+/v3nvvfeMMcZs377dSDIbNmxw1Xz22WfGZrOZX3/91RhjzPTp001YWJgpKipye+wmTZq4bv/lL38x3bt3d3v8jh07mqFDh1bqueTl5RlJJi8vr1L1npSWlpoDBw6Y0tJSS+a7lNFL69BL69BL69BLa9BH69BL61jdy7PJa75ezuxuPv74YyUnJ+uOO+7Q2rVrVa9ePY0YMUL33XefJGnPnj3KzMxUUlKS6z6hoaHq2LGj0tPT1bdvX6Wnp6tWrVpq3769qyYpKUl2u13r1q1Tr169lJ6eruuuu04Oh8NVk5ycrH/84x/KyclRWFiY0tPTlZqa6ra+5ORkLV68uMK1FxUVqaioyHU7Pz9fkuR0OuV0Os+5N06nU8YYS+a61NFL69BL69BL69BLa9BH69BL61jdy7OZp1qF5h9//FEzZsxQamqq/t//+3/asGGDRo0aJYfDoYEDByozM1OSFBkZ6Xa/yMhI11hmZqbq1q3rNu7r66vatWu71cTHx5ebo2wsLCxMmZmZZ3yc35s8ebImTpxY7vjBgwfdLh2pKqfTqby8PBljZLdXq6tqLjj00jr00jr00jr00hr00Tr00jpW9/Lo0aOVrq1WodnpdKp9+/b6+9//Lklq06aNtm3bppkzZ2rgwIFeXt2ZjRs3zu3MdH5+vho0aKCIiAiFhISc8/xOp1M2m00RERH8wJ0jemkdemkdemkdemkN+mgdemkdq3sZEBBQ6dpqFZqjo6PVrFkzt2NXXnml/vWvf0mSoqKiJElZWVmKjo521WRlZal169aumuzsbLc5SkpKdOTIEdf9o6KilJWV5VZTdttTTdn47/n7+8vf37/ccbvdbtkPiM1ms3S+Sxm9tA69tA69tA69tAZ9tA69tI6VvTybOarVd+7qq6/Wrl273I7997//VWxsrCQpPj5eUVFRWrVqlWs8Pz9f69atU2JioiQpMTFRubm52rRpk6tm9erVcjqd6tixo6vmyy+/1IkTJ1w1K1euVJMmTVw7dSQmJro9TllN2eMAAADg0lGtQvOYMWP0zTff6O9//7u+//57vfvuu5o1a5ZSUlIknfzNYvTo0Xrqqaf08ccfa+vWrRowYIBiYmLUs2dPSSfPTN9888267777tH79ev373//WyJEj1bdvX8XExEiS7rzzTjkcDg0ZMkQZGRlasGCBpk6d6nZ5xYMPPqhly5bpueee086dO/XEE09o48aNGjly5HnvCwAAALzMkv06LLRkyRLTvHlz4+/vb5o2bWpmzZrlNu50Os3jjz9uIiMjjb+/v+natavZtWuXW83hw4dNv379THBwsAkJCTGDBg0yR48edav5z3/+Y6655hrj7+9v6tWrZ5555plya3n//ffNFVdcYRwOh0lISDCffPJJpZ8HW85VX/TSOvTSOvTSOvTSGvTROvTSOt7ccs5mjDHeDu4Xo/z8fIWGhiovL8+yNwJmZ2erbt26XA91juildeildeildeilNeijdeildazu5dnkNb5zAAAAgAeEZgAAAMADQjMAAADgAaEZAAAA8IDQDAAAAHhAaAYAAAA8IDQDAAAAHhCaAQAAAA8IzQAAAIAHhGYAAADAA0IzAAAA4AGhGQAAAPCA0AwAAAB4QGgGAAAAPCA0AwAAAB4QmgEAAAAPCM0AAACAB4RmAAAAwANCMwAAAOABoRkAAADwgNAMAAAAeEBoBgAAADwgNAMAAAAeEJoBAAAADwjNAAAAgAeEZgAAAMADQjMAAADgAaEZAAAA8IDQDAAAAHhAaAYAAAA8IDQDAAAAHhCaAQAAAA8IzQAAAIAHhGYAAADAA0IzAAAA4AGhGQAAAPCA0AwAAAB4QGgGAAAAPCA0AwAAAB4QmgEAAAAPCM0AAACAB4RmAAAAwANCMwAAAOABoRkAAADwgNAMAAAAeEBoBgAAADwgNAMAAAAeEJoBAAAAD6pVaH7iiSdks9ncvpo2beoaLywsVEpKisLDwxUcHKzevXsrKyvLbY59+/ape/fuqlGjhurWratHHnlEJSUlbjVr1qxR27Zt5e/vr0aNGmnu3Lnl1jJt2jTFxcUpICBAHTt21Pr16/+Q5wwAAIDqr1qFZklKSEjQgQMHXF9ff/21a2zMmDFasmSJFi5cqLVr12r//v267bbbXOOlpaXq3r27iouLlZaWpjfffFNz587V+PHjXTV79uxR9+7d1aVLF3377bcaPXq07r33Xi1fvtxVs2DBAqWmpmrChAnavHmzWrVqpeTkZGVnZ5+fJgAAAKBaqXah2dfXV1FRUa6vOnXqSJLy8vL0+uuv6/nnn9eNN96odu3aac6cOUpLS9M333wjSVqxYoW2b9+ud955R61bt9Ytt9yiJ598UtOmTVNxcbEkaebMmYqPj9dzzz2nK6+8UiNHjtTtt9+uF154wbWG559/Xvfdd58GDRqkZs2aaebMmapRo4beeOON898QAAAAeJ2vtxfwe7t371ZMTIwCAgKUmJioyZMnq2HDhtq0aZNOnDihpKQkV23Tpk3VsGFDpaenq1OnTkpPT1eLFi0UGRnpqklOTtbw4cOVkZGhNm3aKD093W2OsprRo0dLkoqLi7Vp0yaNGzfONW6325WUlKT09PTTrruoqEhFRUWu2/n5+ZIkp9Mpp9N5Tj0pm8cYY8lclzp6aR16aR16aR16aQ36aB16aR2re3k281Sr0NyxY0fNnTtXTZo00YEDBzRx4kRde+212rZtmzIzM+VwOFSrVi23+0RGRiozM1OSlJmZ6RaYy8bLxs5Uk5+fr+PHjysnJ0elpaUV1uzcufO0a588ebImTpxY7vjBgwdVWFhYuQacgdPpVF5enowxstur3X8QXFDopXXopXXopXXopTXoo3XopXWs7uXRo0crXVutQvMtt9zi+nPLli3VsWNHxcbG6v3331dgYKAXV+bZuHHjlJqa6rqdn5+vBg0aKCIiQiEhIec8v9PplM1mU0REBD9w54heWodeWodeWodeWoM+WodeWsfqXgYEBFS6tlqF5t+rVauWrrjiCn3//fe66aabVFxcrNzcXLezzVlZWYqKipIkRUVFldvlomx3jVNrfr/jRlZWlkJCQhQYGCgfHx/5+PhUWFM2R0X8/f3l7+9f7rjdbrfsB8Rms1k636WMXlqHXlqHXlqHXlqDPlqHXlrHyl6ezRzV+jt37Ngx/fDDD4qOjla7du3k5+enVatWucZ37dqlffv2KTExUZKUmJiorVu3uu1ysXLlSoWEhKhZs2aumlPnKKspm8PhcKhdu3ZuNU6nU6tWrXLVAAAA4NJSrULzww8/rLVr12rv3r1KS0tTr1695OPjo379+ik0NFRDhgxRamqqvvjiC23atEmDBg1SYmKiOnXqJEnq1q2bmjVrprvvvlv/+c9/tHz5cj322GNKSUlxnQUeNmyYfvzxR40dO1Y7d+7U9OnT9f7772vMmDGudaSmpuq1117Tm2++qR07dmj48OEqKCjQoEGDvNIXAAAAeFe1ujzjl19+Ub9+/XT48GFFRETommuu0TfffKOIiAhJ0gsvvCC73a7evXurqKhIycnJmj59uuv+Pj4+Wrp0qYYPH67ExEQFBQVp4MCBmjRpkqsmPj5en3zyicaMGaOpU6eqfv36mj17tpKTk101ffr00cGDBzV+/HhlZmaqdevWWrZsWbk3BwIAAODSYDPGGG8v4mKUn5+v0NBQ5eXlWfZGwOzsbNWtW5froc4RvbQOvbQOvbQOvbQGfbQOvbSO1b08m7zGdw4AAADwgNAMAAAAeEBoBgAAADwgNAMAAAAeEJoBAAAADwjNAAAAgAeEZgAAAMADQjMAAADgAaEZAAAA8IDQDAAAAHhAaAYAAAA8IDQDAAAAHhCaAQAAAA8IzQAAAIAHVQrN+/bt0/Hjx087fvz4ce3bt6/KiwIAAACqkyqF5vj4eC1atOi04x9//LHi4+OrvCgAAACgOqlSaDbGnHH8xIkTstu58gMAAAAXB9/KFubn5ys3N9d1+/DhwxVegpGbm6v58+crOjrakgUCAAAA3lbp0PzCCy9o0qRJkiSbzabRo0dr9OjRFdYaY/TUU09ZskAAAADA2yodmrt166bg4GAZYzR27Fj169dPbdu2daux2WwKCgpSu3bt1L59e8sXCwAAAHhDpUNzYmKiEhMTJUkFBQXq3bu3mjdv/octDAAAAKguKh2aTzVhwgSr1wEAAABUW1UKzZKUk5Oj9957Tz/++KNycnLK7ahhs9n0+uuvn/MCAQAAAG+rUmhevny5br/9dhUUFCgkJERhYWHlamw22zkvDgAAAKgOqhSaH3roIUVFRenDDz9UixYtrF4TAAAAUK1U6RNIvv/+e40aNYrADAAAgEtClUJz48aNdfToUavXAgAAAFRLVQrNTz31lKZPn669e/davBwAAACg+qnSNc2rVq1SRESErrzySt10001q0KCBfHx83GpsNpumTp1qySIBAAAAb6pSaH7llVdcf166dGmFNYRmAAAAXCyqFJqdTqfV6wAAAACqrSpd0wwAAABcSgjNAAAAgAdVujzDbrdX6hP/SktLqzI9AAAAUK1UKTSPHz++XGguLS3V3r17tXjxYjVp0kR/+tOfLFkgAAAA4G1VCs1PPPHEaccOHDigTp066YorrqjqmgAAAIBqxfJrmqOjozVs2DA9+eSTVk8NAAAAeMUf8kbAoKAg7dmz54+YGgAAADjvLA/N27Zt00svvcTlGQAAALhoVOma5vj4+Ap3z8jNzVVeXp5q1KihxYsXn+vaAAAAgGqhSqH5+uuvLxeabTabwsLCdPnll6tv376qXbu2JQsEAAAAvK1KoXnu3LkWLwMAAACoviy5pvn48eM6fvy4FVMBAAAA1U6VQ/O+ffs0aNAgRUZGKjg4WMHBwYqMjNTgwYP1008/WblGAAAAwKuqdHnGzp07dc011yg3N1c33XSTrrzyStfxt956S0uWLNHXX3+tJk2aWLpYAAAAwBuqFJofffRR2e12bdmyRS1atHAb27Ztm7p27apHH31UixYtsmSRAAAAgDdV6fKMtWvXatSoUeUCsyQ1b95cI0eO1Jo1a851bQAAAEC1UKXQfOLECQUGBp52vEaNGjpx4kSVFyVJzzzzjGw2m0aPHu06VlhYqJSUFIWHhys4OFi9e/dWVlaW2/327dun7t27q0aNGqpbt64eeeQRlZSUuNWsWbNGbdu2lb+/vxo1alThbiDTpk1TXFycAgIC1LFjR61fv/6cng8AAAAuXFUKzW3atNHs2bOVl5dXbiw/P1+vv/662rZtW+VFbdiwQa+++qpatmzpdnzMmDFasmSJFi5cqLVr12r//v267bbbXOOlpaXq3r27iouLlZaWpjfffFNz587V+PHjXTV79uxR9+7d1aVLF3377bcaPXq07r33Xi1fvtxVs2DBAqWmpmrChAnavHmzWrVqpeTkZGVnZ1f5OQEAAOACZqpg1apVxs/Pz0RFRZlx48aZOXPmmDlz5phHH33UREdHG4fDYVavXl2Vqc3Ro0dN48aNzcqVK831119vHnzwQWOMMbm5ucbPz88sXLjQVbtjxw4jyaSnpxtjjPn000+N3W43mZmZrpoZM2aYkJAQU1RUZIwxZuzYsSYhIcHtMfv06WOSk5Ndtzt06GBSUlJct0tLS01MTIyZPHlypZ9HXl6ekWTy8vIq/+TPoLS01Bw4cMCUlpZaMt+ljF5ah15ah15ah15agz5ah15ax+penk1eq9IbAW+88UZ9+umneuSRR/TMM8+4jbVu3Vpvv/22unTpUqUQn5KSou7duyspKUlPPfWU6/imTZt04sQJJSUluY41bdpUDRs2VHp6ujp16qT09HS1aNFCkZGRrprk5GQNHz5cGRkZatOmjdLT093mKKspuwykuLhYmzZt0rhx41zjdrtdSUlJSk9PP+26i4qKVFRU5Lqdn58vSXI6nXI6nVXqxamcTqeMMZbMdamjl9ahl9a5FHrpdDq1fft25eTkKCwsTM2aNZPdbsnHBZR7nIu9l+cDfbQOvbSO1b08m3mqFJolKSkpSVu2bFFmZqZrX+bY2FhFRUVVdUrNnz9fmzdv1oYNG8qNZWZmyuFwqFatWm7HIyMjlZmZ6ao5NTCXjZeNnakmPz9fx48fV05OjkpLSyus2blz52nXPnnyZE2cOLHc8YMHD6qwsPC096ssp9OpvLw8GWP+kH9kLiX00jr00joXey937NihT5Yt169Zh1VS6pSvj131IsPV/eZk17alVrnYe3m+0Efr0EvrWN3Lo0ePVrq2yqG5TFRU1DkF5TI///yzHnzwQa1cuVIBAQHnPN/5Nm7cOKWmprpu5+fnq0GDBoqIiFBISMg5z+90OmWz2RQREcEP3Dmil9ahl9a5mHuZnp6u8U9P0fHQOMW3T1ZQnUgVHMrS2k2rtO7pKXpm4mNKTEy07PEu5l6eT/TROvTSOlb38mwyZ6VD8+7du9WiRQuNGjVKU6ZMOW3dI488oldeeUXbt29XfHx8pReyadMmZWdnu72BsLS0VF9++aVeeeUVLV++XMXFxcrNzXU725yVleUK7VFRUeV2uSjbXePUmt/vuJGVlaWQkBAFBgbKx8dHPj4+Fdac6ZcDf39/+fv7lztut9st+wGx2WyWzncpo5fWoZfWuRh76XQ6Nf3V1/RbSKxa/WmQbDabJCkkOlYtug/Sd0vf0IxZs5WYmGjp874Ye+kN9NE69NI6VvbybOaodOVLL72kqKgoPf3002ese/rppxUVFaWXXnqp0ouQpK5du2rr1q369ttvXV/t27dX//79XX/28/PTqlWrXPfZtWuX9u3b5zpDkZiYqK1bt7rtcrFy5UqFhISoWbNmrppT5yirKZvD4XCoXbt2bjVOp1OrVq2y9EwIAFwKMjIytGvvr4q/KskVmMvYbDbFtu+qnXt+UUZGhpdWCACVU+kzzStWrFDfvn3l5+d3xjqHw6G+fftq0aJFeuGFFyq9kJo1a6p58+Zux4KCghQeHu46PmTIEKWmpqp27doKCQnRAw88oMTERHXq1EmS1K1bNzVr1kx33323pkyZoszMTD322GNKSUlxnQUeNmyYXnnlFY0dO1aDBw/W6tWr9f777+uTTz5xPW5qaqoGDhyo9u3bq0OHDnrxxRdVUFCgQYMGVfr5AACknJwcFZeUKqhOxf9TFxwepeKSUuXk5JznlQHA2al0aN63b5+aNGlSqdrGjRu73hxopRdeeEF2u129e/dWUVGRkpOTNX36dNe4j4+Pli5dquHDhysxMVFBQUEaOHCgJk2a5KqJj4/XJ598ojFjxmjq1KmqX7++Zs+ereTkZFdNnz59dPDgQY0fP16ZmZlq3bq1li1bVu7NgQCAMwsLC5PD10cFhzIVGh1bbvzY4Uw5fH0UFhbmhdUBQOVVOjT7+/vr2LFjlaotKCiQw+Go8qLK/P6juAMCAjRt2jRNmzbttPeJjY3Vp59+esZ5b7jhBm3ZsuWMNSNHjtTIkSMrvVYAQHkJCQlqEldPuzZ+rpZ/Gux2iYYxRj9tXKWm8fWVkJDgxVUCgGeVvqa5adOm+vzzzytVu2rVKsu3EAIAXHjsdrtSht2vgNy9+m7pG8o9sFclxYXKPXDydkDuXo0Yeh9vjgJQ7VX6b6k+ffpo6dKlWrx48RnrPvroIy1dulR9+vQ517UBAC4CnTt31pQnx6tJUKF++myWtsydoJ8+m6WmwUWa8uR4de7c2dtLBACPKn15xogRIzRv3jzdcccduvfee3XXXXepRYsWqlmzpo4ePaqtW7fqnXfe0ezZs9WqVSuNGDHij1w3AOAC0rlzZ3Xq1EkZGRmuTwRMSEjgDDOAC8ZZXdO8fPlyDRw4UK+++qpmzZpVrsYYo5tvvllvvfVWhXsWAwAuXXa7XS1atPD2MgCgSs7qEwHDw8O1dOlSrV+/Xh9//LF27Nih/Px8hYSEqGnTpurRo4dr+zcAAADgYlGlj9Hu0KGDOnToYPVaAAAAgGqJi8kAAAAADwjNAAAAgAeEZgAAAMADQjMAAADgAaEZAAAA8MDS0Pzjjz9qx44dVk4JAAAAeF2VQvNLL72kvn37uh0bNGiQGjdurObNm6t9+/bKzs62ZIEAAACAt1UpNM+ePVuRkZGu28uXL9ebb76p+++/Xy+//LJ+/PFHTZw40bJFAgAAAN5UpQ83+emnn3TllVe6br///vuKj4/XjBkzJEmZmZl6++23rVkhAAAA4GVVOtNsjHG7vWLFCt1yyy2u23FxccrMzDy3lQEAAADVRJVC8xVXXKFFixZJOnlpxv79+91C8y+//KJatWpZskAAAADA26p0ecbDDz+sO++8U2FhYSooKNCVV16p5ORk1/jq1avVunVrq9YIAAAAeFWVQnPfvn0VHh6uTz/9VLVq1dKIESPk63tyqiNHjqh27dq6++67LV0oAAAA4C1VCs2SdNNNN+mmm24qd7x27dr68MMPz2lRAAAAQHVS5dD8e7/99pvmz5+voqIi/c///I9iY2OtmhoAAADwqiqF5iFDhmjdunXatm2bJKm4uFidOnVy3Q4NDdXq1avVpk0b61YKAAAAeEmVds/44osvdNttt7luv/vuu9q2bZvmzZunbdu2KSoqig83AQAAwEWjSqE5MzNTcXFxrtuLFy9W+/bt1a9fPzVr1kz33Xef1q1bZ9UaAQAAAK+qUmgOCgpSbm6uJKmkpERr1qxx23KuZs2aysvLs2SBAAAAgLdV6Zrmtm3b6rXXXlOXLl308ccf6+jRo+rRo4dr/IcfflBkZKRliwQAAAC8qUqh+emnn1ZycrLat28vY4xuv/12dejQwTW+aNEiXX311ZYtEgAAAPCmKoXm9u3ba+fOnUpLS1OtWrV0/fXXu8Zyc3M1YsQIt2MAAADAhazK+zRHRETo1ltvLXe8Vq1aevDBB89pUQAAAEB1UqU3AkpSaWmp5s+fr6FDh6pXr17aunWrJCkvL08ffvihsrKyLFskAAAA4E1VCs25ubm6+uqrdeedd+q9997Txx9/rIMHD0qSgoODNWrUKE2dOtXShQIAAADeUqXQ/OijjyojI0PLly/Xjz/+KGOMa8zHx0e33367Pv30U8sWCQAAAHhTlULz4sWL9cADD+imm26SzWYrN37FFVdo796957o2AAAAoFqoUmjOy8tTfHz8acdPnDihkpKSKi8KAAAAqE6qFJovv/xybd68+bTjK1asULNmzaq8KAAAAKA6qVJovvfee/XGG29owYIFruuZbTabioqK9Le//U3Lli3T0KFDLV0oAAAA4C1V2qf5wQcfVEZGhvr166datWpJku68804dPnxYJSUlGjp0qIYMGWLlOgEAAACvqVJottlseu211zRw4EB98MEH2r17t5xOpy6//HL95S9/0XXXXWf1OgEAAACvqfInAkrSNddco2uuucaqtQAAAADVUpWuad6zZ4+WLFly2vElS5aw5RwAAAAuGlU60/zwww8rPz9fPXr0qHB82rRpqlWrlubPn39OiwMAAACqgyqdaU5PT9dNN9102vGuXbvqq6++qvKiAAAAgOqkSqE5JydHNWvWPO14cHCwDh8+XOVFAQAAANVJlUJzw4YN9e9///u041999ZXq169f5UUBAAAA1UmVQnO/fv303nvv6aWXXpLT6XQdLy0t1dSpU7VgwQLdeeedli0SAAAA8KYqvRFw3Lhx+vrrrzV69Gg9/fTTatKkiSRp165dOnjwoG644Qb97W9/s3ShAAAAgLdU6Uyzv7+/VqxYoddff10dOnTQoUOHdOjQIXXo0EFvvPGGPv/8c/n7+1u9VgAAAMArqhSaJclut2vQoEFasmSJtm/fru3bt2vJkiW65557ZLdXbdoZM2aoZcuWCgkJUUhIiBITE/XZZ5+5xgsLC5WSkqLw8HAFBwerd+/eysrKcptj37596t69u2rUqKG6devqkUceUUlJiVvNmjVr1LZtW/n7+6tRo0aaO3duubVMmzZNcXFxCggIUMeOHbV+/foqPScAAABc+KqUbo8cOaLvvvvutONbt25VTk7OWc9bv359PfPMM9q0aZM2btyoG2+8UbfeeqsyMjIkSWPGjNGSJUu0cOFCrV27Vvv379dtt93mun9paam6d++u4uJipaWl6c0339TcuXM1fvx4V82ePXvUvXt3denSRd9++61Gjx6te++9V8uXL3fVLFiwQKmpqZowYYI2b96sVq1aKTk5WdnZ2Wf9nAAAAHARMFUwYMAA07Fjx9OOJyYmmsGDB1dl6nLCwsLM7NmzTW5urvHz8zMLFy50je3YscNIMunp6cYYYz799FNjt9tNZmamq2bGjBkmJCTEFBUVGWOMGTt2rElISHB7jD59+pjk5GTX7Q4dOpiUlBTX7dLSUhMTE2MmT55c6XXn5eUZSSYvL+/snvBplJaWmgMHDpjS0lJL5ruU0Uvr0Evr0Evr0Etr0Efr0EvrWN3Ls8lrVXoj4OrVqzV8+PDTjvfo0UMzZ86sWor/X6WlpVq4cKEKCgqUmJioTZs26cSJE0pKSnLVNG3aVA0bNlR6ero6deqk9PR0tWjRQpGRka6a5ORkDR8+XBkZGWrTpo3S09Pd5iirGT16tCSpuLhYmzZt0rhx41zjdrtdSUlJSk9PP+16i4qKVFRU5Lqdn58vSXI6nW47jFSV0+mUMcaSuS519NI69NI69NI69NIa9NE69NI6VvfybOapUmg+ePCg6tSpc9rx8PDwKl/KsHXrViUmJqqwsFDBwcFatGiRmjVrpm+//VYOh0O1atVyq4+MjFRmZqYkKTMz0y0wl42XjZ2pJj8/X8ePH1dOTo5KS0srrNm5c+dp1z158mRNnDix3PGDBw+qsLCwck/+DJxOp/Ly8mSMqfI14ziJXlqHXlqHXlqHXlqDPlqHXlrH6l4ePXq00rVVCs3R0dHasmXLacc3bdqkiIiIqkytJk2a6Ntvv1VeXp4++OADDRw4UGvXrq3SXOfTuHHjlJqa6rqdn5+vBg0aKCIiQiEhIec8v9PplM1mU0REBD9w54heWodeWodeWodeWoM+WodeWsfqXgYEBFS6tkqhuWfPnpo2bZpuueUW/fnPf3Yb++ijjzRnzpwzXr5xJg6HQ40aNZIktWvXThs2bNDUqVPVp08fFRcXKzc31+1sc1ZWlqKioiRJUVFR5Xa5KNtd49Sa3++4kZWVpZCQEAUGBsrHx0c+Pj4V1pTNURF/f/8Kt9mz2+2W/YDYbDZL57uU0Uvr0Evr0Evr0Etr0Efr0EvrWNnLs5mjSo/2xBNPqEmTJurVq5fatm2rAQMGaMCAAWrbtq1uu+02XXHFFRVeqlAVTqdTRUVFateunfz8/LRq1SrX2K5du7Rv3z4lJiZKkhITE7V161a3S0NWrlypkJAQNWvWzFVz6hxlNWVzOBwOtWvXzq3G6XRq1apVrhoAAABcWqp0pjk0NFTffPONpkyZog8//FAffPCBJOnyyy/X448/rkceeURBQUFnPe+4ceN0yy23qGHDhjp69KjeffddrVmzRsuXL1doaKiGDBmi1NRU1a5dWyEhIXrggQeUmJioTp06SZK6deumZs2a6e6779aUKVOUmZmpxx57TCkpKa6zwMOGDdMrr7yisWPHavDgwVq9erXef/99ffLJJ651pKamauDAgWrfvr06dOigF198UQUFBRo0aFBV2gUAAIALXJVCsyQFBQVp4sSJpz2jnJOTo7CwsLOaMzs7WwMGDNCBAwcUGhqqli1bavny5brpppskSS+88ILsdrt69+6toqIiJScna/r06a77+/j4aOnSpRo+fLgSExMVFBSkgQMHatKkSa6a+Ph4ffLJJxozZoymTp2q+vXra/bs2UpOTnbV9OnTRwcPHtT48eOVmZmp1q1ba9myZeXeHAgAAIBLg80YY6yarKioSB9//LHmzZunZcuWWbJrxIUqPz9foaGhysvLs+yNgNnZ2apbty7XQ50jemkdemkdemkdemkN+mgdemkdq3t5NnmtymeayxhjtGrVKs2bN0+LFi1Sfn6+IiIidOedd57r1AAAAEC1UOXQvGnTJs2bN0/z589XZmambDab+vbtq5EjR6pTp06y2WxWrhMAAADwmrMKzT/++KPmzZunefPmaffu3apXr5769++vDh06qE+fPurduzc7TAAAAOCiU+nQnJiYqPXr16tOnTq6/fbbNXv2bF1zzTWSpB9++OEPWyAA/JGcTqcyMjJcb15OSEjgmkMAQDmVDs3r1q1TfHy8nn/+eXXv3l2+vud8OTQAeFVaWpqmzZylXXt/VXFJqRy+PmoSV08pw+5X586dvb08AEA1UunTKa+88oqio6PVq1cvRUVFaejQofriiy9k4eYbAHDepKWlaezjk7TzWIDibhmqNoMmKe6WodpVEKCxj09SWlqat5cIAKhGKh2aR4wYoa+//lo//PCDRo8era+++kpdu3ZVvXr1NH78eNlsNt78B+CC4HQ6NW3mLB0PjVOrHoMVGh0rXz9/hUbHquWfBquwVpymv/qanE6nt5cKAKgmzvrCvfj4eD322GPavn27NmzYoL59+2rNmjUyxmjEiBG6//77tXTp0kt6j2YA1VtGRoZ27f1V8Vcllftl32azKbZ9V+3c84syMjK8tEIAQHVzTu92adeunZ5//nn9/PPPWrFihZKTk7VgwQL9+c9/Vp06daxaIwBYKicnR8UlpQqqE1XheHB4lIpLSpWTk3OeVwYAqK4seYu43W5XUlKS5s6dq6ysLL333nvq2rWrFVMDgOXCwsLk8PVRwaHMCsePHc6Uw9dHYWFh53llAIDqyvJ9lQICAtSnTx999NFHVk8NAJZISEhQk7h62rvx83JvZjbG6KeNq9Q0vr4SEhK8tEIAQHXDZqQALjl2u10pw+5XQO5efbf0DeUe2KuS4kLlHjh5OyB3r0YMvY/9mgEALmy2DOCS1LlzZ015cvzJfZo/m+Xap7lpfH2NeGg8+zQDANwQmgFcsjp37qxOnTrxiYAAAI8IzQAuaXa7XS1atPD2MgAA1RynUwAAAAAPCM0AAACAB4RmAAAAwANCMwAAAOABoRkAAADwgNAMAAAAeEBoBgAAADwgNAMAAAAeEJoBAAAADwjNAAAAgAeEZgAAAMADQjMAAADgAaEZAAAA8IDQDAAAAHhAaAYAAAA8IDQDAAAAHhCaAQAAAA8IzQAAAIAHhGYAAADAA0IzAAAA4AGhGQAAAPCA0AwAAAB4QGgGAAAAPCA0AwAAAB4QmgEAAAAPCM0AAACAB4RmAAAAwANCMwAAAOABoRkAAADwgNAMAAAAeEBoBgAAADwgNAMAAAAeEJoBAAAAD6pVaJ48ebKuuuoq1axZU3Xr1lXPnj21a9cut5rCwkKlpKQoPDxcwcHB6t27t7Kystxq9u3bp+7du6tGjRqqW7euHnnkEZWUlLjVrFmzRm3btpW/v78aNWqkuXPnllvPtGnTFBcXp4CAAHXs2FHr16+3/DkDAACg+qtWoXnt2rVKSUnRN998o5UrV+rEiRPq1q2bCgoKXDVjxozRkiVLtHDhQq1du1b79+/Xbbfd5hovLS1V9+7dVVxcrLS0NL355puaO3euxo8f76rZs2ePunfvri5duujbb7/V6NGjde+992r58uWumgULFig1NVUTJkzQ5s2b1apVKyUnJys7O/v8NAMAAADVh6nGsrOzjSSzdu1aY4wxubm5xs/PzyxcuNBVs2PHDiPJpKenG2OM+fTTT43dbjeZmZmumhkzZpiQkBBTVFRkjDFm7NixJiEhwe2x+vTpY5KTk123O3ToYFJSUly3S0tLTUxMjJk8eXKl1p6Xl2ckmby8vLN81hUrLS01Bw4cMKWlpZbMdymjl9ahl9ahl9ahl9agj9ahl9axupdnk9d8vRvZzywvL0+SVLt2bUnSpk2bdOLECSUlJblqmjZtqoYNGyo9PV2dOnVSenq6WrRoocjISFdNcnKyhg8froyMDLVp00bp6eluc5TVjB49WpJUXFysTZs2ady4ca5xu92upKQkpaenV7jWoqIiFRUVuW7n5+dLkpxOp5xO5zl0Qa55jDGWzHWpo5fWoZfWoZfWoZfWoI/WoZfWsbqXZzNPtQ3NTqdTo0eP1tVXX63mzZtLkjIzM+VwOFSrVi232sjISGVmZrpqTg3MZeNlY2eqyc/P1/Hjx5WTk6PS0tIKa3bu3FnheidPnqyJEyeWO37w4EEVFhZW8lmfntPpVF5enowxstur1VU1Fxx6aR16aR16aR16aQ36aB16aR2re3n06NFK11bb0JySkqJt27bp66+/9vZSKmXcuHFKTU113c7Pz1eDBg0UERGhkJCQc57f6XTKZrMpIiKCH7hzRC+tQy+tQy+tQy+tQR+tQy+tY3UvAwICKl1bLUPzyJEjtXTpUn355ZeqX7++63hUVJSKi4uVm5vrdrY5KytLUVFRrprf73JRtrvGqTW/33EjKytLISEhCgwMlI+Pj3x8fCqsKZvj9/z9/eXv71/uuN1ut+wHxGazWTrfpYxeWodeWodeWodeWoM+WodeWsfKXp7NHNXqO2eM0ciRI7Vo0SKtXr1a8fHxbuPt2rWTn5+fVq1a5Tq2a9cu7du3T4mJiZKkxMREbd261W2Xi5UrVyokJETNmjVz1Zw6R1lN2RwOh0Pt2rVzq3E6nVq1apWrBgAAAJeOanWmOSUlRe+++64++ugj1axZ03UNcmhoqAIDAxUaGqohQ4YoNTVVtWvXVkhIiB544AElJiaqU6dOkqRu3bqpWbNmuvvuuzVlyhRlZmbqscceU0pKiutM8LBhw/TKK69o7NixGjx4sFavXq33339fn3zyiWstqampGjhwoNq3b68OHTroxRdfVEFBgQYNGnT+GwMAAACvqlahecaMGZKkG264we34nDlzdM8990iSXnjhBdntdvXu3VtFRUVKTk7W9OnTXbU+Pj5aunSphg8frsTERAUFBWngwIGaNGmSqyY+Pl6ffPKJxowZo6lTp6p+/fqaPXu2kpOTXTV9+vTRwYMHNX78eGVmZqp169ZatmxZuTcHAgAA4OJnM8YYby/iYpSfn6/Q0FDl5eVZ9kbA7Oxs1a1bl+uhzhG9tA69tA69tA69tAZ9tA69tI7VvTybvFatzjQDsIbT6VRGRoZycnIUFhamhIQE/qIGAOAcEJqBi0xaWpqmzZylXXt/VXFJqRy+PmoSV08pw+5X586dvb08AAAuSJx6Ai4iaWlpGvv4JO08FqC4W4aqzaBJirtlqHYVBGjs45OUlpbm7SUCAHBBIjQDFwmn06lpM2fpeGicWvUYrNDoWPn6+Ss0OlYt/zRYhbXiNP3V1/gYVwAAqoDQDFwkMjIytGvvr4q/Kkk2m81tzGazKbZ9V+3c84syMjK8tEIAAC5chGbgIpGTk6PiklIF1an4UyuDw6NUXFKqnJyc87wyAAAufIRm4CIRFhYmh6+PCg5lVjh+7HCmHL4+CgsLO88rAwDgwkdoBi4SCQkJahJXT3s3fq7fb79ujNFPG1epaXx9JSQkeGmFAABcuAjNwEXCbrcrZdj9Csjdq++WvqHcA3tVUlyo3AMnbwfk7tWIofexXzMAAFXAPs3ARaRz586a8uT4k/s0fzbLtU9z0/j6GvHQePZpBgCgigjNwEWmc+fO6tSpE58ICACAhQjNwEXIbrerRYsW3l4GAAAXDUIzUM04nU7OEgMAUM0QmoFqJC0t7eT1yHt/dV2P3CSunlKG3c/1yAAAeBGnr4BqIi0tTWMfn6SdxwIUd8tQtRk0SXG3DNWuggCNfXyS0tLSvL1EAAAuWYRmoBpwOp2aNnOWjofGqVWPwQqNjpWvn79Co2PV8k+DVVgrTtNffU1Op9PbSwUA4JJEaAaqgYyMDO3a+6vir0qSzWZzG7PZbIpt31U79/yijIwML60QAIBLG6EZqAZycnJUXFKqoDpRFY4Hh0epuKRUOTk553llAABAIjQD1UJYWJgcvj4qOJRZ4fixw5ly+PooLCzsPK8MAABIhGagWkhISFCTuHrau/FzGWPcxowx+mnjKjWNr6+EhAQvrRAAgEsboRmoBux2u1KG3a+A3L36bukbyj2wVyXFhco9cPJ2QO5ejRh6H/s1AwDgJezTDFQTnTt31pQnx5/cp/mzWa59mpvG19eIh8azTzMAAF5EaAaqkc6dO6tTp058IiAAANUMoRmoZux2u1q0aOHtZQAAgFNw+goAAADwgNAMAAAAeEBoBgAAADwgNAMAAAAeEJoBAAAADwjNAAAAgAeEZgAAAMADQjMAAADgAaEZAAAA8IDQDAAAAHhAaAYAAAA8IDQDAAAAHhCaAQAAAA8IzQAAAIAHhGYAAADAA0IzAAAA4AGhGQAAAPCA0AwAAAB44OvtBQDnU0lJiT766CPl5OQoLCxMt956q3x9+TEAAABnxplmXDJeffVVNb6yuQaPGqs3F36swaPGqvGVzfXqq696e2kAAKCa4xQbLgmvvvqq/vrE3+XTsI1ibuqm6Mvq69Dlvyh70wr99Ym/S5KGDh3q5VUCAIDqijPNuOiVlJTomWdfkE/DNortPkLB0Y3k4+un4OhGiu0+Qj4N2+gfz72okpISby8VAABUU4RmXPQ++ugjHTpWpDptu8lus7mN2W021WnTTQePFuqjjz7y0goBAEB1V61C85dffqkePXooJiZGNptNixcvdhs3xmj8+PGKjo5WYGCgkpKStHv3breaI0eOqH///goJCVGtWrU0ZMgQHTt2zK3mu+++07XXXquAgAA1aNBAU6ZMKbeWhQsXqmnTpgoICFCLFi306aefWv58cX7s379fxuajwDoNKhwPjKgvY/PR/v37z/PKAADAhaJaheaCggK1atVK06ZNq3B8ypQpeumllzRz5kytW7dOQUFBSk5OVmFhoaumf//+ysjI0MqVK7V06VJ9+eWXuv/++13j+fn56tatm2JjY7Vp0yb985//1BNPPKFZs2a5atLS0tSvXz8NGTJEW7ZsUc+ePdWzZ09t27btj3vy+MPExMTIZkp1/NDPFY4fP/iLbKZUMTEx53llAADgQmEzxhhvL6IiNptNixYtUs+ePSWdPMscExOjhx56SA8//LAkKS8vT5GRkZo7d6769u2rHTt2qFmzZtqwYYPat28vSVq2bJn+53/+R7/88otiYmI0Y8YM/e1vf1NmZqYcDock6dFHH9XixYu1c+dOSVKfPn1UUFCgpUuXutbTqVMntW7dWjNnzqzU+vPz8xUaGqq8vDyFhISccz+cTqeys7NVt25d2e3V6nedaq+kpESNr2yu/NpNT17DbJMa1SzV90d9VGqknz6ZrtCcXfrv9q1sP3eWeF1ah15ah15agz5ah15ax+penk1eu2ASwp49e5SZmamkpCTXsdDQUHXs2FHp6enq27ev0tPTVatWLVdglqSkpCTZ7XatW7dOvXr1Unp6uq677jpXYJak5ORk/eMf/3Dt3Zuenq7U1FS3x09OTi53ucipioqKVFRU5Lqdn58v6eQ31+l0nuvTl9PplDHGkrkuZk6nU9u3b3d9L5s1aya73a5HHx6jcZOe0c+fzlDdtjfJGVhPvx34VdmbV8r88h/9dfyjstvt9Pcs8bq0Dr20Dr20Bn20Dr20jtW9PJt5LpjQnJmZKUmKjIx0Ox4ZGekay8zMVN26dd3GfX19Vbt2bbea+Pj4cnOUjYWFhSkzM/OMj1ORyZMna+LEieWOHzx40O3ykapyOp3Ky8uTMYbfUk9jx44d+mTZcv2adVglpU75+thVLzJc3W9O1q233ip/f399sOgjHf3xMwWUNFSdfft0WaSfeg+boJtvvlnZ2dnefgoXHF6X1qGX1qGX1qCP1qGX1rG6l0ePHq107QUTmqu7cePGuZ2dzs/PV4MGDRQREWHZ5Rk2m00RERH8wFUgPT1d45+eouOhcYpvn6ygOpEqOJSltZtWad3TU/TMxMc0YMAA3XnnnVqyZIlycnL05+Qb1aNHDy7JOAe8Lq1DL61DL61BH61DL61jdS8DAgIqXXvBpIWoqChJUlZWlqKjo13Hs7Ky1Lp1a1fN788WlpSU6MiRI677R0VFKSsry62m7LanmrLxivj7+8vf37/ccbvdbtkPiM1ms3S+i4XT6dT0V1/TbyGxavWnQbL977ZyIdGxatF9kL5b+oZmzJqtxMREORwO9erVi2vLLMTr0jr00jr00hr00Tr00jpW9vJs5rhgvnPx8fGKiorSqlWrXMfy8/O1bt06JSYmSpISExOVm5urTZs2uWpWr14tp9Opjh07umq+/PJLnThxwlWzcuVKNWnSRGFhYa6aUx+nrKbscVC9ZGRkaNfeXxV/VZIrMJex2WyKbd9VO/f8ooyMDC+tEAAAXOiqVWg+duyYvv32W3377beSTr7579tvv9W+fftks9k0evRoPfXUU/r444+1detWDRgwQDExMa4dNq688krdfPPNuu+++7R+/Xr9+9//1siRI9W3b1/XdmJ33nmnHA6HhgwZooyMDC1YsEBTp051u7TiwQcf1LJly/Tcc89p586deuKJJ7Rx40aNHDnyfLcEp3A6ndq6dau+/PJLbd261XXxfk5OjopLShVUp+L/CQgOj1JxSalycnLO53IBAMBFpFpdnrFx40Z16dLFdbssyA4cOFBz587V2LFjVVBQoPvvv1+5ubm65pprtGzZMrfrUebNm6eRI0eqa9eustvt6t27t1566SXXeGhoqFasWKGUlBS1a9dOderU0fjx4932cu7cubPeffddPfbYY/p//+//qXHjxlq8eLGaN29+HrqAiqSlpWnazFnatfdXFZeUyuHroyZx9ZQy7H6FhYXJ4eujgkOZCo2OLXffY4cz5fD1cf1PAgAAwNmqtvs0X+jYp9k6aWlpGvv4pJNv8rsqSUF1olRwKFN7N36ugNy9embiY5oxa7Z2FQSo5Z8Gu12iYYzRd0vfUNPgIr0153XXtnKXai+tRi+tQy+tQy+tQR+tQy+t4819mvnOoVpzOp2aNnOWjofGqVWPwQqNjpWvn79Co2PV8k+DVVgrTjNfe13D779XAbl79d3SN5R7YK9KiguVe+Dk7YDcvRox9D7+ogIAAFVGikC1Vtk3+YWGhmrKk+PVJKhQP302S1vmTtBPn81S0+AiTXlyvDp37uylZwAAAC4G1eqaZuD3zuZNftddd506deqkjIwM1ycCJiQkcIYZAACcM0IzqrWzfZOf3W5XixYtzvcyAQDARY5TcKjWEhIS1CSunvZu/Fy/f8+qMUY/bVylpvH1lZCQ4KUVAgCASwGhGdWa3W5XyrD7eZMfAADwKi7PQLXXuXNnTXly/Ml9mj+b5dqnuWl8fY14iDf5AQCAPx6hGReEzp078yY/AADgNYRmXDB4kx8AAPAWTtMBAAAAHhCaAQAAAA8IzQAAAIAHhGYAAADAA0IzAAAA4AGhGQAAAPCA0AwAAAB4wD7NsERhYaEef/xx7dmzR/Hx8XryyScVEBDg7WUBAABYgjPNOGf9+/dXzdoRenH2O/pozXq9OPsd1awdof79+3t7aQAAAJbgTDPOSf/+/bXg42UKbHq9glskyVGnvooP/aJjWz/Xgo+XSf37a968ed5eJgAAwDkhNKPKCgsL9f6ijxXY9HqF3zRMNptNkhQQ3Vj+UY10WNLCxUv0emEhl2oAAIALGpdnoMoef/xxyT9YwS2SXIG5jM1mU3CLG2UcQSfrAAAALmCcaUalOJ1OZWRkKCcnR2FhYUpISNCePXskHz856tSv8D5+tRtIPn4n6wAAAC5ghGZ4lJaWpqmvTNfar/6t48ePKzAwUNdfe7X8/Pyk0hMqPvSLAqIbl7vfiSM/S6UnFB8f74VVAwAAWIfQjDNKS0vTrbfdocO5ebIH1pTNx6GCY4Va+OFihYXUlCk8qmNbP5d/VCO3SzSMMTq2dbVsxQV68sknvfgMAAAAzh2hGafldDp1Z/+7lVNQqKCEGxTcPEl+4fV14vDJ3THydqfL30c6vjtdhyUFt7hRfrUb6MSRn3Vs62od352uPj178CZAAABwwSM047Q2bdqkffszFZTQRbW7DpXNfvJ9o/7RjeWIvFxHJBVs/0I3Xd9eq79aq8I9mySfk5ds2IoL1KdnD7abAwAAFwVCM07r+eeflz2w5sndMezuG63Y7HYFN79Rx3/cqNq1a+vokYN8IiAAALhoEZpxWocOHZLN1yG/2vUqHPetXV82X4cOHTqkgIAA/fOf/zzPKwQAADg/2KcZkk5+UMkjjzyi22+/XY888ogKCwvVqlUrmZJiFR/+ucL7nDj8s0xJsVq1anWeVwsAAHB+EZqh/v37q2btCL342tv6aM16vfja26pZO0L79u2Tio6pYNsqOUtKJGMkGckYOUtKVJCxWioq0FNPPeXtpwAAAPCH4vKMS1z//v214ONlCmxynWpcea38wqJ1IueAftvxpT78bJXq1Q3Xr7u/kSQFJXSRb+36KjnyiwoyvtDx3d+oz21/5tplAABw0SM0X8IKCwu14F+LFXjlDap1wz2y+/lLNrt8gsLkiLxckvTrjrW6vWcP/evjT1S4Z/Mpu2McU5+ef2Z3DAAAcEkgNF/C/va3v0kBNRWUcIN8HIFS2YeT2Hzk4whUUMINOr5ns+rVq8fuGAAA4JJGaL6EpaWlyebrkKNO7P8F5jI2m3zDY2XzdSgtLY3dMQAAwCWNNwJeIvbv36/w8HD5+fkpPDxc+/fvV2BgoExJsU7kHKjwPqW5B2RKihUYGHieVwsAAFC9cKb5EhAQEKAip00+NUJlC41WXkmx6sVdLntpsYxvgI5t+1x+kZfJfsoHmDidTh3btkrOwqO69957vbh6AAAA7yM0X+QCAgJ0wreGghsnltsd47fd38gU5Oj4/+6OEdy8q3xr11PJkV91bNsqHd/9jQIdfvrLX/7i5WcBAADgXYTmi9j+/ftV5LQpuHGiQm+4Rz6+/pLdLp8aYfL7390xjmV8IWdhgX7b+bUK92yRzcdPpvSEnEUF8lGpnn/+n/L15WUCAAAubVzTfBFr1qyZfGqEunbHsPn4yGazyebzf7tj+NQIlcPuVL3IOrKVHJc5nidbyXHVj4rQy8//U0OHDvX20wAAAPA6TiFexPLy8uQbHiK/OrGy/W53DJvNJt/whrL5OlRUVKQf/7tDH330kfbv36+YmBjdeuutnGEGAAD4X5xpvgjMnz//5Bnk//2aP3++JMnHx0empFglp9kdoyQ3U6akWD4+PvL19VXv3r31wAMPqHfv3gRmAACAUxCaL3A2m039+g+Q/INk8w+S/IPUr/8A2Ww29ezZU87jR3Vs2+dyOp1u93M6nSr4390xevbs6Z3FAwAAXCA4nXgBs9lskq+/bD6+sgfW/L838emoTKld//rXvyS77xl3xzAnivXWW295+ZkAAABUb4TmC9T8+fNPftx1QJACr0hUUPMkOcLrq/jwLyrY+rmO705XaUGJrmzSWDt++KnC3TGcJ4p1U9cuqlGjhrefDgAAQLVGaL5A9evXTzZHoAIbJyqs61DXB5MERDeW43+3kyvIWK0dO3bopptu0sovvpIxTtlkk5GRKSnWTTdcqxUrVnjzaQAAAFwQCM0XMHtgiIJaJLl9kp8k2e12BTW/Ucd/3KjS4uNasWKFfvvtN40YMUJ79uxRfHy8pk+fzhlmAACASiI0X8Bsvg45atercMy3dn3ZfB2u2zVq1NDcuXPP08oAAAAuLuyecYEq206u+PDPMsa4jRljVHL4Z9d2cgAAADg3hGYPpk2bpri4OAUEBKhjx45av369t5ckSdq7d69Kf8s7uW1caYmMccoYI2OccpaWqCBjtUp/y9PevXu9vVQAAIALHqH5DBYsWKDU1FRNmDBBmzdvVqtWrZScnKzs7GxvL03169eXn0r123/Tlbv6NRX9ukulx4+q6Nddyl39mn77b7r8VKr69et7e6kAAAAXPK5pPoPnn39e9913nwYNGiRJmjlzpj755BO98cYbevTRR728Oqm4uFgOh0PHtq3W8R83yebrkCkpVulvefJTqYqLi729RAAAgIsCofk0iouLtWnTJo0bN851zG63KykpSenp6eXqi4qKVFRU5Lqdn58v6eQn7/3+0/iqwuk8efnF7+cqLCzUr7/+qpYtW6og/4iCg4L03Q//Vb169Sx53IvR6XqJs0cvrUMvrUMvrUEfrUMvrWN1L89mHkLzaRw6dEilpaWKjIx0Ox4ZGamdO3eWq588ebImTpxY7vjBgwdVWFh4zutxOp3Ky8uTMabcFnN+fn7asWOH27HqcAlJdXWmXuLs0Evr0Evr0Etr0Efr0EvrWN3Lo0ePVrqW0GyRcePGKTU11XU7Pz9fDRo0UEREhEJCQs55fqfTKZvNpoiICH7gzhG9tA69tA69tA69tAZ9tA69tI7VvQwICKh0LaH5NOrUqSMfHx9lZWW5Hc/KylJUVFS5en9/f/n7+5c7brfbLfsBsdlsls53KaOX1qGX1qGX1qGX1qCP1qGX1rGyl2czB9+503A4HGrXrp1WrVrlOuZ0OrVq1SolJiZ6cWUAAAA43zjTfAapqakaOHCg2rdvrw4dOujFF19UQUGBazcNAAAAXBoIzWfQp08fHTx4UOPHj1dmZqZat26tZcuWlXtzIAAAAC5uhGYPRo4cqZEjR3p7GQAAAPAirmkGAAAAPCA0AwAAAB4QmgEAAAAPCM0AAACAB4RmAAAAwANCMwAAAOABoRkAAADwgH2a/yDGGElSfn6+JfM5nU4dPXpUAQEBfG79OaKX1qGX1qGX1qGX1qCP1qGX1rG6l2U5rSy3nQmh+Q9y9OhRSVKDBg28vBIAAACcydGjRxUaGnrGGpupTLTGWXM6ndq/f79q1qwpm812zvPl5+erQYMG+vnnnxUSEmLBCi9d9NI69NI69NI69NIa9NE69NI6VvfSGKOjR48qJibG45lrzjT/Qex2u+rXr2/5vCEhIfzAWYReWodeWodeWodeWoM+WodeWsfKXno6w1yGC2sAAAAADwjNAAAAgAeE5guEv7+/JkyYIH9/f28v5YJHL61DL61DL61DL61BH61DL63jzV7yRkAAAADAA840AwAAAB4QmgEAAAAPCM0AAACAB4RmAAAAwANC8wVi2rRpiouLU0BAgDp27Kj169d7e0nV3pdffqkePXooJiZGNptNixcvdhs3xmj8+PGKjo5WYGCgkpKStHv3bu8sthqbPHmyrrrqKtWsWVN169ZVz549tWvXLreawsJCpaSkKDw8XMHBwerdu7eysrK8tOLqa8aMGWrZsqVrU/7ExER99tlnrnH6WHXPPPOMbDabRo8e7TpGPyvniSeekM1mc/tq2rSpa5w+np1ff/1Vd911l8LDwxUYGKgWLVpo48aNrnH+7amcuLi4cq9Lm82mlJQUSd55XRKaLwALFixQamqqJkyYoM2bN6tVq1ZKTk5Wdna2t5dWrRUUFKhVq1aaNm1aheNTpkzRSy+9pJkzZ2rdunUKCgpScnKyCgsLz/NKq7e1a9cqJSVF33zzjVauXKkTJ06oW7duKigocNWMGTNGS5Ys0cKFC7V27Vrt379ft912mxdXXT3Vr19fzzzzjDZt2qSNGzfqxhtv1K233qqMjAxJ9LGqNmzYoFdffVUtW7Z0O04/Ky8hIUEHDhxwfX399deuMfpYeTk5Obr66qvl5+enzz77TNu3b9dzzz2nsLAwVw3/9lTOhg0b3F6TK1eulCTdcccdkrz0ujSo9jp06GBSUlJct0tLS01MTIyZPHmyF1d1YZFkFi1a5LrtdDpNVFSU+ec//+k6lpuba/z9/c17773nhRVeOLKzs40ks3btWmPMyb75+fmZhQsXump27NhhJJn09HRvLfOCERYWZmbPnk0fq+jo0aOmcePGZuXKleb66683Dz74oDGG1+XZmDBhgmnVqlWFY/Tx7Pz1r38111xzzWnH+ben6h588EFz+eWXG6fT6bXXJWeaq7ni4mJt2rRJSUlJrmN2u11JSUlKT0/34soubHv27FFmZqZbX0NDQ9WxY0f66kFeXp4kqXbt2pKkTZs26cSJE269bNq0qRo2bEgvz6C0tFTz589XQUGBEhMT6WMVpaSkqHv37m59k3hdnq3du3crJiZGl112mfr37699+/ZJoo9n6+OPP1b79u11xx13qG7dumrTpo1ee+011zj/9lRNcXGx3nnnHQ0ePFg2m81rr0tCczV36NAhlZaWKjIy0u14ZGSkMjMzvbSqC19Z7+jr2XE6nRo9erSuvvpqNW/eXNLJXjocDtWqVcutll5WbOvWrQoODpa/v7+GDRumRYsWqVmzZvSxCubPn6/Nmzdr8uTJ5cboZ+V17NhRc+fO1bJlyzRjxgzt2bNH1157rY4ePUofz9KPP/6oGTNmqHHjxlq+fLmGDx+uUaNG6c0335TEvz1VtXjxYuXm5uqee+6R5L2fb98/bGYAF52UlBRt27bN7XpHnJ0mTZro22+/VV5enj744AMNHDhQa9eu9fayLjg///yzHnzwQa1cuVIBAQHeXs4F7ZZbbnH9uWXLlurYsaNiY2P1/vvvKzAw0Isru/A4nU61b99ef//73yVJbdq00bZt2zRz5kwNHDjQy6u7cL3++uu65ZZbFBMT49V1cKa5mqtTp458fHzKvSM0KytLUVFRXlrVha+sd/S18kaOHKmlS5fqiy++UP369V3Ho6KiVFxcrNzcXLd6elkxh8OhRo0aqV27dpo8ebJatWqlqVOn0seztGnTJmVnZ6tt27by9fWVr6+v1q5dq5deekm+vr6KjIykn1VUq1YtXXHFFfr+++95XZ6l6OhoNWvWzO3YlVde6brchX97zt5PP/2kzz//XPfee6/rmLdel4Tmas7hcKhdu3ZatWqV65jT6dSqVauUmJjoxZVd2OLj4xUVFeXW1/z8fK1bt46+/o4xRiNHjtSiRYu0evVqxcfHu423a9dOfn5+br3ctWuX9u3bRy8rwel0qqioiD6epa5du2rr1q369ttvXV/t27dX//79XX+mn1Vz7Ngx/fDDD4qOjuZ1eZauvvrqclty/ve//1VsbKwk/u2pijlz5qhu3brq3r2765jXXpd/2FsMYZn58+cbf39/M3fuXLN9+3Zz//33m1q1apnMzExvL61aO3r0qNmyZYvZsmWLkWSef/55s2XLFvPTTz8ZY4x55plnTK1atcxHH31kvvvuO3Prrbea+Ph4c/z4cS+vvHoZPny4CQ0NNWvWrDEHDhxwff3222+ummHDhpmGDRua1atXm40bN5rExESTmJjoxVVXT48++qhZu3at2bNnj/nuu+/Mo48+amw2m1mxYoUxhj6eq1N3zzCGflbWQw89ZNasWWP27Nlj/v3vf5ukpCRTp04dk52dbYyhj2dj/fr1xtfX1zz99NNm9+7dZt68eaZGjRrmnXfecdXwb0/llZaWmoYNG5q//vWv5ca88bokNF8gXn75ZdOwYUPjcDhMhw4dzDfffOPtJVV7X3zxhZFU7mvgwIHGmJNb/zz++OMmMjLS+Pv7m65du5pdu3Z5d9HVUEU9lGTmzJnjqjl+/LgZMWKECQsLMzVq1DC9evUyBw4c8N6iq6nBgweb2NhY43A4TEREhOnatasrMBtDH8/V70Mz/aycPn36mOjoaONwOEy9evVMnz59zPfff+8ap49nZ8mSJaZ58+bG39/fNG3a1MyaNcttnH97Km/58uVGUoX98cbr0maMMX/ceWwAAADgwsc1zQAAAIAHhGYAAADAA0IzAAAA4AGhGQAAAPCA0AwAAAB4QGgGAAAAPCA0AwAAAB4QmgEAAAAPCM0AgCqJi4vTn/70pyrff+7cubLZbNq7d691iwKAPwihGQAuIGVBc+PGjd5eCgBcUgjNAAAAgAeEZgAAAMADQjMAXESKi4s1fvx4tWvXTqGhoQoKCtK1116rL774wq1u7969stlsevbZZzVt2jRddtllqlGjhrp166aff/5Zxhg9+eSTql+/vgIDA3XrrbfqyJEjFT7mihUr1Lp1awUEBKhZs2b68MMPy9VkZGToxhtvVGBgoOrXr6+nnnpKTqezXN1HH32k7t27KyYmRv7+/rr88sv15JNPqrS01JoGAUAV2YwxxtuLAABUzty5czVo0CBt2LBB7du3Lzd+6NAhtWzZUv369VPjxo119OhRvf766/rxxx+1fv16tW7dWtLJ0BwfH6/WrVuruLhY9957r44cOaIpU6aobdu2uvHGG7VmzRr17dtX33//vV5++WXdc889euONN1yPFRcXJ39/f2VnZ2vYsGGqW7eu5syZo4yMDC1btkw33XSTJCkzM1MtW7ZUSUmJHnzwQQUFBWnWrFkKDAzUd999pz179iguLk6S1KtXLzkcDl111VUKDg7W6tWrtXDhQj388MP65z//+Yf3FwBOywAALhhz5swxksyGDRsqHC8pKTFFRUVux3JyckxkZKQZPHiw69iePXuMJBMREWFyc3Ndx8eNG2ckmVatWpkTJ064jvfr1884HA5TWFjoOhYbG2skmX/961+uY3l5eSY6Otq0adPGdWz06NFGklm3bp3rWHZ2tgkNDTWSzJ49e1zHf/vtt3LPaejQoaZGjRpujw0A5xuXZwDARcTHx0cOh0OS5HQ6deTIEZWUlKh9+/bavHlzufo77rhDoaGhrtsdO3aUJN11113y9fV1O15cXKxff/3V7f4xMTHq1auX63ZISIgGDBigLVu2KDMzU5L06aefqlOnTurQoYOrLiIiQv379y+3nsDAQNefjx49qkOHDunaa6/Vb7/9pp07d55VLwDASoRmALjIvPnmm2rZsqUCAgIUHh6uiIgIffLJJ8rLyytX27BhQ7fbZQG6QYMGFR7PyclxO96oUSPZbDa3Y1dccYUkufZf/umnn9S4ceNyj92kSZNyxzIyMtSrVy+FhoYqJCREERERuuuuuySpwvUDwPni67kEAHCheOedd3TPPfeoZ8+eeuSRR1S3bl35+Pho8uTJ+uGHH8rV+/j4VDjP6Y6bP/BtMLm5ubr++usVEhKiSZMm6fLLL1dAQIA2b96sv/71rxW+cRAAzhdCMwBcRD744ANddtll+vDDD93OAE+YMOEPebzvv/9exhi3x/rvf/8rSa4398XGxmr37t3l7rtr1y6322vWrNHhw4f14Ycf6rrrrnMd37Nnzx+wcgA4O1yeAQAXkbIzxKeeEV63bp3S09P/kMfbv3+/Fi1a5Lqdn5+vt956S61bt1ZUVJQk6X/+53/0zTffaP369a66gwcPat68eR7XXlxcrOnTp/8haweAs8GZZgC4AL3xxhtatmxZueM33HCDPvzwQ/Xq1Uvdu3fXnj17NHPmTDVr1kzHjh2zfB1XXHGFhgwZog0bNigyMlJvvPGGsrKyNGfOHFfN2LFj9fbbb+vmm29223IuNjZW3333nauuc+fOCgsL08CBAzVq1CjZbDa9/fbbf+glIQBQWYRmALgAzZgxo8Lj+/bt07Fjx/Tqq69q+fLlatasmd555x0tXLhQa9assXwdjRs31ssvv6xHHnlEu3btUnx8vBYsWKDk5GRXTXR0tL744gs98MADeuaZZxQeHq5hw4YpJiZGQ4YMcdWFh4dr6dKleuihh/TYY48pLCxMd911l7p27eo2HwB4Ax9uAgAAAHjANc0AAACAB4RmAAAAwANCMwAAAOABoRkAAADwgNAMAAAAeEBoBgAAADwgNAMAAAAeEJoBAAAADwjNAAAAgAeEZgAAAMADQjMAAADgAaEZAAAA8OD/A8an7fMxTIO9AAAAAElFTkSuQmCC", "text/plain": [ "
" ]