diff --git a/00_aoi_caching_simulation/06-multi_aoi_simulation.ipynb b/00_aoi_caching_simulation/06-multi_aoi_simulation.ipynb
index 644207d..cd78046 100644
--- a/00_aoi_caching_simulation/06-multi_aoi_simulation.ipynb
+++ b/00_aoi_caching_simulation/06-multi_aoi_simulation.ipynb
@@ -114,7 +114,7 @@
" lambdas = df[lambda_column_name]\n",
"\n",
" self.db_objects = [\n",
- " DatabaseObject(id=i, data=f\"Generated Object {i}\", lambda_value=[i], mu_value=None, ttl=None) \n",
+ " DatabaseObject(id=i, data=f\"Generated Object {i}\", lambda_value=lambdas[i], mu_value=None, ttl=None) \n",
" for i in range(self.db_objects)\n",
" ]\n",
" \n",
@@ -150,11 +150,23 @@
"\n",
"@dataclass\n",
"class RefreshSimulation(TTLSimulation):\n",
+ " \n",
" def generate_objects(self, fixed_ttl, max_refresh_rate):\n",
" if isinstance(self.db_objects, int):\n",
" self.db_objects = [\n",
" DatabaseObject(id=i, data=f\"Generated Object {i}\", lambda_value=np.random.zipf(ZIPF_CONSTANT), mu_value=np.random.uniform(1, max_refresh_rate), ttl=fixed_ttl) \n",
" for i in range(self.db_objects)\n",
+ " ]\n",
+ " \n",
+ " def from_file(self, path: str, lambda_column_name: str, ttl_column_name: str, mu_column_name: str):\n",
+ " df = pd.read_csv(path)\n",
+ " lambdas = df[lambda_column_name]\n",
+ " ttls = df[ttl_column_name]\n",
+ " mus = df[mu_column_name]\n",
+ "\n",
+ " self.db_objects = [\n",
+ " DatabaseObject(id=i, data=f\"Generated Object {i}\", lambda_value=lambdas[i], mu_value=mus[i], ttl=ttls[i]) \n",
+ " for i in range(self.db_objects)\n",
" ]"
]
},
@@ -439,8 +451,8 @@
"source": [
"# Simulate with a Cache that does lru, We'll have 100 Database Objects and a Cache Size of 10\n",
"# We'll generate lambdas from a zipf distribution\n",
- "# config = LRUSimulation(100, 10)\n",
- "# config.generate_objects()"
+ "config = LRUSimulation(100, 10)\n",
+ "config.from_file('../test.csv', 'Lambda')"
]
},
{
@@ -452,8 +464,8 @@
"source": [
"# Simulate with a Cache that does Refreshes with TTL based eviction, We'll have 100 Database Objects and a Cache Size of 10\n",
"# We'll generate lambdas from a zipf distribution. Each object will have a fixed ttl of 1 when its pulled into the cache. Mu for the refresh rate is 10\n",
- "# config = RefreshSimulation(100, 80)\n",
- "# config.generate_objects(1, 10)"
+ "# config = RefreshSimulation(100, 10)\n",
+ "# config.from_file('../test.csv', 'Lambda', 'h_opt_2', 'u_opt_2')"
]
},
{
@@ -465,8 +477,8 @@
"source": [
"# Simulate with a Cache that does TTL based eviction, We'll have 100 Database Objects and a Cache Size of 10\n",
"# We'll take lambdas from the \"lambda\" column of the file \"../calculated.csv\" and the TTLs for each object from the \"optimal_TTL\" column of the same file.\n",
- "config = TTLSimulation(100, 10)\n",
- "config.from_file(\"../calculated.csv\", \"lambda\", \"optimal_TTL\")"
+ "# config = TTLSimulation(100, 10)\n",
+ "# config.from_file(\"../calculated.csv\", \"lambda\", \"optimal_TTL\")"
]
},
{
@@ -481,14 +493,56 @@
"name": "stderr",
"output_type": "stream",
"text": [
- "Progress: 100%|█████████████████████████████████████████████████████████████████████████████████████████▊| 998/1000 [00:10<00:00, 98.43it/s]"
+ "IOPub message rate exceeded.██████████████████████████████████████▏ | 318/1000 [00:08<00:18, 36.80it/s]\n",
+ "The Jupyter server will temporarily stop sending output\n",
+ "to the client in order to avoid crashing it.\n",
+ "To change this limit, set the config variable\n",
+ "`--ServerApp.iopub_msg_rate_limit`.\n",
+ "\n",
+ "Current values:\n",
+ "ServerApp.iopub_msg_rate_limit=1000.0 (msgs/sec)\n",
+ "ServerApp.rate_limit_window=3.0 (secs)\n",
+ "\n",
+ "IOPub message rate exceeded.████████████████████████████████████████████████████████████████████▊ | 508/1000 [00:11<00:11, 42.68it/s]\n",
+ "The Jupyter server will temporarily stop sending output\n",
+ "to the client in order to avoid crashing it.\n",
+ "To change this limit, set the config variable\n",
+ "`--ServerApp.iopub_msg_rate_limit`.\n",
+ "\n",
+ "Current values:\n",
+ "ServerApp.iopub_msg_rate_limit=1000.0 (msgs/sec)\n",
+ "ServerApp.rate_limit_window=3.0 (secs)\n",
+ "\n",
+ "IOPub message rate exceeded.█████████████████████████████████████████████████████████████████████████████████████████████████████▋ | 712/1000 [00:15<00:06, 45.55it/s]\n",
+ "The Jupyter server will temporarily stop sending output\n",
+ "to the client in order to avoid crashing it.\n",
+ "To change this limit, set the config variable\n",
+ "`--ServerApp.iopub_msg_rate_limit`.\n",
+ "\n",
+ "Current values:\n",
+ "ServerApp.iopub_msg_rate_limit=1000.0 (msgs/sec)\n",
+ "ServerApp.rate_limit_window=3.0 (secs)\n",
+ "\n",
+ "IOPub message rate exceeded.██████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████▎ | 890/1000 [00:18<00:02, 47.26it/s]\n",
+ "The Jupyter server will temporarily stop sending output\n",
+ "to the client in order to avoid crashing it.\n",
+ "To change this limit, set the config variable\n",
+ "`--ServerApp.iopub_msg_rate_limit`.\n",
+ "\n",
+ "Current values:\n",
+ "ServerApp.iopub_msg_rate_limit=1000.0 (msgs/sec)\n",
+ "ServerApp.rate_limit_window=3.0 (secs)\n",
+ "\n",
+ "Progress: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████▊| 999/1000 [00:20<00:00, 48.26it/s]"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
- "Simulation ended after 1423.771050302509 seconds.\n"
+ "Simulation ended after 19747.84052390687 seconds.\n",
+ "CPU times: user 19.6 s, sys: 3.65 s, total: 23.2 s\n",
+ "Wall time: 20.7 s\n"
]
}
],
@@ -524,106 +578,106 @@
"name": "stdout",
"output_type": "stream",
"text": [
- "Object 0: Hit Rate = 0.06, Expected Hit Rate = 0.05, Average Time spend in Cache: 0.04, Average Age = 0.00, Expected Age = 0.03\n",
- "Object 1: Hit Rate = 0.04, Expected Hit Rate = 0.05, Average Time spend in Cache: 0.04, Average Age = 0.00, Expected Age = 0.02\n",
- "Object 2: Hit Rate = 0.40, Expected Hit Rate = 0.40, Average Time spend in Cache: 0.35, Average Age = 0.03, Expected Age = 0.09\n",
- "Object 3: Hit Rate = 0.24, Expected Hit Rate = 0.23, Average Time spend in Cache: 0.19, Average Age = 0.01, Expected Age = 0.08\n",
- "Object 4: Hit Rate = 0.00, Expected Hit Rate = 0.00, Average Time spend in Cache: 0.00, Average Age = 0.00, Expected Age = 0.00\n",
- "Object 5: Hit Rate = 0.00, Expected Hit Rate = 0.00, Average Time spend in Cache: 0.00, Average Age = 0.00, Expected Age = 0.00\n",
- "Object 6: Hit Rate = 0.79, Expected Hit Rate = 0.78, Average Time spend in Cache: 0.75, Average Age = 0.05, Expected Age = 0.05\n",
- "Object 7: Hit Rate = 0.00, Expected Hit Rate = 0.00, Average Time spend in Cache: 0.00, Average Age = 0.00, Expected Age = 0.00\n",
- "Object 8: Hit Rate = 0.22, Expected Hit Rate = 0.23, Average Time spend in Cache: 0.19, Average Age = 0.01, Expected Age = 0.08\n",
- "Object 9: Hit Rate = 0.00, Expected Hit Rate = 0.00, Average Time spend in Cache: 0.00, Average Age = 0.00, Expected Age = 0.00\n",
- "Object 10: Hit Rate = 0.00, Expected Hit Rate = 0.00, Average Time spend in Cache: 0.00, Average Age = 0.00, Expected Age = 0.00\n",
- "Object 11: Hit Rate = 0.00, Expected Hit Rate = 0.00, Average Time spend in Cache: 0.00, Average Age = 0.00, Expected Age = 0.00\n",
- "Object 12: Hit Rate = 0.23, Expected Hit Rate = 0.23, Average Time spend in Cache: 0.19, Average Age = 0.01, Expected Age = 0.08\n",
- "Object 13: Hit Rate = 0.00, Expected Hit Rate = 0.00, Average Time spend in Cache: 0.00, Average Age = 0.00, Expected Age = 0.00\n",
- "Object 14: Hit Rate = 0.00, Expected Hit Rate = 0.00, Average Time spend in Cache: 0.00, Average Age = 0.00, Expected Age = 0.00\n",
- "Object 15: Hit Rate = 0.00, Expected Hit Rate = 0.00, Average Time spend in Cache: 0.00, Average Age = 0.00, Expected Age = 0.00\n",
- "Object 16: Hit Rate = 0.00, Expected Hit Rate = 0.00, Average Time spend in Cache: 0.00, Average Age = 0.00, Expected Age = 0.00\n",
- "Object 17: Hit Rate = 0.00, Expected Hit Rate = 0.00, Average Time spend in Cache: 0.00, Average Age = 0.00, Expected Age = 0.00\n",
- "Object 18: Hit Rate = 0.65, Expected Hit Rate = 0.65, Average Time spend in Cache: 0.60, Average Age = 0.06, Expected Age = 0.08\n",
- "Object 19: Hit Rate = 0.00, Expected Hit Rate = 0.00, Average Time spend in Cache: 0.00, Average Age = 0.00, Expected Age = 0.00\n",
- "Object 20: Hit Rate = 0.00, Expected Hit Rate = 0.00, Average Time spend in Cache: 0.00, Average Age = 0.00, Expected Age = 0.00\n",
- "Object 21: Hit Rate = 0.00, Expected Hit Rate = 0.00, Average Time spend in Cache: 0.00, Average Age = 0.00, Expected Age = 0.00\n",
- "Object 22: Hit Rate = 0.68, Expected Hit Rate = 0.67, Average Time spend in Cache: 0.63, Average Age = 0.06, Expected Age = 0.08\n",
- "Object 23: Hit Rate = 0.00, Expected Hit Rate = 0.00, Average Time spend in Cache: 0.00, Average Age = 0.00, Expected Age = 0.00\n",
- "Object 24: Hit Rate = 0.00, Expected Hit Rate = 0.00, Average Time spend in Cache: 0.00, Average Age = 0.00, Expected Age = 0.00\n",
- "Object 25: Hit Rate = 0.00, Expected Hit Rate = 0.00, Average Time spend in Cache: 0.00, Average Age = 0.00, Expected Age = 0.00\n",
- "Object 26: Hit Rate = 0.00, Expected Hit Rate = 0.00, Average Time spend in Cache: 0.00, Average Age = 0.00, Expected Age = 0.00\n",
- "Object 27: Hit Rate = 0.33, Expected Hit Rate = 0.33, Average Time spend in Cache: 0.28, Average Age = 0.02, Expected Age = 0.09\n",
- "Object 28: Hit Rate = 0.05, Expected Hit Rate = 0.05, Average Time spend in Cache: 0.04, Average Age = 0.00, Expected Age = 0.02\n",
- "Object 29: Hit Rate = 0.00, Expected Hit Rate = 0.00, Average Time spend in Cache: 0.00, Average Age = 0.00, Expected Age = 0.00\n",
- "Object 30: Hit Rate = 0.00, Expected Hit Rate = 0.00, Average Time spend in Cache: 0.00, Average Age = 0.00, Expected Age = 0.00\n",
- "Object 31: Hit Rate = 0.00, Expected Hit Rate = 0.00, Average Time spend in Cache: 0.00, Average Age = 0.00, Expected Age = 0.00\n",
- "Object 32: Hit Rate = 0.00, Expected Hit Rate = 0.00, Average Time spend in Cache: 0.00, Average Age = 0.00, Expected Age = 0.00\n",
- "Object 33: Hit Rate = 0.00, Expected Hit Rate = 0.00, Average Time spend in Cache: 0.00, Average Age = 0.00, Expected Age = 0.00\n",
- "Object 34: Hit Rate = 0.39, Expected Hit Rate = 0.40, Average Time spend in Cache: 0.35, Average Age = 0.03, Expected Age = 0.09\n",
- "Object 35: Hit Rate = 0.00, Expected Hit Rate = 0.00, Average Time spend in Cache: 0.00, Average Age = 0.00, Expected Age = 0.00\n",
- "Object 36: Hit Rate = 0.05, Expected Hit Rate = 0.05, Average Time spend in Cache: 0.04, Average Age = 0.00, Expected Age = 0.03\n",
- "Object 37: Hit Rate = 0.00, Expected Hit Rate = 0.00, Average Time spend in Cache: 0.00, Average Age = 0.00, Expected Age = 0.00\n",
- "Object 38: Hit Rate = 0.00, Expected Hit Rate = 0.00, Average Time spend in Cache: 0.00, Average Age = 0.00, Expected Age = 0.00\n",
- "Object 39: Hit Rate = 0.00, Expected Hit Rate = 0.00, Average Time spend in Cache: 0.00, Average Age = 0.00, Expected Age = 0.00\n",
- "Object 40: Hit Rate = 0.33, Expected Hit Rate = 0.33, Average Time spend in Cache: 0.28, Average Age = 0.02, Expected Age = 0.09\n",
- "Object 41: Hit Rate = 0.45, Expected Hit Rate = 0.45, Average Time spend in Cache: 0.39, Average Age = 0.04, Expected Age = 0.09\n",
- "Object 42: Hit Rate = 0.40, Expected Hit Rate = 0.40, Average Time spend in Cache: 0.34, Average Age = 0.03, Expected Age = 0.09\n",
- "Object 43: Hit Rate = 0.00, Expected Hit Rate = 0.00, Average Time spend in Cache: 0.00, Average Age = 0.00, Expected Age = 0.00\n",
- "Object 44: Hit Rate = 0.00, Expected Hit Rate = 0.00, Average Time spend in Cache: 0.00, Average Age = 0.00, Expected Age = 0.00\n",
- "Object 45: Hit Rate = 0.69, Expected Hit Rate = 0.69, Average Time spend in Cache: 0.65, Average Age = 0.06, Expected Age = 0.07\n",
- "Object 46: Hit Rate = 0.00, Expected Hit Rate = 0.00, Average Time spend in Cache: 0.00, Average Age = 0.00, Expected Age = 0.00\n",
- "Object 47: Hit Rate = 0.00, Expected Hit Rate = 0.00, Average Time spend in Cache: 0.00, Average Age = 0.00, Expected Age = 0.00\n",
- "Object 48: Hit Rate = 0.00, Expected Hit Rate = 0.00, Average Time spend in Cache: 0.00, Average Age = 0.00, Expected Age = 0.00\n",
- "Object 49: Hit Rate = 0.00, Expected Hit Rate = 0.00, Average Time spend in Cache: 0.00, Average Age = 0.00, Expected Age = 0.00\n",
- "Object 50: Hit Rate = 0.05, Expected Hit Rate = 0.05, Average Time spend in Cache: 0.04, Average Age = 0.00, Expected Age = 0.03\n",
- "Object 51: Hit Rate = 0.00, Expected Hit Rate = 0.00, Average Time spend in Cache: 0.00, Average Age = 0.00, Expected Age = 0.00\n",
- "Object 52: Hit Rate = 0.22, Expected Hit Rate = 0.23, Average Time spend in Cache: 0.18, Average Age = 0.01, Expected Age = 0.08\n",
- "Object 53: Hit Rate = 0.04, Expected Hit Rate = 0.05, Average Time spend in Cache: 0.04, Average Age = 0.00, Expected Age = 0.02\n",
- "Object 54: Hit Rate = 0.00, Expected Hit Rate = 0.00, Average Time spend in Cache: 0.00, Average Age = 0.00, Expected Age = 0.00\n",
- "Object 55: Hit Rate = 0.00, Expected Hit Rate = 0.00, Average Time spend in Cache: 0.00, Average Age = 0.00, Expected Age = 0.00\n",
- "Object 56: Hit Rate = 0.57, Expected Hit Rate = 0.58, Average Time spend in Cache: 0.52, Average Age = 0.05, Expected Age = 0.08\n",
- "Object 57: Hit Rate = 0.00, Expected Hit Rate = 0.00, Average Time spend in Cache: 0.00, Average Age = 0.00, Expected Age = 0.00\n",
- "Object 58: Hit Rate = 0.05, Expected Hit Rate = 0.05, Average Time spend in Cache: 0.04, Average Age = 0.00, Expected Age = 0.03\n",
- "Object 59: Hit Rate = 0.00, Expected Hit Rate = 0.00, Average Time spend in Cache: 0.00, Average Age = 0.00, Expected Age = 0.00\n",
- "Object 60: Hit Rate = 0.00, Expected Hit Rate = 0.00, Average Time spend in Cache: 0.00, Average Age = 0.00, Expected Age = 0.00\n",
- "Object 61: Hit Rate = 0.00, Expected Hit Rate = 0.00, Average Time spend in Cache: 0.00, Average Age = 0.00, Expected Age = 0.00\n",
- "Object 62: Hit Rate = 0.00, Expected Hit Rate = 0.00, Average Time spend in Cache: 0.00, Average Age = 0.00, Expected Age = 0.00\n",
- "Object 63: Hit Rate = 0.00, Expected Hit Rate = 0.00, Average Time spend in Cache: 0.00, Average Age = 0.00, Expected Age = 0.00\n",
- "Object 64: Hit Rate = 0.00, Expected Hit Rate = 0.00, Average Time spend in Cache: 0.00, Average Age = 0.00, Expected Age = 0.00\n",
- "Object 65: Hit Rate = 0.00, Expected Hit Rate = 0.00, Average Time spend in Cache: 0.00, Average Age = 0.00, Expected Age = 0.00\n",
- "Object 66: Hit Rate = 0.00, Expected Hit Rate = 0.00, Average Time spend in Cache: 0.00, Average Age = 0.00, Expected Age = 0.00\n",
- "Object 67: Hit Rate = 0.22, Expected Hit Rate = 0.23, Average Time spend in Cache: 0.19, Average Age = 0.01, Expected Age = 0.08\n",
- "Object 68: Hit Rate = 0.00, Expected Hit Rate = 0.00, Average Time spend in Cache: 0.00, Average Age = 0.00, Expected Age = 0.00\n",
- "Object 69: Hit Rate = 0.00, Expected Hit Rate = 0.00, Average Time spend in Cache: 0.00, Average Age = 0.00, Expected Age = 0.00\n",
- "Object 70: Hit Rate = 0.00, Expected Hit Rate = 0.00, Average Time spend in Cache: 0.00, Average Age = 0.00, Expected Age = 0.00\n",
- "Object 71: Hit Rate = 0.00, Expected Hit Rate = 0.00, Average Time spend in Cache: 0.00, Average Age = 0.00, Expected Age = 0.00\n",
- "Object 72: Hit Rate = 0.00, Expected Hit Rate = 0.00, Average Time spend in Cache: 0.00, Average Age = 0.00, Expected Age = 0.00\n",
- "Object 73: Hit Rate = 0.00, Expected Hit Rate = 0.00, Average Time spend in Cache: 0.00, Average Age = 0.00, Expected Age = 0.00\n",
- "Object 74: Hit Rate = 0.00, Expected Hit Rate = 0.00, Average Time spend in Cache: 0.00, Average Age = 0.00, Expected Age = 0.00\n",
- "Object 75: Hit Rate = 0.00, Expected Hit Rate = 0.00, Average Time spend in Cache: 0.00, Average Age = 0.00, Expected Age = 0.00\n",
- "Object 76: Hit Rate = 0.00, Expected Hit Rate = 0.00, Average Time spend in Cache: 0.00, Average Age = 0.00, Expected Age = 0.00\n",
- "Object 77: Hit Rate = 0.00, Expected Hit Rate = 0.00, Average Time spend in Cache: 0.00, Average Age = 0.00, Expected Age = 0.00\n",
- "Object 78: Hit Rate = 0.00, Expected Hit Rate = 0.00, Average Time spend in Cache: 0.00, Average Age = 0.00, Expected Age = 0.00\n",
- "Object 79: Hit Rate = 0.00, Expected Hit Rate = 0.00, Average Time spend in Cache: 0.00, Average Age = 0.00, Expected Age = 0.00\n",
- "Object 80: Hit Rate = 0.00, Expected Hit Rate = 0.00, Average Time spend in Cache: 0.00, Average Age = 0.00, Expected Age = 0.00\n",
- "Object 81: Hit Rate = 0.00, Expected Hit Rate = 0.00, Average Time spend in Cache: 0.00, Average Age = 0.00, Expected Age = 0.00\n",
- "Object 82: Hit Rate = 0.00, Expected Hit Rate = 0.00, Average Time spend in Cache: 0.00, Average Age = 0.00, Expected Age = 0.00\n",
- "Object 83: Hit Rate = 0.00, Expected Hit Rate = 0.00, Average Time spend in Cache: 0.00, Average Age = 0.00, Expected Age = 0.00\n",
- "Object 84: Hit Rate = 0.00, Expected Hit Rate = 0.00, Average Time spend in Cache: 0.00, Average Age = 0.00, Expected Age = 0.00\n",
- "Object 85: Hit Rate = 0.55, Expected Hit Rate = 0.55, Average Time spend in Cache: 0.50, Average Age = 0.05, Expected Age = 0.09\n",
- "Object 86: Hit Rate = 0.00, Expected Hit Rate = 0.00, Average Time spend in Cache: 0.00, Average Age = 0.00, Expected Age = 0.00\n",
- "Object 87: Hit Rate = 0.22, Expected Hit Rate = 0.23, Average Time spend in Cache: 0.18, Average Age = 0.01, Expected Age = 0.08\n",
- "Object 88: Hit Rate = 0.00, Expected Hit Rate = 0.00, Average Time spend in Cache: 0.00, Average Age = 0.00, Expected Age = 0.00\n",
- "Object 89: Hit Rate = 0.40, Expected Hit Rate = 0.40, Average Time spend in Cache: 0.34, Average Age = 0.03, Expected Age = 0.10\n",
- "Object 90: Hit Rate = 0.00, Expected Hit Rate = 0.00, Average Time spend in Cache: 0.00, Average Age = 0.00, Expected Age = 0.00\n",
- "Object 91: Hit Rate = 0.00, Expected Hit Rate = 0.00, Average Time spend in Cache: 0.00, Average Age = 0.00, Expected Age = 0.00\n",
- "Object 92: Hit Rate = 0.40, Expected Hit Rate = 0.40, Average Time spend in Cache: 0.35, Average Age = 0.03, Expected Age = 0.10\n",
- "Object 93: Hit Rate = 0.00, Expected Hit Rate = 0.00, Average Time spend in Cache: 0.00, Average Age = 0.00, Expected Age = 0.00\n",
- "Object 94: Hit Rate = 0.00, Expected Hit Rate = 0.00, Average Time spend in Cache: 0.00, Average Age = 0.00, Expected Age = 0.00\n",
- "Object 95: Hit Rate = 0.00, Expected Hit Rate = 0.00, Average Time spend in Cache: 0.00, Average Age = 0.00, Expected Age = 0.00\n",
- "Object 96: Hit Rate = 0.00, Expected Hit Rate = 0.00, Average Time spend in Cache: 0.00, Average Age = 0.00, Expected Age = 0.00\n",
- "Object 97: Hit Rate = 0.00, Expected Hit Rate = 0.00, Average Time spend in Cache: 0.00, Average Age = 0.00, Expected Age = 0.00\n",
- "Object 98: Hit Rate = 0.55, Expected Hit Rate = 0.55, Average Time spend in Cache: 0.50, Average Age = 0.05, Expected Age = 0.09\n",
- "Object 99: Hit Rate = 0.00, Expected Hit Rate = 0.00, Average Time spend in Cache: 0.00, Average Age = 0.00, Expected Age = 0.00\n"
+ "Object 0: Hit Rate = 0.05, Expected Hit Rate = 0.05, Average Time spend in Cache: 0.04, Average Age = 0.02, Expected Age = 1.02\n",
+ "Object 1: Hit Rate = 0.04, Expected Hit Rate = 0.05, Average Time spend in Cache: 0.04, Average Age = 0.02, Expected Age = 0.80\n",
+ "Object 2: Hit Rate = 0.03, Expected Hit Rate = 0.05, Average Time spend in Cache: 0.04, Average Age = 0.01, Expected Age = 0.64\n",
+ "Object 3: Hit Rate = 0.04, Expected Hit Rate = 0.05, Average Time spend in Cache: 0.04, Average Age = 0.02, Expected Age = 0.83\n",
+ "Object 4: Hit Rate = 0.04, Expected Hit Rate = 0.05, Average Time spend in Cache: 0.04, Average Age = 0.01, Expected Age = 0.68\n",
+ "Object 5: Hit Rate = 0.04, Expected Hit Rate = 0.05, Average Time spend in Cache: 0.04, Average Age = 0.02, Expected Age = 0.80\n",
+ "Object 6: Hit Rate = 0.04, Expected Hit Rate = 0.05, Average Time spend in Cache: 0.04, Average Age = 0.02, Expected Age = 0.76\n",
+ "Object 7: Hit Rate = 0.03, Expected Hit Rate = 0.05, Average Time spend in Cache: 0.04, Average Age = 0.01, Expected Age = 0.56\n",
+ "Object 8: Hit Rate = 0.04, Expected Hit Rate = 0.05, Average Time spend in Cache: 0.04, Average Age = 0.02, Expected Age = 0.73\n",
+ "Object 9: Hit Rate = 0.04, Expected Hit Rate = 0.05, Average Time spend in Cache: 0.04, Average Age = 0.02, Expected Age = 0.80\n",
+ "Object 10: Hit Rate = 0.04, Expected Hit Rate = 0.05, Average Time spend in Cache: 0.04, Average Age = 0.02, Expected Age = 0.76\n",
+ "Object 11: Hit Rate = 0.05, Expected Hit Rate = 0.05, Average Time spend in Cache: 0.04, Average Age = 0.02, Expected Age = 0.88\n",
+ "Object 12: Hit Rate = 0.04, Expected Hit Rate = 0.05, Average Time spend in Cache: 0.04, Average Age = 0.02, Expected Age = 0.73\n",
+ "Object 13: Hit Rate = 0.04, Expected Hit Rate = 0.05, Average Time spend in Cache: 0.04, Average Age = 0.02, Expected Age = 0.77\n",
+ "Object 14: Hit Rate = 0.03, Expected Hit Rate = 0.06, Average Time spend in Cache: 0.04, Average Age = 0.01, Expected Age = 0.60\n",
+ "Object 15: Hit Rate = 0.05, Expected Hit Rate = 0.06, Average Time spend in Cache: 0.04, Average Age = 0.02, Expected Age = 0.81\n",
+ "Object 16: Hit Rate = 0.05, Expected Hit Rate = 0.06, Average Time spend in Cache: 0.04, Average Age = 0.02, Expected Age = 0.84\n",
+ "Object 17: Hit Rate = 0.04, Expected Hit Rate = 0.06, Average Time spend in Cache: 0.04, Average Age = 0.02, Expected Age = 0.73\n",
+ "Object 18: Hit Rate = 0.03, Expected Hit Rate = 0.06, Average Time spend in Cache: 0.04, Average Age = 0.02, Expected Age = 0.55\n",
+ "Object 19: Hit Rate = 0.04, Expected Hit Rate = 0.06, Average Time spend in Cache: 0.04, Average Age = 0.01, Expected Age = 0.63\n",
+ "Object 20: Hit Rate = 0.04, Expected Hit Rate = 0.06, Average Time spend in Cache: 0.05, Average Age = 0.02, Expected Age = 0.73\n",
+ "Object 21: Hit Rate = 0.06, Expected Hit Rate = 0.06, Average Time spend in Cache: 0.05, Average Age = 0.03, Expected Age = 0.91\n",
+ "Object 22: Hit Rate = 0.06, Expected Hit Rate = 0.06, Average Time spend in Cache: 0.05, Average Age = 0.03, Expected Age = 0.90\n",
+ "Object 23: Hit Rate = 0.04, Expected Hit Rate = 0.06, Average Time spend in Cache: 0.04, Average Age = 0.02, Expected Age = 0.69\n",
+ "Object 24: Hit Rate = 0.05, Expected Hit Rate = 0.06, Average Time spend in Cache: 0.04, Average Age = 0.02, Expected Age = 0.76\n",
+ "Object 25: Hit Rate = 0.05, Expected Hit Rate = 0.06, Average Time spend in Cache: 0.05, Average Age = 0.02, Expected Age = 0.75\n",
+ "Object 26: Hit Rate = 0.05, Expected Hit Rate = 0.06, Average Time spend in Cache: 0.05, Average Age = 0.02, Expected Age = 0.72\n",
+ "Object 27: Hit Rate = 0.05, Expected Hit Rate = 0.06, Average Time spend in Cache: 0.05, Average Age = 0.02, Expected Age = 0.70\n",
+ "Object 28: Hit Rate = 0.06, Expected Hit Rate = 0.06, Average Time spend in Cache: 0.05, Average Age = 0.02, Expected Age = 0.86\n",
+ "Object 29: Hit Rate = 0.04, Expected Hit Rate = 0.06, Average Time spend in Cache: 0.05, Average Age = 0.01, Expected Age = 0.57\n",
+ "Object 30: Hit Rate = 0.05, Expected Hit Rate = 0.06, Average Time spend in Cache: 0.05, Average Age = 0.02, Expected Age = 0.72\n",
+ "Object 31: Hit Rate = 0.05, Expected Hit Rate = 0.07, Average Time spend in Cache: 0.05, Average Age = 0.02, Expected Age = 0.78\n",
+ "Object 32: Hit Rate = 0.06, Expected Hit Rate = 0.07, Average Time spend in Cache: 0.05, Average Age = 0.03, Expected Age = 0.83\n",
+ "Object 33: Hit Rate = 0.05, Expected Hit Rate = 0.07, Average Time spend in Cache: 0.05, Average Age = 0.03, Expected Age = 0.78\n",
+ "Object 34: Hit Rate = 0.05, Expected Hit Rate = 0.07, Average Time spend in Cache: 0.05, Average Age = 0.02, Expected Age = 0.73\n",
+ "Object 35: Hit Rate = 0.05, Expected Hit Rate = 0.07, Average Time spend in Cache: 0.05, Average Age = 0.02, Expected Age = 0.74\n",
+ "Object 36: Hit Rate = 0.06, Expected Hit Rate = 0.07, Average Time spend in Cache: 0.05, Average Age = 0.02, Expected Age = 0.84\n",
+ "Object 37: Hit Rate = 0.06, Expected Hit Rate = 0.07, Average Time spend in Cache: 0.05, Average Age = 0.02, Expected Age = 0.78\n",
+ "Object 38: Hit Rate = 0.06, Expected Hit Rate = 0.07, Average Time spend in Cache: 0.05, Average Age = 0.02, Expected Age = 0.75\n",
+ "Object 39: Hit Rate = 0.06, Expected Hit Rate = 0.07, Average Time spend in Cache: 0.06, Average Age = 0.02, Expected Age = 0.80\n",
+ "Object 40: Hit Rate = 0.06, Expected Hit Rate = 0.07, Average Time spend in Cache: 0.05, Average Age = 0.03, Expected Age = 0.83\n",
+ "Object 41: Hit Rate = 0.07, Expected Hit Rate = 0.07, Average Time spend in Cache: 0.06, Average Age = 0.03, Expected Age = 0.88\n",
+ "Object 42: Hit Rate = 0.06, Expected Hit Rate = 0.07, Average Time spend in Cache: 0.06, Average Age = 0.03, Expected Age = 0.77\n",
+ "Object 43: Hit Rate = 0.06, Expected Hit Rate = 0.08, Average Time spend in Cache: 0.06, Average Age = 0.03, Expected Age = 0.81\n",
+ "Object 44: Hit Rate = 0.07, Expected Hit Rate = 0.08, Average Time spend in Cache: 0.06, Average Age = 0.03, Expected Age = 0.87\n",
+ "Object 45: Hit Rate = 0.06, Expected Hit Rate = 0.08, Average Time spend in Cache: 0.06, Average Age = 0.03, Expected Age = 0.72\n",
+ "Object 46: Hit Rate = 0.07, Expected Hit Rate = 0.08, Average Time spend in Cache: 0.06, Average Age = 0.03, Expected Age = 0.81\n",
+ "Object 47: Hit Rate = 0.07, Expected Hit Rate = 0.08, Average Time spend in Cache: 0.06, Average Age = 0.02, Expected Age = 0.79\n",
+ "Object 48: Hit Rate = 0.07, Expected Hit Rate = 0.08, Average Time spend in Cache: 0.06, Average Age = 0.03, Expected Age = 0.79\n",
+ "Object 49: Hit Rate = 0.06, Expected Hit Rate = 0.08, Average Time spend in Cache: 0.07, Average Age = 0.03, Expected Age = 0.76\n",
+ "Object 50: Hit Rate = 0.06, Expected Hit Rate = 0.08, Average Time spend in Cache: 0.07, Average Age = 0.03, Expected Age = 0.72\n",
+ "Object 51: Hit Rate = 0.06, Expected Hit Rate = 0.09, Average Time spend in Cache: 0.07, Average Age = 0.03, Expected Age = 0.72\n",
+ "Object 52: Hit Rate = 0.07, Expected Hit Rate = 0.09, Average Time spend in Cache: 0.07, Average Age = 0.03, Expected Age = 0.75\n",
+ "Object 53: Hit Rate = 0.06, Expected Hit Rate = 0.09, Average Time spend in Cache: 0.07, Average Age = 0.03, Expected Age = 0.69\n",
+ "Object 54: Hit Rate = 0.07, Expected Hit Rate = 0.09, Average Time spend in Cache: 0.07, Average Age = 0.03, Expected Age = 0.78\n",
+ "Object 55: Hit Rate = 0.08, Expected Hit Rate = 0.09, Average Time spend in Cache: 0.07, Average Age = 0.04, Expected Age = 0.82\n",
+ "Object 56: Hit Rate = 0.08, Expected Hit Rate = 0.09, Average Time spend in Cache: 0.07, Average Age = 0.03, Expected Age = 0.80\n",
+ "Object 57: Hit Rate = 0.06, Expected Hit Rate = 0.09, Average Time spend in Cache: 0.07, Average Age = 0.03, Expected Age = 0.62\n",
+ "Object 58: Hit Rate = 0.08, Expected Hit Rate = 0.10, Average Time spend in Cache: 0.07, Average Age = 0.04, Expected Age = 0.83\n",
+ "Object 59: Hit Rate = 0.07, Expected Hit Rate = 0.10, Average Time spend in Cache: 0.08, Average Age = 0.03, Expected Age = 0.68\n",
+ "Object 60: Hit Rate = 0.08, Expected Hit Rate = 0.10, Average Time spend in Cache: 0.08, Average Age = 0.04, Expected Age = 0.74\n",
+ "Object 61: Hit Rate = 0.07, Expected Hit Rate = 0.10, Average Time spend in Cache: 0.08, Average Age = 0.03, Expected Age = 0.66\n",
+ "Object 62: Hit Rate = 0.09, Expected Hit Rate = 0.10, Average Time spend in Cache: 0.08, Average Age = 0.04, Expected Age = 0.87\n",
+ "Object 63: Hit Rate = 0.08, Expected Hit Rate = 0.11, Average Time spend in Cache: 0.08, Average Age = 0.04, Expected Age = 0.74\n",
+ "Object 64: Hit Rate = 0.08, Expected Hit Rate = 0.11, Average Time spend in Cache: 0.09, Average Age = 0.04, Expected Age = 0.74\n",
+ "Object 65: Hit Rate = 0.08, Expected Hit Rate = 0.11, Average Time spend in Cache: 0.09, Average Age = 0.04, Expected Age = 0.74\n",
+ "Object 66: Hit Rate = 0.08, Expected Hit Rate = 0.11, Average Time spend in Cache: 0.09, Average Age = 0.03, Expected Age = 0.68\n",
+ "Object 67: Hit Rate = 0.09, Expected Hit Rate = 0.11, Average Time spend in Cache: 0.09, Average Age = 0.04, Expected Age = 0.73\n",
+ "Object 68: Hit Rate = 0.09, Expected Hit Rate = 0.12, Average Time spend in Cache: 0.10, Average Age = 0.04, Expected Age = 0.69\n",
+ "Object 69: Hit Rate = 0.09, Expected Hit Rate = 0.12, Average Time spend in Cache: 0.09, Average Age = 0.04, Expected Age = 0.67\n",
+ "Object 70: Hit Rate = 0.10, Expected Hit Rate = 0.12, Average Time spend in Cache: 0.09, Average Age = 0.04, Expected Age = 0.73\n",
+ "Object 71: Hit Rate = 0.09, Expected Hit Rate = 0.13, Average Time spend in Cache: 0.10, Average Age = 0.04, Expected Age = 0.69\n",
+ "Object 72: Hit Rate = 0.10, Expected Hit Rate = 0.13, Average Time spend in Cache: 0.10, Average Age = 0.04, Expected Age = 0.73\n",
+ "Object 73: Hit Rate = 0.09, Expected Hit Rate = 0.13, Average Time spend in Cache: 0.10, Average Age = 0.04, Expected Age = 0.64\n",
+ "Object 74: Hit Rate = 0.11, Expected Hit Rate = 0.14, Average Time spend in Cache: 0.10, Average Age = 0.05, Expected Age = 0.72\n",
+ "Object 75: Hit Rate = 0.11, Expected Hit Rate = 0.14, Average Time spend in Cache: 0.11, Average Age = 0.05, Expected Age = 0.74\n",
+ "Object 76: Hit Rate = 0.11, Expected Hit Rate = 0.15, Average Time spend in Cache: 0.12, Average Age = 0.05, Expected Age = 0.72\n",
+ "Object 77: Hit Rate = 0.13, Expected Hit Rate = 0.15, Average Time spend in Cache: 0.12, Average Age = 0.06, Expected Age = 0.80\n",
+ "Object 78: Hit Rate = 0.12, Expected Hit Rate = 0.16, Average Time spend in Cache: 0.12, Average Age = 0.05, Expected Age = 0.73\n",
+ "Object 79: Hit Rate = 0.12, Expected Hit Rate = 0.16, Average Time spend in Cache: 0.12, Average Age = 0.05, Expected Age = 0.68\n",
+ "Object 80: Hit Rate = 0.13, Expected Hit Rate = 0.17, Average Time spend in Cache: 0.13, Average Age = 0.06, Expected Age = 0.73\n",
+ "Object 81: Hit Rate = 0.12, Expected Hit Rate = 0.17, Average Time spend in Cache: 0.13, Average Age = 0.05, Expected Age = 0.67\n",
+ "Object 82: Hit Rate = 0.14, Expected Hit Rate = 0.18, Average Time spend in Cache: 0.14, Average Age = 0.06, Expected Age = 0.72\n",
+ "Object 83: Hit Rate = 0.15, Expected Hit Rate = 0.19, Average Time spend in Cache: 0.14, Average Age = 0.07, Expected Age = 0.72\n",
+ "Object 84: Hit Rate = 0.15, Expected Hit Rate = 0.20, Average Time spend in Cache: 0.15, Average Age = 0.07, Expected Age = 0.69\n",
+ "Object 85: Hit Rate = 0.15, Expected Hit Rate = 0.20, Average Time spend in Cache: 0.15, Average Age = 0.06, Expected Age = 0.65\n",
+ "Object 86: Hit Rate = 0.16, Expected Hit Rate = 0.22, Average Time spend in Cache: 0.16, Average Age = 0.07, Expected Age = 0.68\n",
+ "Object 87: Hit Rate = 0.17, Expected Hit Rate = 0.23, Average Time spend in Cache: 0.17, Average Age = 0.07, Expected Age = 0.67\n",
+ "Object 88: Hit Rate = 0.18, Expected Hit Rate = 0.24, Average Time spend in Cache: 0.18, Average Age = 0.08, Expected Age = 0.70\n",
+ "Object 89: Hit Rate = 0.20, Expected Hit Rate = 0.25, Average Time spend in Cache: 0.20, Average Age = 0.09, Expected Age = 0.69\n",
+ "Object 90: Hit Rate = 0.20, Expected Hit Rate = 0.27, Average Time spend in Cache: 0.20, Average Age = 0.09, Expected Age = 0.65\n",
+ "Object 91: Hit Rate = 0.22, Expected Hit Rate = 0.29, Average Time spend in Cache: 0.22, Average Age = 0.09, Expected Age = 0.67\n",
+ "Object 92: Hit Rate = 0.24, Expected Hit Rate = 0.32, Average Time spend in Cache: 0.23, Average Age = 0.10, Expected Age = 0.66\n",
+ "Object 93: Hit Rate = 0.26, Expected Hit Rate = 0.34, Average Time spend in Cache: 0.26, Average Age = 0.12, Expected Age = 0.66\n",
+ "Object 94: Hit Rate = 0.28, Expected Hit Rate = 0.38, Average Time spend in Cache: 0.28, Average Age = 0.13, Expected Age = 0.64\n",
+ "Object 95: Hit Rate = 0.31, Expected Hit Rate = 0.42, Average Time spend in Cache: 0.31, Average Age = 0.14, Expected Age = 0.62\n",
+ "Object 96: Hit Rate = 0.36, Expected Hit Rate = 0.48, Average Time spend in Cache: 0.35, Average Age = 0.16, Expected Age = 0.62\n",
+ "Object 97: Hit Rate = 0.40, Expected Hit Rate = 0.56, Average Time spend in Cache: 0.41, Average Age = 0.19, Expected Age = 0.58\n",
+ "Object 98: Hit Rate = 0.49, Expected Hit Rate = 0.68, Average Time spend in Cache: 0.49, Average Age = 0.22, Expected Age = 0.57\n",
+ "Object 99: Hit Rate = 0.63, Expected Hit Rate = 0.86, Average Time spend in Cache: 0.63, Average Age = 0.29, Expected Age = 0.52\n"
]
}
],
@@ -659,14 +713,6 @@
"id": "80971714-44f1-47db-9e89-85be7c885bde",
"metadata": {},
"outputs": [
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "/tmp/ipykernel_1122751/3693436280.py:26: RuntimeWarning: invalid value encountered in divide\n",
- " age_delta_p = pd.DataFrame(np.where(expected_age.to_numpy().T[0] != 0, age_delta.to_numpy().T[0] / expected_age.to_numpy().T[0], 0), columns=['age_delta in %'])\n"
- ]
- },
{
"data": {
"text/html": [
@@ -708,93 +754,93 @@
"
\n",
" \n",
" 0 \n",
- " 2194 \n",
- " 122 \n",
- " 2072 \n",
+ " 1022 \n",
+ " 52 \n",
+ " 970 \n",
" None \n",
- " 2.0 \n",
- " 0.055606 \n",
+ " 0.0502 \n",
+ " 0.050881 \n",
" 0.0513 \n",
- " 0.051241 \n",
- " 0.004366 \n",
- " 0.039414 \n",
- " 0.016193 \n",
- " 0.000781 \n",
- " 0.027889 \n",
- " -0.027108 \n",
- " -0.971993 \n",
+ " 0.048961 \n",
+ " 0.001920 \n",
+ " 0.038411 \n",
+ " 0.012470 \n",
+ " 0.023130 \n",
+ " 1.016189 \n",
+ " -0.993059 \n",
+ " -0.977238 \n",
" \n",
" \n",
" 1 \n",
- " 2237 \n",
- " 98 \n",
- " 2139 \n",
+ " 1045 \n",
+ " 42 \n",
+ " 1003 \n",
" None \n",
- " 2.0 \n",
- " 0.043809 \n",
+ " 0.0506 \n",
+ " 0.040191 \n",
" 0.0513 \n",
- " 0.051241 \n",
- " -0.007432 \n",
- " 0.040331 \n",
- " 0.003478 \n",
- " 0.000547 \n",
- " 0.021946 \n",
- " -0.021399 \n",
- " -0.975066 \n",
+ " 0.049341 \n",
+ " -0.009150 \n",
+ " 0.040332 \n",
+ " -0.000141 \n",
+ " 0.016009 \n",
+ " 0.795581 \n",
+ " -0.779572 \n",
+ " -0.979877 \n",
" \n",
" \n",
" 2 \n",
- " 6160 \n",
- " 2458 \n",
- " 3702 \n",
+ " 1009 \n",
+ " 33 \n",
+ " 976 \n",
" None \n",
- " 5.0 \n",
- " 0.399026 \n",
+ " 0.0511 \n",
+ " 0.032706 \n",
" 0.4000 \n",
- " 0.400105 \n",
- " -0.001079 \n",
- " 0.346128 \n",
- " 0.052898 \n",
- " 0.030540 \n",
- " 0.094918 \n",
- " -0.064378 \n",
- " -0.678247 \n",
+ " 0.049816 \n",
+ " -0.017111 \n",
+ " 0.039100 \n",
+ " -0.006394 \n",
+ " 0.013227 \n",
+ " 0.640718 \n",
+ " -0.627490 \n",
+ " -0.979355 \n",
" \n",
" \n",
" 3 \n",
- " 3576 \n",
- " 842 \n",
- " 2734 \n",
+ " 1059 \n",
+ " 45 \n",
+ " 1014 \n",
" None \n",
- " 3.0 \n",
- " 0.235459 \n",
+ " 0.0515 \n",
+ " 0.042493 \n",
" 0.2254 \n",
- " 0.225316 \n",
- " 0.010143 \n",
- " 0.187388 \n",
- " 0.048071 \n",
- " 0.012580 \n",
- " 0.083093 \n",
- " -0.070513 \n",
- " -0.848607 \n",
+ " 0.050196 \n",
+ " -0.007703 \n",
+ " 0.041095 \n",
+ " 0.001398 \n",
+ " 0.015914 \n",
+ " 0.826598 \n",
+ " -0.810683 \n",
+ " -0.980747 \n",
" \n",
" \n",
" 4 \n",
- " 1106 \n",
- " 0 \n",
- " 1106 \n",
+ " 1045 \n",
+ " 37 \n",
+ " 1008 \n",
" None \n",
- " 1.0 \n",
- " 0.000000 \n",
+ " 0.0519 \n",
+ " 0.035407 \n",
" 0.0000 \n",
- " 0.000000 \n",
- " 0.000000 \n",
- " 0.000000 \n",
- " 0.000000 \n",
- " 0.000000 \n",
- " 0.000000 \n",
- " 0.000000 \n",
- " 0.000000 \n",
+ " 0.050576 \n",
+ " -0.015169 \n",
+ " 0.041100 \n",
+ " -0.005693 \n",
+ " 0.011848 \n",
+ " 0.683066 \n",
+ " -0.671218 \n",
+ " -0.982655 \n",
" \n",
" \n",
" ... \n",
@@ -816,93 +862,93 @@
" \n",
" \n",
" 95 \n",
- " 1000 \n",
- " 0 \n",
- " 1000 \n",
+ " 10811 \n",
+ " 3365 \n",
+ " 7446 \n",
" None \n",
- " 1.0 \n",
- " 0.000000 \n",
+ " 0.5519 \n",
+ " 0.311257 \n",
" 0.0000 \n",
- " 0.000000 \n",
- " 0.000000 \n",
- " 0.000000 \n",
- " 0.000000 \n",
- " 0.000000 \n",
- " 0.000000 \n",
- " 0.000000 \n",
- " 0.000000 \n",
+ " 0.424145 \n",
+ " -0.112888 \n",
+ " 0.308356 \n",
+ " 0.002901 \n",
+ " 0.137645 \n",
+ " 0.624473 \n",
+ " -0.486829 \n",
+ " -0.779583 \n",
" \n",
" \n",
" 96 \n",
- " 1055 \n",
- " 0 \n",
- " 1055 \n",
+ " 13157 \n",
+ " 4684 \n",
+ " 8473 \n",
" None \n",
- " 1.0 \n",
- " 0.000000 \n",
+ " 0.6598 \n",
+ " 0.356008 \n",
" 0.0000 \n",
- " 0.000000 \n",
- " 0.000000 \n",
- " 0.000000 \n",
- " 0.000000 \n",
- " 0.000000 \n",
- " 0.000000 \n",
- " 0.000000 \n",
- " 0.000000 \n",
+ " 0.483045 \n",
+ " -0.127037 \n",
+ " 0.353400 \n",
+ " 0.002608 \n",
+ " 0.160020 \n",
+ " 0.617881 \n",
+ " -0.457862 \n",
+ " -0.741019 \n",
" \n",
" \n",
" 97 \n",
- " 1063 \n",
- " 0 \n",
- " 1063 \n",
+ " 16227 \n",
+ " 6542 \n",
+ " 9685 \n",
" None \n",
- " 1.0 \n",
- " 0.000000 \n",
+ " 0.8305 \n",
+ " 0.403155 \n",
" 0.0000 \n",
- " 0.000000 \n",
- " 0.000000 \n",
- " 0.000000 \n",
- " 0.000000 \n",
- " 0.000000 \n",
- " 0.000000 \n",
- " 0.000000 \n",
- " 0.000000 \n",
+ " 0.564169 \n",
+ " -0.161013 \n",
+ " 0.407435 \n",
+ " -0.004280 \n",
+ " 0.185865 \n",
+ " 0.579650 \n",
+ " -0.393785 \n",
+ " -0.679350 \n",
" \n",
" \n",
" 98 \n",
- " 11421 \n",
- " 6278 \n",
- " 5143 \n",
+ " 22767 \n",
+ " 11201 \n",
+ " 11566 \n",
" None \n",
- " 9.0 \n",
- " 0.549689 \n",
+ " 1.1487 \n",
+ " 0.491984 \n",
" 0.5528 \n",
- " 0.552733 \n",
- " -0.003044 \n",
- " 0.495182 \n",
- " 0.054507 \n",
- " 0.048121 \n",
- " 0.087522 \n",
- " -0.039401 \n",
- " -0.450188 \n",
+ " 0.682951 \n",
+ " -0.190967 \n",
+ " 0.489995 \n",
+ " 0.001989 \n",
+ " 0.224034 \n",
+ " 0.565071 \n",
+ " -0.341037 \n",
+ " -0.603530 \n",
" \n",
" \n",
" 99 \n",
- " 1091 \n",
- " 0 \n",
- " 1091 \n",
+ " 39079 \n",
+ " 24517 \n",
+ " 14562 \n",
" None \n",
- " 1.0 \n",
- " 0.000000 \n",
+ " 2.0000 \n",
+ " 0.627370 \n",
" 0.0000 \n",
- " 0.000000 \n",
- " 0.000000 \n",
- " 0.000000 \n",
- " 0.000000 \n",
- " 0.000000 \n",
- " 0.000000 \n",
- " 0.000000 \n",
- " 0.000000 \n",
+ " 0.864665 \n",
+ " -0.237295 \n",
+ " 0.627601 \n",
+ " -0.000231 \n",
+ " 0.293713 \n",
+ " 0.517285 \n",
+ " -0.223572 \n",
+ " -0.432202 \n",
" \n",
" \n",
"\n",
@@ -910,44 +956,44 @@
""
],
"text/plain": [
- " access_count hits misses mu lambda hit_rate optimal_hitrates \\\n",
- "0 2194 122 2072 None 2.0 0.055606 0.0513 \n",
- "1 2237 98 2139 None 2.0 0.043809 0.0513 \n",
- "2 6160 2458 3702 None 5.0 0.399026 0.4000 \n",
- "3 3576 842 2734 None 3.0 0.235459 0.2254 \n",
- "4 1106 0 1106 None 1.0 0.000000 0.0000 \n",
- ".. ... ... ... ... ... ... ... \n",
- "95 1000 0 1000 None 1.0 0.000000 0.0000 \n",
- "96 1055 0 1055 None 1.0 0.000000 0.0000 \n",
- "97 1063 0 1063 None 1.0 0.000000 0.0000 \n",
- "98 11421 6278 5143 None 9.0 0.549689 0.5528 \n",
- "99 1091 0 1091 None 1.0 0.000000 0.0000 \n",
+ " access_count hits misses mu lambda hit_rate optimal_hitrates \\\n",
+ "0 1022 52 970 None 0.0502 0.050881 0.0513 \n",
+ "1 1045 42 1003 None 0.0506 0.040191 0.0513 \n",
+ "2 1009 33 976 None 0.0511 0.032706 0.4000 \n",
+ "3 1059 45 1014 None 0.0515 0.042493 0.2254 \n",
+ "4 1045 37 1008 None 0.0519 0.035407 0.0000 \n",
+ ".. ... ... ... ... ... ... ... \n",
+ "95 10811 3365 7446 None 0.5519 0.311257 0.0000 \n",
+ "96 13157 4684 8473 None 0.6598 0.356008 0.0000 \n",
+ "97 16227 6542 9685 None 0.8305 0.403155 0.0000 \n",
+ "98 22767 11201 11566 None 1.1487 0.491984 0.5528 \n",
+ "99 39079 24517 14562 None 2.0000 0.627370 0.0000 \n",
"\n",
" expected_hit_rate expected_hit_rate_delta avg_cache_time \\\n",
- "0 0.051241 0.004366 0.039414 \n",
- "1 0.051241 -0.007432 0.040331 \n",
- "2 0.400105 -0.001079 0.346128 \n",
- "3 0.225316 0.010143 0.187388 \n",
- "4 0.000000 0.000000 0.000000 \n",
+ "0 0.048961 0.001920 0.038411 \n",
+ "1 0.049341 -0.009150 0.040332 \n",
+ "2 0.049816 -0.017111 0.039100 \n",
+ "3 0.050196 -0.007703 0.041095 \n",
+ "4 0.050576 -0.015169 0.041100 \n",
".. ... ... ... \n",
- "95 0.000000 0.000000 0.000000 \n",
- "96 0.000000 0.000000 0.000000 \n",
- "97 0.000000 0.000000 0.000000 \n",
- "98 0.552733 -0.003044 0.495182 \n",
- "99 0.000000 0.000000 0.000000 \n",
+ "95 0.424145 -0.112888 0.308356 \n",
+ "96 0.483045 -0.127037 0.353400 \n",
+ "97 0.564169 -0.161013 0.407435 \n",
+ "98 0.682951 -0.190967 0.489995 \n",
+ "99 0.864665 -0.237295 0.627601 \n",
"\n",
" cache_time_delta avg_age expected_age age_delta age_delta in % \n",
- "0 0.016193 0.000781 0.027889 -0.027108 -0.971993 \n",
- "1 0.003478 0.000547 0.021946 -0.021399 -0.975066 \n",
- "2 0.052898 0.030540 0.094918 -0.064378 -0.678247 \n",
- "3 0.048071 0.012580 0.083093 -0.070513 -0.848607 \n",
- "4 0.000000 0.000000 0.000000 0.000000 0.000000 \n",
+ "0 0.012470 0.023130 1.016189 -0.993059 -0.977238 \n",
+ "1 -0.000141 0.016009 0.795581 -0.779572 -0.979877 \n",
+ "2 -0.006394 0.013227 0.640718 -0.627490 -0.979355 \n",
+ "3 0.001398 0.015914 0.826598 -0.810683 -0.980747 \n",
+ "4 -0.005693 0.011848 0.683066 -0.671218 -0.982655 \n",
".. ... ... ... ... ... \n",
- "95 0.000000 0.000000 0.000000 0.000000 0.000000 \n",
- "96 0.000000 0.000000 0.000000 0.000000 0.000000 \n",
- "97 0.000000 0.000000 0.000000 0.000000 0.000000 \n",
- "98 0.054507 0.048121 0.087522 -0.039401 -0.450188 \n",
- "99 0.000000 0.000000 0.000000 0.000000 0.000000 \n",
+ "95 0.002901 0.137645 0.624473 -0.486829 -0.779583 \n",
+ "96 0.002608 0.160020 0.617881 -0.457862 -0.741019 \n",
+ "97 -0.004280 0.185865 0.579650 -0.393785 -0.679350 \n",
+ "98 0.001989 0.224034 0.565071 -0.341037 -0.603530 \n",
+ "99 -0.000231 0.293713 0.517285 -0.223572 -0.432202 \n",
"\n",
"[100 rows x 15 columns]"
]
@@ -1003,7 +1049,7 @@
"outputs": [
{
"data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAACVcAAAHWCAYAAAB5HisgAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy80BEi2AAAACXBIWXMAAA9hAAAPYQGoP6dpAADQdklEQVR4nOzdd5wTdf7H8XeyuyxL2WWX3nsvIiBVpIsIKnd6gooi1hMV0RPFgorlQE8R9Gycvdx5FtSfnoJd7Iq9gICCBQWkLt3dZH5/hISUSd1JMklez8eDx4NNJjOf+c63zzcTh2EYhgAAAAAAAAAAAAAAAAAAAZzpDgAAAAAAAAAAAAAAAAAA7IjFVQAAAAAAAAAAAAAAAABggsVVAAAAAAAAAAAAAAAAAGCCxVUAAAAAAAAAAAAAAAAAYILFVQAAAAAAAAAAAAAAAABggsVVAAAAAAAAAAAAAAAAAGCCxVUAAAAAAAAAAAAAAAAAYILFVQAAAAAAAAAAAAAAAABggsVVAAAAAAAAAAAAAAAAAGCCxVUAAAAAAACS3nzzTTkcDj311FPpDiUmGzZs0HHHHae6devK4XBo/vz5lu177dq1cjgcuvnmm6Nue80118jhcFh27FRwOBy65ppr0h2GJRwOh84777x0h5HRWrVqpVNPPTXdYQAAAAAAAJticRUAAAAAAEiZBx98UA6HQ9WrV9e6detC3h86dKi6deuWhsgyz4UXXqglS5bosssu0yOPPKIjjjgi4va7du3Sddddpx49eqhGjRoqKSnR4MGD9fDDD8swjBRFHb8XX3wxYxZCvfnmm/rzn/+sRo0aqVq1amrQoIGOOuooLVq0KN2hWaKiokK33XabDjnkENWuXVu1atXSIYccottuu00VFRXpDs/Hu1Ayln8AAAAAAADR5Kc7AAAAAAAAkHv27dunuXPn6vbbb093KBnr9ddf1zHHHKOLL7446rYbNmzQiBEjtHz5ck2cOFHnnXee9u7dq6efflqTJ0/Wiy++qMcee0x5eXlxx3HllVdq5syZiZxCTF588UXdcccdli6w2rNnj/LzrZ0Wu/rqq3Xttdeqffv2Ovvss9WyZUtt3rxZL774oo499lg99thjOvHEEy09Zirt2rVLY8eO1VtvvaVx48bp1FNPldPp1OLFi3XBBRdo0aJF+t///qeaNWumO1R17txZjzzySMBrl112mWrVqqUrrrgiZPvvvvtOTiffQQUAAAAAAOZYXAUAAAAAAFKuZ8+e+te//qXLLrtMTZo0SXc4KbVr1y5LFqBs3LhRderUiWnbyZMna/ny5XrmmWd09NFH+16fNm2aZsyYoZtvvlkHH3ywLr300rjjyM/Pt3yhUrJVr17d0v099dRTuvbaa3Xcccfp3//+twoKCnzvzZgxQ0uWLLHVk50ScdFFF+mtt97S7bffHvAzhOecc47uuOMOnXfeebr44ot11113pSwmwzC0d+9eFRUVBbzesGFDTZo0KeC1uXPnql69eiGvS1JhYWFS4wQAAAAAAJmNr2QBAAAAAICUu/zyy+VyuTR37tyI261du1YOh0MPPvhgyHsOhyPgaUbXXHONHA6HVq5cqUmTJqmkpET169fXrFmzZBiGfv75Zx1zzDEqLi5Wo0aNdMstt5ge0+Vy6fLLL1ejRo1Us2ZNHX300fr5559Dtvvwww91xBFHqKSkRDVq1NCQIUP07rvvBmzjjenbb7/ViSeeqNLSUh166KERz/mHH37QX/7yF5WVlalGjRrq37+//ve///ne9/60omEYuuOOO6L+vNkHH3ygJUuW6NRTTw1YWOU1Z84ctW/fXjfeeKP27NkT8v6tt96qli1bqqioSEOGDNHXX39teo7BHn30UfXu3VtFRUUqKyvTxIkTw6bjkUceqdLSUtWsWVM9evTQggULJEmnnnqq7rjjDkky/Sm3xx9/XL1791bt2rVVXFys7t27+z4bSbi8s3r1ap166qmqU6eOSkpKNGXKFO3evTvq/mbNmqWysjLdf//9AQurvEaPHq1x48ZJkv744w9dddVV6t27t0pKSlSzZk0NHjxYb7zxRsjn3G63FixYoO7du6t69eqqX7++jjjiCC1btixk22effVbdunVTYWGhunbtqsWLF4dss27dOp122mlq2LChb7v7778/6vn98ssvuu+++zR8+PCAhVVe5557roYNG6Z7771Xv/zyiySpW7duGjZsmOk5NW3aVMcdd1zAa/Pnz1fXrl1VvXp1NWzYUGeffba2bt0a8NlWrVpp3LhxWrJkifr06aOioiLdc889UeOPplWrVjr11FN9f3vL2DvvvKNp06apfv36qlOnjs4++2z98ccf2rZtm0455RSVlpaqtLRUl1xySchPa8Z6TgAAAAAAwP5YXAUAAAAAAFKudevWOuWUU/Svf/1Lv/76q6X7njBhgtxut+bOnat+/frp+uuv1/z58zVq1Cg1bdpUN954o9q1a6eLL75YS5cuDfn8DTfcoP/973+69NJLNW3aNL3yyisaOXJkwMKj119/XYcddpjKy8t19dVX6+9//7u2bdum4cOH66OPPgrZ51/+8hft3r1bf//733XmmWeGjX3Dhg0aOHCglixZoqlTp+qGG27Q3r17dfTRR+uZZ56RJB122GG+nzwbNWqUHnnkkZCfQPP3/PPPS5JOOeUU0/fz8/N14oknauvWrSGLwx5++GHddtttOvfcc3XZZZfp66+/1vDhw7Vhw4awx5M8aXjKKaeoffv2mjdvnqZPn67XXntNhx12mLZt2+bb7pVXXtFhhx2mb7/9VhdccIFuueUWDRs2TC+88IIk6eyzz9aoUaMkyXee3nN95ZVXdMIJJ6i0tFQ33nij5s6dq6FDh4acQzyOP/547dixQ3PmzNHxxx+vBx98ULNnz474mVWrVmnFihUaP368ateuHfUY5eXluvfeezV06FDdeOONuuaaa/T7779r9OjR+vzzzwO2Pf300zV9+nQ1b95cN954o2bOnKnq1avrgw8+CNjunXfe0dSpUzVx4kTddNNN2rt3r4499lht3rzZt82GDRvUv39/vfrqqzrvvPO0YMECtWvXTqeffrrmz58fMeaXXnpJLpcrbB6SPPmrsrLSt6hrwoQJWrp0qdavXx8S66+//qqJEyf6Xjv77LM1Y8YMDRo0SAsWLNCUKVP02GOPafTo0SFP/Pruu+90wgknaNSoUVqwYIF69uwZMfaqOP/887Vq1SrNnj1bRx99tBYuXKhZs2bpqKOOksvl0t///ncdeuih+sc//hFSBuM5JwAAAAAAYHMGAAAAAABAijzwwAOGJOPjjz82vv/+eyM/P9+YNm2a7/0hQ4YYXbt29f29Zs0aQ5LxwAMPhOxLknH11Vf7/r766qsNScZZZ53le62ystJo1qyZ4XA4jLlz5/pe37p1q1FUVGRMnjzZ99obb7xhSDKaNm1qlJeX+15/4oknDEnGggULDMMwDLfbbbRv394YPXq04Xa7fdvt3r3baN26tTFq1KiQmE444YSY0mf69OmGJOPtt9/2vbZjxw6jdevWRqtWrQyXyxVw/ueee27UfY4fP96QZGzdujXsNosWLTIkGbfddpthGAfSvaioyPjll19823344YeGJOPCCy8MOUevtWvXGnl5ecYNN9wQcIyvvvrKyM/P971eWVlptG7d2mjZsmVIbP7peu655xpmU1gXXHCBUVxcbFRWVkZNg2Dh8s5pp50WsN2f/vQno27duhH39dxzzxmSjFtvvTWmY1dWVhr79u0LeG3r1q1Gw4YNA47/+uuvG5ICyoeXf/pIMqpVq2asXr3a99oXX3xhSDJuv/1232unn3660bhxY2PTpk0B+5o4caJRUlJi7N69O2zM3nz52Wefhd3m008/NSQZF110kWEYhvHdd9+FxGAYhjF16lSjVq1avuO9/fbbhiTjscceC9hu8eLFIa+3bNnSkGQsXrw4bBzhdO3a1RgyZIjpey1btgyoC7z1VHAZHzBggOFwOIy//vWvvte8dYz/vuM5JwAAAAAAYH88uQoAAAAAAKRFmzZtdPLJJ2vhwoX67bffLNvvGWec4ft/Xl6e+vTpI8MwdPrpp/ter1Onjjp27Kgffvgh5POnnHJKwBOIjjvuODVu3FgvvviiJOnzzz/XqlWrdOKJJ2rz5s3atGmTNm3apF27dmnEiBFaunSp3G53wD7/+te/xhT7iy++qL59+wb8dGCtWrV01llnae3atfr2229jSwQ/O3bskKSIT1XyvldeXh7w+vjx49W0aVPf33379lW/fv18aWFm0aJFcrvdOv74431ps2nTJjVq1Ejt27f3/fzdZ599pjVr1mj69OmqU6dOwD4i/cyhV506dbRr1y698sorUbeNVfB1Gjx4sDZv3hySLv6878Xy1CrJkyerVasmyfPTcVu2bFFlZaX69OmjTz/91Lfd008/LYfDoauvvjpkH8HpM3LkSLVt29b3d48ePVRcXOzL34Zh6Omnn9ZRRx0lwzACrsvo0aO1ffv2gGMHSyQPdejQQT179tR///tf3zYul0tPPfWUjjrqKBUVFUmSnnzySZWUlGjUqFEBcfXu3Vu1atUK+bnE1q1ba/To0WHjsNLpp58ekNb9+vULqUu8dYx/XRLvOQEAAAAAAHvLT3cAAAAAAAAgd1155ZV65JFHNHfuXC1YsMCSfbZo0SLg75KSElWvXl316tULed3/Z9O82rdvH/C3w+FQu3bttHbtWkmen4GTpMmTJ4eNYfv27SotLfX93bp165hi//HHH9WvX7+Q1zt37ux7v1u3bjHty8u76GXHjh0hi5i8wi2eCU4LybNo5oknngh7vFWrVskwDNPPSlJBQYEk6fvvv5ekuM/Ha+rUqXriiSc0ZswYNW3aVIcffriOP/54HXHEEQntTwrNO95ruHXrVhUXF5t+xvu6Nw1j8dBDD+mWW27RihUrAn4izj+ffP/992rSpInKysrijtsb+9atWyVJv//+u7Zt26aFCxdq4cKFpvvYuHFj2P3756FwzPLQhAkTdPnll2vdunVq2rSp3nzzTW3cuFETJkzwbbNq1Spt375dDRo0iCmuWMuSFczqEklq3rx5yOvetJbiPycAAAAAAGBvLK4CAAAAAABp06ZNG02aNEkLFy7UzJkzQ94P9wQjl8sVdp95eXkxvSZ5nugTL+9Tqf7xj3+oZ8+eptvUqlUr4G/vU3rSoXPnznr22Wf15Zdf6rDDDjPd5ssvv5QkdenSpcrHc7vdcjgceumll0zTPThtEtWgQQN9/vnnWrJkiV566SW99NJLeuCBB3TKKafooYceSmifieSTTp06SZK++uqrmI7x6KOP6tRTT9X48eM1Y8YMNWjQQHl5eZozZ45vwVm8osXtzbOTJk0KuyiwR48eYffvXdz35Zdfhs3zZnlowoQJuuyyy/Tkk09q+vTpeuKJJ1RSUhKwAM7tdqtBgwZ67LHHTPdbv379gL9TWZbCpavZ6/55JN5zAgAAAAAA9sbiKgAAAAAAkFZXXnmlHn30Ud14440h73mfHLRt27aA13/88cekxeN9MpWXYRhavXq1b/GJ9+fXiouLNXLkSEuP3bJlS3333Xchr69YscL3frzGjRunOXPm6OGHHzZdXOVyufTvf/9bpaWlGjRoUMB7wWkhSStXrlSrVq3CHq9t27YyDEOtW7dWhw4dIm4nSV9//XXEdIz0E4HVqlXTUUcdpaOOOkput1tTp07VPffco1mzZqldu3ZhP2elDh06qGPHjnruuee0YMGCqIvHnnrqKbVp00aLFi0KOLfgn/9r27atlixZoi1btsT09KpI6tevr9q1a8vlciWUZ8eMGaO8vDw98sgjOuWUU0y3efjhh5Wfnx+wcKp169bq27ev/vvf/+q8887TokWLNH78eBUWFvq2adu2rV599VUNGjQorYsQrZSN5wQAAAAAQC5zpjsAAAAAAACQ29q2batJkybpnnvu0fr16wPeKy4uVr169bR06dKA1++8886kxfPwww8H/PzZU089pd9++01jxoyRJPXu3Vtt27bVzTffrJ07d4Z8/vfff0/42EceeaQ++ugjvf/++77Xdu3apYULF6pVq1YJPVlq4MCBGjlypB544AG98MILIe9fccUVWrlypS655JKQhSDPPvus1q1b5/v7o48+0ocffuhLCzN//vOflZeXp9mzZ4c88ckwDN9PMfbq1UutW7fW/PnzQxbP+X+uZs2akkIX2AX/pKPT6fQtgNu3b1/Y+JJh9uzZ2rx5s8444wxVVlaGvP/yyy/70t771CP/c/zwww8DrrkkHXvssTIMQ7Nnzw7ZX7xPXMvLy9Oxxx6rp59+Wl9//XXI+9HybPPmzTVlyhS9+uqruuuuu0Lev/vuu/X666/r9NNPV7NmzQLemzBhgj744APdf//92rRpU8BPAkrS8ccfL5fLpeuuuy5kv5WVlSHXPRNk4zkBAAAAAJDLeHIVAAAAAABIuyuuuEKPPPKIvvvuO3Xt2jXgvTPOOENz587VGWecoT59+mjp0qVauXJl0mIpKyvToYceqilTpmjDhg2aP3++2rVrpzPPPFOSZxHPvffeqzFjxqhr166aMmWKmjZtqnXr1umNN95QcXGxnn/++YSOPXPmTP3nP//RmDFjNG3aNJWVlemhhx7SmjVr9PTTT8vpTOx7cg8//LBGjBihY445RieeeKIGDx6sffv2adGiRXrzzTc1YcIEzZgxI+Rz7dq106GHHqpzzjlH+/bt0/z581W3bl1dcsklYY/Vtm1bXX/99brsssu0du1ajR8/XrVr19aaNWv0zDPP6KyzztLFF18sp9Opu+66S0cddZR69uypKVOmqHHjxlqxYoW++eYbLVmyRJJnMZskTZs2TaNHj1ZeXp4mTpyoM844Q1u2bNHw4cPVrFkz/fjjj7r99tvVs2dP38/YpcqECRP01Vdf6YYbbtBnn32mE044QS1bttTmzZu1ePFivfbaa/r3v/8tyfMksUWLFulPf/qTxo4dqzVr1ujuu+9Wly5dAhbrDRs2TCeffLJuu+02rVq1SkcccYTcbrfefvttDRs2TOedd15cMc6dO1dvvPGG+vXrpzPPPFNdunTRli1b9Omnn+rVV1/Vli1bIn7+1ltv1YoVKzR16lQtXrzY94SqJUuW6LnnntOQIUN0yy23hHzu+OOP18UXX6yLL75YZWVlIU/OGjJkiM4++2zNmTNHn3/+uQ4//HAVFBRo1apVevLJJ7VgwQIdd9xxcZ1rumXjOQEAAAAAkMtYXAUAAAAAANKuXbt2mjRpkh566KGQ96666ir9/vvveuqpp/TEE09ozJgxeumll9SgQYOkxHL55Zfryy+/1Jw5c7Rjxw6NGDFCd955p2rUqOHbZujQoXr//fd13XXX6Z///Kd27typRo0aqV+/fjr77LMTPnbDhg313nvv6dJLL9Xtt9+uvXv3qkePHnr++ec1duzYhPfbuHFjffTRR7rlllv05JNP6umnn1Z+fr569OihBx98UKeccorpz++dcsopcjqdmj9/vjZu3Ki+ffvqn//8pxo3bhzxeDNnzlSHDh106623+p681Lx5cx1++OE6+uijfduNHj1ab7zxhmbPnq1bbrlFbrdbbdu29S1kkzxPwjr//PP1+OOP69FHH5VhGJo4caImTZqkhQsX6s4779S2bdvUqFEjTZgwQddcc03Ci9Cq4vrrr9fw4cN122236a677tKWLVtUWlqq/v3767nnnvOd96mnnqr169frnnvu0ZIlS9SlSxc9+uijevLJJ/Xmm28G7POBBx5Qjx49dN9992nGjBkqKSlRnz59NHDgwLjja9iwoT766CNde+21WrRoke68807VrVtXXbt2Nf1JzmC1atXSa6+9pjvvvFOPPvqoZsyYIcMw1KlTJ82fP19Tp05VQUFByOeaNWumgQMH6t1339UZZ5xhus3dd9+t3r1765577tHll1+u/Px8tWrVSpMmTQr5qcpMkY3nBAAAAABArnIY8T5HHAAAAAAAANhv1qxZmjNnjunP4QEAAAAAAACZLvVf4wMAAAAAAEDW+O2331SvXr10hwEAAAAAAAAkBT8LCAAAAAAAgLj98MMPeuaZZ/Tkk09q3Lhx6Q4HAAAAAAAASAqeXAUAAAAAAIC4LV26VLNnz9aQIUM0b968dIcDAAAAAAAAJIXDMAwj3UEAAAAAAAAAAAAAAAAAgN3w5CoAAAAAAAAAAAAAAAAAMMHiKgAAAAAAAAAAAAAAAAAwkZ/uAJLN7Xbr119/Ve3ateVwONIdDgAAAAAAAAAAAAAAAIA0MwxDO3bsUJMmTeR0hn8+VdYvrvr111/VvHnzdIcBAAAAAAAAAAAAAAAAwGZ+/vlnNWvWLOz7Wb+4qnbt2pI8CVFcXJzmaBBORUWFXn75ZR1++OEqKChIdzgA4EP9BMDOqKMA2Bl1FAA7o44CYGfUUQDsjDoKgJ1RRyFe5eXlat68uW9tUThZv7jK+1OAxcXFLK6ysYqKCtWoUUPFxcVUcgBshfoJgJ1RRwGwM+ooAHZGHQXAzqijANgZdRQAO6OOQqK8a4vCCf+DgQAAAAAAAAAAAAAAAACQw1hcBQAAAAAAAAAAAAAAAAAmWFwFAAAAAAAAAAAAAAAAACZYXAUAAAAAAAAAAAAAAAAAJlhcBQAAAAAAAAAAAAAAAAAmWFwFAAAAAAAAAAAAAAAAACZYXAUAAAAAAAAAAAAAAAAAJlhcBQAAAAAAAAAAAAAAAAAmWFwFAAAAAAAAAAAAAAAAACZYXAUAAAAAAAAAAAAAAAAAJtK6uGrp0qU66qij1KRJEzkcDj377LMB7xuGoauuukqNGzdWUVGRRo4cqVWrVqUnWAAAAAAAAAAAAAAAAAA5Ja2Lq3bt2qWDDjpId9xxh+n7N910k2677Tbdfffd+vDDD1WzZk2NHj1ae/fuTXGkAAAAAAAAAAAAAAAAAHJNfjoPPmbMGI0ZM8b0PcMwNH/+fF155ZU65phjJEkPP/ywGjZsqGeffVYTJ05MZagAAAAAAAAAAAAAAAAAcozDMAwj3UFIksPh0DPPPKPx48dLkn744Qe1bdtWn332mXr27OnbbsiQIerZs6cWLFhgup99+/Zp3759vr/Ly8vVvHlzbdq0ScXFxck8BSTox827NXL+O+kOAwAAAAAAAAAAAAAAwDLfzR4lp9OR7jAQRnl5uerVq6ft27dHXFOU1idXRbJ+/XpJUsOGDQNeb9iwoe89M3PmzNHs2bNDXn/55ZdVo0YNa4OEJS5437bZEAAAAAAAAAAAAAAAICELn3pJLWqlOwqEs3v37pi2y7pVLZdddpkuuugi39/eJ1cdfvjhPLnKpi54/+V0hwAAAAAAAAAAAAAAAGCpfv0H6uAWddIdBsIoLy+PaTvbLq5q1KiRJGnDhg1q3Lix7/UNGzYE/ExgsMLCQhUWFoa8XlBQoIKCAsvjBAAAAAAAAAAAAAAAAILl5eezVsXGYr02ziTHkbDWrVurUaNGeu2113yvlZeX68MPP9SAAQPSGBkAAAAAAAAAAAAAAACAXJDWJ1ft3LlTq1ev9v29Zs0aff755yorK1OLFi00ffp0XX/99Wrfvr1at26tWbNmqUmTJho/fnz6ggYAAAAAAAAAAAAAAACQE9K6uGrZsmUaNmyY7++LLrpIkjR58mQ9+OCDuuSSS7Rr1y6dddZZ2rZtmw499FAtXrxY1atXT1fIAAAAAAAAAAAAAAAAAHKEwzAMI91BJFN5eblKSkq0fft2FRcXpzscmGg183/pDgEAAAAAAAAAAAAAAMBST58zUL1blqY7DIQR65oiZwpjAgAAAAAAAAAAAAAAAICMweIqAAAAAAAAAAAAAAAAADDB4ioAAAAAAAAAAAAAAADAcka6A4AFWFwFAAAAAAAAAAAAAAAAACZYXAUAAAAAAAAAAAAAAAAAJlhcBQAAAAAAAAAAAAAAAAAmWFwFAAAAAAAAAAAAAAAAACZYXAUAAAAAAAAAAAAAAAAAJlhcBQAAAAAAAAAAAAAAAAAmWFwFAAAAAAAAAAAAAAAAACZYXAUAAAAAAAAAAAAAAABYzDDSHQGswOIqAAAAAAAAAAAAAAAAADDB4ioAAAAAAAAAAAAAAAAAMMHiKgAAAAAAAAAAAAAAAAAwweIqAAAAAAAAAAAAAAAAADDB4ioAAAAAAAAAAAAAAAAAMMHiKgAAAAAAAAAAAAAAAAAwweIqAAAAAAAAAAAAAAAAADDB4ioAAAAAAAAAAAAAAAAAMMHiKgAAAAAAAAAAAAAAAMBiRroDgCVYXAUAAAAAAAAAAAAAAAAAJlhcBQAAAAAAAAAAAAAAAAAmWFwFAAAAAAAAAAAAAAAAACZYXAUAAAAAAAAAAAAAAAAAJlhcBQAAAAAAAAAAAAAAAAAmWFwFAAAAAAAAAAAAAAAAACZYXAUAAAAAAAAAAAAAAAAAJlhcBQAAAAAAAAAAAAAAAAAmWFwFAAAAAAAAAAAAAAAAWMww0h0BrMDiKgAAAAAAAAAAAAAAAAAwweIqAAAAAAAAAAAAAAAAADDB4ioAAAAAAAAAAAAAAAAAMMHiKgAAAAAAAAAAAAAAAMBieypc6Q4BFmBxFQAAAAAAAAAAAAAAAACYYHEVAAAAAAAAAAAAAAAAAJhgcRUAAAAAAAAAAAAAAABgMUe6A4AlWFwFAAAAAAAAAAAAAAAAACZYXAUAAAAAAAAAAAAAAABYzMGjq7ICi6sAAAAAAAAAAAAAAAAAwASLqwAAAAAAAAAAAAAAAADABIurAAAAAAAAAAAAAAAAAIs5xO8CZgMWVwEAAAAAAAAAAAAAAAAWc7C2KiuwuAoAAAAAAAAAAAAAAACwGGursgOLqwAAAAAAAAAAAAAAAADABIurAAAAAAAAAAAAAAAAAMAEi6sAAAAAAAAAAAAAAAAAwASLqwAAAAAAAAAAAAAAAACLGekOAJZgcRUAAAAAAAAAAAAAAAAAmGBxFQAAAAAAAAAAAAAAAACYYHEVAAAAAAAAAAAAAAAAYDFHugOAJVhcBQAAAAAAAAAAAAAAAAAmWFwFAAAAAAAAAAAAAAAAACZYXAUAAAAAAAAAAAAAAABYjd8FzAosrgIAAAAAAAAAAAAAAAAAEyyuAgAAAAAAAAAAAAAAAAATLK4CAAAAAAAAAAAAAAAArGakOwBYgcVVAAAAAAAAAAAAAAAAAGCCxVUAAAAAAAAAAAAAAAAAYILFVQAAAAAAAAAAAAAAAIDVHOkOAFZgcRUAAAAAAAAAAAAAAAAAmGBxFQAAAAAAAAAAAAAAAACYYHEVAAAAAAAAAAAAAAAAAJhgcRUAAAAAAAAAAAAAAAAAmGBxFQAAAAAAAAAAAAAAAGA1I90BwAosrgIAAAAAAAAAAAAAAAAAEyyuAgAAAAAAAAAAAAAAAAATLK4CAAAAAAAAAAAAAAAArOZIdwCwgq0XV7lcLs2aNUutW7dWUVGR2rZtq+uuu06GwY9SAgAAAAAAAAAAAAAAAEiu/HQHEMmNN96ou+66Sw899JC6du2qZcuWacqUKSopKdG0adPSHR4AAAAAAAAAAAAAAACALGbrxVXvvfeejjnmGI0dO1aS1KpVK/3nP//RRx99lObIAAAAAAAAAAAAAAAAAGQ7Wy+uGjhwoBYuXKiVK1eqQ4cO+uKLL/TOO+9o3rx5YT+zb98+7du3z/d3eXm5JKmiokIVFRVJjxkAAAAAAAAAAAAAAACorKxkrYqNxXptbL24aubMmSovL1enTp2Ul5cnl8ulG264QSeddFLYz8yZM0ezZ88Oef3ll19WjRo1khkuElSvME+b9jnSHQYAAAAAAAAAAAAAAIBlXn3nI21dYaQ7DISxe/fumLZzGIZh26v4+OOPa8aMGfrHP/6hrl276vPPP9f06dM1b948TZ482fQzZk+uat68uTZt2qTi4uJUhY44jLntXa3+fVe6wwAAAAAAAAAAAAAAALDMvL9011E9Gqc7DIRRXl6uevXqafv27RHXFNn6yVUzZszQzJkzNXHiRElS9+7d9eOPP2rOnDlhF1cVFhaqsLAw5PWCggIVFBQkNV4kxuHgqVUAAAAAAAAAAAAAACC75OXlsVbFxmK9Ns4kx1Elu3fvltMZGGJeXp7cbneaIgIAAAAAAAAAAAAAAACi42Ez2cHWT6466qijdMMNN6hFixbq2rWrPvvsM82bN0+nnXZaukODhahLAAAAAAAAAAAAAABAtmE5RHao8uKq8vJyvf766+rYsaM6d+5sRUw+t99+u2bNmqWpU6dq48aNatKkic4++2xdddVVlh4HAAAAAAAAAAAAAAAAAILFvbjq+OOP12GHHabzzjtPe/bsUZ8+fbR27VoZhqHHH39cxx57rGXB1a5dW/Pnz9f8+fMt2yfsxzDSHQEAAAAAAAAAAAAAAAAQyhnvB5YuXarBgwdLkp555hkZhqFt27bptttu0/XXX295gAAAAAAAAAAAAAAAAACQDnEvrtq+fbvKysokSYsXL9axxx6rGjVqaOzYsVq1apXlAQIAAAAAAAAAAAAAAACZxuFIdwSwQtyLq5o3b673339fu3bt0uLFi3X44YdLkrZu3arq1atbHiAAAAAAAAAAAAAAAAAApEN+vB+YPn26TjrpJNWqVUstW7bU0KFDJXl+LrB79+5WxwcAAAAAAAAAAAAAAABkHMNIdwSwQtyLq6ZOnap+/frpp59+0qhRo+R0eh5+1aZNG91www2WBwgAAAAAAAAAAAAAAAAA6RD3zwJee+216ty5s/70pz+pVq1avteHDx+uV1991dLgkBtYqAkAAAAAAAAAAAAAALKNw5HuCGCFuBdXzZ49Wzt37gx5fffu3Zo9e7YlQQEAAAAAAAAAAAAAAABAusW9uMowDDlMltZ98cUXKisrsyQoAAAAAAAAAAAAAAAAAEi3/Fg3LC0tlcPhkMPhUIcOHQIWWLlcLu3cuVN//etfkxIkAAAAAAAAAAAAAAAAAKRazIur5s+fL8MwdNppp2n27NkqKSnxvVetWjW1atVKAwYMSEqQAAAAAAAAAAAAAAAAQCZxKPSX4ZB5Yl5cNXnyZElS69atNWjQIOXnx/xRAAAAAAAAAAAAAAAAAMg4zng/sGvXLr322mshry9ZskQvvfSSJUEhtxiGke4QAAAAAAAAAAAAAAAAgBBxL66aOXOmXC5XyOuGYWjmzJmWBAUAAAAAAAAAAAAAAAAA6Rb34qpVq1apS5cuIa936tRJq1evtiQo5BaHg98YBQAAAAAAAAAAAAAAgP3EvbiqpKREP/zwQ8jrq1evVs2aNS0JCgAAAAAAAAAAAAAAAADSLe7FVcccc4ymT5+u77//3vfa6tWr9be//U1HH320pcEBAAAAAAAAAAAAAAAAQLrEvbjqpptuUs2aNdWpUye1bt1arVu3VufOnVW3bl3dfPPNyYgRAAAAAAAAAAAAAAAAAFIuP94PlJSU6L333tMrr7yiL774QkVFRerRo4cOO+ywZMQHAAAAAAAAAAAAAAAAZByHI90RwApxL66SJIfDocMPP1yHHXaYCgsL5SA3AAAAAAAAAAAAAAAAAMgycf8soNvt1nXXXaemTZuqVq1aWrNmjSRp1qxZuu+++ywPEAAAAAAAAAAAAAAAAADSIe7FVddff70efPBB3XTTTapWrZrv9W7duunee++1NDgAAAAAAAAAAAAAAAAASJe4F1c9/PDDWrhwoU466STl5eX5Xj/ooIO0YsUKS4MDAAAAAAAAAAAAAAAAgHSJe3HVunXr1K5du5DX3W63KioqLAkKAAAAAAAAAAAAAAAAANIt7sVVXbp00dtvvx3y+lNPPaWDDz7YkqCQWwzDSHcIAAAAAAAAAAAAAAAAQIj8eD9w1VVXafLkyVq3bp3cbrcWLVqk7777Tg8//LBeeOGFZMQIAAAAAAAAAAAAAAAAACkX95OrjjnmGD3//PN69dVXVbNmTV111VVavny5nn/+eY0aNSoZMQIAAAAAAAAAAAAAAAAZxZHuAGCJuJ9cJUmDBw/WK6+8YnUsAAAAAAAAAAAAAAAAAGAbcT+5CgAAAAAAAAAAAAAAAAByQUxPriorK9PKlStVr149lZaWyuEI/+CyWrVqqWvXrrrxxhvVo0cPywIFAAAAAAAAAAAAAAAAMkWE5TXIIDEtrrr11ltVu3ZtSdL8+fMjbrtv3z69+OKLmjJlij755JMqB4jsF2mxHgAAAAAAAAAAAAAAAJAuMS2umjx5sun/wxkzZox69+6deFQAAAAAAAAAAAAAAABABtv9hyvdIcACMS2uMrNs2TItX75cktS5c2f16dPH917z5s21cePGqkcHAAAAAAAAAAAAAAAAZKAvft6mP/dqlu4wUEVxL6765ZdfdMIJJ+jdd99VnTp1JEnbtm3TwIED9fjjj6tZMzIFAAAAAAAAAAAAAAAAclu9WoXpDgEWcMb7gTPOOEMVFRVavny5tmzZoi1btmj58uVyu90644wzkhEjAAAAAAAAAAAAAAAAAKRc3E+ueuutt/Tee++pY8eOvtc6duyo22+/XYMHD7Y0OAAAAAAAAAAAAAAAAABIl7ifXNW8eXNVVFSEvO5yudSkSRNLgkJuMQwj3SEAAAAAAAAAAAAAAAAAIeJeXPWPf/xD559/vpYtW+Z7bdmyZbrgggt08803WxoccgNLqwAAAAAAAAAAAAAAQLZxONIdAawQ088ClpaWyuF3xXft2qV+/fopP9/z8crKSuXn5+u0007T+PHjkxIoAAAAAAAAAAAAAAAAAKRSTIur5s+fn+QwAAAAAAAAAAAAAAAAgOxh8FNeWSGmxVWTJ09OdhwAAAAAAAAAAAAAAAAAYCsxLa7yt27dOj399NNauXKlJKljx47685//rKZNm1oeHAAAAAAAAAAAAAAAAACkS1yLq+68805ddNFF+uOPP1RcXCxJKi8v14wZMzRv3jxNnTo1KUECAAAAAAAAAAAAAAAAQKo5Y93wf//7n6ZNm6bzzjtP69at07Zt27Rt2zatW7dOU6dO1QUXXKAXX3wxmbECAAAAAAAAAAAAAAAAQMrE/OSqf/zjH5o5c6auv/76gNcbN26sefPmqUaNGrrpppt05JFHWh4kAAAAAAAAAAAAAAAAAKRazE+u+vTTT3XyySeHff/kk0/Wp59+aklQAAAAAAAAAAAAAAAAAJBuMS+ucrlcKigoCPt+QUGBXC6XJUEhtzjSHQAAAAAAAAAAAAAAAABgIubFVV27dtVzzz0X9v1nn31WXbt2tSQoAAAAAAAAAAAAAAAAAEi3/Fg3PPfcc3XOOeeosLBQZ511lvLzPR+trKzUPffcoyuvvFJ33nln0gJF9jLSHQAAAAAAAAAAAAAAAIDFWA+RHWJeXDV58mR99dVXOu+883TZZZepbdu2MgxDP/zwg3bu3Klp06bp1FNPTWKoAAAAAAAAAAAAAAAAAJA6MS+ukqSbb75Zxx13nP7zn/9o1apVkqQhQ4Zo4sSJ6t+/f1ICBAAAAAAAAAAAAAAAAIB0iGtxlST179+fhVQAAAAAAAAAAAAAAAAAsp4z3QEAAAAAAAAAAAAAAAAAgB2xuAoAAAAAAAAAAAAAAAAATLC4CgAAAAAAAAAAAAAAAABMsLgKAAAAAAAAAAAAAAAAAEywuAoAAAAAAAAAAAAAAAAATOTHstHBBx8sh8MR0w4//fTTKgUEAAAAAAAAAAAAAAAAZDrDSHcEsEJMi6vGjx/v+//evXt15513qkuXLhowYIAk6YMPPtA333yjqVOnJiVIAAAAAAAAAAAAAAAAAEi1mBZXXX311b7/n3HGGZo2bZquu+66kG1+/vlna6MDAAAAAAAAAAAAAAAAgDRxxvuBJ598UqecckrI65MmTdLTTz9tSVAAAAAAAAAAAAAAAAAAkG5xL64qKirSu+++G/L6u+++q+rVq1sSFHIMvzEKAAAAAAAAAAAAAAAAG4rpZwH9TZ8+Xeecc44+/fRT9e3bV5L04Ycf6v7779esWbMsDxAAAAAAAAAAAAAAAAAA0iHuxVUzZ85UmzZttGDBAj366KOSpM6dO+uBBx7Q8ccfb3mAyAGOdAcAAAAAAAAAAAAAAAAAhIp7cZUkHX/88SykAgAAAAAAAAAAAAAAAJDVnIl8aNu2bbr33nt1+eWXa8uWLZKkTz/9VOvWrbM0OAAAAAAAAAAAAAAAAABIl7ifXPXll19q5MiRKikp0dq1a3XGGWeorKxMixYt0k8//aSHH344GXECAAAAAAAAAAAAAAAAGcOQke4QYIG4n1x10UUX6dRTT9WqVatUvXp13+tHHnmkli5damlwyBHUJQAAAAAAAAAAAAAAALChuBdXffzxxzr77LNDXm/atKnWr19vSVD+1q1bp0mTJqlu3boqKipS9+7dtWzZMsuPAwAAAAAAAAAAAAAAAAD+4v5ZwMLCQpWXl4e8vnLlStWvX9+SoLy2bt2qQYMGadiwYXrppZdUv359rVq1SqWlpZYeBwAAAAAAAAAAAAAAAACCxb246uijj9a1116rJ554QpLkcDj0008/6dJLL9Wxxx5raXA33nijmjdvrgceeMD3WuvWrS09BgAAAAAAAAAAAAAAAACYiXtx1S233KLjjjtODRo00J49ezRkyBCtX79eAwYM0A033GBpcP/3f/+n0aNH6y9/+YveeustNW3aVFOnTtWZZ54Z9jP79u3Tvn37fH97n7JVUVGhiooKS+ODNX7YtCvdIQAAAAAAAAAAAAAAAFjK7XKzVsXGYr02cS+uKikp0SuvvKJ33nlHX375pXbu3KlevXpp5MiRcQcZzQ8//KC77rpLF110kS6//HJ9/PHHmjZtmqpVq6bJkyebfmbOnDmaPXt2yOsvv/yyatSoYXmMsELc2RAAAAAAAAAAAAAAAMDWVq5aqRf3fpfuMBDG7t27Y9rOYRiGkeRYElatWjX16dNH7733nu+1adOm6eOPP9b7779v+hmzJ1c1b95cmzZtUnFxcdJjRvzaz3o53SEAAAAAAJJgQhuX/vtDXrrDAAAAAAAAANJi2rC2On9423SHgTDKy8tVr149bd++PeKaooQeGfTaa6/ptdde08aNG+V2uwPeu//++xPZpanGjRurS5cuAa917txZTz/9dNjPFBYWqrCwMOT1goICFRQUWBYbAAAAAAAAAAAAAAAAEI4zz8laFRuL9drEvbhq9uzZuvbaa9WnTx81btxYDocj7uBiNWjQIH33XeDj0VauXKmWLVsm7ZgAAAAAAAAAAAAAAABAVdn3t+QQj7gXV91999168MEHdfLJJycjngAXXnihBg4cqL///e86/vjj9dFHH2nhwoVauHBh0o8NAAAAAAAAAAAAAAAAILc54/3AH3/8oYEDByYjlhCHHHKInnnmGf3nP/9Rt27ddN1112n+/Pk66aSTUnJ8AAAAAACQuOQ96xoAAAAAAAAAUiPuxVVnnHGG/v3vfycjFlPjxo3TV199pb1792r58uU688wzU3ZsAAAAAACQOJ56DgAAAAAAACDTxfSzgBdddJHv/263WwsXLtSrr76qHj16qKCgIGDbefPmWRshAAAAAAAAAAAAAAAAAKRBTIurPvvss4C/e/bsKUn6+uuvA153OHjgPwAAAAAAAAAAAAAAAIDsENPiqjfeeCPZcQAAAAAAAAAAAAAAAACArTjj/cD27du1ZcuWkNe3bNmi8vJyS4ICAAAAAACZj+dbAwAAAAAAAMh0cS+umjhxoh5//PGQ15944glNnDjRkqAAAAAAAAAAAAAAAAAAIN3iXlz14YcfatiwYSGvDx06VB9++KElQQEAAAAAgMxnpDsAAAAAAAAAII2YH8sOcS+u2rdvnyorK0Ner6io0J49eywJCgAAAAAAAAAAAAAAAADSLe7FVX379tXChQtDXr/77rvVu3dvS4ICAAAAAAAAAAAAAAAAgHTLj/cD119/vUaOHKkvvvhCI0aMkCS99tpr+vjjj/Xyyy9bHiAAAAAAAMhMjnQHAAAAAAAAAABVFPeTqwYNGqT3339fzZs31xNPPKHnn39e7dq105dffqnBgwcnI0YAAAAAAAAAAAAAAAAASLm4n1wlST179tRjjz1mdSwAAAAAAAAAAAAAAAAAYBsJLa7y2rt3r/7444+A14qLi6sUEAAAAAAAAAAAAAAAAADYQdw/C7h7926dd955atCggWrWrKnS0tKAfwAAAAAAAAAAAAAAAACQDeJeXDVjxgy9/vrruuuuu1RYWKh7771Xs2fPVpMmTfTwww8nI0YAAAAAAAAAAAAAAAAgsxhGuiOABeL+WcDnn39eDz/8sIYOHaopU6Zo8ODBateunVq2bKnHHntMJ510UjLiBAAAAAAAAAAAAAAAAICUivvJVVu2bFGbNm0kScXFxdqyZYsk6dBDD9XSpUutjQ4AAAAAAAAAAAAAAAAA0iTuxVVt2rTRmjVrJEmdOnXSE088IcnzRKs6depYGhwAAAAAAAAAAAAAAAAApEvci6umTJmiL774QpI0c+ZM3XHHHapevbouvPBCzZgxw/IAAQAAAAAAAAAAAAAAACAd8uP9wIUXXuj7/8iRI7VixQp98sknateunXr06GFpcAAAAAAAAAAAAAAAAACQLnEvrgrWsmVLtWzZ0opYAAAAAAAAAAAAAAAAAMA2Yv5ZwNdff11dunRReXl5yHvbt29X165d9fbbb1saHAAAAAAAAAAAAAAAAACkS8yLq+bPn68zzzxTxcXFIe+VlJTo7LPP1rx58ywNDgAAAAAAAAAAAAAAAADSJebFVV988YWOOOKIsO8ffvjh+uSTTywJCgAAAAAAAAAAAAAAAMhkRroDgCViXly1YcMGFRQUhH0/Pz9fv//+uyVBAQAAAAAAAAAAAAAAAEC6xby4qmnTpvr666/Dvv/ll1+qcePGlgQFAAAAAAAAAAAAAAAAAOkW8+KqI488UrNmzdLevXtD3tuzZ4+uvvpqjRs3ztLgAAAAAAAAAAAAAAAAACBd8mPd8Morr9SiRYvUoUMHnXfeeerYsaMkacWKFbrjjjvkcrl0xRVXJC1QAAAAAAAAAAAAAAAAAEilmBdXNWzYUO+9957OOeccXXbZZTIMQ5LkcDg0evRo3XHHHWrYsGHSAgUAAAAAAAAAAAAAAACAVIp5cZUktWzZUi+++KK2bt2q1atXyzAMtW/fXqWlpcmKDwAAAAAAAAAAAAAAAADSIq7FVV6lpaU65JBDrI4FAAAAAAAAAAAAAAAAAGzDme4AAAAAAAAAAAAAAAAAAMCOWFwFAAAAAACAnNG+Qa10hwAAAAAAAHJEw+Lq6Q4BFmBxFdKuQ8PYJzVrFSb0S5aw2IzRHePa/vRDW8e0XZ7TIUm6cGSHqNs6HHGFAAv1bV2W8mMe1qF+yo8Zi8uP7KRLjoivPCBzzTv+oLR8Fun17zP6+f5/XO9mST9eUUFelfdxTM8mFkSSGGcWtM8jOzdUvVqFEbd5d+ZwFVdPfr+0db2aST+GHV0/vpsmHtI8Jceqlm/tkDid5c/O/jayXUqPd3CLOik9XixO6tdCE/qkJl9b4ewhbdIdQsLOHBx9/Hn/qYfosjGdUhCNvQ3tmNg469B29VQt36kx3RpJkr69drTOiHHcH+yOE3v5/v+3UR00f0LPhPaTiGnD2qbsWMHKalZL27FT7aDmddIdQsZ74fxDLdvX/af2iXnbSf1bWHbcVMvkdkw6MO+Z7zAS+ny4cURBXhYM2MJoWBx5DAdE8vQ5A2Larma12Ods+rdJ/Ry6FdrUqxkyN5UfZrKnVoGhk/tFH+OM7dE44O9B7eomHB/9iuialRbFfQ8vl3jHMGZKigqSfvyRnRsk/RiwpwkpmutEcsU0k9yrVy9t3bpVknTttddq9+7dSQ0KuSXfGdsNjf5tyvT17NFJjiazrZ07Vm3rV/0m3KOn94v4/kn94ptcOXdY9Jspt044SN///UitnTtWF4xsH/L+2rljA/6eNjx0m1h1bFg7ZH9eJ/S1tnE7ZUDLqNuEiyWaSOeRTE+cPSCh4yYa60HNSjQ5SjpakQ6dGtWO+zNnDm6jqUPbqUHtAxM4g9vXq3IsVbF27lh1b1oS8/ZN6xTFvO1/z+qvtXPHpiXf+XM4POcZzyKUqsa8Zs6RalFWI+HP/7lXbItywi1MeWbqwLCfCZ6gsFK0xZQjOiU2GKzqhO7dk3rp0HahZc3/OvvHXpXr379NXV++v/kvByW8L+8+8iKsPrrhT920/LojAm72xnKD2N9rfxuiBRMP9v19/vB2YfPPtcd01dq5Y9WxYfz1XzhvXjxM9Wol52bhf8/qH/B345LkfNvn3sl9tOzKkSETdned1Mt3HZvWKdKX1yTeL421rXjj4qExbXfTcT0SjsUKa+Yc6fv//6aF3vzr2qQ4rv11bVKsucem5pxum9hTt51wcMBrVxzZOeGyvmDiwZaVgXcuHZbA8XvqodP6JnS8lnUTb+ei+euQNnH3Ucw8d+6gmLb754m9YuqHRxJuzDMuwXb3hj91141VLKsfXzEy4c9OGxHf+OmyMZ0TPla6XTG2S8T3OzWqreZlNXT2kMQW1nxw2YiEPme1Lo3N69Z4vsDWrLTI17atnTs25vbk0TP6aeX1Y3TXpN5aO3esalTL15XjuoQdKyyY2NN0P8f2ahbQl+3YqLbGH9w0Ylmv6njEv2yfP7yt5hxSaXqMZKqW79Sns0Yl/Pm1c8fqu+uPMH0vWf2w8T2b6IS+8c0FzZ/QU2vnjtVz5w6yNE3Xzh1rOn6vludM+1i1qswWfV85trO6VbH99OrbqkzDOzX0/d2stEi3Tgj/RaARnRuGvHZk9/A3JKvCf27C7BhXjQut2/2v9zNTB+qGP3Xz/f23UdbfVPavL8PlNavK4Jo5Y7XqusN1UXdXxO1qh/nCR7hxxKobjjR9PRaRFuaZxTHdZH7Xah9ePsJ3PT68fKTuntTbdLsT+jbX3ZN6mb5nlV4RFvfH08+OZUGE2RcJHo4wBlgz58gqt5+PnJ7YGCNZrjgyvr7q/51n3rd4cdpgrZ07Vr1bluneU6IvPj2xXwudGMO9ka5NivX4WYnNoVstXL11bJi5ytcvHqrl1x3oZwxqV1er/36kXr3osIDtVl13uG7o49JV4zr79n9BmDHH+cMP3B9qVFxdh7QKnG+MJ51iHRPG6s8HN/X9P977A01inJcyW8yTzDrynUuHa+rQ+Mc6S6YfFnNdkej9obVzx0asT64cG7lsH3VQ1b/Qdtek3mEXWD137qCw+dgq/zjuoLTcY7HDfZ106BjH+DialnVrJDQf4E37gjyeeZQNYrqKy5cv165duyRJs2fP1s6dO5MaFABki+z9PhiQWxw2flxeUiNL7EuyiMAw4kvUquY9h7LnMtq5HAKByKvZgCoHSJ9s6btkE/phsLtcrTcombFyKNmplat5EJnLSGGuDZ4Kc1B72VIq84RdkQIAoonptyx69uypKVOm6NBDD5VhGLr55ptVq5b5Sr+rrrrK0gABLzpcyER0xqouE9LQP0YmnZPPm8LZOODLvjNCVcW7GMsOMjDkmGTpaQGIE3UB7M6Ocyd26hsED9fsFJs17Hf9AQAAMkGy+oXcLrBONiQl+QHIbDEtrnrwwQd19dVX64UXXpDD4dBLL72k/PzQjzocDhZXATnADpO1yZv/TP+5IT0SWRRl14VU2bjoCACA5Ah9vhvtaHawZy8NAJAstN/RZUoaJTrvaIf5SgDZLfsWZUeXjHO205R6tl7SRO5b5GL+BoB4xbS4qmPHjnr88cclSU6nU6+99poaNGiQ1MAApI/VndtMfOoGkCvsNJgF4kHetadMuWEDHJBdedaOC79tGFJMGMJkL66tfaXi0rD4InWSWf9Tjq1DmQCyQ65Vi5k6xoBHrl0+s7aWvkxiSDakG3PfiGlxlT+3252MOABkkExvPBh8wUxVFgHmSpayyw1bu8QBZIpo1VumFKmUx8lMV0K4QZe5kpXl/feb6eMIANknU/pB9hBfHZ7qrlS29kHokmaa7MyH0eTmWQeirOaG3L7M0Ut6JvarUhJyhqQL9RgARBf34ipJ+v777zV//nwtX75cktSlSxddcMEFatu2raXBAUDq0YNE/DI51zBoil1qvkmfWfkpk2LNFfHM12TI3I5tkF7ZK9uesppoXk3FwqcsS2oASUKbCyBYJt6wTwW+fBYrI615KBV9YHJCYvzzhZWXiXFPZqJKtb9sm78BkHmc8X5gyZIl6tKliz766CP16NFDPXr00IcffqiuXbvqlVdeSUaMAFKMPiRykVUTUpQfAFXFZE5sUv4gqxQfD0g15igDha2LSaecRzttHdISsDeKKKqCviWyVa7VjfTXwqOaS4wdnjZKGwUgUXE/uWrmzJm68MILNXfu3JDXL730Uo0aNcqy4AAgLHo/OYXLDTPkC0SS/mG6ObJt4oLLfNK/pc0MYs6ifcl8fJsVyEzeopvKEpyO6iK5PYzcrf+y4qdnTU6BLmnssiIPZChS3jqU+dhY1X4nsp9sye+xLnCxuq9kpPlJcumQKadLO4psxPQQrBb3k6uWL1+u008/PeT10047Td9++60lQSG3UK9lv2Tc/CTfAAAyUbwDOgaAiEWmTNTFimyfXXJt4hz2l+15MtvPLxvkSjtHXkQqMW5CNFRJAOyEZisxVqUb/VQAiYp7cVX9+vX1+eefh7z++eefq0GDBlbEBABZgz5a5uAJB5mDchUomU/v4RtLAOKVaRNUhmF9PZppaZBKdLcApBt1NJABMricUseklp2Sm24uMg1zfvvZqSJB2nGPCEA0cf8s4JlnnqmzzjpLP/zwgwYOHChJevfdd3XjjTfqoosusjxAALmBPguAeGVjtZGN52SmqnV+LrUZVT3VHEoqwDKZXG4csl/8VtbZ8dywTFY6cBMCiB/lJjflUp89k9lxMZANQwKis6jSs2vdade4Ui2r0iGF5xKcbsn8oqhn/3FcK7/tknV9k32+AMJjLAqrxb24atasWapdu7ZuueUWXXbZZZKkJk2a6JprrtG0adMsDxDZj24FEpEp+YaOszUyKRkzKdZMla7ucFZNoFjEztk9V8tiXO1OEhLJYetcUTXUAdkpV+sKM+RxILNkc/2VxadmmfB9rtxIPW6SJCaT2/pMydmZEmcuYo4WsAe7zRulq2m0VyrAH80FwiFrQEpgcZXD4dCFF16oCy+8UDt27JAk1a5d2/LAAGSPZDxKM4PngwAg51kxSM3kGwPxqGpSeT6fI4kFWCRX6pd0yKSktdukv8QkL4D0ofpBsmVLG5dJfR0r2f/y2T9CxCfeOsOOffu0izFJGB/njly61rl0rgCsFffiKn8sqgJglWyZRAnGbzRXHUmIYL7qgryRdna+BEycpY+d84Vd8K1pxCLRfJJo7kpWv5XsDgC5ifof8WDuJ/twSRMTS91J9Zo+sT45kfyfXg7Z6xpQZgEgezjTHQAQ+08f26k7hHRL3qQLXV0A8LLrBHe236hJ2cIwu17gHMDiayRLtteP8UhWUlB8QTFLPooZYA+Z9oUAvmADIBzuLcFucjlHZlj3AhmO/iGsxuIqIMukYuLDDjcUGBABqWeXgU+64rDL+cMjV64HrZ195EqeqyrSCZGwsBBAutFMIdPQdMYqMKHok6YW2TRyGjCPjWyQrfVqlp4WogiXnzNtYTmi45LCaiyuAgDAQvTVACA7cWMrO3FdkSvooyIzUClXVS7fPKBNzx6ZfGMzcyPPftl+bTK42CTEqjrfP91i/SJIjiV1TklWOcq18gkA2SyuxVUVFRUaMWKEVq1alax4AFSRFd8Gz+RJDADZz/soV775l3yZ3ByQP2KXKTeigvs4yc6fGZz90ypT8lMkmVx/VOVx55l71ogF1xd2lA1tBmClVPdBEimDdi63mdyHQ3azc7lBfLLpWsY6dkxG3Zr0+Zw4DpBFl7TKUpW/q3KcVDwNO5vKOay9nmQNSHEuriooKNCXX36ZrFiAiPhd1NSJ1veMt/PLYi1kO3J4brDrwCqZ+Y+2N/2SegWS0D4bMsg1Mci2vlG088my043KqtPlJ/QSl21lzCs7zwrpZNdqhryOaBinJMasebRLm2mTMJDFkp3H7NqmInZW1oeZUKWxILXqYr3OmZAfMoVVdW24/TAPk32o62C1uH8WcNKkSbrvvvuSEQsAACHo/MSPMUDm4toBAGBvtNVA/OxUbuyykARIBzuVRavZ5dyoYlBViS4etUsZQAZJY56x6yLpZJUj0/6nDQttJtyHyYZ21q75H7GxYdFFiuXH+4HKykrdf//9evXVV9W7d2/VrFkz4P158+ZZFhxyAyuBkWqRJ1PJj0A4dPsRjDY8M3CZkEqZNtGVafEmE3UFkHvsVgemox5KR9Vns2SPmZ3aiUy4+QfkEvvXayn4GSnqJVtL9WIGckOg4PKR9J8FTO7uAQA5LO7FVV9//bV69eolSVq5cmXAe3z7C4AZbr6jqjIpC9EWpkAWJ7HDYa/8zuRgevhXI1yB8FJd3VIecodd6uFE+xSJlo1U5PFUpS3jDyRVFvdFUy1cfUUJBpCp6IL4sVliMF0Hq9grZ2eebJpbyZ4z8bBZtZ21sqkMALko7sVVb7zxRjLiAIC40NGDXTFXg6pwyF4Dc+ra9OMaIBZ2X9hLPgasYfeyDnsgn8SH1ILdpbNIp/LQ/v1FymXsWFCOXEV3xwKkYcqQ1IGqUn6tavaoQwAkypnoB1evXq0lS5Zoz549kujIA6iaeKsQahwA2dj1yMJTMlXVa5eN1z6cKn+bidkCIKJsrE+y8Zy84vk5j2QlA98yBQAguTJ5CJPJscMe7NrXtGdUqBIuqiTubfujDUM2oojDanEvrtq8ebNGjBihDh066Mgjj9Rvv/0mSTr99NP1t7/9zfIAkf34ViWASOj8IJxUZw0G26Hs3IbHcwM+m5iddbicm6wUoqQA1kik3bHDN0ABpIaNu2FVlsWnZpmwP6mYw3V5Dp96lWRKebPz2DNXRBpjU/4AxCPZNXpGNBk2DDKX+pGRztWGlwY2QdaAlMDiqgsvvFAFBQX66aefVKNGDd/rEyZM0OLFiy0NDkB6RGsgsruTRfOYq6oyUZfVRcKGKKWIRbYMhHN1kRiA7Oxzp/Kb+FWtPbOlHQEiycZ6JhNkZLJTJ6ZNrpRTK9rdbBw7Zd8ZpUvyU9Kyn6riqsck/l/BsOYC8cVLJMT0m5DkpURkwzideh7IbPnxfuDll1/WkiVL1KxZs4DX27dvrx9//NGywAAgWei6AImx2+CFCQ0gt1DiM0M2TBJlcvuS+akPAKmVuTU+slEGd0GqzIr5Bjv8nFo29IWzVTqvTSrKtt3m7DKFf7pl8jgwmbzJkklZzFPeY7ue/l+4zvVylAklgGIKIN3ifnLVrl27Ap5Y5bVlyxYVFhZaEhQAAKlm1QA61wdhqBq7DRDJz4hXKiesk32sZOb/XCta8aal3epCwB/5E4ifncpNtvdvs/38kH7JKs92qidgzg6L16okyfUjeTh30NRWXdL7Kwnun3Jsf8m+RmQBANHEvbhq8ODBevjhh31/OxwOud1u3XTTTRo2bJilwQEAgPgxEMwt6byBkuiiRG76ALCLZNRHmVrHpaL7QB8FsBe71VdUEYgV7UliSDYki82aEyDteApW5kjFteKphtbJ+IW+ADJe3D8LeNNNN2nEiBFatmyZ/vjjD11yySX65ptvtGXLFr377rvJiBFAhnMkYcaW8Qmslox8iuTI5kvlcNirfrNTLOmS7iRg0iC8TK4LuKr2Yed6LtE8nujn7JwWgJ1wcyT5qI4Ae8jk/jbSj7o8eZjDjB/9NyC6VC0KzPXSyFwvkNnifnJVt27dtHLlSh166KE65phjtGvXLv35z3/WZ599prZt2yYjRgAZjm9qoCrIPslF+YwdKQUA2cmuE3uJNNFVu89CSwcAQK6x4xqNREKySy/GjukJwDp2qWsyXbIXu2VCVUxeAlKDsgarxf3kKkkqKSnRFVdcYXUsAACkDYuMYpEJQ1PAI1smteOdcIrnvLMljVKFZiI22ZCvuNbJk0lJmwVZGTkqG8Y1lD8AwaL1MYOrvnTVI1lQBSNBVl36bBhPpQLplDpW5G07142peBJcpuRXG1+mrMKT9IDMltDiqq1bt+q+++7T8uXLJUldunTRlClTVFZWZmlwyA3ZMPGXbTLh0cJVeXRmBpweMhoZDImzW5Nos3CQAXi0dWxoKYDMRS0HJI/d+sKZKJf7GMwvAumTCaUvl+tHwBSFImVIagDIHnH/LODSpUvVqlUr3Xbbbdq6dau2bt2q2267Ta1bt9bSpUuTEaPP3Llz5XA4NH369KQeB0B2Y74NAAAAAJDrGBsDsIts+SJktpwHAAAAgFBxP7nq3HPP1YQJE3TXXXcpLy9PkuRyuTR16lSde+65+uqrrywPUpI+/vhj3XPPPerRo0dS9g/7Y3CaOqQ1kDsy4Ul1AAAAAJAtkjkCY70cACAXsEA8syV7Otpu0912iyccyhUARBf3k6tWr16tv/3tb76FVZKUl5eniy66SKtXr7Y0OK+dO3fqpJNO0r/+9S+VlpYm5RgAAABAtsmQ+RsAAAAAAAAAAADbintxVa9evbR8+fKQ15cvX66DDjrIkqCCnXvuuRo7dqxGjhwZddt9+/apvLw84J8kVVRU8M+m/2JdDu12uz3bV0FBXvy3GJuXFlXpmJG0qlsjru1rFUZ+2FxFRYUObl6nChF5FDgiXxOnXHHtr6KyMuo2DWoVBOaL4H0EveaswvcxDcMIm5fa14/vmkTTul70/SWar3s2L4762bKaBQntO5Jw1yiWzyXioGbFqlczet6vqqKCuJtEX1p0b1Lse61Tw5oxfbZRcWHcx4umtIanHPVsXhx9Y0kD25bJHcdXUkoKnQlf/6poWz8wTdvUq6mKigod0iq2BdfN6lRXRUVFQm2AV0VFhepUz4u+oaSGQde2dd0aqqioUN2a1aJ+tl9r83MqLjTPnw1rF6pDg9jyXCJalEVuAzs3qu37f+OS6gHvtQu6bgc3L/H9v6rfhKpXM18D2gSmVfsGNQPyZm+/9rAqebbSrO+SAO9n+0bIt42Lq6miokLN6hzIQx0bxtcuFToD2ziXy6WSMPnHezzDwq+mVVRW6pCWdSzbnz//MtixYS31ahH5ONUTqNelA9eqR9PAujS4rxIpL3RsWCviMbo0ivy+fyzRtK5bQ41qh2/va1TLq1L9Fwv/OItMmuyDmpaEvhiBt71JhXo18+VyBfZtm5d62o1ExgEVFRXq08K8nOc747sO1Zzxl816NQtUVhRbexVscLu6CX3OTO3qBzJCWeGBcuXfFgTLiyF9alWLLQ2rOQ21iaEfHkm4zx8coZ/VP0w7LiXehw7eR6JalB5op3s2L/GNLXuHqUsrKipUo1pgXoo3D6dLtHQ6qFmJ73qU1oh/vJQnd6KhWapfq1LTvmNwOWtTL3xf0TDcAe1a49rR+6tS9Dm2YA1rF5iOf9rXrxGwff1a+aqoqFDtwvB5raplqbZfvg63n1S0QVU5RqQ06NK4tunrVdWhQU21i3O+pGGUeZ5EhWtPujWNPkdid0M61At5rWlJoWXn1b1J7aB9GWpQK3w9WFnpUtcmgXmqY4xzHvFqVudAv6tD0DGKCpxqUhxYP7WqG1h/VFZWqrHfNlakWXAbEctYINJ4Lx7eY9SI8rsj/VqXhY013H4TVVkZfj7YrNZuWVrd5FVr5TsC27H6YeYP29WvobrRErOKDmoWvo8Yrr9lJpZ0694ktK4vjTBnZUVdXDfBMUayuNzx3Z8I17eoke/wyz/R+4Vt6hbF1B769zf9Bc8zxKp+rdj6aGbCXX+zfOS/vf92FRUVIWN97zb++w+Xf2tVc/jGFn1alKpZSWC/MJ68WVFREXU+qFuT4pC0NmtjJalH0wPpEOuculesZTt4jlSSWkaZc62KRMt7PHP/8e7fe9+ioqJCla7w9wuD52eC1Q66R1q7er5qFsZXP1VUVKhTmHm5orwUtF9GZcR0TsYcXouyIt8x/efzM1U8adS/dZ2Yt+3bqjTiHMHBzUsSmquLNn7mn33+xcJhxHA35csvv/T9f/ny5brkkkt0/vnnq3///pKkDz74QHfccYfmzp2rCRMmxJ2pInn88cd1ww036OOPP1b16tU1dOhQ9ezZU/Pnzzfd/pprrtHs2bNDXv/3v/+tGjWsXTQBa9z0RZ7W7Q6sCA9v6tbL6wJviLUvduu8rm79uku68csDDei5XVx6cKVTuyrNK9N6hYY27fO8V1JgaHtF+Er3yOYu9Sgz9PZ6p77Y4tDABobaFBu6e7mnce5dz71/O7fu+DZPwxq71aymoTU7HNr2h0NL1x+IeXgTtyrcUjWn1KSGoUdWhzbw1/Sq1LrdDv1rRZ5qFRg6tpVbb/7m1I87HSrKM7THFRhr11K3vtl64BgFDkMVhsOXZmNbuLW3UnprvUMv/hx4vO6lbn21NfxNxmt7V+qe5XlqX2JocCO3rvvMk8Ynt3OFxL5gQKUueP/ANRjXwqWmNaRlmxz6ZFPoMW7oU6krlnm2P6+LS3d865QRNOxeMCCwQ3XvCmdAvMHHHNvcpcY1pMdWO3VRd5c+3+zQim1OjW3h0r0r8rTb5VC+w1ClEXq9m9U0NKOHK2B/XvP6V+r1Xx0qraaA8+5Sx63dlQ6d0t6laz878Lkb+lTqhs/ydERztxatzfOd4z+/zVOPMrdO7eDWY6ud+mSTU9f1rtSsTwKPeXH3SjWvpYBY8h2Gzurs1p3fhu8U9qzr1glt3KqeL9PzkKQ/tXLpkHqGLt+f9oMbufX2/jya7zB0Qlu3ab40U7+6od/3OjSmmUtHNPc0G+GOG86CAZX6dqtDm/ZK+9zSCz+ZH3vmQZX6cotDXeoY+nabQ0MaG6qeJ72z3qGyQumeFYGfa1hk6PKeB65n5zpuNSqS3vjtQP45uK5b41ocyNdeveq69elmp+9zfeoZ2rDHIbek3ZXSnkrp970O/bLLk4+Cy6U33/6yS/rH/nrppr6VWl3u0I87HVryi2ffdQsNbd534HMjmrh1eFO37l6RpzU7HLqiZ6Vu+PxAbCe0dWnldof2uhRQ5g+p59bHJmXM66qDK1W3urTXJb31m0M9ygx9vdURkNYXdqvUrV97jnVr/0rN/jRP2/7wxDauhSvsdfE/X0lavV1aWe6UU4Zq5EtPr42clxpUN9SnvlvFBdKaHQ59+LtTXUvdGtbY0F6XdO93oZ8/uoVL72106oKuLq3d6dB9+7c5pqVLw5sY2rRXIde0mtPQH+4DaX14U7cGNHSrrFDauEe+dHbI0EFlhlaXOzSsiVvVnFKDIumu/fV9gdPQ+V1cmvd1vo5o5tKY/fn+vQ0O/feHA7HO6FGpskLpso/zfccb3Mitdzc41L3M0FdbHOrfwFBpobR5r7R0vVN/uKX3Nniuo38elDzX8H8/O5XvkHrXN/TwSqdOae9WxzqGaZm7sW+l8h3S6786lO+UnvvR/Dr8qZVLTkk18hW13A9t7GmLJOnMji79y+TaSJ56eGhjQzM+8sQ1sqlbNfIM1asu/bpbGtDA0D639OZvThU6Pe2itw50Ogxd3N2lm76Mrx7pVOKp96Z0cKvSLV31SZ52VTo0qKGnTNUplL7e4tCOCqlfA0Nv/OpQ69qG2hRLOyvka4skqbjAUHmEPoFXcPskSRv2SG+vd/rq1Fh497OjQnpwpVOry52+uvWYli45HdKQRoYcDs/iszd/c6h5TUNti6XpH4SmU+c6bq3d4dARzd3aus+hDzY6NKSRoSNbePoq3vwyuplbRzZ3+/6uU81Qm9qGdlZKUzu75XBIc7/I02+7Q9OiXnVDZ3R06R9f5sll0p4e3tStvS4F9H9mHVypojz52h7J07/y75eMaebSS78E5qsre1bq220OX1sqSX/t5NKaHQ4t2d8nXDCgUm/+5tAbvzp1SQ9Pmi1d71DPuob++32evt8RGGO0vNy2thHwmXEtXGpeU+pUx1Pe97k816Ewz/ONlMMahw6btv8hXbU/Xzeraah/A7fqVZcaFxl6f6NTe13SQWVuLfgm8Br+o2+lvtnm0IMrI5fHBQMqtXyrQ3f7tX1/auXSM37pdE2vSpUWeur9RkXSncsD91m/uqGJbVz6fLNTG/Z6FroUOqUKQ+pX3+1rEyRPv+SDjU59v8Oh9sWGWtYy78P6G9TQrePbuPXFZk+71a9BaH11U1/PtTuozNCyTU59usmhzfsccu7vj6zf7VD1PEP1i6S9ldKAhp60/nmndPNX4euJ8S1detav3hvf0qVKQ2peU/pttwLeC9a5jltdSw0NbmTo000OPbTKs233UrdO6+iW0yGtLpdu/yb+/s7uygPtgjeNivI96f3mb069uyGw7uhQ4pZhSKvKD7w+trlLhzcz9MkmhzbsccgpQz3req5HWaGh5jUN1SqQCpzSJ5sc+nmnQ6ObuX359O31Dj21Jvz5T2zj0ku/OLW7UjqxrVub90nDGxt6b6ND9QoVkOeOaenytS/tig0V5Rmm44ojmrm1eH/fp38Dt3rVM/Tb7gN1m+S5vg+tcurbbaFpcHI7d0hf2eugMre6lBrq38DQ02ucAfWOv1Pbe/LAIfUNuQxP+7i30qFXf41eXw9v4tbrftvN61+pi0zq3/n9Pfm5aU3p7uVOX/3YspahMzu5tLtSuvGLPDmkgLGItx0ILtP+GhYZ6lzHUGmhEVDOvf7epzKgfvXy76OObuaWQ4YW769nqzkNHdHMrWFNDC1d79Arvzh1dS+X1u2Wvi93aGhjQ0t+cQaMv731yu97pOv9+qg39KnUgq/ztHFvfJO9Pcvc+nzLgf2btQOSVDPf8I3rz+ns0vM/OX398GCndXBp017p/4L6rtf1rlRxNembrQ4tDJPON/atlPf+464K6e+f5+nIFp76e90u6dddDv28y6FOdQzlO6Qedd2at78uynMYmtffpRd+cuqVdbH3A4L1KHPrS780ua53pd5e7wyZB5FC2ytJKis0dNXBLu2slK7cnydKCgwd29qtTnUMzf86T81revLSgAaGdlVKd36bp51B8ybeOtzLMKRbv87Tjzs92/Wt76mfgscgZv0jf/7twOimbh3Zwq0/XPL1GyVPuzu8saE8p7Rim0O/75UGNzrQ1l77aZ4273MEzHv4H9t7jGGN3Vq706E1+9OoZ123Pt8c/tpMbOPS4/v78wsGVIb0EcsKDV3dK3C+oMDpmUP4wyU9uCpPW/fJtG/kdUZHl+n4xrc/h6Gb+7tC+mCd67g1pPGBOSjJ03f7Uyu38h3Sy+ucGtXUre5lnjouuI4qyjN0dmeX5u9v22vkGdrtcmhEE7de21+/+dfp8bilX6Uckl7/zaEOJYbqFR7o73UrdeugMkMrth+YExrexK1jWgYuRHz5F4f+93P8xw62YECl9lZKl34ceP5ndXKpa2lgP+TI5i51LzN04xee14LL0zEtXdq6z6HN+wLH3v5OaOvSexucGtDA7cs7wY5o5lKb2gf6YaXVDBXmSeV/SLtd4fOKf70nefpML/7sVPkfUsc6hnZXSsMae9pR//M6vaNLX2/xjKslTzu6crvn/+2KPX3SLnWMkDbjpr6VKsw7sC9vfn/rt8B+uNc5nV1qXMPw9Xcl6eZ+lbr4wwN/16lmaFBDz7jil12OgPJ3UbdK/eu7PB3T0q1Ne6X1ux0B7YG/cS1cKnBKTWpIbWobeuM3h7bsdWj5Noemd3OppJqnb/7jTodWbHPo2t4uVfM7l2ldK9WmtmdOtEkNqW2xYdqO+6tVYGhqZ5e2/RHaZtSvbujcLi59X+7Q2+udGtfCrfYlgeOBV9YFzrc0qWHogq4uX95sWsNTD38dJm8VFxg6raNLr//qDGgTJrZx+frDUvj5tykdXGpfbOjt9Q4dUt/Qgyvz9NP+djN4HtVrwYBKrdjm0MY9gfM4fep5+sbePrEkHdvKpfc3OvXr/nrqrE6ugHTyL09FeZ708u+739q/Up9scuhRv/GEN682KjK0fo952TiqhUvlFQ79uMOhnnXdpn36ye1dchtSn/qhYzTT+d5+lcpzSu9ucKjAKT0WZoxzUfdKX5vvr0eZWwVOT756Yn89MK1rpR5bneeb77uxb6Ve+MkzTzChjStg7mjOIZV6eo1TDof08e8HrvWkdq6A9JE8fU3/OYDzu1Tq510OFeV7+v3Dm3jG9G/un/fbss+hbX9IgxqazxtN6eBSz7oH0um7bY6QMWOwLnXcIf31BQMq9e4Ghz7f7FCdalK3UkP3+41nu9Rxa90uh7ZXONS4hmE6xzCqqVtfb3WopMDQiv111iH13apf3dBbv4W/v2PmmJYudaljaM7++v34Ni4VOqUfdzpUbX/9+5FfWi8YUKkPNjr0n+89Mbep7akr+zUIzEPvrHdonyu0j+k1r7+nH/LaOoc+3ezUb7sd6l7qab/znYbmf52vg+u6NbGt29ff9F6XBtUNndHJpU83OdSwSAHlTQqdO/FqXGTorM6ecca3Wx3qU9/QO+s98w296rm1ervDtG8teepx7xyHJP1QLi34Jl/jWrg0somhG7/MU4Xb05/a45I6FBtquX/dxW+7pS+3eMYL3rUrj6xyatmmA3M0wdyG9MavgffKvHP3v+/x5OHDGhsqypOu/jRP2/9w6MyOLnUrC8y/J7Z16b8/HBhrda7jOc/LD3aprNBzfd/d4PCNeYKd18WlBkWG3tvgaRM27pWGNzG09DeHXIb0/P7r26eeWye3d+vt9Z5xcOvahp5a4wzo+5rl526lnrm20kLp5V+cvvsQw5u4NaCBO2CeX/LUQRf5tZ1Tu3jq739+45nLOriuW5/5tZ/+9+SObO7Sy784dVRLt+kYUZJa1TK0dn//vUF1Q1cc7Fmg9NUWh69Pen6XSt3+rXl70qeeW+2KjYC254pledq5f950ZFO3Xl0XWids2SfN/tSzz791r9RXWwLHM5Pbu7SzwnOf5ZD6huruX7O0crtDd4S59zW+pUsdSgw9ujpPHUsMbdx7oI82trlLLsPhm3eQPPOQkvTsWs991UY1DA1qaOibrY6AOqC4wFDzWoaGNTbUvsRQpdszX7Cr0qFWtT13K/9wS33rG7587K0Hgscj/vtsV2xoaGO3tv3hqYu37PPMSw9v4tY3Wz33s7b9IdUu8JTfnnUN9aoXWCbX7HAE1DltaxtqVdvQ9+UO9W3g9rU7Xqd3dPnukzSobmh7hXRcK7ce+948TVvXNjS5vUul+9c07q6Urv4kL+AeipmWtTzn9utuT93fp547pK6Z1rVST/6Qp9/2t+nee6PBhjR2a+Mez7hvYENDJdUM/brboW+3OlS/ulReIe3Yn9/qFRqa0tHlu99mZu4hlXr5F6fW7/HMczocnnx1crvAvkjPum5Nbu/WhX7t6iH13b62+NhWroD+0PV9KrXPJS37PbBePbmdS5v3SYc1MlQU4Z5sONHGz7CH3bt368QTT9T27dtVXBx+sW1Mi6ucTqccDkfUb7U7HI6oq0rj8fPPP6tPnz565ZVX1KNHD0mKurhq37592rdvn+/v8vJyNW/eXJs2bYqYEEifo+54XyvW7wh4bdV1h6v9rJcDXuvfulSPnHaIJOmtlb/rjEc+8237r3fW6KYlqwK2v/bozjrhkOaS5NtXw9qF2rBjn8xM6NNM1x/TJeT1z3/epr8s/Mh3rHBueWWV7l66RpLnCVOfXTnc996Ha7Zo0v3LArZvW7+mFk8bFHZ/qzbu1JG3vxfw2rCO9fTGd5skeb798NTZ/Xzndu/JB2tIh/q+bYPTb9bYTrrufyvCH8/v3H7aslsjbn1HkvT1VSN0z9trdPsbP0jyfFt5+exRAfs3S5e+c97Q1t2eVZ4fzByq/nPf9Pz/0iGqW6swJL7gfVz9/Lf690e/BLzv/5mLRrbTOUPahD0fL+9nCvOd2lfpmdjr0ri2nps6ICSG4Die+exXXbLo65DXD77+de3cV2kad6zxSNLsozrrxL7NQ1737tP7Wpt6NfXDpl1h4zQ7D+82LrehTle/Ikl68byBOvKfnjw1/qDG+sdx3QM+65+/JOnUAS304Ps/hT3PcMf1qlktT8f3aaYH3vvRdB+R4o4k+HNHdmuoBRMO8r3+xJl9dXCLOr6/e7Woo/+e2Tfks8HpPKR9Pd17Sq+Q40197DO9suJ3SdKfDm4iw23o2S9+C9jHD7/v0ujb3pUkLb9mpPLznNq4Y58G3fSWJ6az+ur4/fWIJH0xa7hqVAvsgIUrU8GvR0r3cGkXqbwedvNS/bZ9r++9Mx/5VG+u3CQzka5NtPwQ7brOf2217njzh4if8R7j8jEdNWVgS23fU6E+f38jYJva1fO1Y29l1H0UFTj15VWhT8T0vt+tSbGeOad/xJit8tv2vTrs5qWSpE+vGKba1c2/HRGtzgq3jX+btGNvpXrd8LokaVTnBnpl+caAbavlO/XN1SN9+7ln0sG6/JlvtHnXH5KkBrULtXF/Oxpchs4Z0loXjWwf8Vy925q1JWbn5v9+Yb5TX18d/SmmkZx438f6eO1WSdI1R3XWNc8v9x3r+hdX6KH9dV5wHOFEy/dnHNpK976zNup+oolUhisqKvTKK69o1KhRKigoCPnMeUPb6IIR7Xx/Ny6prqUXHxawj3H/fE/fbdgpSSqunq/y/WXoL72b6u/ju+rON3/Qra+F/vy3N5a9FS51v/Y1SdKrFx6qlmU19N9lv+jK5771bdfrhtd9ZdOsLgvOT4d3aaA7Tuip+99dqzmLV5qeezjefQSnf7S+R6K8+x3aoZ7+dXJoO+K/jf+xf9+xTwP3txOTB7QIyX/tG9TUi+eb9xW9++vTso7+c0bfiMdqVbeGXpl+aNT4T+nfQrPGdooae7BofYQWZUV67cLBEfcRSTz1RLhr2uGql0OemOdtSyTpf1+t1/QnvgzZx6oNO319p0gm9Gmq/y5bF/B5b1xnDW6lGYd38G376Ic/afYLgX3yo3o00sRDmumk+5ZFPI9EBaehf98ols/4p7O3Dx6uTfK+fnzvprphfNewddSiz9bp0kXf+D4XfNy/9G6qJz9ZF7BvL/96wV+z0iK9cVFoXnvl242a+p/PTc+zqMCpPRVu3zH++thnem1/vy9cvyvW6/Pj5t0aOf8d08/NXfyd7nv3x6j7DT7+R5cNVd85b4Zsd1yvpnrqU/M8OPOIDjp9UKuIse75w6Ue13nq8TcuGqxmfk9t8+7HO4Z67MOfdM0LoePKE/s2Cxi/NatTXW/87bCQ/ZQU5WvZ5cNN66ruTYv1/JfrA87DfzzuL/g8JemC4W113rC2vr/9x0JeY7o21G0T43/quvc43vOKVj+0b1BTqzbuCvu+Wf21r8Klbvvb00jbel8Lji2WvthpD32it1dv9v19Yt9mmn1U4DzIc1/8pouf+irkOCfc+5GW/bgt5HUzZmMx/9fr1qymD2YOjbgPf1/8sl3H3fNhwLG9+/Kf+zHbNjjt/j6+iy5/1tNH+faqYVr04iu+BWqS1LVJbT17zoH5guEd6+ueSQeHPUczL5w7QOPueD/s+95+7eXPfuOr68KNAW/6czf96eAmIfuodLnV+ZpXA167ZHR7DWpbV8fc+UHAPh9470f9/aXvfK9Fa9ulwD5haY0CfXTZsKifieaRD37StRHmpSKpVZgfMg8TfB6PntZH/VqXRe0b3PzyKt3z9pqA9/3H9MFinX/xf99/zirWvswRXRvq9gj1U8T5jA719Nb+cfzV4zppUr8WIZ/znzf0vta0TnW9+bfDTOtLSXpgcm8d2q6uTrrvY320fxwVqf9137trNdevjQ5O/+Bxv/++Lh7VXmcf1jrs+Yfj/fy/Tz8k4OnWZmUkmH98R9/xvpb7zU/ffFx3HXNQ44iff+O733XWo5/5/r54VHudNbiVOlzlScunzu6nFet3+MZFwfz7o/5twOJpg9S2fk1fP8rsBt4dJxykw7s0DHjt+IUf6rOft/vOLVo/JlKeMnvtXycfrDMfOXC+c//UVTOf8fTniqvn65MrhofNG97XF/21n7rvf6pt+Z4K9Q6a0+nUsJaeP29gwGvx9sdi3T54O2+/3ft6zcI8fX7liMD9+LX/380epTG3v+ebs400PxPPPJ//a/VrVdN7lw41P1ETifRdT3lgmd7/YUvYGCLtJ1J9axaLtx56YtkvusJvvkCSRi9415eWbevX1Pe/h/ajxnZvpP995ekrevu43uPc+pfuGtfjQJn9eetuDZ9n3hePhVn8kcbosezrqB6NNO8vPXyv95/7pm++zT9G/7nasd0baf7xPRSNf7z+9wCsHlu+vXqTTnvoU0mefpTZWC9Rwflp+hNf+q53LHPe/p4+u596NDN/avKXv2zXsUH9Sn9rN+/SqPmePoH/WMp7rII8h769ZlTU81mxfoeO2t8fjGXuYti8t/XL1j2eGGeN8I3PvG3C/33xm/62v4/u77heTTXnT119+x/WsZ4WTjKfm/IKTrfbJvTQmG6NAl4bdNNbAXPA76zerCkPfRLxHIL3HW6b93/YrFMe+MT0vcuO6KDT/MavW3f/4RsDv3vJED3+8c++e5WRjiFJf777A321rjzqduH47ivvfwLvhvID95Y/umyoSmsk/kS5cMeSQuf6Vm/cqTF+94r989PAtmV66NQ+2rWvUj2vfz1gn96xd7Rj+tdtY257V6t/N2/XpMB6y/v+i1+t1wV+c2q+drRannb94Vkz8tqFh6pFWY2Y0uDv47vqL72bhi3fk/o119XjOkfdz4xRbdVs53caNWqUulzr6W8c26uJWtetqZtfWRUSr/e+SPB+gvuY/u81LC4MyBfhWF0XIznKy8tVr169qIurYlpat2bNGssCi8cnn3yijRs3qlevAw2By+XS0qVL9c9//lP79u1TXl7gCsjCwkIVFoY+arygoMCSBh7WczhCV8eaXSuHw+l7PS8/P2DbPGfoSti8vLyQ/Zgdy8vpdJoeNz/oWJE+7ztO0LZ5eaFFzeFwRNxftYLQzzgdfscI+nxefn7E/eU5nWHfU1C8BfkH/p9fUCBnUPoGH8f8eh1I6wK/NMwPUxaDX3MGxRv8vtn1jVWktA+8bnmmrzvCbB+vcOcQmm8jxxlOQUGBnO4DdxLz/fKUWX73z1+ebczPPx7+1zHWfcR7LEfQueQXBJaFcNc7JJ2d5ts5/H7+xOlwyvB77Kd3e/+0LSgoUH6eUwX5BxYb+9cj3m0KTMp4uNiivR7r+2bbBOfn4LIX7/4T/azZccN9xpt/C2J4Smf440aug6PV0VbKzz+wGCxcHRlOLNv6t0kFfmvgnWF+2iegPOXlmdZBZsfOc8ZXL8ebn40YPhONf9sUXMeHy/tVqucTqAOjiVQ/mL3nDGprgvsoUvj+kXN/3ysvL3LauPx+abxgf38kXBsa7hzM2qRo+4kmWvpbXcbzwvQlzRQUFCjfr0Ca5b9Y6iGrtvHGkEiaRP9M8urTWPJWOP79sHD5LD9CW+0vUn/HGVQ3Bo9fvZ/Pz4ttzGGFeNs4/20j5ZNI2wXXUdHON7heipaGns+Y7ysvP9I38/3GLEFtQaL9MS+z/p9XPP2egG3yzbfxb9MTaZ8rjQPx5IcZV3rzTbj0Dz4nI2zZD9PndjhM0z+e6xA8vvIfC/nHWaUytj8dotcPkb8FbFZ/+benkbYN91os19rhDB7zhaZHfrhxsCN8Pgt7vDD1TbjyGk6keZngejbaHE4s9U9geY2/HcvLj95+FBQUBIzBw459wswbOJyhP0+Z58wzPf+q9Kcka/rhwXHEK5Z5mLy80PrLPO1C0z1SmU5knB1rXZNoXgvtOweOc8zbQ7P63XNMs/pSkvLzPfuKVP6Dx4+R4gyemwxu36uSz4LbL7MyEixcHSd5ziVaPPlBfQxnXtD8VH5+xHzvf87+bUC4tjjws6HbxFJPx/N6aPsQWE6Czy2W8ud/bvlmD3GIsZ8ab16JbTwUPHYOjSV4/s8/20Q6RsLpbsHcVCzjtbjjSug4B+ohs3bJPy3DzlH41SHB/Z7gOi6432xFO1bVucLgtiH4NH1pEeEzsQjOp1Yy60cFj/WsEOvYLJxI9WjUvqJf3jHrX8eaDyIdJ1z/2Oz9gv33OoLbHK/g/oPTEX+eMWtTguMNPn5V6urg9iQwlrygsux3LyY/P+q9Sn+JjF9M92NWT+Ynb81B8DUMvo9kdr0LTJ9CFVte9c/T0dLMLJ/6z7mEbe/iSK9ofbBY60VvWxOcXvHOWUeqT8zyhplk5RVYK+Y8GstGLVu2rFIwiRoxYoS++ipwJe6UKVPUqVMnXXrppVUalANJZf1P4qZV/L8gm92yNT0irD1EHLI1f2Qb8ntiSLfMl7Y6isoxbtGfL4xsEulLIICXnbNJrJOKsBfamuRM38SarnYu05nIqEKHk7IAq7KAf58uhh8MCbMPi4JBXBKpQ5LdhycrhJeOckJbgUyQrGyarvGef1k3xPQiqi5ce0+bi1jF96OQ+/3666965513tHHjRrndgd8CmTZtmiWBSVLt2rXVrVu3gNdq1qypunXrhrwOBLPT5G4yOvsMtOOTq+kV7rTphIayPIvkaJ6DvUWd+DOtHGLLzFW5mYH0ijZBmLGLPjI0bACpk6nVWzxS1T7TDwDswc43fnOhzrW1KuQNrl1mSOe4zcZVj6UoClWUwoxi5/Ywmoydg7EYqQA7S2oVY1HmT2SRN9UPEF3ci6sefPBBnX322apWrZrq1q0b0NA7HA5LF1cB2SzRby+lQnADmkh7ShuMnGffIg7EzFYDKspUynlvlNu5zwIgO6XqizJUb/aRjLbGTt0YZI5U1AtUPdmPG+OpZ9cxSypzgl3TAAASQY3mYZceRa53bdL5ZaJYmveqXJ945l/s0NWoSla0QfjIAnEvrpo1a5auuuoqXXbZZQG/eZsqb775ZsqPCfvJtHY8FQ1OpqVJOuV6RxBVlED+IculTqxpzTVBKjBgQ6zMJjLoryQXyZsYO98stsMkX6ayy1OnMuEa2rgIJJ2dng5eJSk4DbuUqaqwc30P2FVwOxatHPkvhgr42aPMr0LCypq2BGmXzeWkqkibJCN9c47DYd9yZfW4I5HzDNe223E8Een8EklJG54iUiDu1VG7d+/WxIkT07KwCtkpWd+qMavUqOgyh107K7mkquUlZZ2naD9nlZoogIxjWs86Im9jVd1sx/Y4l9udaNcjnvo87GS5Da+5nSTzJixJnwpVS+VsvEa5XKd6pbKtizhBmKZrEe8434owU/LEoSzL23HNm6SxskrmobPsktqaXcpPNix+g/WC2y3ySXyysT8LpEtV75cls/7KhZox3MLXdIn3Hksi+Yc2LzoWB2eebL6PgfSKe4XU6aefrieffDIZsQBJZ6c60I6rdq2U7O5Ylidf1rDL5Gm62TkZsr0uCifaeacrWZJ92Ey+2pk40M/k9M4KGZRlEm0vmdxJLitSN7g9oW9kLznaDUIKkLcis7IuDN5VLv8sVrLyXQ4nacKyJR9mUl8zO1I8duloZ4LH5ImkeSaO62EfkbJ9JtRWWdI0IEkyqc2tMr9TzYRxE2W36uJp/zOpr5AB2RdJEPfPAs6ZM0fjxo3T4sWL1b17dxUUFAS8P2/ePMuCA/xFqlBtV9Wm4Ruz0Q6Z6AIKOg7pl6uLX4BoqtLRzpbJ7qqw+lG3mZakuVKzBp9ntOtU1cuYSQPgdMupiTNElIt9vRw85QCpbDNjOZSd6yO7RpZp/R67IfmQDLHWZXau8xJFmco9tEPJZ1ZTkOypYcWcXbbMTTB/ab0qp2iM3QjLnppjzW6yRw6WCbufcbj5Hbvm3RzMQrBYQourlixZoo4dO0oKnAjOxUlhwCtX6uNYz5PawH6yttNgUWZLZRuWjZO5qZS1eTkF6KoBQGrlapuVKe1NtlwfO6R3tqRlJkvkJqLZdcv1a5nK87dD2c0YpFXVVSENmcNALsrx5hApkXl1a6ZETB8re/j3QXJ9nBKvVCWXXa+LWT2QLQtvkV5xL6665ZZbdP/99+vUU09NQjiAdeg/WcOKxsZ/D1Zdl6pM7NhlUiidnfxUfesl2wYyDod9O4uIDwvCEYwsYS2S0z7S3WwxcREo0+uabP/mdIZfHsSgqnWStwxnellGepF9kqNq5Tu727doUpYnI1SeVteruTjmz8VzRtUxXrMfyjL8xZsdklWiyZUA4OGM9wOFhYUaNGhQMmIBskdQTyOR/nC23rew6rTSOfDLpJtKuTgWS/flMX1seMjPeGZOHrKzdF/rTBEumUyrhxSladqunWH631QcLueEnHs6EsPmbWC0toA6DkCq0DcFskNW9x0sPLdsr/OyOh8kkZ3SLRPn8myUfCnjcNh+yGk7Vta/mVhOkCVypMJL1WlSlO0lkeueLfVxlpwGUiDuxVUXXHCBbr/99mTEAkRkl6cNpZMdGqlEQkjoMzY419zjiPAXvMzqIjtNwgHZinKGeNF3hFcm5AT6vumRzBvsmVoHWZUX401Z2nn7szJHx7uvSPky+K14n/Zg97wX7myS/VSLZOyetg6RpLssBvcJYmnHq9rWZ9rTaTK1b4PI0l32cklokY+e+JlWT1gpd8+8arI53XKlOASfZrLrabt98YD+Buwu7p8F/Oijj/T666/rhRdeUNeuXVVQUBDw/qJFiywLDqiKTG9o0xl/JqQdDSyAqqAGsV6yh2H2GubllkzoF9gB6ZRZ/K9XVa8d197ecv2GkeXnT4aPSSLpno15NRW5xY7JZuW1tOP5ITmsmueims5M/tc/G9sDINUoR8gW2X4fzOFwUGAtkO35xDJkNVgg7sVVderU0Z///OdkxAIkXS6v9E/1T9nlcFLHjD6jRYLSMTjvkRcBc7FWQQELEBioZTy7fRsJAAt+0ylb2rVI44p46/1w+8qEsUsq2rhMSId4ZMpYycqymiGnjBSzumzbsq6wY0zIGrHWrQFlw255Mnh+MT1R5AQrLn066lm7ZVnAjFX51K51oF3KYarvt9qZXfMKkCxxL6564IEHkhEHkPHibUszqfHNlAlXq+XqeecqLjfsIOk/75FATqdsJC7T0y6DuiqAbdGfTL94rkGuXq+4+gcxNg52aEPMrmeqFtSlIy9ly2LBdLNB1rUF/9yUSfNXuSpZl8hbl2VC+1jVNCCbJ4A0ywqZUL6BXJDWX7JJ8TgiZWMyC/eVyi+rxnMkq/sv2d4kREquRJIylx/oksuc6Q4AyAWpGKDnWhVOmxU/0iyyZBZT0t5algxmuCYIwmQ67Ia2A3YU68QRdWruifWSx7tIw251od3iqapkl9VsqAqSm0apyVCJLI7K6hsF2ZAxkRVyceGif9Vi96cq2zs6ILwcrFpSKwu7SHaqj0P6oP7tRprCNP3STib0le1zWdOCuhDJEveTq1q3bh2x0vjhhx+qFBAQjn8DH0vDxbc2UVXZ3Phm8anZUjbnJVSdrbJHUNNpp7ybixPPdmFJn4puWXKQrgmjSgGSy04T9DggF5oN+ozIVNlQb2bEjcYslmmpT3WNZKI6Qibzz7/e/8daZyatbk1RmaIvj2zoEyO7xb24avr06QF/V1RU6LPPPtPixYs1Y8YMq+ICEEVw80JzkzqZOlkU909XJieMjGYYDM7tJJl5NBfGcVafY0akmcP0v0mTCUmCDEcmi0k6kymmutGReTfDki1SfytcmmZEO7RfoqEmstg1lnSxy+SlWRSZdF0ROy5ramXqHEbSkBxxi/2GbuKlO93ZlHoJSJ1oxT2RdivkXgmFGmHYdfGOTcNKirjGn0Gb5lI6edn1JwlTuS/ATuJeXHXBBReYvn7HHXdo2bJlVQ4IgL0YRtU7LP4ft2quhLkw+NggM8Q75ufJeqHiqWdIPyBxlB/7iHYtcnHCKFPlUqmKdSK6qjdI0/a4fwuvZrpvEifKqrhpb7KPbfM0DWbS2SKFY8l/tgjUw5blJUJMtowX9lfV/p41UaCKMqkZzb66KvoJ2W0hUPZdg+SpSlrZ7LInFVmqaiLmMxslbjrmB8Kljd3qVWQep1U7GjNmjJ5++mmrdgdUXRobjuBD0+nMLpnU+PIN1dhZlVKZkztgR8muX6JWCVEOT5WSeYKvmdm3ncK1FZbmRirHtKHYAuHZ5YlNsbJzvMF1Tbyx2vnckFus6I9H2wVP4M1+2XYdcmEcaKe5vkTTO61Pa03jsZMllsuQ7LKRbWXPymKWbWkD2B1fnkkfG3VRTGVSfRypv5dBp4E0s2xx1VNPPaWysjKrdgcgimRW9HZYkGN1h8G/82eD08sZKen42bxzWVXk1+SwU7KmL5bMKjyZFS3sIJPqTzvdzMkV/vkjlcnPpUYyWPro/nA/u+j9T5IqVyvKBuUruRK5oWLHpjgV8x12Wyxol36GbfKDPZIDQWySTX2sKMfx5Pl09U3TyS51UzxsU48BESSzaGVgsY2bHU7R/IuRsX4WmS7VbU2yFs7Zsc20unxk0twzrBP3zwIefPDBARMRhmFo/fr1+v3333XnnXdaGhxgtVRVdLFU0HZYwBQLqxubTOrcZcglSpqqnr5dks/qzqFdzgvmrKpb01X+M6VtMBPP5HMip5mJEziZezUTxzfZkE2sqJJj2YdDjpzvdyZTpPYjF+osu924zOS+TjzsmreCc4PZ5UjFJYo3X6Yz22RSlk1arPaqRmAiWdc+3t2ms46326LGnOCX5LFeeZt1S5BEDkcyvjx9QPC+Q5+iaj/k/8xTlXYt3usd7lCZ1BeNlV3HSuFkQtm1ez7J1n6a3dMdyRH34qrx48cH/O10OlW/fn0NHTpUnTp1siouAGkUqT2I49Z5TPtDemRChxAIJ1s740A2oHwCiEVVJqCYvApV9S9FVD1Rg2t/q8YbVl/vbG6nEjk3s+vEWLHq0nnDyKo8nmtVbaZne8qtPXFZIrN7+pjFZ/eYASRfKvpItOvmsnkslxTpTq4cGFBQVnNT3Iurrr766mTEAcQllm85Znq9TaUcGTdVrJeMNM2265T4+VCgk6EqT2LIlacm2FXa2rgUH9cOJd+KtKa4JAeTQkB41DupRX0EpJa3irN88SBFOWdx6asuG9KQ7lNqMa8E5KZUtxd2qWuS9pTMaPu1x+nnDLs9+dqM/SNEtnOmOwAA8Uh/TyL9ESSGGwbRBV9bm/TbbSfV6ZLqy5AJHWhYg0udm3LputOMwSvZeYE+E7JJNuXnTPt5KruPWa1MzmReG7vcgLKTRNIkI5OxCjHnUh/ZrtKe50J+Yiym33auklyvr+xW7mwWTsrk6nknoqpzpjle5JEimTa3H+8TX+0+ZkLVZdrPRiL3xPzkKqfTGbXD73A4VFlZWeWggGRJVwfW/FH7kTsBdLaBxCRadChzSJdUDgmrms8pJrklw+ZjbIASAthRpLaPidkExNg4hNsq0yb7kX3iba0TybJ2q1sod6lnyxSvQlAZMV9iy0SPLNfLpt3qymCZkO0BZKdU14453hzFJDiN7NKGWx1GtHUg5ofLnBYzUnrZ44oiE8S8uOqZZ54J+97777+v2267TW6325KggHiZVYjZ/u2fTLoZnwxVWb0c6yeT3T+yY7oi92RyPqTDmwQm+SHmPMIFyQ5mfSor9pvBdU26WFU/UzRhJTuMsWwyh1klqTyHbEgvO/GOQ0nX2KRjkZ0dbnTYIAQLpL++j1tWpHtiMvBqJZ0d0sQOMdiNDbqSyBF26A+ki90XLqZbPKljhyrLG0MOZ+kA6UgHh0Np7Wfm2rXPpDqMfk1uinlx1THHHBPy2nfffaeZM2fq+eef10knnaRrr73W0uAApJ8VA5FkNIXpbGBT/rvaFu0nkzolccnADkxVOl0OR+51qFE1cdXjwT+FkIHlK1bZfG62RL0Vt5iKbgbk41xvs2I5/0yqj1J1kyLX8002yKBsnVO4LshU5F0LkIgR0fWomoTSj0S3Bxb9p00s40A7fLnFn83CCSvTf1YslxcH2i3Pe9k0rJzEpUC6ORP50K+//qozzzxT3bt3V2VlpT7//HM99NBDatmypdXxAabs2sB6BUdn83BDJDPedCVFpneoEUGKxxqpHtvYvb5D5oola+XwWB42UZU8SPUJIF6ZWm9EqirjrUbD1bvxTvBbddxkHjOxY3iOkql5BUiEVWWLoYV9Me+AVMm2OQbmmxNjRTag2sp+XGMP0iH3BF/zRB+akKomN5PyaKQ0CXcaGXR6SJG4Fldt375dl156qdq1a6dvvvlGr732mp5//nl169YtWfEBlmLAkz1ScS0zqVMQryyby4gsi69jroo0GRdrubVr+bZpWACSLKfaZZtIVX0b07eRkx8GwmB8mIAwmdqSxVFZdMeVvOVhVSrYte+ezUjzzJK02jOF+SAbmoDgdizTfnoqXv43exOJ3+6X3O7xWSZJmS8T87QdZVP/GJH5l5lsv+qJ9jPjLg50aOOWSJ2TadWUlfEy7s9NMf8s4E033aQbb7xRjRo10n/+8x/TnwkE7IQqDUAy0CdHMqVyLJJpAx8kJvTbTrHj6RzJZbcBOJO2SKVo+d/KeidS1k7mz2Znat1pVdxWVSl2qytzmV3zdFWzWvDnU9kcpm6hrz0unj2iyE7046ouG9LQJkUdSIksKLJhUZbhL13joeB8mLZfpKE8wEKGkcxZIOSKmBdXzZw5U0VFRWrXrp0eeughPfTQQ6bbLVq0yLLgACCcKnWq6JHBFPkil9jpaqcylqoOyCPdmGFgAiBXxVO30g1FqmXzjad0YLEXYmG3YpcNi0asRGrEj6fHJyYLT8lSdq+auH6ZzebZC4jI7vWjpahsM1429uFilcvnnstiXlx1yimn2OabTgDsL1x1kUv9QgBA7qLbDCA+VBoAACAxdpmzt0cUiUnWfKVNLo0t8ewIAIgu3nYkpxZmAUAaxLy46sEHH0xiGID1GLzaB5cCSBzlJ/sx5kW6Ratn0vmUDvpzVUcSRkc+A5KBHg4AxIMn4wEAAACAvTnTHQAAIHvxTQnYlV2+2ZsJmOQHAOvQNwIAIDloYoHMQr8YAMKgfkQG4c4Bcg2LqwAgTZhEAAAAAJKL9dQAAAAAgEzEcBaJMrgBCSQFi6uQdu0b1o5pu0jtQNcmxSGvtWtQK+S1P/dqGnYfvVuWmr7eqKR69OAkHdSsxPf/I7o1CnivaZ0i3/8bFhdKkoZ3ahBxf2U1C33/P7hFHUnS4V0bqri659c8h7SvF7B989IaEffXqXFoGnkV5AV20WpXL/D9v1q+U92bHji3I7s3jngcr8O7NJQkta5XM6GF9mbXo1bhgV8y7RLhfPx5txvTrZFqh0k7r0Ht6gb8bZaHqqpN/Zq+/7+7elPI+8M61vf9v0FtTx4YFiWv9GxeR5LnHCOp65en+rYuixprrxbmZcKreZknX4crO6OjxGOmTo2C6BvtV6+Wefo0LPaU2aKCPEnS4Hbm1ztY/zbmadLPL636tCxV2/qh+aKsRjXf/5377+DV9MuvjUuKArbPc4YOiwa08eS/EUHnM7aHp8x5y+G4Hk3Cn0QYh+5PgyEd6oe8N7Kzp6x666mBbQPTa2BbT1zeeigcb/yd/cqmt57zr0PC6d4scJuDmoX/TJf9dX6Nankh743uEjnfecv16K4NTd8vKfLkQbO0Sjf/tkQ6UAaiOaLbgXrbP+8NNalbjuweOf1GdvZ8xlv+/R3UrE7UWHrsv66xtiX+otVx8erUKHr/o6ZJHovV2O6NffWzHbSp52l/RnUxz/tmDmnlqf+6mPSz/OX75StvGeoQ1L/z9o06NPSUwWj9oH5h6uR49G1dN/pGFgrXjkiB5bdeLU+bYfj1kMzqyUjtf7xtnNWa7O8fm9XDwbztTLJ4091bP5kZu7/t9G9bIvWNvfz741JoPSx5+mG9WtYJu49I7ZmXt6ylyuAwfWF/3j5pcP+4a5Po5yNJvcL0D72i9bMjfT64TvK2SZHyQDhjuzcJiKd/G/N6o30C44LiovD92uB+lf84J1bea9O5cbEOaRU+vbo1jZ7XC/IOTA35jwWlA3XW0I6e9A3XfgaPCQ7vGthue9MweKzsNbJzA43Yfw17+JWbBsWh/R1vHRgslj5nvwTbBm/598ZYt2a1SJtHrMM7hpkD8b8OiegRQ18suEybjfnClc9D23nqhXyTsUy8juvdLK7t69cO3+8NTs/gOZzguqF9w8Dzqx6UnYZ2ChwHDGhrnmcGhKkvJKlOmPLvnZ/w9oXDjaX9hbseZlehS5NiNagdOocV6/yJv7/4XaPRXa3th5s5+qDI49zgvqRk3i7HwqyPXrdW5DLt1aw0sWNawTuGNavzR/nl83B1jP+8YaxtpzeNB+3vcwbPHwbrHEdes3qs1CTO/NAvaF5sRKfAPqvZ3E80wf2kBsWFAfPZPYL6hf5l0+m3GrwsShsjSa3qhc4DD27vqb/CtZNWa9+wtq9Mhmvfg/m369552mjG9Yh//sBfuHYreP7DO6fhLUNm85rB18bb3kfrF/jzjo+C86B0YC64VV3P9Y1n/C4dqKN6RZnD83dkFeZavOMKszk0szFYy7rh71+M2J8uDSK0+YdEmM/2n3OXAudqE2E27xVtHiOa4HHf4X7X91C/sX1Vx9D1Y5wvTES0e1BWiuX+RTiR+o6NiiPf7/PPO5Vud8j7Ew9pHlMM9WrHlwe9ZaBxSXUVFhwYF9TYP1YM1yfs09KTTtX2jyUGtos+3gm+NxFcfszE2s4esb/f2CdCP9e/Dzc2aI44eEFQYf6BtKhVPT9gzBOtTHrrptoJjLelA3XWyM4NQ+5PF1VhzjiaQ4Pm+vzLtPdeUbX96TKoCvOC3nsL/uOfaHWxd1zgnWeWpFb1AvOP9z3/a1sSYX4kWLsGsa0ZiMZs7sKsXvGuL4jnfoX3Pn0qxkmwn8RqFMBCBzevo+e/+FUNiwxdd2wvNSjxNFhLph+mVRt36Lx/fxZ1H4Pb19M/TzxYHRrWVoXLrZ+37AloZP837VD9vGW3RndtpLb1a+n8/xzY5+Lpg7X8t3Idc5D5wqvGJUV6cMohIZPMwY7o1khXH9VFG8r3adqIdgHvNS+roQdOPUR1ahSoaZ0ivbXydx0VZeKorGY1PXJ6X1UvyFOj4ur6aM0WHdOziQa3r6d3V2/WUQd5Kvrnzh2k33fsC+lcvXHxUH3x8zZ1bFRbP/y+S/3b1NVbM4bq05+26sL/fiFJGt+ziQa3r6/+QZOFtQrz9e8z+snhcKgwP0/DOzXQtcd01S9b92jaiPaSpOkj22v+q6vCxn/l2C46qHkdDesY2MExG85+dMWIkNfG92yqHXsrddeb3+veyX0kSa9cdJgeeHetOjeurYExdhoeOb2vXluxUWO7N9aMIzoGpN2rFw3RN79u19CODbTk6/UhDWGPZnV096Telk6ePXH2APW5/lVJ0i9b9/hev29yH/3345912wkH+1574fxDfXnlhL4t9MaKjVr89XpdO75rwD4fOPUQvfLtBh3Zo7Em9W+pJ5f9rEvHdPK9/9RfB2jXHy7Vr12opTOGadmPW3RMz9D87v+t/gdOPURDO9bXgok9w95Ee/qcgXrzu9919EFN9NbK39W0TpG+/32nGpcUae3mXRrXo7FueXll2LR44fxD9eu2PerVslSLv14vwzA0KsrCGO9xd+ytUJt6tfTxWk+5kKRFUwdq+57/b+++46Oq8v+PvyfJpHdCEkIJLVTpzYACIoJd0dWFZfkqrrIilriuZde26iqK6+rasOxvLftVYfUra4sUEUEUpElXQISAQAgtBULIJHN/f4QZMskkmSTT83o+HjweZO6de8+9c+7nnnPu595rsTf0F981St/uPOIwSPvdn8/XQx9t1rSRne2ffX3Pefbjy5nfDGmn1Ru2qnu3LF0zuL1W/nyk1jxJp4/XiLBQe+ckptpxlJEYpX//bqjW5h1TdudWTi+cvPLbQVqwJV8X1hjceWJCH43ommLvWM+8qo/OzUpReGiIDpWcUufWMXp7RZ5uOKdTnfvspckDq+q4kwGT+y7qod4Z8Rp1+iLq9SM6KjkmXKEhJrWKDdeADknK3XigwQEdW/kHdEjUBc8us5d92Y5DLg0KjOuVpn9M7K9OKTH6Mb/E6XcW3jlS2w+W2AcMo8MdmzGzftVXl/Zto2uHtNc/Fu/Q8xP711rGnGln68sfC+ocnFuQM1Jf7ziky+uoD55W31D1vBlVx9z43ulauCVfI+tJALt5VBclRZsVHRGmq6slFoeGmPSf32frVEWlzumaovjIML345U/aUXBckvT4hD71lu9PF/dU77YJGl0tEXTxXaO0eV9Rg4lZkvTm1KH64oeD9s7Kkj+O1v9b/rMGZSbpvVV7tWrXUYf55+ecq3V5hQoLMekiF5bfGIMykzV78sBaHUCbv13Tr9YFSFc8MaGPwkJMurhvG8WEh+ofE/vrLBcu9tZnfs65evijLXpp8sAmL2Pu77O1ZFuBLnMhQdPWXrj8dNtoRNcU3XthDxWdtGjnoeNatPWgw/xhoSH6z++zVV5hVeLpQahBmUl65bcD1SG5av8+ckVvDemUbB/4eG5if32+6YBOVVgdBg2+vuc8rd59tMELbPX54OZslZZXamS31np1yiD7oM38nHOVu/GAVu8+phd+M6CBpbiuofOIVHX8LtxStd+cxdPze6bpTxf1UOFJiyYP66AVO4/U21Z0do6zuXt8dz29YFsTtsS5D28Zrq9+LNDAzCR1SonR2rxjurhPG3268YA9Abem537dX3NX79WEgW2b9VvW9ORVfRR2+hxqu2Dw6m8HOz1/Vmc7d47tmaaCkjLtLDhRZxJNdckx4Xpj6hAt3HJQt4zuoghziL7YWqD1e4/pP2t+kSS9c+MwRZlDZZJJ/apdJLS1M+sbaLEda1f0a6v1vxQ2vAOa6PM7ztXuwyfUr31infWmpn9MGqD5m860jxfdOVI/5pfY4//Ht47QzkPHdcpiVZmlUmNOX5D86o+j9f3eY3X2rWzOapvgtJ1d/fvf7ynUe6v21PruiK5Vfb+t+4v1q0HtFBsZZm+Tuio0xKS3pg7VwMxEDet8JjZNHtZBcZFh9gsftph0ad8Mfbpxv33g2hXxkWb9+3dDlbvpgKaPcuwfXtq3jayGoR7p8dq0r6jO8823943R3R9s0Dc/VbU/TTLp/6Znq6SsQkM6JuuzTQd0fo9UJUWHKzwsxCFR5os/jNTWAyUuXQQyh4Zo7rSzVWE1ag16fnb7uVpWrf86pGPV+TMtIVLvfbdH7ZKi1aFVlK7o11Z/fL+qnzmqW2s9eEkvh+W8V0cbbEyPVF14Vrou75chc2iIDEMO+zktPvJ0fzxMFZWGXlv2s565tl+18p2jr7YdUrukqHqTBF757SCVllc0OSbNmzFcS7ed2Q+tYiP0798N1cMfb9HPh07Umj9nbJa6tI5Rr4x4bdlfrHs+2Gif9u5NwyRVDfb+mF9i/9z2O3zxw0Fd1KeN9h07qe6nB4Q/ve0c7Ss8KavVUGYrx7aLLd6Mc+EC7NQRndQqJkLpCZEqKClzeqzWdXzeeG4npcZF1Bo/aIwXfzNAuZsO6M8X92zU91LjIvXWDUMdEt/n55yrnw+d0LAa8bxNQpTemDpE8afHcP7+6/7q+5eF9uk1+/kRodLbUwfp2MlKlVdY7b/x8nvP03c/131+t/V/Xv/6Z3tb2iYx2mzvu8RFmjV/8wHdMrqrYiLC9MUPB+0XGq7s31YhJsfzh1QVY7/adkjd0mLrTEAJCTHp/Zuz9WN+ifYXnlTPNvH2flLNMazhXVP00m8G2seNVv6pql/8Q36x9h6tGpd464ahKj1VIYvVkElVcapNYpTyDp/QnRd0c1qG5rh6YDtNGNBW7ZKi7HF/XO80tU2M0o6C4yosLdcTuT9KqmqL9EiP0+COyQ4xzdY/qn58SVV14/99vUu/GdbB6bovOiu9Vhvd1RtXPrxluL78oUBWQ9q0r8jpeUpyvEHUdr5PiY1QeGiI3l21Rx+t3+/S+qr72zX9dH6PfI2rdqPQrF/11cqfj+i3Z2dqSKdkp8fEx7eOUEGx47hh9fGcmmb9qq+6pcXp6IlT9nhT8/ifd8twvbJ0px6+zHF8KrtLK708eaB2Fhxv8EbBN64f0rgdUIf/zhihI8dP1dmvk6rapvnFZUqNi9D5PdK0YIvjfpSkey7sLqthqLzSqpFZrWvdAOZMfLXkoOd+3d/eTrKNW9W80e7NqUP1xdaD6poWqwOFZQ5jmyGn++pllso6k6tuPKeTQkNMGpSZpB7ptRPZbh7VRRmJUbXa6A9c0lOtYsPrvIny5lFdGtxWSZKpqk047/t96tsuQQM7JOm9m87W4nrGWGz+b/pwFdfYJ3GRZr174zCFhJg08bWVdX73yav7amRWa13QK03f7Tqi9smuJ3f87Zp+dd4E89TVfTW6W6q6pMbql2Ol9jGNd28aVuc2pcRG6O0bhtovqtvO987GZ+bnnKu/fLxFL/3GsR//91/30/xNZ+rgwjtHatMvRbIahn0579883OX+e3Uf3nLm2P5q2yGnCUI1XTe8ozb8UqQRXVMUFxlm7z8vunOkvt9TqE827teM87o6/e6Lv6l7vLF6H+yXY6U6WHyq3pvs/3BBN2Wlxmpkt9b67T+/s3/+9K/6qmNKjPYeLdUV/dvq/nmbHb5nayPVHL+2jdUu2npQU87ObHA/1GSLk9XPMXeN697o5Uiqczz+gUt6qXPrWJ2qqNTkYWfKeN9FPfTmt7sbtY5v7hujxz7Zqt+P6qzU+Kp2U2yE+5M/OqbE6F/XD651I5I7LMgZqYc/3qwXJlUdMxOHdFCUObTePth/Z4zQMwu36ezOrXR5vwzNXrpTfdsm1PvAhIzEqrZiXckeSdVicPX21OzJAzXv+3165PLezr5WS8326xd/GKXHP9uqBy/t5XT+u8d3V4/0OI3q1lqR5lC9d9PZMgzDfiOOrY0eGxGm/UUndVZGgrYdPHNdc8ndo7Vi55F6x6Zslt49Wit/PqquqbE6WFzm0k1Utmucy3YccqivNT19TV+N6ZFa6zxbc1n/un6wkqLD1S0tTtldWtVqz9lEhIVqzrSzVWk1FB9p1vjeaXrsit76pfBknbHJ5tbzuqpDcnSTxncl6YNqsXjBlnz75+/eNKzWdQl3mjbS8bycGh+pf0zsrxU7j+iB0/VnyR9d/73r8tnt5zj09aUzsbiuG88furSXBnRwvO7bLS1Or//PYPuDRaqPQU8Y0FaWSsM+Xlyf3NvPVd6RE/YbUGz93OFdUrRkW0GddaQmW27BiC6tlHt6eNQ2tnNF/7Z6aclPDvP/+3fDHPpoLq3jzpFavuOwLu+fofO6p2rS67XbMd/eN0Z/+M96PdHA9RYEHpMR5M+FKy4uVkJCgoqKihQf3/g7teB5/1q+S49+ulUDW1k1N+dCmc2OjZqO930mqepujrm/z5YkLd1+SNf9a5UkafeTlzR6nbZlThraQTOvanmBzbb9vxrUTn+7pl8Dczv36tKdmvl51UBXQ7/B4eOn7AlFax8Yq1axEfYy/Of32c26C8EXej00X6XllZKaV//6tE3QJ7ed49ayNbUsUtVdkAtOX/htynY589inW/X/lu9y6zK9zWKxKDc3VxdffLHMZrO++emwJp/u5AfqNnlSflGZzp65WJK08S/j7Bc1PKV6HQ7U32Nf4UmNePJLSdKWR8Y7PPWssWz746FLe9WbcFfdtLfXaOFWx2Pftpx//s9gPfDfzcovLnOY7ilnP7HYo+u69pUVWrX7qNPl/+XjLQ6DV66sv3r9s5k9eaAuasKTuZqqZoyqWbacsVnKGVv/BbGL//G1th4ollR1N9emR8bXOe/v/73G7eeK+vzz65/1189+8Nr6vKmgpExDH6+Kl98/eIHDAJ472OpA55QYffnH0Q3Od112ph654iy3lsEdbOXrnRGvz24/1yPr+HTjfvsNHa7Usw17C3XFS9+4PH91b327Ww9/vKXWd9ftOaarXv62Scv0Z3XFKFc89NFmvb0iT1Lz9smCLfn6/b/XOnz2j4n9nd5s4I8Kiss09ImqWLHhoXFKaMSTXr3Ndry++JsBDT5t1Tbvrwe311O/6uvxMn12+zkuP3mtMZZsK9DUN1ZLqkqoKSy1SKpdZ521We+cu17zvt/ndP5AZ9vewZlJ+mD6cB+Xpu4+Q3NilM1VL3+jdXsKHT7zxHndE25/73t9vKEqyccbdfDfK3brwY9qnwOdeX/NXt19+gJKQ/Paft93bhzWrLv3nbXt61v/y1/9pFnztznMY1vGnWO76Y6xWU6/N3f1Ht37f5vs37N955I+bZp1M0Vz2crxf9OzNagRycSN8fdF2/X84qobNWvus/su6uF6ko8LrFZDnf+cK6kq0bwxT9Vy1dq8o7p69gpJddeTOav26L4PN9U7T11sMeqOFVVjBE9d3Ue/HuI8adAZ2759+LJemjqi9viAbfofLuhmv5nWWby0ffbG1CG1bqKta5nVv9+YsvZIj9P8nJEuf6++ZZ3TNUX/e+OwZi0LnvHeqj36Uz3HxQV/X2pPXK6rTXX/xT11U7WbZz3Ftr6Gxko8td5L+7bRi7/x3bmhPu5oR/kr2/6feVUfTRrqetwNJsOe+EIHi09J8k470bbPH7ikp2481/PHdmMNffwLFZR4bn/Ytv/awe0061eNv2ZbZqlUjwfnO3wWEx6qLY9e6Jby+YPGjl/WFaOeX7xDf19U9VCI+n5L2/o+uDlbgxt44rxt3tZxETrkwXoCz3I1p4jXAgJoElPz3wQAAAgAxHsAcERcDCzBfTsZAAQQTqAAADcxRCMfCEYm2osA/BzJVQhInF4BAKibu/qhDFU1XiDus8bUFxOtMAAAADsuACH4UKeDjdt+0UDs7AIAADQD3T3URHIVfI5+GQAAVTgnAi2HvyWqEX8AoHn8K6oDLQ/HoHsE4wUknmIJBBZ/PGR9VSZ/3BcAEMg82S6kzdkykFwFtGBBOF4CAACq8bcEHngf/Xr388RgCUcqAMDbgq2NECjbw0UX7wjGJLGmaqjKsasAAAg+NDkBzyC5CgGDTnFw4ISOQEcoAgDA++gLtDxcfIY7eaM+8Xo4AGhpiPtAS+Gro50oAwCAfyG5CoDH0QkAAABNQXIFAAQ3I9Bvvwnw4sMzqBbNF+jJigEf2zzEZ8kJgV2dgKBDPx8AEIxoc7YMJFcB8KlAPNnQAQTgKQEYElEDvyEQ/AKx/dqS8XsBgHOERwAAADjDNTAEK26CQHORXIWA4ZmTOUG0qWhcAQAQfDi9w1/R9gQAAAheJPt5DvsWAACgaRiPRE0kVwEAJEkmDwy30PAAgODC3T3Bi4su3mHQOEIzEIMBIDDUN77CExWdC9YzHL+377DvAaDpiKGOArGdwk8IeAbJVQCahMYVAADBgXN6cOPnRUsX8PlsHMQIYIF++MG9CGeBgd8JQCAI+DY+AHgYYRLwDJKrEJA4KSAYcOc5gh0DHfA3LTHutsRtDhT8NgAABL5AfiJh4JYcQGNwrAMA0DzeSj4P4K6F17CL4GskVwEAJPHkEpexn+BmgXxBBgAAAIAj2ve+4U+7vb4ken8qJ5qnxY2jtbTtBQAAaATa+S0DyVUAADQGDaR68SQW/+DOhjzjp8GPjh8CgT9dvDIRGQE4QWSADU0r59gvQPPQbwMAAAB8i+Qq+I3GXDBx36Alw5++xi8ABC9/uhAeKFr6Pmvp2w8AAAJXY9sxPN0oOJhowCLIUKeDD78oELhoLaKl4ZyFhjS3jjS2G96o3AUqcItAchV8jgHFliUYfm53PZmHpx4AqCkYYiT8C+ca/+Vvvw3hx7e4kAkAwBmcFQHvoRkKNIz+MgAAkEiuAuAFXCwCgLoRI4G6cXgg2BDzXcerhlsGEssBABIJdb7EuRgAAABwDclVCBie6ee17N4j13Z8iwtGAAJBS0kEaMlP0mwhPzECnCcPUX97ihjcK+BjXMs9PQHwMH9u/wZ87G4KP9lmTxbDVzXOl/XJHw4zPygCAAAuaennLHduvz+0QYBgRHIVAK8KhgEyLsC1cPz89eL4gD+jfgLwV0QnuILzWHBpCQnswb+FznEhA9SBlsHbMa4FnDYASS23/QAAAPwfyVUAAAAAALiIC1uBhQvcAOAfOH2iPpyuATQGMQMAAPgCyVUAmoS7pgHAPTzxOo5AvfAfDBfAg2ATEGSokwAAAP6Dtpn3BUM/szncNjzQwvcjAKDl8vdTYKBeCwg2Lb3N2VKQXAW0YCRI+Rb7HwD8R0t4NU8golMKG386RKmXAGwMvx9m9y32DgBfoX8H+C/aTwAAIFCRXIWAQZfYv7irE9SSxzpa8rYDcI64EPj4CQEAaKloBSCwkHwCAIB/40wNAO7lyfReulctA8lVAACP4U4kAACAMzzxKljA31DNAbR09V1Y4ZqLc8G6X7jIBgAAAAQPkqsAoJHclTDERQcA8C4SPp3jNbW+4a36yK8LAIDnOEuaDZQ2Jwm/nhPIu9aTyUC0S30jgKsjAAAtSlPbkM6+Fyh9EiDQkFwFAJDE3XSuIgkBgcBdg/lccAEA76AdBgBBhCZ0i8DYAFrcqzVb2OYC/oAmBQC4Gdc70EwkVyEgtbS+azDhvAUAdWvpMZLzu/uxT/2Xv12Qa+nxpzE4rryDOtkyeOtn9kZ9Ija0TC0uuQJBz9/aqGi+hn5RwhjQMG4+REvjq/YApyT4H2olHJFchYDhieYrbWLv4NQDAHXjgox/YKCsCvsB/oqqCQBAy0EXCe5EfQIAAADgDiRXAQAA+BDJLAgkVFcAAACg6WhOO8d+AdAYjE0AAPwN56aWgeQqAE3CY8IBAAAAAADgCk8/PcggPQcAAAAtEE/pBLyH5CoAPsZZHwBs6AgBgHPERwD+jjCFQEMqEvwJMdRzONYBAGh5eIqS9zF22TKQXAUAkMTTyFxFAwlAsCGuAQAAuA/XMRDIdYC+gevYVQAAtAwkKgGwIbkKAAAAAAAAgFsZXIUAAJ8jCQwAAABwD79Orpo5c6aGDBmiuLg4paam6sorr9S2bdt8XSwALRzjwwAAAAAAAAAAAEBw48meAGz8Orlq6dKlmjFjhlauXKlFixbJYrFo3LhxOnHihK+LBgAAAAAAAAAAAAAAACDIhfm6APWZP3++w99vvvmmUlNTtXbtWo0cOdJHpQIAAAAAwH1MvLAFAAAAAAAAAPyWXydX1VRUVCRJSk5OrnOeU6dO6dSpU/a/i4uLJUkWi0UWi8WzBUSTVFZW2v9f329kGIZ9ekWFa99piNVqbdH1wmo0ffsrra7/BpaKM9MrKiyyWM48NK+yoiKgf4PmlL16nfYHVqvV/n93lcsTy/Q2W7nPxJ+KWtNwhsPxbrHIEurFdQfo71GzTllMzX/3aKW10uX9YVR712nN71Sdo+ue7m71lcXTy68er5qz/opK1/e9O9SMUTVVulAeo8b7bhtqj7kyn7s0pr0RaCqqxUtLhUUWi2eSa1xtb/h7u9iT7abKysad25vTFqiso20UrO2LhmJUfdzVjqz++575zLuxujks1etGhUWBUOzG7F9vxZ4KD/U7q49NVFffumzTgqGv1BB/6/NKjvu6OTHKpmY7yrY8izc7Qk1keLkOujr+J0mVTRj3q6jwTGyvr51d1zzWeuJgXd8z/KQt5ql4KUnWetr2jenDNlaFxVPngIbbb42p9zU56583ZTsqG6hblZXOp9dafyPrRpP2uRvPG/54DkKVho4LV8YdfNGe90V98pdzgzPuaEf5u0DqN7qb4cXx4Oo82R5oFi+Nhzb1mq2lwur8c3/cl83k6hhCXTGqrnG5ujSq/ePlcXO4l6u/WcAkV1mtVuXk5GjEiBE666yz6pxv5syZeuSRR2p9vnDhQkVHR3uyiGiiH/abJFUNOi1atKjW9NaRoTpUZlJH02Hl5uZKko6dkmzV1/ZZY0SEhupUpUmxJXuUm5vX1KIHLNv2xzVj+8tLJFd/g6rzetW8y5csVnjomb+3rftWBzY3qQg+Y60MlU4/XaAp9c+27f2ijzXx++5zTlqIlh8MUd9kqw7kH5DtbbHuKlfksarjO8Rk+Hxbm8sWn4rKpebEn2BXXinZ9s+SLxYpzMMvIO6XHKINR0M0PM0asL/HqWr7bPGihQptVn5F1XLK9m5R7rEtLn0jzVJ1nMabqx+nVcvZ/8Ma9YszaV9hqDrGev447h8fovnFIeoc55l1HT1ad/yOKjrTHnE23ZkBrUL0/ZEQZadataKgqrLn/7hWvmha1G5DVf2GxsFtys3dVu93u5pN2nR624e1stS77c7ri+c0pr0RaKrHy6+//MLt8TIzNlR5x03qFV1S774zm0JlMUyKLtqt3Nxd7i2EG2REh2p/qUlZ5kKP1YGCk1Jj6tkJS+Pmr+7kceff3VvH58HCWT+vIbHFVfHG3Mx25OEyqebQx+Ed3yv3l++bvExvqh4rli72fNuqearKWbB9nXL31j9nVGioTlaalHBir3Jz93i8TFvXLNeeDe5f+pFq9WtAwkktKHHejhmZHqJl+SHqk3SmzZp0sqqOR4cGfl+ptqp9cuyY52J3Y/RNDtHGo3X3dZsSo2w6hZi0TqFKiTB0+FRVO3PF0i9Pj3v4t5RTVXUwJsw7dfD4CcnVc93RRp2bq+bL2/Sdirc3p4RnzhVDUqxafThEQ1vX3c+sdNpOrfrbVLBdubnOC7Pp4Jl+R25urmLNoTpuMalV2X7l5u5rzgY0U1XZt6xerjyzZ9awY2+Iao87Va3Xsu8H5eb+4OY1Vi1743dfa6cHtum4C23CokbU+4YU/bxRuQc3NuIbVes9uWezco86G3ytml6Z/6Nyc3+UdKaPe3aqtdZvtHfLauX+VP8ah7UO0XeHQjQopXFjNG2jQ7Wv1KTukUXN3k+tIkJ15JRJ7awFfnEOQm0NnQ96RZn0k0LVPsbZ+anqexUHPBEzauuREKIfi0IaHCtxN/85NzSsOe0o/1VVz4p3bVRuQWPibvAoK2vuNbDGavyYtjedOuXZ/WHrHyc2sX9sNSTbPuwSZ2hniUnZrSuC6jwYagpVpWFSVCPHL2vGKFORY1u8bq5fw+6WEKLtRSEak3pSc4+7smz4o9LSUpfmMxnObrHyQ9OnT9fnn3+u5cuXq127dnXO5+zJVe3bt9fhw4cVHx/vjaKikf71zW7NnL9dg1Ks+vct58tsduztFp+0aPP+Yp3dKVkhIWeuOG/eV6z4qDB1SG580tyRE+X6qeC4hnZMksnU8l7B4a7tX7enUBmJkUqPj2xw3h0FxyVDykqLlSTlHSnV8VMV6p0ReMdln0e/UJmlKrt5x2PjGv397/cUav0vRZo6PNPdRWu08gqrvtt9VEMyk3Tvh5uVu/mgpKZtlzOGYWh13jF1TolRSmyEW5bpbRaLRYsWLdIFF1xgj09b9hcrNjJMmU2IPy3B9oMlMplMykqN9fi6yiyVWp13TEM7JivCv6821mv7wRKFmEzq2sx9ll9cpv2FZRrYIdHl7xiGoe92HVP39FglRYdLkn45dlJHT5Srb7sEVVRa9d3uY+rXLkGxEZ7Ny6+otGrlrmPq394z65r0z1Vak1coqXacMwxDq3YfU3mFVe2To9SxVUyDy6te/w4fP6XDx8vVr12C28tdH2cxSpIKSk5pz9FSDc5ManAZlVZDX207pPJKq8b2TJU5tO5jyVl98bTGtDcCzY6DxyWdaR+5U0lZhTbuK9KwjkkKq+c3PXL8lH46dMJv28UlZRZt3FfVFwgN8Vz5NvxSpFYx4WqXFOXS/FsPFCvKHKpOKQ3Hipq+31Oo9IRItUk4U6e37C/WlbNXSnJfO8wf1BWjXGGLy11bx6hVM9uRG38pUnJMuEwm6VDJKfVvn9is5XnbjoPHJZO80rZqjn2FJ10+F3qrT777yAmVlleqVxvP9Ts37StSYrRZbeIj62zH2PpdgzskKep01o2tjmelxio5xjvnVG/JenChJGlgh0TNvWmoj0sjWa2GXliyU5f2baMurc/E7ebEqOrLXrnrqM7KiFdBySlZDUPd0uLcVXSP8kW77vu9hUqPdzwH1mX93kK1jotQ28T6z817jpaq+GSFzmrbvOPcVm8lafND52tV3jENzUxShLnuTLm1ecfULilKaafbqa60weeu+UUPfLRVUtU5/1hpubblH9ewTr5ti3kjXj7/5U96YcnPks60dw4Wl+mXYyc1yIV+S2PtOnxCZRarerbx3DG59UCxosND6+0/NqbeV2eLUWcNPVdHTlZqQCPbLw2NDzirr87GWPYeK1VhqUV92jZ8fj9lqXTp2KnJnW3+opMWbT1QrGEdHa8lwL846xPZVJ4+t/Ztm6C4SMc2lSdjhjOl5RVau6dQZ3dKrnesxN385dxQH3e0o/zVgaIy5ReXNTruBpNznl6qg8VV19q9MUbRlDFtbxr+1Fc6dLxckmf2x9ET5dp+sHnH/M5DJ1RRaVWH5Git3VOooR2TFB7A10tqauz4ZX0xavXuY8psFa3UuLrHmhpzDfvIiXLtOP37bdlf0uTcBfhWcXGxUlJSVFRUVG9OUUA8uerWW2/Vp59+qmXLltWbWCVJERERioiofTCYzeagO8EHi9DQqo6WSc5/p1Zms0bF1w5CAzq2avI60xPNSk9s/IWQYOGu7R/WpbXL8/Zq69jh6Zru3YvPntKUuDK0S2sNbcS+8ySzWRrTs40kyRQSUu1z98XLEVlpbluWL1WPT/0zmx5/WoLe7ep+fa+7mc1mex0OZO7aZ+1bmdW+VeMHjs/t7nicdko1q9Pp/5vN0uge6W4oXcPMZum8np5bV/WOl7M4d063xsWr6vUvNipCHX0Y2mu2odomm9U22bWL8GZJF/Zt6/K6atYXT2tMeyPQ9GrnuQHhZLNZo3s0nCiUnmRWepL/JmxUbYfnByQGd0pp1Pz9OjS9LeCsHRgWdqZrHoz91qb2xxsbl+syqNrv68tY3VSejBXu1LG12eX9660+eVZ6osfXMbDjmfpVVzumer+rOnfVcX9lMpn8Jqb98cKedU5r7pjhqNNt5VZOxq78nbfbdUM7ux6Eh7g4b5c0948vxUZHutTPPLtrqsPfrrTBbeOgUlXdS00wKzXB92OU3oiXISGO2y5J7VqZ1a4JfVhXdGuT6JHlVudKm7Ax9d6ZDilx6tKEGNXQ+ICz+upsjKVzquvHWFPHaNzZ5k8xmzUyAONxS1Pf2LhZdY9DeTJmOJNgNmtMT9duwHEnfzk3uCIYr712SDGrQ0pgJMt7ikn1j6G6W1PHtL2mgTHl5kpLNCutmf3jHhmJ9v97cnzdV5o6fuksRg3PSq1j7jMacw27+vhGc3IX4FuuHtt+nVxlGIZuu+02zZs3T1999ZU6derU8JcQcALj2WkAAAAAAAAAAAAAAABoafw6uWrGjBl699139dFHHykuLk75+fmSpISEBEVFeT9bHAAkEgIBAAAAAACAxvDTN1sBAIAaDHERDACc8euXbc6ePVtFRUUaPXq02rRpY/83d+5cXxcNAAAAAAAAAAAAAAAEKR64AMDGr59cZRCtAAAAAAAAgIDDuB4AAAAQeEzicZMA4IxfP7kKAAAAAAAAAIBgQM4hAAAAAAQmkqsAAAAAAAAAAAAAAAAAwAmSqwAAAAAAAAAAAAAAAADACZKrAAAAAAAAAACAx/BKRAAAAACBjOQqAAAAAAAAAAAAAAAAAHCC5CoAAAAAAAAAAAAAAAAAcILkKgBoJJ5iDgCBiddQAAAAAPAlk8nXJQAAAAAANAXJVQAASRLjewAAAAAAAAAAAAAAOCK5Cj5nnH4OEIkdAAAAAAAAAIIVT9MFAAAAgMBEchUAAAAAAAAAAAAAAAAAOEFyFQBAkmQy8fw4AAAAAIB78IAeAAAAAAAQLEiuAgAAAAAAAAAAAAAAAAAnSK4CAAAAAMCHeIAoAAAAAAAAAPgvkqsAoJG49gUAAAB3MtHCBBCEiGwAAAAAACBYkFwFAI1k+LoAAAAAAAAAAAAAAADAK0iuAgAAAAAAAAAAHsNrkAEAAAAEMpKrAAAAAAAAAADwMIPnoQMAAD9HQjQAOBfm6wIAAAAAAAAAAAAAAAAg8BmGoYqKClVWVnp93RaLRWFhYSorK/PJ+uF/QkNDFRYWJlMzs0dJrgIAAAAAAAAAAAAAAECzlJeX68CBAyotLfXJ+g3DUHp6uvbu3dvsZBoEj+joaLVp00bh4eFNXgbJVQAAAGgReAEHAAAAAF8yiYs7AAAACF5Wq1W7du1SaGioMjIyFB4e7vUEJ6vVquPHjys2NlYhISFeXTf8j2EYKi8v16FDh7Rr1y5lZWU1uV6QXAWfM2xXOhlbAHyKQxAAAAAAAAAAAABAU5SXl8tqtap9+/aKjo72SRmsVqvKy8sVGRlJchUkSVFRUTKbzcrLy7PXjaagNgEAAAAAAABwK54aCgAAACDw0bNpCpKa4G/cUSep1QAAAAAA+JCXn44OAAAAAAAAAGgEkqsAoLFIUgcAAAAAAAAAAAAAoEUguQoAAAAAAAAAAA8zuGMPAAAACGgdO3bUc8891+x5vM0fy1QXfy0ryVUAAAAAAAAAAAAAAABokfbu3asbbrhBGRkZCg8PV2Zmpu644w4dOXKk0ctavXq1pk2b5rayuSPZyF1l+umnnzR16lS1a9dOERER6tSpkyZNmqQ1a9Y0e9n+juQqAAAAAAAAAAAAAAAAtDg///yzBg8erB07dui9997TTz/9pFdeeUWLFy9Wdna2jh492qjltW7dWtHR0R4qbdO4o0xr1qzRoEGDtH37dr366qvaunWr5s2bpx49euiuu+5yU0n9F8lVAAAAAAAAAAAAAAAAcBvDMFRaXuH1fyfLK2UYrr+Se8aMGQoPD9fChQs1atQodejQQRdddJG++OIL7du3T/fff7/D/CUlJZo0aZJiYmLUtm1bvfTSSw7Taz5pqrCwUDfeeKNat26t+Ph4jRkzRhs2bHD4zieffKIhQ4YoMjJSKSkpmjBhgiRp9OjRysvL05133imTySSTySRJysvL02WXXaakpCTFxMSod+/eys3NrXMba5bJZDLpn//8pyZMmKDo6GhlZWXp448/rvP7hmHo+uuvV1ZWlr7++mtdcskl6tKli/r376+HH35YH330kX3ee++9V926dVN0dLQ6d+6sBx98UBaLxaXttSktLdUNN9yguLg4dejQQa+99prD9L179+raa69VYmKikpOTdcUVV2j37t11lt8dwjy6dAAAAAAAAAAAAAAAALQoJy2V6vXQAp+se/NfLlBsaGiD8x09elQLFizQ448/rqioKIdp6enpmjx5subOnauXX37Zntj09NNP689//rMeeeQRLViwQHfccYe6deumCy64wOk6rrnmGkVFRenzzz9XQkKCXn31VZ1//vnavn27kpOT9dlnn2nChAm6//779fbbb6u8vNyeKPXhhx+qX79+mjZtmm666Sb7MmfMmKHy8nItW7ZMMTEx2rp1q2JjYxu1jx555BHNmjVLTz/9tF544QVNnjxZeXl5Sk5OrjXv+vXrtWXLFr377rsKCan9DKfExET7/+Pi4vTmm28qIyNDmzZt0k033aS4uDjdc889klTv9to888wzeuyxx/TnP/9ZH3zwgaZPn65Ro0ape/fuslgsGj9+vLKzs/X1118rLCxMf/3rX3XhhRdq48aNCg8Pb9R+cBXJVQAAAAAAAAAAAAAAAGhRduzYIcMw1LNnT6fTe/bsqWPHjunQoUNKTU2VJI0YMUL33XefJKlbt2765ptv9OyzzzpNrlq+fLlWrVqlgoICRURESJL+9re/6b///a8++OADTZs2TY8//rgmTpyoRx55xP69fv36SZKSk5MVGhqquLg4paen26fv2bNHV199tfr06SNJ6ty5c6O3/frrr9ekSZMkSU888YSef/55rVq1ShdeeKHT/SRJPXr0aHC5DzzwgP3/HTt21B//+EfNmTPHnlxV3/baXHzxxbrlllskVT0J69lnn9WSJUvUvXt3zZ07V1arVf/85z/tCW9vvPGGEhMT9dVXX2ncuHGN2Q0uI7kKAAAAAAAAAAAAAAAAbhNlDtXWR8d7dZ1Wq1UlxSWKMjf81KrqGvMawezs7Fp/V3/lXnUbNmzQ8ePH1apVK4fPT548qZ07d0qqeipU9adSueL222/X9OnTtXDhQo0dO1ZXX321+vbt26hlVJ8/JiZG8fHxKigocDpvY/bP3Llz9fzzz2vnzp06fvy4KioqFB8fb5/uyvZWL5vJZFJ6erq9bBs2bNBPP/2kuLg4h++UlZXZ96knkFwFn/t4w35fFwEAAAAAAAAAAAAAALiJyWRSdLh3U1KsVqsqwkPtTzRqSNeuXWUymfTDDz9owoQJtab/8MMPSkpKUuvWrZtUnuPHj6tNmzb66quvak2zvUqv5usIXXHjjTdq/Pjx+uyzz7Rw4ULNnDlTzzzzjG677TaXl2E2mx3+NplMslqtTuft1q2bJOnHH3/UgAED6lzmihUrNHnyZD3yyCMaP368EhISNGfOHD3zzDP2eVzZ3vrKdvz4cQ0aNEjvvPNOre819XdyRe2XIQJedmHvqsfXJUf4uCCAi3IuyJIk/Xpwex+XxL2uGdxOktQ7I76BOQEgMF03vKMk6ZyuKb4tCADU0D452tdFAAC3OTerqq11/em2FxAIcsZWjfX8T3amR9dj64tEmlvesPy4XlVjwGnxDAIDAODPbhndRZJ0ad82Pi6Jf5hxXldJ0hX9M3xcEnhKq1atdMEFF+jll1/WyZMnHabl5+frnXfe0a9//WuHZK2VK1c6zLdy5co6Xys4cOBA5efnKywsTF27dnX4l5JS1T/o27evFi9eXGcZw8PDVVlZWevz9u3b6+abb9aHH36ou+66S6+//rrL291Y/fv3V69evfTMM884TcAqLCyUJH377bfKzMzU/fffr8GDBysrK0t5eXkO8za0vQ0ZOHCgduzYodTU1Fr7NCEhocnLbQhProLPXTmgrYZkJujA5hW+LgrgkumjumhcrzR1Son1dVHc6tys1lryx9HKSIz0dVEAwCMu75eh3hnx6kASAwA/ExsRplV/Pl/m0JZ3oRVA8PnX9UO052ipurQOrj4zgtsd52fp0r5t1NnDYz2ZrWK0/N7zlBgd7tH1+KNeGfFadvd5ah1HchUAAP7st2dnKrtLijqlxPi6KH7h+uEddW5WStBdE4SjF198UcOHD9f48eP117/+VZ06ddKWLVt09913q23btnr88ccd5v/mm280a9YsXXnllVq0aJHef/99ffbZZ06XPXbsWGVnZ+vKK6/UrFmz1K1bN+3fv1+fffaZJkyYoMGDB+vhhx/W+eefry5dumjixImqqKhQbm6u7r33XklSx44dtWzZMk2cOFERERFKSUlRTk6OLrroInXr1k3Hjh3TkiVL6kzwcgeTyaQ33nhDY8eO1bnnnqv7779fPXr00PHjx/XJJ59o4cKFWrp0qbKysrRnzx7NmTNHQ4YM0WeffaZ58+Y5LKuh7W3I5MmT9fTTT+uKK67Qo48+qnbt2ikvL08ffvih7rnnHrVr184Tu4AnV8H32idHa1BmkkJcezIf4HMmk0ldU+MUGoSVtlNKjCLCGvcOYgAIJF1ax5K8AMAvpcZHKimm5V1oBRB8zKEhJFYh4NjGekK8MNbTLilasREt857nDq2iFRXOuBMAAP6sql0UG5TXwJoimK8J4oysrCytWbNGnTt31rXXXqsuXbpo2rRpOu+887RixQolJyc7zH/XXXdpzZo1GjBggP7617/q73//u8aPH+902SaTSbm5uRo5cqSmTp2qbt26aeLEicrLy1NaWpokafTo0Xr//ff18ccfq3///hozZoxWrVplX8ajjz6q3bt3q0uXLvbX3lVWVmrGjBnq2bOnLrzwQnXr1k0vv/yyh/ZQlaFDh2rNmjXq2rWrbrrpJvXs2VOXX365tmzZoueee06SdPnll+vOO+/Urbfeqv79++vbb7/Vgw8+6LCchra3IdHR0Vq2bJk6dOigq666Sj179tTvfvc7lZWVKT7ec29oMhmGYXhs6X6guLhYCQkJKioq8uiORPNYLBbl5ubq4osvrvX+TADwJeITAH9GjALgz4hRAPwZMQqAPyNGAfBnxCgAdSkrK9OuXbvUqVMnRUb65k05VqtVxcXFio+PV0iIb260btOmjR577DHdeOONPlk/aquvbrqaU9Qyb5EBAAAAAAAAAAAAAAAA3KC0tFTffPONDh48qN69e/u6OHAz3okCAAAAAAAAAAAAAAAANNFrr72miRMnKicnR9nZ2b4uDtyMJ1cBAAAAAAAAAAAAAAAATZSTk6OcnBxfFwMewpOrAAAAAAAAAAAAAAAAAMAJkqsAAAAAAAAAAAAAAADQbIZh+LoIgAN31EmSqwAAAAAAAAAAAAAAANBkZrNZklRaWurjkgCObHXSVkebIsxdhQEAAAAAAAAAAAAAAEDLExoaqsTERBUUFEiSoqOjZTKZvFoGq9Wq8vJylZWVKSSEZw21dIZhqLS0VAUFBUpMTFRoaGiTl0VyFQAAAAAAAAAAAAAAAJolPT1dkuwJVt5mGIZOnjypqKgoryd2wX8lJiba62ZTkVwFAAAAAAAAAAAAAACAZjGZTGrTpo1SU1NlsVi8vn6LxaJly5Zp5MiRzXoFHIKH2Wxu1hOrbEiuAgAAAAAAAAAAAAAAgFuEhoa6JaGlKeutqKhQZGQkyVVwK14yCQAAAAAAAAAAAAAAAABOkFwFAAAAAAAAAAAAAAAAAE6QXAUAAAAAAAAAAAAAAAAAToT5ugCeZhiGJKm4uNjHJUF9LBaLSktLVVxczLtPAfgV4hMAf0aMAuDPiFEA/BkxCoA/I0YB8GfEKAD+jBiFxrLlEtlyi+oS9MlVJSUlkqT27dv7uCQAAAAAAAAAAAAAAAAA/ElJSYkSEhLqnG4yGkq/CnBWq1X79+9XXFycTCaTr4uDOhQXF6t9+/bau3ev4uPjfV0cALAjPgHwZ8QoAP6MGAXAnxGjAPgzYhQAf0aMAuDPiFFoLMMwVFJSooyMDIWEhNQ5X9A/uSokJETt2rXzdTHgovj4eIIcAL9EfALgz4hRAPwZMQqAPyNGAfBnxCgA/owYBcCfEaPQGPU9scqm7rQrAAAAAAAAAAAAAAAAAGjBSK4CAAAAAAAAAAAAAAAAACdIroJfiIiI0MMPP6yIiAhfFwUAHBCfAPgzYhQAf0aMAuDPiFEA/BkxCoA/I0YB8GfEKHiKyTAMw9eFAAAAAAAAAAAAAAAAAAB/w5OrAAAAAAAAAAAAAAAAAMAJkqsAAAAAAAAAAAAAAAAAwAmSqwAAAAAAAAAAAAAAAADACZKrAAAAAAAAAAAAAAAAAMAJkqvgcy+99JI6duyoyMhIDRs2TKtWrfJ1kQAEuZkzZ2rIkCGKi4tTamqqrrzySm3bts1hnrKyMs2YMUOtWrVSbGysrr76ah08eNBhnj179uiSSy5RdHS0UlNTdffdd6uiosKbmwKgBXjyySdlMpmUk5Nj/4wYBcCX9u3bp9/+9rdq1aqVoqKi1KdPH61Zs8Y+3TAMPfTQQ2rTpo2ioqI0duxY7dixw2EZR48e1eTJkxUfH6/ExET97ne/0/Hjx729KQCCTGVlpR588EF16tRJUVFR6tKlix577DEZhmGfhxgFwFuWLVumyy67TBkZGTKZTPrvf//rMN1d8Wjjxo0699xzFRkZqfbt22vWrFme3jQAQaC+GGWxWHTvvfeqT58+iomJUUZGhv7nf/5H+/fvd1gGMQqApzTUjqru5ptvlslk0nPPPefwOTEK7kZyFXxq7ty5+sMf/qCHH35Y69atU79+/TR+/HgVFBT4umgAgtjSpUs1Y8YMrVy5UosWLZLFYtG4ceN04sQJ+zx33nmnPvnkE73//vtaunSp9u/fr6uuuso+vbKyUpdcconKy8v17bff6q233tKbb76phx56yBebBCBIrV69Wq+++qr69u3r8DkxCoCvHDt2TCNGjJDZbNbnn3+urVu36plnnlFSUpJ9nlmzZun555/XK6+8ou+++04xMTEaP368ysrK7PNMnjxZW7Zs0aJFi/Tpp59q2bJlmjZtmi82CUAQeeqppzR79my9+OKL+uGHH/TUU09p1qxZeuGFF+zzEKMAeMuJEyfUr18/vfTSS06nuyMeFRcXa9y4ccrMzNTatWv19NNP6y9/+Ytee+01j28fgMBWX4wqLS3VunXr9OCDD2rdunX68MMPtW3bNl1++eUO8xGjAHhKQ+0om3nz5mnlypXKyMioNY0YBbczAB8aOnSoMWPGDPvflZWVRkZGhjFz5kwflgpAS1NQUGBIMpYuXWoYhmEUFhYaZrPZeP/99+3z/PDDD4YkY8WKFYZhGEZubq4REhJi5Ofn2+eZPXu2ER8fb5w6dcq7GwAgKJWUlBhZWVnGokWLjFGjRhl33HGHYRjEKAC+de+99xrnnHNOndOtVquRnp5uPP300/bPCgsLjYiICOO9994zDMMwtm7dakgyVq9ebZ/n888/N0wmk7Fv3z7PFR5A0LvkkkuMG264weGzq666ypg8ebJhGMQoAL4jyZg3b579b3fFo5dfftlISkpy6Ofde++9Rvfu3T28RQCCSc0Y5cyqVasMSUZeXp5hGMQoAN5TV4z65ZdfjLZt2xqbN282MjMzjWeffdY+jRgFT+DJVfCZ8vJyrV27VmPHjrV/FhISorFjx2rFihU+LBmAlqaoqEiSlJycLElau3atLBaLQ3zq0aOHOnToYI9PK1asUJ8+fZSWlmafZ/z48SouLtaWLVu8WHoAwWrGjBm65JJLHGKRRIwC4Fsff/yxBg8erGuuuUapqakaMGCAXn/9dfv0Xbt2KT8/3yFGJSQkaNiwYQ4xKjExUYMHD7bPM3bsWIWEhOi7777z3sYACDrDhw/X4sWLtX37dknShg0btHz5cl100UWSiFEA/Ie74tGKFSs0cuRIhYeH2+cZP368tm3bpmPHjnlpawC0BEVFRTKZTEpMTJREjALgW1arVVOmTNHdd9+t3r1715pOjIInkFwFnzl8+LAqKysdLvpJUlpamvLz831UKgAtjdVqVU5OjkaMGKGzzjpLkpSfn6/w8HB7R9GmenzKz893Gr9s0wCgOebMmaN169Zp5syZtaYRowD40s8//6zZs2crKytLCxYs0PTp03X77bfrrbfeknQmxtTXz8vPz1dqaqrD9LCwMCUnJxOjADTLfffdp4kTJ6pHjx4ym80aMGCAcnJyNHnyZEnEKAD+w13xiL4fAG8oKyvTvffeq0mTJik+Pl4SMQqAbz311FMKCwvT7bff7nQ6MQqeEObrAgAA4EszZszQ5s2btXz5cl8XBQAkSXv37tUdd9yhRYsWKTIy0tfFAQAHVqtVgwcP1hNPPCFJGjBggDZv3qxXXnlF1113nY9LB6Cl+89//qN33nlH7777rnr37q3169crJydHGRkZxCgAAIAmsFgsuvbaa2UYhmbPnu3r4gCA1q5dq3/84x9at26dTCaTr4uDFoQnV8FnUlJSFBoaqoMHDzp8fvDgQaWnp/uoVABakltvvVWffvqplixZonbt2tk/T09PV3l5uQoLCx3mrx6f0tPTncYv2zQAaKq1a9eqoKBAAwcOVFhYmMLCwrR06VI9//zzCgsLU1paGjEKgM+0adNGvXr1cvisZ8+e2rNnj6QzMaa+fl56eroKCgocpldUVOjo0aPEKADNcvfdd9ufXtWnTx9NmTJFd955p/1poMQoAP7CXfGIvh8AT7IlVuXl5WnRokX2p1ZJxCgAvvP111+roKBAHTp0sI+f5+Xl6a677lLHjh0lEaPgGSRXwWfCw8M1aNAgLV682P6Z1WrV4sWLlZ2d7cOSAQh2hmHo1ltv1bx58/Tll1+qU6dODtMHDRoks9nsEJ+2bdumPXv22ONTdna2Nm3a5NA4s3Uwa15wBIDGOP/887Vp0yatX7/e/m/w4MGaPHmy/f/EKAC+MmLECG3bts3hs+3btyszM1OS1KlTJ6WnpzvEqOLiYn333XcOMaqwsFBr1661z/Pll1/KarVq2LBhXtgKAMGqtLRUISGOw52hoaGyWq2SiFEA/Ie74lF2draWLVsmi8Vin2fRokXq3r27kpKSvLQ1AIKRLbFqx44d+uKLL9SqVSuH6cQoAL4yZcoUbdy40WH8PCMjQ3fffbcWLFggiRgFDzEAH5ozZ44RERFhvPnmm8bWrVuNadOmGYmJiUZ+fr6viwYgiE2fPt1ISEgwvvrqK+PAgQP2f6WlpfZ5br75ZqNDhw7Gl19+aaxZs8bIzs42srOz7dMrKiqMs846yxg3bpyxfv16Y/78+Ubr1q2NP/3pT77YJABBbtSoUcYdd9xh/5sYBcBXVq1aZYSFhRmPP/64sWPHDuOdd94xoqOjjf/93/+1z/Pkk08aiYmJxkcffWRs3LjRuOKKK4xOnToZJ0+etM9z4YUXGgMGDDC+++47Y/ny5UZWVpYxadIkX2wSgCBy3XXXGW3btjU+/fRTY9euXcaHH35opKSkGPfcc499HmIUAG8pKSkxvv/+e+P77783JBl///vfje+//97Iy8szDMM98aiwsNBIS0szpkyZYmzevNmYM2eOER0dbbz66qte314AgaW+GFVeXm5cfvnlRrt27Yz169c7jKGfOnXKvgxiFABPaagdVVNmZqbx7LPPOnxGjIK7kVwFn3vhhReMDh06GOHh4cbQoUONlStX+rpIAIKcJKf/3njjDfs8J0+eNG655RYjKSnJiI6ONiZMmGAcOHDAYTm7d+82LrroIiMqKspISUkx7rrrLsNisXh5awC0BDWTq4hRAHzpk08+Mc466ywjIiLC6NGjh/Haa685TLdarcaDDz5opKWlGREREcb5559vbNu2zWGeI0eOGJMmTTJiY2ON+Ph4Y+rUqUZJSYk3NwNAECouLjbuuOMOo0OHDkZkZKTRuXNn4/7773e4CEiMAuAtS5YscTr+dN111xmG4b54tGHDBuOcc84xIiIijLZt2xpPPvmktzYRQACrL0bt2rWrzjH0JUuW2JdBjALgKQ21o2pyllxFjIK7mQzDMLzxhCwAAAAAAAAAAAAAAAAACCQhvi4AAAAAAAAAAAAAAAAAAPgjkqsAAAAAAAAAAAAAAAAAwAmSqwAAAAAAAAAAAAAAAADACZKrAAAAAAAAAAAAAAAAAMAJkqsAAAAAAAAAAAAAAAAAwAmSqwAAAAAAAAAAAAAAAADACZKrAAAAAAAAAAAAAAAAAMAJkqsAAAAAAAAAAAAAAAAAwAmSqwAAAAAAAODXrr/+el155ZU+W/+UKVP0xBNPuDTvxIkT9cwzz3i4RAAAAAAAAPAWk2EYhq8LAQAAAAAAgJbJZDLVO/3hhx/WnXfeKcMwlJiY6J1CVbNhwwaNGTNGeXl5io2NbXD+zZs3a+TIkdq1a5cSEhK8UEIAAAAAAAB4EslVAAAAAAAA8Jn8/Hz7/+fOnauHHnpI27Zts38WGxvrUlKTp9x4440KCwvTK6+84vJ3hgwZouuvv14zZszwYMkAAAAAAADgDbwWEAAAAAAAAD6Tnp5u/5eQkCCTyeTwWWxsbK3XAo4ePVq33XabcnJylJSUpLS0NL3++us6ceKEpk6dqri4OHXt2lWff/65w7o2b96siy66SLGxsUpLS9OUKVN0+PDhOstWWVmpDz74QJdddpnD5y+//LKysrIUGRmptLQ0/epXv3KYftlll2nOnDnN3zkAAAAAAADwOZKrAAAAAAAAEHDeeustpaSkaNWqVbrttts0ffp0XXPNNRo+fLjWrVuncePGacqUKSotLZUkFRYWasyYMRowYIDWrFmj+fPn6+DBg7r22mvrXMfGjRtVVFSkwYMH2z9bs2aNbr/9dj366KPatm2b5s+fr5EjRzp8b+jQoVq1apVOnTrlmY0HAAAAAACA15BcBQAAAAAAgIDTr18/PfDAA8rKytKf/vQnRUZGKiUlRTfddJOysrL00EMP6ciRI9q4caMk6cUXX9SAAQP0xBNPqEePHhowYID+9a9/acmSJdq+fbvTdeTl5Sk0NFSpqan2z/bs2aOYmBhdeumlyszM1IABA3T77bc7fC8jI0Pl5eUOrzwEAAAAAABAYCK5CgAAAAAAAAGnb9++9v+HhoaqVatW6tOnj/2ztLQ0SVJBQYEkacOGDVqyZIliY2Pt/3r06CFJ2rlzp9N1nDx5UhERETKZTPbPLrjgAmVmZqpz586aMmWK3nnnHfvTsWyioqIkqdbnAAAAAAAACDwkVwEAAAAAACDgmM1mh79NJpPDZ7aEKKvVKkk6fvy4LrvsMq1fv97h344dO2q91s8mJSVFpaWlKi8vt38WFxendevW6b333lObNm300EMPqV+/fiosLLTPc/ToUUlS69at3bKtAAAAAAAA8B2SqwAAAAAAABD0Bg4cqC1btqhjx47q2rWrw7+YmBin3+nfv78kaevWrQ6fh4WFaezYsZo1a5Y2btyo3bt368svv7RP37x5s9q1a6eUlBSPbQ8AAAAAAAC8g+QqAAAAAAAABL0ZM2bo6NGjmjRpklavXq2dO3dqwYIFmjp1qiorK51+p3Xr1ho4cKCWL19u/+zTTz/V888/r/Xr1ysvL09vv/22rFarunfvbp/n66+/1rhx4zy+TQAAAAAAAPA8kqsAAAAAAAAQ9DIyMvTNN9+osrJS48aNU58+fZSTk6PExESFhNQ9RHbjjTfqnXfesf+dmJioDz/8UGPGjFHPnj31yiuv6L333lPv3r0lSWVlZfrvf/+rm266yePbBAAAAAAAAM8zGYZh+LoQAAAAAAAAgD86efKkunfvrrlz5yo7O7vB+WfPnq158+Zp4cKFXigdAAAAAAAAPI0nVwEAAAAAAAB1iIqK0ttvv63Dhw+7NL/ZbNYLL7zg4VIBAAAAAADAW3hyFQAAAAAAAAAAAAAAAAA4wZOrAAAAAAAAAAAAAAAAAMAJkqsAAAAAAAAAAAAAAAAAwAmSqwAAAAAAAAAAAAAAAADACZKrAAAAAAAAAAAAAAAAAMAJkqsAAAAAAAAAAAAAAAAAwAmSqwAAAAAAAAAAAAAAAADACZKrAAAAAAAAAAAAAAAAAMAJkqsAAAAAAAAAAAAAAAAAwAmSqwAAAAAAAAAAAAAAAADAif8PhyDCNDT6nKsAAAAASUVORK5CYII=",
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAACVcAAAHWCAYAAAB5HisgAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy80BEi2AAAACXBIWXMAAA9hAAAPYQGoP6dpAABpjUlEQVR4nOzdd5hV5dk+7GvTi1QVAUVEwIaiUaNRY0fRGHtij71EMYpGY0ksGI1dUV/rm9hiiwX1Z6IitmDvNUEFxRJrFBEVhYFZ3x/5mNdxNrAHBzaR8zwODmc/61lr3WvNnvvYMJfPKhVFUQQAAAAAAAAAAIB6mlW7AAAAAAAAAAAAgPmRcBUAAAAAAAAAAEAZwlUAAAAAAAAAAABlCFcBAAAAAAAAAACUIVwFAAAAAAAAAABQhnAVAAAAAAAAAABAGcJVAAAAAAAAAAAAZQhXAQAAAAAAAAAAlCFcBQAAAAAAAAAAUIZwFQAAAECSBx98MKVSKTfffHO1S6nIhx9+mJ/97GdZeOGFUyqVMnz48CY79ptvvplSqZSzzjprtnNPPPHElEqlJjv3vFAqlXLiiSdWu4wmUSqVcvDBB1e7jP9qSy21VPbcc89qlwEAAADMp4SrAAAAgHnmyiuvTKlUSps2bfLuu+822L7BBhtkxRVXrEJl/30OO+ywjBw5Msccc0z+/Oc/Z7PNNpvl/C+//DK///3vM3DgwLRr1y6dOnXKuuuum6uvvjpFUcyjqhvvzjvv/K8JQj344IPZbrvt0r1797Rq1SrdunXLlltumREjRlS7tCZRU1OT888/Pz/84Q/ToUOHLLTQQvnhD3+Y888/PzU1NdUur86MoGQlfwAAAABmp0W1CwAAAAAWPFOmTMlpp52WCy64oNql/Ne6//77s/XWW+eII46Y7dwPP/wwG2+8ccaMGZOddtopBx98cL7++uvccsst2WOPPXLnnXfm2muvTfPmzRtdx+9+97scffTRc3IJFbnzzjtz4YUXNmnA6quvvkqLFk37z2InnHBCTjrppPTv3z8HHHBAevfunU8++SR33nlntt9++1x77bXZZZddmvSc89KXX36ZLbbYIn//+9/z05/+NHvuuWeaNWuWu+++O4ceemhGjBiRv/3tb2nfvn21S83yyy+fP//5z/XGjjnmmCy00EL57W9/22D+q6++mmbN/D+oAAAAQHnCVQAAAMA8t8oqq+R///d/c8wxx6Rnz57VLmee+vLLL5skgPLRRx+lc+fOFc3dY489MmbMmNx6663Zaqut6sYPOeSQHHnkkTnrrLPygx/8IEcddVSj62jRokWTB5XmtjZt2jTp8W6++eacdNJJ+dnPfpbrrrsuLVu2rNt25JFHZuTIkfPVyk5z4vDDD8/f//73XHDBBfUeQ3jggQfmwgsvzMEHH5wjjjgiF1988TyrqSiKfP3112nbtm298cUWWyy77bZbvbHTTjstiyyySIPxJGnduvVcrRMAAAD47+Z/yQIAAADmuWOPPTbTp0/PaaedNst5b775ZkqlUq688soG20qlUr3VjE488cSUSqW89tpr2W233dKpU6csuuiiOe6441IURd55551svfXW6dixY7p3756zzz677DmnT5+eY489Nt27d0/79u2z1VZb5Z133mkw74knnshmm22WTp06pV27dll//fXzyCOP1Jszo6Z//vOf2WWXXdKlS5f8+Mc/nuU1v/HGG/n5z3+erl27pl27dvnRj36Uv/3tb3XbZzxasSiKXHjhhbN9vNnjjz+ekSNHZs8996wXrJrh1FNPTf/+/XP66afnq6++arD93HPPTe/evdO2bdusv/76efnll8te47ddc801WW211dK2bdt07do1O+2000zv409+8pN06dIl7du3z8CBA3PeeeclSfbcc89ceOGFSVL2UW433HBDVltttXTo0CEdO3bMSiutVLfvrMzsvTNu3Ljsueee6dy5czp16pS99torkydPnu3xjjvuuHTt2jWXX355vWDVDIMHD85Pf/rTJMnUqVNz/PHHZ7XVVkunTp3Svn37rLvuunnggQca7FdbW5vzzjsvK620Utq0aZNFF100m222WZ5++ukGc2+77basuOKKad26dQYMGJC77767wZx33303e++9dxZbbLG6eZdffvlsr+9f//pX/vSnP2WjjTaqF6yaYciQIdlwww3zxz/+Mf/617+SJCuuuGI23HDDste0+OKL52c/+1m9seHDh2fAgAFp06ZNFltssRxwwAH59NNP6+271FJL5ac//WlGjhyZ1VdfPW3bts2ll1462/pnZ6mllsqee+5Z93rGz9jDDz+cQw45JIsuumg6d+6cAw44IFOnTs3EiROz++67p0uXLunSpUt+85vfNHi0ZqXXBAAAAMz/hKsAAACAea5Pnz7Zfffd87//+7957733mvTYO+64Y2pra3PaaadlzTXXzMknn5zhw4dnk002yeKLL57TTz89/fr1yxFHHJHRo0c32P+UU07J3/72txx11FE55JBDMmrUqAwaNKhe8Oj+++/Peuutl0mTJuWEE07IH/7wh0ycODEbbbRRnnzyyQbH/PnPf57JkyfnD3/4Q/bbb7+Z1v7hhx9m7bXXzsiRI3PQQQfllFNOyddff52tttoqt956a5JkvfXWq3vk2SabbJI///nPDR6B9k133HFHkmT33Xcvu71FixbZZZdd8umnnzYIh1199dU5//zzM2TIkBxzzDF5+eWXs9FGG+XDDz+c6fmS/9zD3XffPf37988555yToUOH5r777st6662XiRMn1s0bNWpU1ltvvfzzn//MoYcemrPPPjsbbrhh/vrXvyZJDjjggGyyySZJUnedM6511KhR2XnnndOlS5ecfvrpOe2007LBBhs0uIbG2GGHHfL555/n1FNPzQ477JArr7wyw4YNm+U+Y8eOzSuvvJJtttkmHTp0mO05Jk2alD/+8Y/ZYIMNcvrpp+fEE0/Mv//97wwePDjPP/98vbn77LNPhg4dml69euX000/P0UcfnTZt2uTxxx+vN+/hhx/OQQcdlJ122ilnnHFGvv7662y//fb55JNP6uZ8+OGH+dGPfpR77703Bx98cM4777z069cv++yzT4YPHz7Lmu+6665Mnz59pu+h5D/vr2nTptWFunbccceMHj06H3zwQYNa33vvvey00051YwcccECOPPLIrLPOOjnvvPOy11575dprr83gwYMbrPj16quvZuedd84mm2yS8847L6usssosa/8ufvWrX2Xs2LEZNmxYttpqq1x22WU57rjjsuWWW2b69On5wx/+kB//+Mc588wzG/wMNuaaAAAAgPlcAQAAADCPXHHFFUWS4qmnnipef/31okWLFsUhhxxSt3399dcvBgwYUPd6/PjxRZLiiiuuaHCsJMUJJ5xQ9/qEE04okhT7779/3di0adOKJZZYoiiVSsVpp51WN/7pp58Wbdu2LfbYY4+6sQceeKBIUiy++OLFpEmT6sZvvPHGIklx3nnnFUVRFLW1tUX//v2LwYMHF7W1tXXzJk+eXPTp06fYZJNNGtS08847V3R/hg4dWiQpHnroobqxzz//vOjTp0+x1FJLFdOnT693/UOGDJntMbfZZpsiSfHpp5/OdM6IESOKJMX5559fFMX/3fe2bdsW//rXv+rmPfHEE0WS4rDDDmtwjTO8+eabRfPmzYtTTjml3jleeumlokWLFnXj06ZNK/r06VP07t27QW3fvK9Dhgwpyv0T1qGHHlp07NixmDZt2mzvwbfN7L2z995715u37bbbFgsvvPAsj3X77bcXSYpzzz23onNPmzatmDJlSr2xTz/9tFhsscXqnf/+++8vktT7+Zjhm/cnSdGqVati3LhxdWMvvPBCkaS44IIL6sb22WefokePHsXHH39c71g77bRT0alTp2Ly5MkzrXnG+/K5556b6Zxnn322SFIcfvjhRVEUxauvvtqghqIoioMOOqhYaKGF6s730EMPFUmKa6+9tt68u+++u8F47969iyTF3XffPdM6ZmbAgAHF+uuvX3Zb79696/WCGX3q2z/ja621VlEqlYpf/vKXdWMzesw3j92YawIAAADmf1auAgAAAKpi6aWXzi9+8Ytcdtllef/995vsuPvuu2/d182bN8/qq6+eoiiyzz771I137tw5yy67bN54440G++++++71ViD62c9+lh49euTOO+9Mkjz//PMZO3Zsdtlll3zyySf5+OOP8/HHH+fLL7/MxhtvnNGjR6e2trbeMX/5y19WVPudd96ZNdZYo96jAxdaaKHsv//+efPNN/PPf/6zspvwDZ9//nmSzHJVpRnbJk2aVG98m222yeKLL173eo011siaa65Zdy/KGTFiRGpra7PDDjvU3ZuPP/443bt3T//+/esef/fcc89l/PjxGTp0aDp37lzvGLN6zOEMnTt3zpdffplRo0bNdm6lvv19WnfddfPJJ580uC/fNGNbJatWJf95T7Zq1SrJfx4dN2HChEybNi2rr756nn322bp5t9xyS0qlUk444YQGx/j2/Rk0aFD69u1b93rgwIHp2LFj3fu7KIrccsst2XLLLVMURb3vy+DBg/PZZ5/VO/e3zcl7aJlllskqq6ySv/zlL3Vzpk+fnptvvjlbbrll2rZtmyS56aab0qlTp2yyySb16lpttdWy0EILNXhcYp8+fTJ48OCZ1tGU9tlnn3r3es0112zQS2b0mG/2ksZeEwAAADB/a1HtAgAAAIAF1+9+97v8+c9/zmmnnZbzzjuvSY655JJL1nvdqVOntGnTJossskiD8W8+Nm2G/v3713tdKpXSr1+/vPnmm0n+8xi4JNljjz1mWsNnn32WLl261L3u06dPRbW/9dZbWXPNNRuML7/88nXbV1xxxYqONcOM0Mvnn3/eIMQ0w8zCM9++F8l/QjM33njjTM83duzYFEVRdt8kadmyZZLk9ddfT5JGX88MBx10UG688cZsvvnmWXzxxbPppptmhx12yGabbTZHx0savndmfA8//fTTdOzYsew+M8Zn3MNKXHXVVTn77LPzyiuv1HtE3DffJ6+//np69uyZrl27NrruGbV/+umnSZJ///vfmThxYi677LJcdtllZY/x0UcfzfT433wPzUy599COO+6YY489Nu+++24WX3zxPPjgg/noo4+y44471s0ZO3ZsPvvss3Tr1q2iuir9WWoK5XpJkvTq1avB+Ix7nTT+mgAAAID5m3AVAAAAUDVLL710dtttt1x22WU5+uijG2yf2QpG06dPn+kxmzdvXtFY8p8VfRprxqpUZ555ZlZZZZWycxZaaKF6r2es0lMNyy+/fG677ba8+OKLWW+99crOefHFF5MkK6ywwnc+X21tbUqlUu66666y9/3b92ZOdevWLc8//3xGjhyZu+66K3fddVeuuOKK7L777rnqqqvm6Jhz8j5ZbrnlkiQvvfRSRee45pprsueee2abbbbJkUcemW7duqV58+Y59dRT6wJnjTW7ume8Z3fbbbeZhgIHDhw40+PPCPe9+OKLM33Pl3sP7bjjjjnmmGNy0003ZejQobnxxhvTqVOnegG42tradOvWLddee23Z4y666KL1Xs/Ln6WZ3ddy4998jzT2mgAAAID5m3AVAAAAUFW/+93vcs011+T0009vsG3GykETJ06sN/7WW2/NtXpmrEw1Q1EUGTduXF34ZMbj1zp27JhBgwY16bl79+6dV199tcH4K6+8Ure9sX7605/m1FNPzdVXX102XDV9+vRcd9116dKlS9ZZZ5162759L5Lktddey1JLLTXT8/Xt2zdFUaRPnz5ZZpllZjkvSV5++eVZ3sdZPSKwVatW2XLLLbPlllumtrY2Bx10UC699NIcd9xx6dev30z3a0rLLLNMll122dx+++0577zzZhseu/nmm7P00ktnxIgR9a7t24//69u3b0aOHJkJEyZUtHrVrCy66KLp0KFDpk+fPkfv2c033zzNmzfPn//85+y+++5l51x99dVp0aJFveBUnz59ssYaa+Qvf/lLDj744IwYMSLbbLNNWrduXTenb9++uffee7POOutUNYTYlL6P1wQAAAALsmbVLgAAAABYsPXt2ze77bZbLr300nzwwQf1tnXs2DGLLLJIRo8eXW/8oosummv1XH311fUef3bzzTfn/fffz+abb54kWW211dK3b9+cddZZ+eKLLxrs/+9//3uOz/2Tn/wkTz75ZB577LG6sS+//DKXXXZZllpqqTlaWWrttdfOoEGDcsUVV+Svf/1rg+2//e1v89prr+U3v/lNgyDIbbfdlnfffbfu9ZNPPpknnnii7l6Us91226V58+YZNmxYgxWfiqKoexTjqquumj59+mT48OENwnPf3K99+/ZJGgbsvv1Ix2bNmtUF4KZMmTLT+uaGYcOG5ZNPPsm+++6badOmNdh+zz331N37GaseffMan3jiiXrf8yTZfvvtUxRFhg0b1uB4jV1xrXnz5tl+++1zyy235OWXX26wfXbv2V69emWvvfbKvffem4svvrjB9ksuuST3339/9tlnnyyxxBL1tu244455/PHHc/nll+fjjz+u90jAJNlhhx0yffr0/P73v29w3GnTpjX4vv83+D5eEwAAACzIrFwFAAAAVN1vf/vb/PnPf86rr76aAQMG1Nu277775rTTTsu+++6b1VdfPaNHj85rr70212rp2rVrfvzjH2evvfbKhx9+mOHDh6dfv37Zb7/9kvwnxPPHP/4xm2++eQYMGJC99toriy++eN5999088MAD6dixY+644445OvfRRx+d66+/PptvvnkOOeSQdO3aNVdddVXGjx+fW265Jc2azdn/J3f11Vdn4403ztZbb51ddtkl6667bqZMmZIRI0bkwQcfzI477pgjjzyywX79+vXLj3/84xx44IGZMmVKhg8fnoUXXji/+c1vZnquvn375uSTT84xxxyTN998M9tss006dOiQ8ePH59Zbb83++++fI444Is2aNcvFF1+cLbfcMqusskr22muv9OjRI6+88kr+8Y9/ZOTIkUn+E2ZLkkMOOSSDBw9O8+bNs9NOO2XffffNhAkTstFGG2WJJZbIW2+9lQsuuCCrrLJK3WPs5pUdd9wxL730Uk455ZQ899xz2XnnndO7d+988sknufvuu3PffffluuuuS/KflcRGjBiRbbfdNltssUXGjx+fSy65JCussEK9sN6GG26YX/ziFzn//PMzduzYbLbZZqmtrc1DDz2UDTfcMAcffHCjajzttNPywAMPZM0118x+++2XFVZYIRMmTMizzz6be++9NxMmTJjl/ueee25eeeWVHHTQQbn77rvrVqgaOXJkbr/99qy//vo5++yzG+y3ww475IgjjsgRRxyRrl27Nlg5a/31188BBxyQU089Nc8//3w23XTTtGzZMmPHjs1NN92U8847Lz/72c8ada3V9n28JgAAAFiQCVcBAAAAVdevX7/stttuueqqqxpsO/744/Pvf/87N998c2688cZsvvnmueuuu9KtW7e5Usuxxx6bF198Maeeemo+//zzbLzxxrnooovSrl27ujkbbLBBHnvssfz+97/P//zP/+SLL75I9+7ds+aaa+aAAw6Y43MvtthiefTRR3PUUUflggsuyNdff52BAwfmjjvuyBZbbDHHx+3Ro0eefPLJnH322bnppptyyy23pEWLFhk4cGCuvPLK7L777mUfv7f77runWbNmGT58eD766KOsscYa+Z//+Z/06NFjluc7+uijs8wyy+Tcc8+tW3mpV69e2XTTTbPVVlvVzRs8eHAeeOCBDBs2LGeffXZqa2vTt2/fuiBb8p+VsH71q1/lhhtuyDXXXJOiKLLTTjtlt912y2WXXZaLLrooEydOTPfu3bPjjjvmxBNPnOMQ2ndx8sknZ6ONNsr555+fiy++OBMmTEiXLl3yox/9KLfffnvdde+555754IMPcumll2bkyJFZYYUVcs011+Smm27Kgw8+WO+YV1xxRQYOHJg//elPOfLII9OpU6esvvrqWXvttRtd32KLLZYnn3wyJ510UkaMGJGLLrooCy+8cAYMGFD2kZzfttBCC+W+++7LRRddlGuuuSZHHnlkiqLIcsstl+HDh+eggw5Ky5YtG+y3xBJLZO21184jjzySfffdt+ycSy65JKuttlouvfTSHHvssWnRokWWWmqp7Lbbbg0eVfnf4vt4TQAAALCgKhWNXUccAAAAAP5/xx13XE499dSyj8MDAAAAgP928/5/4wMAAADge+P999/PIossUu0yAAAAAGCu8FhAAAAAABrtjTfeyK233pqbbropP/3pT6tdDgAAAADMFVauAgAAAKDRRo8enWHDhmX99dfPOeecU+1yAAAAAGCuKBVFUVS7CAAAAAAAAAAAgPmNlasAAAAAAAAAAADKEK4CAAAAAAAAAAAoo0W1C5jbamtr895776VDhw4plUrVLgcAAAAAAAAAAKiyoijy+eefp2fPnmnWbObrU33vw1XvvfdeevXqVe0yAAAAAAAAAACA+cw777yTJZZYYqbbv/fhqg4dOiT5z43o2LFjlathZmpqanLPPfdk0003TcuWLatdDjCf0iuASukXQCX0CqBS+gVQCb0CqJR+AVRKvwAqoVfMuUmTJqVXr1512aKZ+d6Hq2Y8CrBjx47CVfOxmpqatGvXLh07dvTDDsyUXgFUSr8AKqFXAJXSL4BK6BVApfQLoFL6BVAJveK7m5EtmpmZPzAQAAAAAAAAAABgASZcBQAAAAAAAAAAUIZwFQAAAAAAAAAAQBnCVQAAAAAAAAAAAGUIVwEAAAAAAAAAAJQhXAUAAAAAAAAAAFCGcBUAAAAAAAAAAEAZwlUAAAAAAAAAAABlCFcBAAAAAAAAAACUIVwFAAAAAAAAAABQRlXDVaNHj86WW26Znj17plQq5bbbbqu3vSiKHH/88enRo0fatm2bQYMGZezYsdUpFgAAAAAAAAAAWKBUNVz15ZdfZuWVV86FF15YdvsZZ5yR888/P5dcckmeeOKJtG/fPoMHD87XX389jysFAAAAAAAAAAAWNC2qefLNN988m2++edltRVFk+PDh+d3vfpett946SXL11VdnscUWy2233ZaddtppXpYKAAAAAAAAAAAsYKoarpqV8ePH54MPPsigQYPqxjp16pQ111wzjz322EzDVVOmTMmUKVPqXk+aNClJUlNTk5qamrlbNHPk08lTc/iNL+b195vnwtcfSalUqnZJwHyqKIp8/oVeAcyefgFUQq8AKqVfAJXQK4BK6RdApfQL+O938tYrZJVenefqOWZkYWRiGq/Sezbfhqs++OCDJMliiy1Wb3yxxRar21bOqaeemmHDhjUYv+eee9KuXbumLZIm8dwnpTz8evMkpbw/+ctqlwPM9/QKoFL6BVAJvQKolH4BVEKvACqlXwCV0i/gv9kDDz+W9zoV8+Rco0aNmifn+T6ZPHlyRfPm23DVnDrmmGNy+OGH172eNGlSevXqlU033TQdO3asYmXMTO2L7yevvZTF2xUZtt0qadHie/e2BJrItGnT8uwzz2bV1VbVK4BZ0i+ASugVQKX0C6ASegVQKf0CqJR+Af/9BvTomM7tWs7Vc9TU1GTUqFHZZJNN0rLl3D3X982Mp+HNznzbgbt3754k+fDDD9OjR4+68Q8//DCrrLLKTPdr3bp1Wrdu3WC8ZcuW3kTzqeb//weBdi2KrL/sYr5PwEzV1NTky9f1CmD29AugEnoFUCn9AqiEXgFUSr8AKqVfAI0hF9N4ld6vZnO5jjnWp0+fdO/ePffdd1/d2KRJk/LEE09krbXWqmJlAAAAAAAAAADAgqCqK1d98cUXGTduXN3r8ePH5/nnn0/Xrl2z5JJLZujQoTn55JPTv3//9OnTJ8cdd1x69uyZbbbZpnpFAwAAAAAAAAAAC4SqhquefvrpbLjhhnWvDz/88CTJHnvskSuvvDK/+c1v8uWXX2b//ffPxIkT8+Mf/zh333132rRpU62SAQAAAAAAAACABURVw1UbbLBBiqKY6fZSqZSTTjopJ5100jysCgAAAAAAAAAAIGlW7QIAAAAAAAAAAADmR8JVAAAAAAAAAAAAZQhXAQAAAAAAAAAAlCFcBQAAAAAAAAAAUIZwFVVXFEW1SwAAAAAAAAAAgAaEqwAAAAAAAAAAAMoQrgIAAAAAAAAAAChDuAoAAAAAAAAAAKAM4SoAAAAAAAAAAIAyhKsAAAAAAAAAAADKEK4CAAAAAAAAAAAoQ7gKAAAAAAAAAACgDOEqAAAAAAAAAACAMoSrAAAAAAAAAAAAyhCuAgAAAAAAAAAAKEO4CgAAAAAAAAAAoAzhKgAAAAAAAAAAgDKEq5hvlErVrgAAAAAAAAAAAP6PcBUAAAAAAAAAAEAZwlUAAAAAAAAAAABlCFcBAAAAAAAAAACUIVwFAAAAAAAAAABQhnAVAAAAAAAAAABAGcJVAAAAAAAAAAAAZQhXAQAAAAAAAAAAlCFcBQAAAAAAAAAAUIZwFQAAAAAAAAAAQBnCVQAAAAAAAAAAAGUIV1F1RVHtCgAAAAAAAAAAoCHhKgAAAAAAAAAAgDKEqwAAAAAAAAAAAMoQrgIAAAAAAAAAAChDuAoAAAAAAAAAAKAM4SoAAAAAAAAAAIAyhKsAAAAAAAAAAADKEK4CAAAAAAAAAAAoQ7gKAAAAAAAAAACgDOEqAAAAAAAAAACAMoSrAAAAAAAAAAAAyhCuAgAAAAAAAAAAKEO4iqorUiRJSlWuAwAAAAAAAAAAvkm4CgAAAAAAAAAAoAzhKgAAAAAAAAAAgDKEqwAAAAAAAAAAAMoQrgIAAAAAAAAAAChDuAoAAAAAAAAAAKAM4SoAAAAAAAAAAIAyhKsAAAAAAAAAAADKEK4CAAAAAAAAAAAoQ7gKAAAAAAAAAACgDOEqAAAAAAAAAACAMoSrqLqi+M9/S9UtAwAAAAAAAAAA6hGuAgAAAAAAAAAAKEO4CgAAAAAAAAAAoAzhKgAAAAAAAAAAgDKEqwAAAAAAAAAAAMoQrgIAAAAAAAAAAChDuAoAAAAAAAAAAKAM4SoAAAAAAAAAAIAyhKsAAAAAAAAAAADKEK4CAAAAAAAAAAAoQ7gKAAAAAAAAAACgDOEqAAAAAAAAAACAMoSrqLqiqHYFAAAAAAAAAADQkHAVAAAAAAAAAABAGcJVAAAAAAAAAAAAZQhXAQAAAAAAAAAAlDFfh6umT5+e4447Ln369Enbtm3Tt2/f/P73v09RFNUuDQAAAAAAAAAA+J5rUe0CZuX000/PxRdfnKuuuioDBgzI008/nb322iudOnXKIYccUu3yAAAAAAAAAACA77H5Olz16KOPZuutt84WW2yRJFlqqaVy/fXX58knn6xyZQAAAAAAAAAAwPfdfB2uWnvttXPZZZfltddeyzLLLJMXXnghDz/8cM4555yZ7jNlypRMmTKl7vWkSZOSJDU1NampqZnrNdN406dPr/va9wiYlRk9Qq8AZke/ACqhVwCV0i+ASugVQKX0C6BS+gVQCb1izlV6z0pFURRzuZY5Vltbm2OPPTZnnHFGmjdvnunTp+eUU07JMcccM9N9TjzxxAwbNqzB+HXXXZd27drNzXKZQ0/+u5RrxzXPcp1qc+AKtdUuBwAAAAAAAACA77nJkydnl112yWeffZaOHTvOdN58vXLVjTfemGuvvTbXXXddBgwYkOeffz5Dhw5Nz549s8cee5Td55hjjsnhhx9e93rSpEnp1atXNt1001neCKpnynPv5dpxLydJNtlkk7Rs2bLKFQHzq5qamowaNUqvAGZLvwAqoVcAldIvgEroFUCl9AugUvoFUAm9Ys7NeBre7MzX4aojjzwyRx99dHbaaackyUorrZS33norp5566kzDVa1bt07r1q0bjLds2dKbaD7VvHnzuq99n4BK6BVApfQLoBJ6BVAp/QKohF4BVEq/ACqlXwCV0Csar9L71Wwu1/GdTJ48Oc2a1S+xefPmqa316Ljvo1Kp2hUAAAAAAAAAAMD/ma9Xrtpyyy1zyimnZMkll8yAAQPy3HPP5Zxzzsnee+9d7dJoQkW1CwAAAAAAAAAAgDK+c7hq0qRJuf/++7Pssstm+eWXb4qa6lxwwQU57rjjctBBB+Wjjz5Kz549c8ABB+T4449v0vMAAAAAAAAAAAB8W6PDVTvssEPWW2+9HHzwwfnqq6+y+uqr580330xRFLnhhhuy/fbbN1lxHTp0yPDhwzN8+PAmOyYAAAAAAAAAAEAlmjV2h9GjR2fddddNktx6660piiITJ07M+eefn5NPPrnJCwQAAAAAAAAAAKiGRoerPvvss3Tt2jVJcvfdd2f77bdPu3btssUWW2Ts2LFNXiAAAAAAAAAAAEA1NDpc1atXrzz22GP58ssvc/fdd2fTTTdNknz66adp06ZNkxcIAAAAAAAAAABQDS0au8PQoUOz6667ZqGFFkrv3r2zwQYbJPnP4wJXWmmlpq4PAAAAAAAAAACgKhodrjrooIOy5ppr5u23384mm2ySZs3+s/jV0ksvnVNOOaXJCwQAAAAAAAAAAKiGRj8W8KSTTsryyy+fbbfdNgsttFDd+EYbbZR77723SYsDAAAAAAAAAAColkaHq4YNG5YvvviiwfjkyZMzbNiwJikKAAAAAAAAAACg2hodriqKIqVSqcH4Cy+8kK5duzZJUQAAAAAAAAAAANXWotKJXbp0SalUSqlUyjLLLFMvYDV9+vR88cUX+eUvfzlXiuT7rSiKapcAAAAAAAAAAAANVByuGj58eIqiyN57751hw4alU6dOddtatWqVpZZaKmuttdZcKRIAAAAAAAAAAGBeqzhctcceeyRJ+vTpk3XWWSctWlS8KwAAAAAAAAAAwH+dZo3d4csvv8x9993XYHzkyJG56667mqQoAAAAAAAAAACAamt0uOroo4/O9OnTG4wXRZGjjz66SYoCAAAAAAAAAACotkaHq8aOHZsVVlihwfhyyy2XcePGNUlRAAAAAAAAAAAA1dbocFWnTp3yxhtvNBgfN25c2rdv3yRFAQAAAAAAAAAAVFujw1Vbb711hg4dmtdff71ubNy4cfn1r3+drbbaqkmLAwAAAAAAAAAAqJZGh6vOOOOMtG/fPsstt1z69OmTPn36ZPnll8/CCy+cs846a27UCAAAAAAAAAAAMM+1aOwOnTp1yqOPPppRo0blhRdeSNu2bTNw4MCst956c6M+AAAAAAAAAACAqmh0uCpJSqVSNt1006y33npp3bp1SqVSU9fFAsi7CAAAAAAAAACA+UmjHwtYW1ub3//+91l88cWz0EILZfz48UmS4447Ln/605+avEAAAAAAAAAAAIBqaHS46uSTT86VV16ZM844I61ataobX3HFFfPHP/6xSYtjwVBUuwAAAAAAAAAAACij0eGqq6++Opdddll23XXXNG/evG585ZVXziuvvNKkxQEAAAAAAAAAAFRLo8NV7777bvr169dgvLa2NjU1NU1SFAAAAAAAAAAAQLU1Oly1wgor5KGHHmowfvPNN+cHP/hBkxQFAAAAAAAAAABQbS0au8Pxxx+fPfbYI++++25qa2szYsSIvPrqq7n66qvz17/+dW7UCAAAAAAAAAAAMM81euWqrbfeOnfccUfuvffetG/fPscff3zGjBmTO+64I5tsssncqBEAAAAAAAAAAGCea/TKVUmy7rrrZtSoUU1dCwAAAAAAAAAAwHyj0StXAQAAAAAAAAAALAgqWrmqa9euee2117LIIoukS5cuKZVKM5270EILZcCAATn99NMzcODAJisUAAAAAAAAAABgXqooXHXuueemQ4cOSZLhw4fPcu6UKVNy5513Zq+99sozzzzznQsEAAAAAAAAAACohorCVXvssUfZr2dm8803z2qrrTbnVQEAAAAAAAAAAFRZReGqcp5++umMGTMmSbL88stn9dVXr9vWq1evfPTRR9+9OgAAAAAAAAAAgCppdLjqX//6V3beeec88sgj6dy5c5Jk4sSJWXvttXPDDTdkiSWWaOoa+b4rql0AAAAAAAAAAAA01KyxO+y7776pqanJmDFjMmHChEyYMCFjxoxJbW1t9t1337lRIwAAAAAAAAAAwDzX6JWr/v73v+fRRx/NsssuWze27LLL5oILLsi6667bpMUBAAAAAAAAAABUS6NXrurVq1dqamoajE+fPj09e/ZskqIAAAAAAAAAAACqrdHhqjPPPDO/+tWv8vTTT9eNPf300zn00ENz1llnNWlxAAAAAAAAAAAA1VLRYwG7dOmSUqlU9/rLL7/MmmuumRYt/rP7tGnT0qJFi+y9997ZZptt5kqhAAAAAAAAAAAA81JF4arhw4fP5TIAAAAAAAAAAADmLxWFq/bYY4+5XQcAAAAAAAAAAMB8paJw1Te9++67ueWWW/Laa68lSZZddtlst912WXzxxZu8OAAAAAAAAAAAgGppVLjqoosuyuGHH56pU6emY8eOSZJJkyblyCOPzDnnnJODDjporhTJgqFUqnYFAAAAAAAAAADwf5pVOvFvf/tbDjnkkBx88MF59913M3HixEycODHvvvtuDjrooBx66KG5884752atAAAAAAAAAAAA80zFK1edeeaZOfroo3PyySfXG+/Ro0fOOeectGvXLmeccUZ+8pOfNHmRfL8VKapdAgAAAAAAAAAANFDxylXPPvtsfvGLX8x0+y9+8Ys8++yzTVIUAAAAAAAAAABAtVUcrpo+fXpatmw50+0tW7bM9OnTm6QoAAAAAAAAAACAaqs4XDVgwIDcfvvtM91+2223ZcCAAU1SFAAAAAAAAAAAQLW1qHTikCFDcuCBB6Z169bZf//906LFf3adNm1aLr300vzud7/LRRddNNcKBQAAAAAAAAAAmJcqDlftscceeemll3LwwQfnmGOOSd++fVMURd5444188cUXOeSQQ7LnnnvOxVIBAAAAAAAAAADmnYrDVUly1lln5Wc/+1muv/76jB07Nkmy/vrrZ6eddsqPfvSjuVIgAAAAAAAAAABANTQqXJUkP/rRjwSpAAAAAAAAAACA771m1S4AAAAAAAAAAABgfiRcxXyjVO0CAAAAAAAAAADgG4SrAAAAAAAAAAAAyhCuAgAAAAAAAAAAKEO4iqorimpXAAAAAAAAAAAADbWoZNIPfvCDlEqlig747LPPfqeCAAAAAAAAAAAA5gcVhau22Wabuq+//vrrXHTRRVlhhRWy1lprJUkef/zx/OMf/8hBBx00V4oEAAAAAAAAAACY1yoKV51wwgl1X++777455JBD8vvf/77BnHfeeadpqwMAAAAAAAAAAKiSZo3d4aabbsruu+/eYHy33XbLLbfc0iRFAQAAAAAAAAAAVFujw1Vt27bNI4880mD8kUceSZs2bZqkKAAAAAAAAAAAgGqr6LGA3zR06NAceOCBefbZZ7PGGmskSZ544olcfvnlOe6445q8QAAAAAAAAAAAgGpodLjq6KOPztJLL53zzjsv11xzTZJk+eWXzxVXXJEddtihyQsEAAAAAAAAAACohkaHq5Jkhx12EKQCAAAAAAAAAAC+15rNyU4TJ07MH//4xxx77LGZMGFCkuTZZ5/Nu+++26TFAQAAAAAAAAAAVEujV6568cUXM2jQoHTq1Clvvvlm9t1333Tt2jUjRozI22+/nauvvnpu1AkAAAAAAAAAADBPNXrlqsMPPzx77rlnxo4dmzZt2tSN/+QnP8no0aObtDgAAAAAAAAAAIBqaXS46qmnnsoBBxzQYHzxxRfPBx980CRFfdO7776b3XbbLQsvvHDatm2blVZaKU8//XSTn4fqKapdAAAAAAAAAAAAlNHoxwK2bt06kyZNajD+2muvZdFFF22Somb49NNPs84662TDDTfMXXfdlUUXXTRjx45Nly5dmvQ8AAAAAAAAAAAA39bocNVWW22Vk046KTfeeGOSpFQq5e23385RRx2V7bffvkmLO/3009OrV69cccUVdWN9+vRp0nMAAAAAAAAAAACU0+hw1dlnn52f/exn6datW7766qusv/76+eCDD7LWWmvllFNOadLi/t//+38ZPHhwfv7zn+fvf/97Fl988Rx00EHZb7/9ZrrPlClTMmXKlLrXM1bZqqmpSU1NTZPWR9OYPn163de+R8CszOgRegUwO/oFUAm9AqiUfgFUQq8AKqVfAJXSL4BK6BVzrtJ7ViqKopiTEzz88MN58cUX88UXX2TVVVfNoEGD5uQws9SmTZskyeGHH56f//zneeqpp3LooYfmkksuyR577FF2nxNPPDHDhg1rMH7dddelXbt2TV4j392jH5bylzeaZ8UutdlvudpqlwMAAAAAAAAAwPfc5MmTs8suu+Szzz5Lx44dZzpvjsNV80KrVq2y+uqr59FHH60bO+SQQ/LUU0/lscceK7tPuZWrevXqlY8//niWN4Lq+cvT/8rvbv9nVuxSmxt/tXFatmxZ7ZKA+VRNTU1GjRqVTTbZRK8AZkm/ACqhVwCV0i+ASugVQKX0C6BS+gVQCb1izk2aNCmLLLLIbMNVjX4sYJLcd999ue+++/LRRx+ltrb+SkOXX375nByyrB49emSFFVaoN7b88svnlltumek+rVu3TuvWrRuMt2zZ0ptoPtW8efO6r32fgEroFUCl9AugEnoFUCn9AqiEXgFUSr8AKqVfAJXQKxqv0vvV6HDVsGHDctJJJ2X11VdPjx49UiqVGl1cpdZZZ528+uqr9cZee+219O7de66dEwAAAAAAAAAAIJmDcNUll1ySK6+8Mr/4xS/mRj31HHbYYVl77bXzhz/8ITvssEOefPLJXHbZZbnsssvm+rmZ9+ZeTA8AAAAAAAAAABqvWWN3mDp1atZee+25UUsDP/zhD3Prrbfm+uuvz4orrpjf//73GT58eHbdddd5cn4AAAAAAAAAAGDB1ehw1b777pvrrrtubtRS1k9/+tO89NJL+frrrzNmzJjst99+8+zcAAAAAAAAAADAgquixwIefvjhdV/X1tbmsssuy7333puBAwemZcuW9eaec845TVshAAAAAAAAAABAFVQUrnruuefqvV5llVWSJC+//HK98VKp1DRVsUApimpXAAAAAAAAAAAADVUUrnrggQfmdh0AAAAAAAAAAADzlWaN3eGzzz7LhAkTGoxPmDAhkyZNapKiAAAAAAAAAAAAqq3R4aqddtopN9xwQ4PxG2+8MTvttFOTFAUAAAAAAAAAAFBtjQ5XPfHEE9lwww0bjG+wwQZ54oknmqQoAAAAAAAAAACAamt0uGrKlCmZNm1ag/Gampp89dVXTVIUAAAAAAAAAABAtTU6XLXGGmvksssuazB+ySWXZLXVVmuSogAAAAAAAAAAAKqtRWN3OPnkkzNo0KC88MIL2XjjjZMk9913X5566qncc889TV4gAAAAAAAAAABANTR65ap11lknjz32WHr16pUbb7wxd9xxR/r165cXX3wx66677tyoEQAAAAAAAAAAYJ5r9MpVSbLKKqvk2muvbepaAAAAAAAAAAAA5htzFK6a4euvv87UqVPrjXXs2PE7FQQAAAAAAAAAADA/aPRjASdPnpyDDz443bp1S/v27dOlS5d6f6CxihTVLgEAAAAAAAAAABpodLjqyCOPzP3335+LL744rVu3zh//+McMGzYsPXv2zNVXXz03agQAAAAAAAAAAJjnGv1YwDvuuCNXX311Nthgg+y1115Zd911069fv/Tu3TvXXnttdt1117lRJwAAAAAAAAAAwDzV6JWrJkyYkKWXXjpJ0rFjx0yYMCFJ8uMf/zijR49u2uoAAAAAAAAAAACqpNHhqqWXXjrjx49Pkiy33HK58cYbk/xnRavOnTs3aXEAAAAAAAAAAADV0uhw1V577ZUXXnghSXL00UfnwgsvTJs2bXLYYYflyCOPbPICAQAAAAAAAAAAqqFFY3c47LDD6r4eNGhQXnnllTzzzDPp169fBg4c2KTFAQAAAAAAAAAAVEujw1Xf1rt37/Tu3bspamEBVypVuwIAAAAAAAAAAPg/FT8W8P77788KK6yQSZMmNdj22WefZcCAAXnooYeatDgAAAAAAAAAAIBqqThcNXz48Oy3337p2LFjg22dOnXKAQcckHPOOadJiwMAAAAAAAAAAKiWisNVL7zwQjbbbLOZbt90003zzDPPNElRAAAAAAAAAAAA1VZxuOrDDz9My5YtZ7q9RYsW+fe//90kRQEAAAAAAAAAAFRbxeGqxRdfPC+//PJMt7/44ovp0aNHkxTFgqUoql0BAAAAAAAAAAA0VHG46ic/+UmOO+64fP311w22ffXVVznhhBPy05/+tEmLAwAAAAAAAAAAqJYWlU783e9+lxEjRmSZZZbJwQcfnGWXXTZJ8sorr+TCCy/M9OnT89vf/nauFQoAAAAAAAAAADAvVRyuWmyxxfLoo4/mwAMPzDHHHJPi/3+WW6lUyuDBg3PhhRdmscUWm2uFAgAAAAAAAAAAzEsVh6uSpHfv3rnzzjvz6aefZty4cSmKIv3790+XLl3mVn0AAAAAAAAAAABV0ahw1QxdunTJD3/4w6auBQAAAAAAAAAAYL7RrNoFAAAAAAAAAAAAzI+EqwAAAAAAAAAAAMoQrgIAAAAAAAAAACijonDVqquumk8//TRJctJJJ2Xy5MlztSgAAAAAAAAAAIBqqyhcNWbMmHz55ZdJkmHDhuWLL76Yq0UBAAAAAAAAAABUW4tKJq2yyirZa6+98uMf/zhFUeSss87KQgstVHbu8ccf36QFAgAAAAAAAAAAVENF4aorr7wyJ5xwQv7617+mVCrlrrvuSosWDXctlUrCVTRaUe0CAAAAAAAAAACgjIrCVcsuu2xuuOGGJEmzZs1y3333pVu3bnO1MAAAAAAAAAAAgGqqKFz1TbW1tXOjDgAAAAAAAAAAgPlKo8NVSfL6669n+PDhGTNmTJJkhRVWyKGHHpq+ffs2aXEAAAAAAAAAAADV0qyxO4wcOTIrrLBCnnzyyQwcODADBw7ME088kQEDBmTUqFFzo0YAAAAAAAAAAIB5rtErVx199NE57LDDctpppzUYP+qoo7LJJps0WXEAAAAAAAAAAADV0uiVq8aMGZN99tmnwfjee++df/7zn01SFAumUrULAAAAAAAAAACAb2h0uGrRRRfN888/32D8+eefT7du3ZqiJgAAAAAAAAAAgKpr9GMB99tvv+y///554403svbaaydJHnnkkZx++uk5/PDDm7xAAAAAAAAAAACAamh0uOq4445Lhw4dcvbZZ+eYY45JkvTs2TMnnnhiDjnkkCYvEAAAAAAAAAAAoBoaHa4qlUo57LDDcthhh+Xzzz9PknTo0KHJCwMAAAAAAAAAAKimRoervkmoiiZRFNWuAAAAAAAAAAAAGmhW7QIAAAAAAAAAAADmR8JVAAAAAAAAAAAAZQhXAQAAAAAAAAAAlNGocFVNTU023njjjB07dm7VAwAAAAAAAAAAMF9oVLiqZcuWefHFF+dWLQAAAAAAAAAAAPONRj8WcLfddsuf/vSnuVELC7hStQsAAAAAAAAAAIBvaNHYHaZNm5bLL7889957b1ZbbbW0b9++3vZzzjmnyYoDAAAAAAAAAAColkaHq15++eWsuuqqSZLXXnut3rZSydpDAAAAAAAAAADA90Ojw1UPPPDA3KgDAAAAAAAAAABgvtJsTnccN25cRo4cma+++ipJUhRFkxUFAAAAAAAAAABQbY0OV33yySfZeOONs8wyy+QnP/lJ3n///STJPvvsk1//+tdNXiAAAAAAAAAAAEA1NDpcddhhh6Vly5Z5++23065du7rxHXfcMXfffXeTFseCwZpnAAAAAAAAAADMj1o0dod77rknI0eOzBJLLFFvvH///nnrrbearDAAAAAAAAAAAIBqavTKVV9++WW9FatmmDBhQlq3bt0kRQEAAAAAAAAAAFRbo8NV6667bq6++uq616VSKbW1tTnjjDOy4YYbNmlxAAAAAAAAAAAA1dLoxwKeccYZ2XjjjfP0009n6tSp+c1vfpN//OMfmTBhQh555JG5USMAAAAAAAAAAMA81+iVq1ZcccW89tpr+fGPf5ytt946X375Zbbbbrs899xz6du379yoEQAAAAAAAAAAYJ5r9MpVSdKpU6f89re/bepaWNCVql0AAAAAAAAAAAD8nzkKV3366af505/+lDFjxiRJVlhhhey1117p2rVrkxYHAAAAAAAAAABQLY1+LODo0aOz1FJL5fzzz8+nn36aTz/9NOeff3769OmT0aNHz40a65x22mkplUoZOnToXD0PAAAAAAAAAABAo1euGjJkSHbcccdcfPHFad68eZJk+vTpOeiggzJkyJC89NJLTV5kkjz11FO59NJLM3DgwLlyfAAAAAAAAAAAgG9q9MpV48aNy69//eu6YFWSNG/ePIcffnjGjRvXpMXN8MUXX2TXXXfN//7v/6ZLly5z5RwAAAAAAAAAAADf1OiVq1ZdddWMGTMmyy67bL3xMWPGZOWVV26ywr5pyJAh2WKLLTJo0KCcfPLJs5w7ZcqUTJkype71pEmTkiQ1NTWpqamZK/Xx3UyfPr3ua98jYFZm9Ai9Apgd/QKohF4BVEq/ACqhVwCV0i+ASukXQCX0ijlX6T2rKFz14osv1n19yCGH5NBDD824cePyox/9KEny+OOP58ILL8xpp502B6XO2g033JBnn302Tz31VEXzTz311AwbNqzB+D333JN27do1dXk0gZffLyX5z0poo0aNqm4xwH8FvQKolH4BVEKvACqlXwCV0CuASukXQKX0C6ASekXjTZ48uaJ5paIoitlNatasWUqlUmY3tVQq1VuF6Lt65513svrqq2fUqFEZOHBgkmSDDTbIKquskuHDh5fdp9zKVb169crHH3+cjh07NlltNJ0/P/52TvrbK1ll4dpcN2TjtGzZstolAfOpmpqajBo1KptssoleAcySfgFUQq8AKqVfAJXQK4BK6RdApfQLoBJ6xZybNGlSFllkkXz22WezzBRVtHLV+PHjm6ywxnjmmWfy0UcfZdVVV60bmz59ekaPHp3/+Z//yZQpU9K8efN6+7Ru3TqtW7ducKyWLVt6E82nvvk99H0CKqFXAJXSL4BK6BVApfQLoBJ6BVAp/QKolH4BVEKvaLxK71dF4arevXt/p2Lm1MYbb5yXXnqp3thee+2V5ZZbLkcddVSDYBUAAAAAAAAAAEBTqShc9W3vvfdeHn744Xz00Uepra2tt+2QQw5pksKSpEOHDllxxRXrjbVv3z4LL7xwg3EAAAAAAAAAAICm1Ohw1ZVXXpkDDjggrVq1ysILL5xSqVS3rVQqNWm4igVLafZTAAAAAAAAAABgnml0uOq4447L8ccfn2OOOSbNmjWbGzXN0oMPPjjPzwkAAAAAAAAAACx4Gp2Omjx5cnbaaaeqBKsAAAAAAAAAAADmlUYnpPbZZ5/cdNNNc6MWAAAAAAAAAACA+UajHwt46qmn5qc//WnuvvvurLTSSmnZsmW97eecc06TFQcAAAAAAAAAAFAtcxSuGjlyZJZddtkkSalUqtv2za8BAAAAAAAAAAD+mzU6XHX22Wfn8ssvz5577jkXymFBVBRFtUsAAAAAAAAAAIAGmjV2h9atW2edddaZG7UAAAAAAAAAAADMNxodrjr00ENzwQUXzI1aAAAAAAAAAAAA5huNfizgk08+mfvvvz9//etfM2DAgLRs2bLe9hEjRjRZcQAAAAAAAAAAANXS6HBV586ds912282NWgAAAAAAAAAAAOYbjQ5XXXHFFXOjDgAAAAAAAAAAgPlKs2oXAAAAAAAAAAAAMD9q9MpVffr0SalUmun2N9544zsVBAAAAAAAAAAAMD9odLhq6NCh9V7X1NTkueeey913350jjzyyqeoCAAAAAAAAAACoqkaHqw499NCy4xdeeGGefvrp71wQAAAAAAAAAADA/KBZUx1o8803zy233NJUhwMAAAAAAAAAAKiqJgtX3XzzzenatWtTHQ4AAAAAAAAAAKCqGv1YwB/84AcplUp1r4uiyAcffJB///vfueiii5q0OBYMRbULAAAAAAAAAACAMhodrtpmm23qvW7WrFkWXXTRbLDBBlluueWaqi4AAAAAAAAAAICqanS46oQTTpgbdQAAAAAAAAAAAMxXmlW7AAAAAAAAAAAAgPlRxStXNWvWLKVSaZZzSqVSpk2b9p2LYsE063cXAAAAAAAAAADMWxWHq2699daZbnvsscdy/vnnp7a2tkmKAgAAAAAAAAAAqLaKw1Vbb711g7FXX301Rx99dO64447suuuuOemkk5q0OAAAAAAAAAAAgGppNic7vffee9lvv/2y0korZdq0aXn++edz1VVXpXfv3k1dHwAAAAAAAAAAQFU0Klz12Wef5aijjkq/fv3yj3/8I/fdd1/uuOOOrLjiinOrPgAAAAAAAAAAgKqo+LGAZ5xxRk4//fR07949119/fdnHBAIAAAAAAAAAAHxfVByuOvroo9O2bdv069cvV111Va666qqy80aMGNFkxQEAAAAAAAAAAFRLxeGq3XffPaVSaW7WAgAAAAAAAAAAMN+oOFx15ZVXzsUyWJAVRbUrAAAAAAAAAACAhppVuwAAAAAAAAAAAID5kXAVAAAAAAAAAABAGcJVAAAAAAAAAAAAZQhXAQAAAAAAAAAAlCFcBQAAAAAAAAAAUIZwFQAAAAAAAAAAQBnCVQAAAAAAAAAAAGUIVwEAAAAAAAAAAJQhXAUAAAAAAAAAAFCGcBUAAAAAAAAAAEAZwlUAAAAAAAAAAABlCFdRdUW1CwAAAAAAAAAAgDKEqwAAAAAAAAAAAMoQrgIAAAAAAAAAAChDuIr5RqlU7QoAAAAAAAAAAOD/CFcBAAAAAAAAAACUIVwFAAAAAAAAAABQhnAVAAAAAAAAAABAGcJVAAAAAAAAAAAAZQhXAQAAAAAAAAAAlCFcBQAAAAAAAAAAUIZwFQAAAAAAAAAAQBnCVVRdURTVLgEAAAAAAAAAABoQrgIAAAAAAAAAAChDuAoAAAAAAAAAAKAM4SoAAAAAAAAAAIAyhKsAAAAAAAAAAADKEK4CAAAAAAAAAAAoQ7gKAAAAAAAAAACgDOEqAAAAAAAAAACAMoSrAAAAAAAAAAAAyhCuAgAAAAAAAAAAKEO4CgAAAAAAAAAAoAzhKgAAAAAAAAAAgDKEqwAAAAAAAAAAAMoQrgIAAAAAAAAAAChDuAoAAAAAAAAAAKCM+Tpcdeqpp+aHP/xhOnTokG7dumWbbbbJq6++Wu2ymEtK1S4AAAAAAAAAAAC+Yb4OV/3973/PkCFD8vjjj2fUqFGpqanJpptumi+//LLapQEAAAAAAAAAAN9zLapdwKzcfffd9V5feeWV6datW5555pmst956VaoKAAAAAAAAAABYEMzX4apv++yzz5IkXbt2nemcKVOmZMqUKXWvJ02alCSpqalJTU3N3C2QOTJ9+vS6r32PgFmZ0SP0CmB29AugEnoFUCn9AqiEXgFUSr8AKqVfAJXQK+ZcpfesVBRFMZdraRK1tbXZaqutMnHixDz88MMznXfiiSdm2LBhDcavu+66tGvXbm6WyBx64L1SbnureVZfpDa/6F9b7XIAAAAAAAAAAPiemzx5cnbZZZd89tln6dix40zn/deEqw488MDcddddefjhh7PEEkvMdF65lat69eqVjz/+eJY3guq5/JE3c+rdr2X1RWpz9UEbp2XLltUuCZhP1dTUZNSoUdlkk030CmCW9AugEnoFUCn9AqiEXgFUSr8AKqVfAJXQK+bcpEmTssgii8w2XPVf8VjAgw8+OH/9618zevToWQarkqR169Zp3bp1g/GWLVt6E82nmjdvXve17xNQCb0CqJR+AVRCrwAqpV8AldArgErpF0Cl9AugEnpF41V6v+brcFVRFPnVr36VW2+9NQ8++GD69OlT7ZIAAAAAAAAAAIAFxHwdrhoyZEiuu+663H777enQoUM++OCDJEmnTp3Stm3bKlcHAAAAAAAAAAB8nzWrdgGzcvHFF+ezzz7LBhtskB49etT9+ctf/lLt0mhCRVHtCgAAAAAAAAAAoKH5euWqQuoGAAAAAAAAAACokvl65SoWLKVqFwAAAAAAAAAAAN8gXAUAAAAAAAAAAFCGcBUAAAAAAAAAAEAZwlUAAAAAAAAAAABlCFcBAAAAAAAAAACUIVwFAAAAAAAAAABQhnAVAAAAAAAAAABAGcJVAAAAAAAAAAAAZQhXAQAAAAAAAAAAlCFcRdUVKapdAgAAAAAAAAAANCBcBQAAAAAAAAAAUIZwFfOPUrULAAAAAAAAAACA/yNcBQAAAAAAAAAAUIZwFQAAAAAAAAAAQBnCVQAAAAAAAAAAAGUIVwEAAAAAAAAAAJQhXAUAAAAAAAAAAFBGi2oXAAAAAAAAAADAf7+iKDJt2rRMnz692qUsMGpqatKiRYt8/fXX7vu3NG/ePC1atEipVPpOxxGuAgAAAAAAAADgO5k6dWref//9TJ48udqlLFCKokj37t3zzjvvfOcQ0fdRu3bt0qNHj7Rq1WqOjyFcBQAAAAAAAADAHKutrc348ePTvHnz9OzZM61atRL0mUdqa2vzxRdfZKGFFkqzZs2qXc58oyiKTJ06Nf/+978zfvz49O/ff47vj3AVAAAAAAAAAABzbOrUqamtrU2vXr3Srl27apezQKmtrc3UqVPTpk0b4apvadu2bVq2bJm33nqr7h7NCXeVqiuKalcAAAAAAAAAAHxXwj3Mb5riPeldzXzDgoAAAAAAAAAAAMxPhKsAAAAAAAAAAADKEK4CAAAAAAAAAIBZWGqppTJ8+PDvPGdemx9rmpn5tVbhKgAAAAAAAAAAFkjvvPNO9t577/Ts2TOtWrVK7969c+ihh+aTTz5p9LGeeuqp7L///k1WW1OEjZqqpnHjxmWvvfbKEksskdatW6dPnz7Zeeed8/TTT3/nY8/vhKsAAAAAAAAAAFjgvPHGG1l99dUzduzYXH/99Rk3blwuueSS3HfffVlrrbUyYcKERh1v0UUXTbt27eZStXOmKWp6+umns9pqq+W1117LpZdemn/+85+59dZbs9xyy+XXv/51E1U6/xKuAgAAAAAAAACgyRRFkclTp1XlT1EUFdc5ZMiQtGrVKvfcc0/WX3/9LLnkktl8881z77335t13381vf/vbevM///zz7Lzzzmnfvn0WX3zxXHjhhfW2f3ulqYkTJ2bffffNoosumo4dO2ajjTbKCy+8UG+fO+64Iz/84Q/Tpk2bLLLIItl2222TJBtssEHeeuutHHbYYSmVSimVSkmSt956K1tuuWW6dOmS9u3bZ6WVVso999wz02v8dk2lUil//OMfs+2226Zdu3bp379//t//+38z3b8oiuy5557p379/HnrooWyxxRbp27dvVllllZxwwgm5/fbb6+YeddRRWWaZZdKuXbssvfTSOe6441JTU1PR9c4wefLk7L333unQoUOWXHLJXHbZZfW2v/POO9lhhx3SuXPndO3aNVtvvXXefPPNmdbfFFrM1aMDAAAAAAAAALBA+apmelY4fmRVzv3PkwanXavZx2EmTJiQkSNH5pRTTknbtm3rbevevXt23XXX/OUvf8lFF11UF2w688wzc+yxx2bYsGEZOXJkDj300CyzzDLZZJNNyp7j5z//edq2bZu77rornTp1yqWXXpqNN944r732Wrp27Zq//e1v2XbbbfPb3/42V199daZOnZo777wzSTJixIisvPLK2X///bPffvvVHXPIkCGZOnVqRo8enfbt2+fll19O8+bNG3WPhg0bljPOOCNnnnlmLrjgguy6665566230rVr1wZzn3/++fzjH//Iddddl2bNGq7h1Llz57qvO3TokCuvvDI9e/bMSy+9lP322y8dOnTIb37zmySZ5fXOcPbZZ+f3v/99jj322Nx888058MADs/7662fZZZdNTU1NBg8enLXWWisPPfRQWrRokZNPPjmbbbZZXnzxxbRq1apR96FSwlUAAAAAAAAAACxQxo4dm6Iosvzyy5fdvvzyy+fTTz/Nv//973Tr1i1Jss466+Too49OkiyzzDJ55JFHcu6555YNVz388MN58skn89FHH6V169ZJkrPOOiu33XZbbr755uy///455ZRTstNOO2XYsGF1+6288spJkq5du6Z58+bp0KFDunfvXrf97bffzvbbb5+VVlopyX9Wppo0aVKjrn3PPffMzjvvnCT5wx/+kPPPPz9PPvlkNttss7L3KUmWW2652R73d7/7Xd3XSy21VI444ojccMMNdeGqWV3vDD/5yU9y0EEHJfnPSljnnntuHnjggSy77LL5y1/+ktra2vzxj3+sC7xdccUV6dy5cx588MFsuummjbkNFROuAgAAAAAAAACgybRt2Tz/PGlw1c7dGI15jOBaa63V4PU3H7n3TS+88EK++OKLLLzwwvXGv/rqq7z++utJ/rMq1DdXparEIYcckgMPPDD33HNPBg0alG233TZLLbVUo44xcODAuq/bt2+fjh075qOPPio7tzH35y9/+UvOP//8vP766/niiy8ybdq0dOzYsW57Jdf7zdpKpVK6d+9eV9sLL7yQcePGpUOHDvX2+frrr+vu6dwgXAUAAAAAAAAAQJMplUoVPZqvmvr165dSqZQxY8Zk2223bbB9zJgx6dKlSxZddNE5Ov4XX3yRHj165MEHH2ywbcaj9L79OMJK7Lvvvhk8eHD+9re/5Z577smpp56ak08+OUcccUTFx2jZsmW916VSKbW1tWXnLrPMMkmSV155JT/4wQ9meszHHnssu+66a4YNG5bBgwenU6dOueGGG3L22WfXzankemdV2xdffJHVVlst1157bYP95vT7VImGD0MEAAAAAAAAAIDvsYUXXjibbLJJLrroonz11Vf1tn3wwQe59tprs+OOO9Y9fi5JHn/88XrzHn/88Zk+VnDVVVfNBx98kBYtWqRfv371/iyyyCJJ/rNK03333TfTGlu1apXp06c3GO/Vq1d++ctfZsSIETn88MNz1VVXVXzdjbXKKqtkhRVWyNlnn102gDVx4sQkyaOPPprevXvnt7/9bVZfffX0798/b731Vr25s7ve2Vl11VUzduzYdOvWrcE97dSp0xwfd3aEq6i6LQb2yFV7rpaNepZPQQIAAAAAAAAANLX/+Z//yZQpUzJ48OCMHj0677zzTu6+++5ssskmWXzxxXPKKafUm//II4/kjDPOyGuvvZYLL7wwN910Uw499NCyxx40aFDWWmutbLPNNrnnnnvy5ptv5tFHH81vf/vbPP3000mSE044Iddff31OOOGEjBkzJi+99FJOP/30umMstdRSGT16dN599918/PHHSZKhQ4dm5MiRGT9+fJ599tk8+OCDWXbZZefSHfrPylFXXHFFXnvttay77rq5884788Ybb+TFF1/MKaeckq233jpJ0r9//7z99tu54YYb8vrrr+f888/PrbfeWu9Ys7ve2dl1112zyCKLZOutt85DDz2U8ePH58EHH8whhxySf/3rX0163d8kXEXVLdGlXdbuu3B6tKt2JQAAAAAAAADAgqJ///55+umns/TSS2eHHXZI3759s//++2fDDTfMY489lq5du9ab/+tf/zpPP/10fvCDH+Tkk0/OOeeck8GDB5c9dqlUyp133pn11lsve+21V5ZZZpnstNNOeeutt7LYYoslSTbYYIPcdNNN+X//7/9llVVWyUYbbZQnn3yy7hgnnXRS3nzzzfTt27fusXfTp0/PkCFDsvzyy2ezzTZL//79c9ZZZ82lO/Qfa6yxRp5++un069cv++23X5ZffvlstdVW+cc//pHhw4cnSbbaaqscdthhOfjgg7PKKqvk0UcfzXHHHVfvOLO73tlp165dRo8enSWXXDLbbbddll9++eyzzz75+uuv07Fjx6a85Hrm7wdcAgAAAAAAAADAXNK7d+9ceeWVs5335ptvznbOlClTstBCC9W97tChQ84///ycf/75M91nu+22y3bbbVd2249+9KO88MIL9cYuuOCCeq9ra2szadKkiusuiqLBnBmP9puVZZZZZraPHzzjjDNyxhln1BsbOnRovdezut5y9/j555+v97p79+5z9TGI5QhXAQAAAAAAAADAHJo8eXIeeeSRfPjhhxkwYEC1y6GJeSwgAAAAAAAAAADMocsuuyw77bRThg4dmrXWWqva5dDErFwFAAAAAAAAAABzaOjQoQ0ef8f3h5WrAAAAAAAAAAAAyhCuAgAAAAAAAADgOyuKotolQD1N8Z4UrgIAAAAAAAAAYI61bNkySTJ58uQqVwL1zXhPzniPzokWTVUMAAAAAAAAAAALnubNm6dz58756KOPkiTt2rVLqVSqclULhtra2kydOjVff/11mjWzxtIMRVFk8uTJ+eijj9K5c+c0b958jo8lXAUAAAAAAAAAwHfSvXv3JKkLWDFvFEWRr776Km3bthVoK6Nz58517805JVwFAAAAAAAAAMB3UiqV0qNHj3Tr1i01NTXVLmeBUVNTk9GjR2e99db7To+++z5q2bLld1qxagbhKgAAAAAAAAAAmkTz5s2bJNBCZZo3b55p06alTZs2wlVziYctAgAAAAAAAAAAlCFcBQAAAAAAAAAAUIZwFQAAAAAAAAAAQBktql3A3FYURZJk0qRJVa6EWampqcnkyZMzadIkzwAFZkqvACqlXwCV0CuASukXQCX0CqBS+gVQKf0CqIReMedmZIlmZItm5nsfrvr888+TJL169apyJQAAAAAAAAAAwPzk888/T6dOnWa6vVTMLn71X662tjbvvfdeOnTokFKpVO1ymIlJkyalV69eeeedd9KxY8dqlwPMp/QKoFL6BVAJvQKolH4BVEKvACqlXwCV0i+ASugVc64oinz++efp2bNnmjVrNtN53/uVq5o1a5Ylllii2mVQoY4dO/phB2ZLrwAqpV8AldArgErpF0Al9AqgUvoFUCn9AqiEXjFnZrVi1Qwzj10BAAAAAAAAAAAswISrAAAAAAAAAAAAyhCuYr7QunXrnHDCCWndunW1SwHmY3oFUCn9AqiEXgFUSr8AKqFXAJXSL4BK6RdAJfSKua9UFEVR7SIAAAAAAAAAAADmN1auAgAAAAAAAAAAKEO4CgAAAAAAAAAAoAzhKgAAAAAAAAAAgDKEqwAAAAAAAAAAAMoQrqLqLrzwwiy11FJp06ZN1lxzzTz55JPVLgmYi0499dT88Ic/TIcOHdKtW7dss802efXVV+vN2WCDDVIqler9+eUvf1lvzttvv50tttgi7dq1S7du3XLkkUdm2rRp9eY8+OCDWXXVVdO6dev069cvV1555dy+PKCJnHjiiQ36wHLLLVe3/euvv86QIUOy8MILZ6GFFsr222+fDz/8sN4x9AlYMCy11FIN+kWpVMqQIUOS+FwBC7LRo0dnyy23TM+ePVMqlXLbbbfV214URY4//vj06NEjbdu2zaBBgzJ27Nh6cyZMmJBdd901HTt2TOfOnbPPPvvkiy++qDfnxRdfzLrrrps2bdqkV69eOeOMMxrUctNNN2W55ZZLmzZtstJKK+XOO+9s8usF5sysekVNTU2OOuqorLTSSmnfvn169uyZ3XffPe+99169Y5T7PHLaaafVm6NXwH+/2X222HPPPRv0gs0226zeHJ8t4Ptvdr2i3L9hlEqlnHnmmXVzfLaA779Kfl86L38PIrMxe8JVVNVf/vKXHH744TnhhBPy7LPPZuWVV87gwYPz0UcfVbs0YC75+9//niFDhuTxxx/PqFGjUlNTk0033TRffvllvXn77bdf3n///bo/3/yLwfTp07PFFltk6tSpefTRR3PVVVflyiuvzPHHH183Z/z48dliiy2y4YYb5vnnn8/QoUOz7777ZuTIkfPsWoHvZsCAAfX6wMMPP1y37bDDDssdd9yRm266KX//+9/z3nvvZbvttqvbrk/AguOpp56q1ytGjRqVJPn5z39eN8fnClgwffnll1l55ZVz4YUXlt1+xhln5Pzzz88ll1ySJ554Iu3bt8/gwYPz9ddf183Zdddd849//COjRo3KX//614wePTr7779/3fZJkyZl0003Te/evfPMM8/kzDPPzIknnpjLLrusbs6jjz6anXfeOfvss0+ee+65bLPNNtlmm23y8ssvz72LByo2q14xefLkPPvssznuuOPy7LPPZsSIEXn11Vez1VZbNZh70kkn1fu88atf/apum14B3w+z+2yRJJtttlm9XnD99dfX2+6zBXz/za5XfLNHvP/++7n88stTKpWy/fbb15vnswV8v1Xy+9J59XsQmY0KFVBFa6yxRjFkyJC619OnTy969uxZnHrqqVWsCpiXPvrooyJJ8fe//71ubP311y8OPfTQme5z5513Fs2aNSs++OCDurGLL7646NixYzFlypSiKIriN7/5TTFgwIB6++24447F4MGDm/YCgLnihBNOKFZeeeWy2yZOnFi0bNmyuOmmm+rGxowZUyQpHnvssaIo9AlYkB166KFF3759i9ra2qIofK4A/iNJceutt9a9rq2tLbp3716ceeaZdWMTJ04sWrduXVx//fVFURTFP//5zyJJ8dRTT9XNueuuu4pSqVS8++67RVEUxUUXXVR06dKlrl8URVEcddRRxbLLLlv3eocddii22GKLevWsueaaxQEHHNCk1wh8d9/uFeU8+eSTRZLirbfeqhvr3bt3ce655850H70Cvn/K9Ys99tij2HrrrWe6j88WsOCp5LPF1ltvXWy00Ub1xny2gAXPt39fOi9/DyKzURkrV1E1U6dOzTPPPJNBgwbVjTVr1iyDBg3KY489VsXKgHnps88+S5J07dq13vi1116bRRZZJCuuuGKOOeaYTJ48uW7bY489lpVWWimLLbZY3djgwYMzadKk/OMf/6ib883+MmOO/gL/PcaOHZuePXtm6aWXzq677pq33347SfLMM8+kpqam3s/4csstlyWXXLLuZ1yfgAXT1KlTc80112TvvfdOqVSqG/e5Avi28ePH54MPPqj3s92pU6esueaa9T5PdO7cOauvvnrdnEGDBqVZs2Z54okn6uast956adWqVd2cwYMH59VXX82nn35aN0cPge+Pzz77LKVSKZ07d643ftppp2XhhRfOD37wg5x55pn1HsWhV8CC48EHH0y3bt2y7LLL5sADD8wnn3xSt81nC+DbPvzww/ztb3/LPvvs02CbzxawYPn270vn1e9BZDYq16LaBbDg+vjjjzN9+vR6P+xJsthii+WVV16pUlXAvFRbW5uhQ4dmnXXWyYorrlg3vssuu6R3797p2bNnXnzxxRx11FF59dVXM2LEiCTJBx98ULZ3zNg2qzmTJk3KV199lbZt287NSwO+ozXXXDNXXnllll122bz//vsZNmxY1l133bz88sv54IMP0qpVqwa/zFhsscVm2wNmbJvVHH0C/nvddtttmThxYvbcc8+6MZ8rgHJm/HyX+9n+5s9+t27d6m1v0aJFunbtWm9Onz59GhxjxrYuXbrMtIfMOAbw3+Prr7/OUUcdlZ133jkdO3asGz/kkEOy6qqrpmvXrnn00UdzzDHH5P33388555yTRK+ABcVmm22W7bbbLn369Mnrr7+eY489Nptvvnkee+yxNG/e3GcLoIGrrroqHTp0qPeYr8RnC1jQlPt96bz6Pcinn34qs1Eh4SoAqmbIkCF5+eWX8/DDD9cb33///eu+XmmlldKjR49svPHGef3119O3b995XSZQBZtvvnnd1wMHDsyaa66Z3r1758YbbxRiAGbqT3/6UzbffPP07NmzbsznCgCgKdTU1GSHHXZIURS5+OKL6207/PDD674eOHBgWrVqlQMOOCCnnnpqWrduPa9LBapkp512qvt6pZVWysCBA9O3b988+OCD2XjjjatYGTC/uvzyy7PrrrumTZs29cZ9toAFy8x+X8r8xWMBqZpFFlkkzZs3z4cfflhv/MMPP0z37t2rVBUwrxx88MH561//mgceeCBLLLHELOeuueaaSZJx48YlSbp37162d8zYNqs5HTt2FMyA/0KdO3fOMsssk3HjxqV79+6ZOnVqJk6cWG/ONz9D6BOw4Hnrrbdy7733Zt99953lPJ8rgOT/fr5n9W8S3bt3z0cffVRv+7Rp0zJhwoQm+czh3z7gv8eMYNVbb72VUaNG1Vu1qpw111wz06ZNy5tvvplEr4AF1dJLL51FFlmk3t89fLYAZnjooYfy6quvzvbfMRKfLeD7bGa/L51XvweR2aiccBVV06pVq6y22mq577776sZqa2tz3333Za211qpiZcDcVBRFDj744Nx66625//77GyxdW87zzz+fJOnRo0eSZK211spLL71U7x8jZvzj5gorrFA355v9ZcYc/QX+O33xxRd5/fXX06NHj6y22mpp2bJlvZ/xV199NW+//Xbdz7g+AQueK664It26dcsWW2wxy3k+VwBJ0qdPn3Tv3r3ez/akSZPyxBNP1Ps8MXHixDzzzDN1c+6///7U1tbWBTXXWmutjB49OjU1NXVzRo0alWWXXTZdunSpm6OHwH+vGcGqsWPH5t57783CCy88232ef/75NGvWrO7xX3oFLJj+9a9/5ZNPPqn3dw+fLYAZ/vSnP2W11VbLyiuvPNu5PlvA98/sfl86r34PIrPRCAVU0Q033FC0bt26uPLKK4t//vOfxf7771907ty5+OCDD6pdGjCXHHjggUWnTp2KBx98sHj//ffr/kyePLkoiqIYN25ccdJJJxVPP/10MX78+OL2228vll566WK99darO8a0adOKFVdcsdh0002L559/vrj77ruLRRddtDjmmGPq5rzxxhtFu3btiiOPPLIYM2ZMceGFFxbNmzcv7r777nl+zUDj/frXvy4efPDBYvz48cUjjzxSDBo0qFhkkUWKjz76qCiKovjlL39ZLLnkksX9999fPP3008Vaa61VrLXWWnX76xOwYJk+fXqx5JJLFkcddVS9cZ8rYMH2+eefF88991zx3HPPFUmKc845p3juueeKt956qyiKojjttNOKzp07F7fffnvx4osvFltvvXXRp0+f4quvvqo7xmabbVb84Ac/KJ544oni4YcfLvr371/svPPOddsnTpxYLLbYYsUvfvGL4uWXXy5uuOGGol27dsWll15aN+eRRx4pWrRoUZx11lnFmDFjihNOOKFo2bJl8dJLL827mwHM1Kx6xdSpU4utttqqWGKJJYrnn3++3r9jTJkypSiKonj00UeLc889t3j++eeL119/vbjmmmuKRRddtNh9993rzqFXwPfDrPrF559/XhxxxBHFY489VowfP7649957i1VXXbXo379/8fXXX9cdw2cL+P6b3d9DiqIoPvvss6Jdu3bFxRdf3GB/ny1gwTC735cWxbz7PYjMRmWEq6i6Cy64oFhyySWLVq1aFWussUbx+OOPV7skYC5KUvbPFVdcURRFUbz99tvFeuutV3Tt2rVo3bp10a9fv+LII48sPvvss3rHefPNN4vNN9+8aNu2bbHIIosUv/71r4uampp6cx544IFilVVWKVq1alUsvfTSdecA5n877rhj0aNHj6JVq1bF4osvXuy4447FuHHj6rZ/9dVXxUEHHVR06dKlaNeuXbHtttsW77//fr1j6BOw4Bg5cmSRpHj11VfrjftcAQu2Bx54oOzfPfbYY4+iKIqi9v9r735C4yrXOAD/xjYmoVMTMXG0ChFpbEupNcU/KFIkakAw4ELFLgINNAspLXUpaAQXQQQ3KloRBAulVkRdKFYXZqFuai1NiEKVUuNKpS0RNdVC8t2Vww2Z2l7uTWJ6nwcOzLzn+zjvN4vDzJwf58zOlqeffrrUarXS3Nxc7r333nnnkdOnT5dt27aVarVarrjiijI4OFh+/fXXOWPGxsbK3XffXZqbm8t1111XnnvuuXm9vP322+Wmm24ql19+edm4cWP58MMPF2zdwH/m784VJ0+ePO//GKOjo6WUUr766qtyxx13lLa2ttLS0lI2bNhQRkZG5oQpSnGugEvB350vpqenS19fX+ns7CxNTU2lq6urDA0Nzbso6bsFXPou9DuklFJee+210traWqampubN990C/j9c6HppKYt7HURm48IqpZSyQDfFAgAAAAAAAAAAWLYuW+oGAAAAAAAAAAAA/omEqwAAAAAAAAAAABoQrgIAAAAAAAAAAGhAuAoAAAAAAAAAAKAB4SoAAAAAAAAAAIAGhKsAAAAAAAAAAAAaEK4CAAAAAAAAAABoQLgKAAAAAAAAAACgAeEqAAAAAP7Rtm/fnoceemjJjj8wMJCRkZGLGvvYY4/lhRdeWOCOAAAAAFgslVJKWeomAAAAAPj/VKlU/nb/M888kyeeeCKllLS3ty9OU/9mbGwsvb29mZycTLVaveD4iYmJbN26NSdPnkxbW9sidAgAAADAQhKuAgAAAGDJ/Pjjj/XXBw8ezPDwcI4fP16vVavViwo1LZQdO3Zk5cqV2bt370XPue2227J9+/bs3LlzATsDAAAAYDF4LCAAAAAAS+aaa66pb21tbalUKnNq1Wp13mMB77nnnuzatSt79uzJlVdemVqtltdffz2///57BgcHs3r16qxduzYfffTRnGNNTEzkgQceSLVaTa1Wy8DAQE6dOnXe3mZmZvLOO++kv79/Tv2VV15Jd3d3WlpaUqvV8vDDD8/Z39/fn7feeuu//3AAAAAAWHLCVQAAAAAsO2+++WY6Ojpy+PDh7Nq1K48//ngeeeSR3HXXXTl69Gj6+voyMDCQ6enpJMnU1FR6e3vT09OTI0eO5NChQ/npp5/y6KOPnvcY4+Pj+eWXX3LrrbfWa0eOHMnu3bvz7LPP5vjx4zl06FC2bt06Z97tt9+ew4cP588//1yYxQMAAACwaISrAAAAAFh2Nm/enKeeeird3d158skn09LSko6OjgwNDaW7uzvDw8M5ffp0xsfHkyQvv/xyenp6MjIykvXr16enpydvvPFGRkdH8+233zY8xuTkZFasWJGrr766Xvvhhx+yatWqPPjgg+nq6kpPT0927949Z96aNWty7ty5OY88BAAAAGB5Eq4CAAAAYNm5+eab669XrFiRq666Kps2barXarVakuTnn39OkoyNjWV0dDTVarW+rV+/Pkly4sSJhsc4e/ZsmpubU6lU6rX7778/XV1dufHGGzMwMJD9+/fX7471l9bW1iSZVwcAAABg+RGuAgAAAGDZaWpqmvO+UqnMqf0ViJqdnU2S/Pbbb+nv78+xY8fmbN999928x/r9paOjI9PT0zl37ly9tnr16hw9ejQHDhzItddem+Hh4WzevDlTU1P1MWfOnEmSdHZ2/k/WCgAAAMDSEa4CAAAA4JK3ZcuWfP3117nhhhuydu3aOduqVasazrnllluSJN98882c+sqVK3Pffffl+eefz/j4eL7//vt8+umn9f0TExO5/vrr09HRsWDrAQAAAGBxCFcBAAAAcMnbuXNnzpw5k23btuXLL7/MiRMn8vHHH2dwcDAzMzMN53R2dmbLli35/PPP67UPPvggL774Yo4dO5bJycns27cvs7OzWbduXX3MZ599lr6+vgVfEwAAAAALT7gKAAAAgEvemjVr8sUXX2RmZiZ9fX3ZtGlT9uzZk/b29lx22fn/ItuxY0f2799ff9/e3p533303vb292bBhQ/bu3ZsDBw5k48aNSZI//vgj77//foaGhhZ8TQAAAAAsvEoppSx1EwAAAADwT3T27NmsW7cuBw8ezJ133nnB8a+++mree++9fPLJJ4vQHQAAAAALzZ2rAAAAAOA8Wltbs2/fvpw6deqixjc1NeWll15a4K4AAAAAWCzuXAUAAAAAAAAAANCAO1cBAAAAAAAAAAA0IFwFAAAAAAAAAADQgHAVAAAAAAAAAABAA8JVAAAAAAAAAAAADQhXAQAAAAAAAAAANCBcBQAAAAAAAAAA0IBwFQAAAAAAAAAAQAPCVQAAAAAAAAAAAA0IVwEAAAAAAAAAADTwL9XEiSkAGT4pAAAAAElFTkSuQmCC",
"text/plain": [
""
]
@@ -1037,7 +1083,7 @@
"outputs": [
{
"data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAq4AAAIjCAYAAADC0ZkAAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy80BEi2AAAACXBIWXMAAA9hAAAPYQGoP6dpAABDgUlEQVR4nO3deVxVdeL/8fdF5YILFxFlUcQ19y1KRVMbo8ysNGmxryUuv7IGK2WypKY0a8S00iytqSlaJsfGtWWmzC1KQzOX1EwzwrAUzAVwSTD4/P7oy/12BRSuwOHo6/l4nMfD+zkfzn3z4WTvTuceHMYYIwAAAKCa87E6AAAAAFAWFFcAAADYAsUVAAAAtkBxBQAAgC1QXAEAAGALFFcAAADYAsUVAAAAtkBxBQAAgC1QXAEAAGALFFcAOE8bN25Ur169VKdOHTkcDm3dutXqSB6aNWum66+/3uuvdzgcmjJlSsUFKqO9e/fK4XDomWee8foYI0eOVLNmzSosU0UfrzRvvPGGHA6H9u7d6x47358jcCGguAI28c033+iOO+5Q48aN5XQ6FR4eruHDh+ubb76xOtpF7fTp07rlllt05MgRzZo1S2+//bYiIyOtjgUAF6SaVgcAcG5LlizR7bffrqCgII0ZM0bNmzfX3r179dprr2nRokVasGCBbrrpJqtjXpTS0tL0448/6tVXX9X/+3//z+o4qGSvvvqqCgsLrY4BXLQorkA1l5aWpjvvvFMtWrTQZ599poYNG7r3PfDAA+rTp4/uvPNObdu2TS1atLAwaXEnT55U7dq1rY5RqQ4ePChJCgwMtDYIqkStWrWsjgBc1LhVAKjmZs6cqZMnT+qVV17xKK2SFBwcrL///e86ceKEZsyY4bHv559/1pgxYxQeHi6n06nmzZvr3nvvVX5+vntOdna2JkyYoGbNmsnpdKpJkyYaMWKEDh06JKnk++wk6dNPP5XD4dCnn37qHrvyyivVsWNHbdq0SX379lXt2rX1yCOPSJLee+89DRo0yJ2lZcuWevLJJ1VQUOBx3KJj7Ny5U3/6059Uu3ZtNW7cuNj3JkmnTp3SlClTdMkll8jPz09hYWEaOnSo0tLS3HMKCws1e/ZsdejQQX5+fgoJCdHYsWN19OjRMq396tWr1adPH9WpU0eBgYEaPHiwvv32W/f+kSNHql+/fpKkW265RQ6HQ1deeeVZj5mdna3x48crIiJCTqdTrVq10tNPP13sKt4zzzyjXr16qUGDBvL391dUVJQWLVpU4jH/+c9/qnv37qpdu7bq16+vvn376pNPPik2b+3aterevbv8/PzUokULvfXWW2VahzP9+OOP+vOf/6w2bdrI399fDRo00C233FLsPCk6f9auXav7779fDRs2VGBgoMaOHav8/HxlZ2drxIgRql+/vurXr6+HHnpIxpgS33PWrFmKjIyUv7+/+vXrpx07dhSbs2zZMnXs2FF+fn7q2LGjli5dWuKxyrO2ZzrzHtc/3of7yiuvqGXLlnI6nbr88su1cePGMh3zm2++Uf/+/eXv768mTZroqaeeOutV3U8++URdu3aVn5+f2rdvryVLlpTpfYALAVdcgWrugw8+ULNmzdSnT58S9/ft21fNmjXTf/7zH/fY/v371b17d2VnZ+vuu+9W27Zt9fPPP2vRokU6efKkfH19dfz4cfXp00fffvutRo8erUsvvVSHDh3S+++/r59++knBwcHlznr48GENHDhQw4YN0x133KGQkBBJvxeYunXrKiEhQXXr1tXq1av1+OOPKzc3VzNnzvQ4xtGjR3Xttddq6NChuvXWW7Vo0SI9/PDD6tSpkwYOHChJKigo0PXXX69Vq1Zp2LBheuCBB3Ts2DGtWLFCO3bsUMuWLSVJY8eO1RtvvKFRo0bp/vvvV3p6ul588UVt2bJF69atO+vVs5UrV2rgwIFq0aKFpkyZol9//VUvvPCCevfurc2bN6tZs2YaO3asGjdurGnTpun+++/X5Zdf7v6eS3Ly5En169dPP//8s8aOHaumTZvqiy++UGJiog4cOKDZs2e75z7//PO68cYbNXz4cOXn52vBggW65ZZb9OGHH2rQoEHueU888YSmTJmiXr16aerUqfL19dWGDRu0evVqXXPNNe5533//vW6++WaNGTNGcXFxev311zVy5EhFRUWpQ4cOZf8h6/cPo33xxRcaNmyYmjRpor179+qll17SlVdeqZ07dxa7yn7fffcpNDRUTzzxhNavX69XXnlFgYGB+uKLL9S0aVNNmzZN//3vfzVz5kx17NhRI0aM8Pj6t956S8eOHVN8fLxOnTql559/Xv3799f27dvd6/3JJ58oNjZW7du3V1JSkg4fPqxRo0apSZMmxfKXdW3LY/78+Tp27JjGjh0rh8OhGTNmaOjQofrhhx/Oep5lZmbqT3/6k3777TdNmjRJderU0SuvvCJ/f/8S5+/Zs0e33Xab7rnnHsXFxSk5OVm33HKLPv74Y1199dVeZQdsxQCotrKzs40kM3jw4LPOu/HGG40kk5uba4wxZsSIEcbHx8ds3Lix2NzCwkJjjDGPP/64kWSWLFlS6pzk5GQjyaSnp3vsX7NmjZFk1qxZ4x7r16+fkWRefvnlYsc7efJksbGxY8ea2rVrm1OnThU7xltvveUey8vLM6GhoSY2NtY99vrrrxtJ5rnnnis1++eff24kmXfeecdj/8cff1zi+Jm6du1qGjVqZA4fPuwe+/rrr42Pj48ZMWKEe6xoLRYuXHjW4xljzJNPPmnq1KljvvvuO4/xSZMmmRo1apiMjAz32Jlrlp+fbzp27Gj69+/vHtuzZ4/x8fExN910kykoKPCYX7QOxhgTGRlpJJnPPvvMPXbw4EHjdDrNX/7yl3PmlmQmT55cajZjjElNTS32sys6fwYMGOCRJzo62jgcDnPPPfe4x3777TfTpEkT069fP/dYenq6kWT8/f3NTz/95B7fsGGDkWQmTJjgHuvatasJCwsz2dnZ7rFPPvnESDKRkZEeWcuytqWJi4vzOF5RxgYNGpgjR464x9977z0jyXzwwQdnPd748eONJLNhwwb32MGDB43L5Sr2z17Rz3Hx4sXusZycHBMWFma6det2zuzAhYBbBYBq7NixY5KkevXqnXVe0f7c3FwVFhZq2bJluuGGG3TZZZcVm+twOCRJixcvVpcuXUr8UFfRnPJyOp0aNWpUsfE/Xj06duyYDh06pD59+ujkyZPatWuXx9y6devqjjvucL/29fVV9+7d9cMPP7jHFi9erODgYN13332lZl+4cKFcLpeuvvpqHTp0yL1FRUWpbt26WrNmTanfx4EDB7R161aNHDlSQUFB7vHOnTvr6quv1n//+98yrEZxCxcuVJ8+fVS/fn2PTDExMSooKNBnn33mnvvHNTt69KhycnLUp08fbd682T2+bNkyFRYW6vHHH5ePj+df52f+DNu3b+9x1b5hw4Zq06aNx7qW1R+znT59WocPH1arVq0UGBjoka/ImDFjPPL06NFDxhiNGTPGPVajRg1ddtllJeYZMmSIGjdu7H7dvXt39ejRw/1zKPp5xcXFyeVyueddffXVat++/Vnzl7a25XXbbbepfv367tdFa32u9f3vf/+rnj17qnv37u6xhg0bavjw4SXODw8P9/hnNiAgQCNGjNCWLVuUmZnpdX7ALrhVAKjGigppUYEtzR8L7i+//KLc3Fx17NjxrF+Tlpam2NjYign6vxo3bixfX99i4998843++te/avXq1crNzfXYl5OT4/G6SZMmxUpX/fr1tW3bNvfrtLQ0tWnTRjVrlv5X2J49e5STk6NGjRqVuL/oQ1Ul+fHHHyVJbdq0KbavXbt2Wr58uU6cOKE6deqUeozSMm3btq3YvcolZfrwww/11FNPaevWrcrLy3OP/3Ft0tLS5OPjU2I5O1PTpk2LjdWvX7/M9/v+0a+//qqkpCQlJyfr559/9rgv9cyfZ0nvXVQuIyIiio2XlKd169bFxi655BL9+9//lvR/P6+S5rVp06ZYIS3L2pbXmd9jUYk91/r++OOP6tGjR7Hxks49SWrVqlWxnJdccomk3++3DQ0NLXNmwI4orkA15nK5FBYW5lHaSrJt2zY1btxYAQEB+vXXXyvs/Uv7F/mZH6oqUtJ9ednZ2erXr58CAgI0depUtWzZUn5+ftq8ebMefvjhYh9CqVGjRonHNqV8aKc0hYWFatSokd55550S95dWHitTYWGhrr76aj300EMl7i8qIJ9//rluvPFG9e3bV/PmzVNYWJhq1aql5ORkzZ8/36v3rqh1lX6/ZzU5OVnjx49XdHS0XC6XHA6Hhg0bVuKHikp775LGvclTHpWxtlLFri+A0lFcgWru+uuv16uvvqq1a9fqiiuuKLb/888/1969ezV27FhJvxeygICAEj91/UctW7Y855yiq0bZ2dke40VXuMri008/1eHDh7VkyRL17dvXPZ6enl7mY5ypZcuW2rBhg06fPl3qB19atmyplStXqnfv3qV+0KU0Rb9AYPfu3cX27dq1S8HBweW+2lqU6fjx44qJiTnrvMWLF8vPz0/Lly+X0+l0jycnJxc7XmFhoXbu3KmuXbuWO4+3Fi1apLi4OD377LPusVOnThU7TyrKnj17io1999137k/3F/28Spp35s+wrGtbVSIjI8uUu8j3338vY4zHf1R+9913klQlv9ELsBr3uALV3MSJE+Xv76+xY8fq8OHDHvuOHDmie+65R7Vr19bEiRMlST4+PhoyZIg++OADffXVV8WOV3QFKDY2Vl9//XWJjwwqmlP06fw/3ntZUFCgV155pcz5i65E/fHKU35+vubNm1fmY5wpNjZWhw4d0osvvlhsX9H73HrrrSooKNCTTz5ZbM5vv/121pIVFhamrl276s033/SYt2PHDn3yySe67rrrvMp96623KjU1VcuXLy+2Lzs7W7/99puk39fM4XB4XNneu3evli1b5vE1Q4YMkY+Pj6ZOnVrsSmdlXumrUaNGseO/8MILpV6JP1/Lli3Tzz//7H795ZdfasOGDe6nTPzx5/XHWxVWrFihnTt3FstelrWtKtddd53Wr1+vL7/80j32yy+/lPp/Cvbv3+/xz2xubq7eeustde3aldsEcFHgiitQzbVu3Vpvvvmmhg8frk6dOhX7zVmHDh3Sv/71L3fJlKRp06bpk08+Ub9+/XT33XerXbt2OnDggBYuXKi1a9cqMDBQEydO1KJFi3TLLbdo9OjRioqK0pEjR/T+++/r5ZdfVpcuXdShQwf17NlTiYmJOnLkiIKCgrRgwQJ3wSqLXr16qX79+oqLi9P9998vh8Oht99++7yK1YgRI/TWW28pISFBX375pfr06aMTJ05o5cqV+vOf/6zBgwerX79+Gjt2rJKSkrR161Zdc801qlWrlvbs2aOFCxfq+eef180331zqe8ycOVMDBw5UdHS0xowZ434clsvl0pQpU7zKPXHiRL3//vu6/vrr3Y+iOnHihLZv365FixZp7969Cg4O1qBBg/Tcc8/p2muv1f/8z//o4MGDmjt3rlq1auVx20irVq306KOP6sknn1SfPn00dOhQOZ1Obdy4UeHh4UpKSvIq57lcf/31evvtt+VyudS+fXulpqZq5cqVatCgQaW8X6tWrXTFFVfo3nvvVV5enmbPnq0GDRp43HKRlJSkQYMG6YorrtDo0aN15MgRvfDCC+rQoYOOHz/unlfWta0qDz30kN5++21de+21euCBB9yPw4qMjCwxzyWXXKIxY8Zo48aNCgkJ0euvv66srCzLrhgDVc6KRxkAKL9t27aZ22+/3YSFhZlatWqZ0NBQc/vtt5vt27eXOP/HH380I0aMMA0bNjROp9O0aNHCxMfHm7y8PPecw4cPm3HjxpnGjRsbX19f06RJExMXF2cOHTrknpOWlmZiYmKM0+k0ISEh5pFHHjErVqwo8XFYHTp0KDHLunXrTM+ePY2/v78JDw83Dz30kFm+fHmZj3HmI4iM+f2RRo8++qhp3ry5ez1uvvlmk5aW5jHvlVdeMVFRUcbf39/Uq1fPdOrUyTz00ENm//79pS2128qVK03v3r2Nv7+/CQgIMDfccIPZuXOnx5zyPA7LGGOOHTtmEhMTTatWrYyvr68JDg42vXr1Ms8884zJz893z3vttddM69atjdPpNG3btjXJyclm8uTJpqS/tl9//XXTrVs343Q6Tf369U2/fv3MihUr3PsjIyPNoEGDin1dv379PB4/VRqd8Tiso0ePmlGjRpng4GBTt25dM2DAALNr1y4TGRlp4uLi3POKHod15mPZir6PX375xWM8Li7O1KlTx/266FFTM2fONM8++6yJiIgwTqfT9OnTx3z99dfFci5evNi0a9fOOJ1O0759e7NkyZISz53yrO2ZSnsc1syZM8+5bqXZtm2b6devn/Hz8zONGzc2Tz75pHnttddKfBzWoEGDzPLly03nzp3d+ct67gEXAocx3DkOAACA6o97XAEAAGALFFcAAADYAsUVAAAAtkBxBQAAgC1QXAEAAGALFFcAAADYwgX/CwgKCwu1f/9+1atXr9Tfuw4AAADrGGN07NgxhYeHy8en9OuqF3xx3b9/vyIiIqyOAQAAgHPYt2+fmjRpUur+C7641qtXT9LvCxEQEGBxGgAAAJwpNzdXERER7t5Wmgu+uBbdHhAQEEBxBQAAqMbOdVsnH84CAACALVBcAQAAYAsUVwAAANgCxRUAAAC2QHEFAACALVBcAQAAYAsUVwAAANgCxRUAAAC2QHEFAACALVBcAQAAYAsUVwAAANgCxRUAAAC2QHEFAACALVBcAQAAYAsUVwAAANgCxRUAAAC2QHEFAACALVBcAQAAYAsUVwAAANhCTasDXIimbzlUrvmTugVXUhIAAIALB1dcAQAAYAsUVwAAANgCxRUAAAC2QHEFAACALVBcAQAAYAsUVwAAANgCxRUAAAC2YGlxbdasmRwOR7EtPj5eknTq1CnFx8erQYMGqlu3rmJjY5WVlWVlZAAAAFjE0uK6ceNGHThwwL2tWLFCknTLLbdIkiZMmKAPPvhACxcuVEpKivbv36+hQ4daGRkAAAAWsfQ3ZzVs2NDj9fTp09WyZUv169dPOTk5eu211zR//nz1799fkpScnKx27dpp/fr16tmzpxWRAQAAYJFqc49rfn6+/vnPf2r06NFyOBzatGmTTp8+rZiYGPectm3bqmnTpkpNTS31OHl5ecrNzfXYAAAAYH/VprguW7ZM2dnZGjlypCQpMzNTvr6+CgwM9JgXEhKizMzMUo+TlJQkl8vl3iIiIioxNQAAAKpKtSmur732mgYOHKjw8PDzOk5iYqJycnLc2759+yooIQAAAKxk6T2uRX788UetXLlSS5YscY+FhoYqPz9f2dnZHldds7KyFBoaWuqxnE6nnE5nZcYFAACABarFFdfk5GQ1atRIgwYNco9FRUWpVq1aWrVqlXts9+7dysjIUHR0tBUxAQAAYCHLr7gWFhYqOTlZcXFxqlnz/+K4XC6NGTNGCQkJCgoKUkBAgO677z5FR0fzRAEAAICLkOXFdeXKlcrIyNDo0aOL7Zs1a5Z8fHwUGxurvLw8DRgwQPPmzbMgJQAAAKzmMMYYq0NUptzcXLlcLuXk5CggIKBK3nP6lkPlmj+pW3AlJQEAAKj+ytrXqsU9rgAAAMC5UFwBAABgCxRXAAAA2ALFFQAAALZAcQUAAIAtUFwBAABgCxRXAAAA2ALFFQAAALZAcQUAAIAtUFwBAABgCxRXAAAA2ALFFQAAALZAcQUAAIAtUFwBAABgCxRXAAAA2ALFFQAAALZAcQUAAIAtUFwBAABgCxRXAAAA2ALFFQAAALZAcQUAAIAtUFwBAABgCxRXAAAA2ALFFQAAALZAcQUAAIAtUFwBAABgCxRXAAAA2ALFFQAAALZAcQUAAIAtUFwBAABgCxRXAAAA2ALFFQAAALZAcQUAAIAtUFwBAABgCxRXAAAA2ALFFQAAALZAcQUAAIAtUFwBAABgCxRXAAAA2ALFFQAAALZAcQUAAIAtUFwBAABgCxRXAAAA2ALFFQAAALZAcQUAAIAtUFwBAABgCxRXAAAA2ALFFQAAALZAcQUAAIAtUFwBAABgC5YX159//ll33HGHGjRoIH9/f3Xq1ElfffWVe78xRo8//rjCwsLk7++vmJgY7dmzx8LEAAAAsIKlxfXo0aPq3bu3atWqpY8++kg7d+7Us88+q/r167vnzJgxQ3PmzNHLL7+sDRs2qE6dOhowYIBOnTplYXIAAABUtZpWvvnTTz+tiIgIJScnu8eaN2/u/rMxRrNnz9Zf//pXDR48WJL01ltvKSQkRMuWLdOwYcOqPDMAAACsYekV1/fff1+XXXaZbrnlFjVq1EjdunXTq6++6t6fnp6uzMxMxcTEuMdcLpd69Oih1NTUEo+Zl5en3Nxcjw0AAAD2Z2lx/eGHH/TSSy+pdevWWr58ue69917df//9evPNNyVJmZmZkqSQkBCPrwsJCXHvO1NSUpJcLpd7i4iIqNxvAgAAAFXC0uJaWFioSy+9VNOmTVO3bt10991366677tLLL7/s9TETExOVk5Pj3vbt21eBiQEAAGAVS4trWFiY2rdv7zHWrl07ZWRkSJJCQ0MlSVlZWR5zsrKy3PvO5HQ6FRAQ4LEBAADA/iwtrr1799bu3bs9xr777jtFRkZK+v2DWqGhoVq1apV7f25urjZs2KDo6OgqzQoAAABrWfpUgQkTJqhXr16aNm2abr31Vn355Zd65ZVX9Morr0iSHA6Hxo8fr6eeekqtW7dW8+bN9dhjjyk8PFxDhgyxMjoAAACqmKXF9fLLL9fSpUuVmJioqVOnqnnz5po9e7aGDx/unvPQQw/pxIkTuvvuu5Wdna0rrrhCH3/8sfz8/CxMDgAAgKrmMMYYq0NUptzcXLlcLuXk5FTZ/a7Ttxwq1/xJ3YIrKQkAAED1V9a+ZvmvfAUAAADKguIKAAAAW6C4AgAAwBYorgAAALAFiisAAABsgeIKAAAAW6C4AgAAwBYorgAAALAFiisAAABsgeIKAAAAW6C4AgAAwBYorgAAALAFiisAAABsgeIKAAAAW6C4AgAAwBYorgAAALAFiisAAABsgeIKAAAAW6C4AgAAwBYorgAAALAFiisAAABsgeIKAAAAW6C4AgAAwBYorgAAALAFiisAAABsgeIKAAAAW6C4AgAAwBYorgAAALAFiisAAABsgeIKAAAAW6C4AgAAwBYorgAAALAFiisAAABsgeIKAAAAW6C4AgAAwBYorgAAALAFiisAAABsgeIKAAAAW6C4AgAAwBYorgAAALAFiisAAABsgeIKAAAAW6C4AgAAwBYorgAAALAFiisAAABsgeIKAAAAW6C4AgAAwBYorgAAALAFiisAAABsgeIKAAAAW7C0uE6ZMkUOh8Nja9u2rXv/qVOnFB8frwYNGqhu3bqKjY1VVlaWhYkBAABgFcuvuHbo0EEHDhxwb2vXrnXvmzBhgj744AMtXLhQKSkp2r9/v4YOHWphWgAAAFilpuUBatZUaGhosfGcnBy99tprmj9/vvr37y9JSk5OVrt27bR+/Xr17NmzqqMCAADAQpZfcd2zZ4/Cw8PVokULDR8+XBkZGZKkTZs26fTp04qJiXHPbdu2rZo2barU1NRSj5eXl6fc3FyPDQAAAPZnaXHt0aOH3njjDX388cd66aWXlJ6erj59+ujYsWPKzMyUr6+vAgMDPb4mJCREmZmZpR4zKSlJLpfLvUVERFTydwEAAICqYOmtAgMHDnT/uXPnzurRo4ciIyP173//W/7+/l4dMzExUQkJCe7Xubm5lFcAAIALgOW3CvxRYGCgLrnkEn3//fcKDQ1Vfn6+srOzPeZkZWWVeE9sEafTqYCAAI8NAAAA9letiuvx48eVlpamsLAwRUVFqVatWlq1apV7/+7du5WRkaHo6GgLUwIAAMAKlt4q8OCDD+qGG25QZGSk9u/fr8mTJ6tGjRq6/fbb5XK5NGbMGCUkJCgoKEgBAQG67777FB0dzRMFAAAALkKWFteffvpJt99+uw4fPqyGDRvqiiuu0Pr169WwYUNJ0qxZs+Tj46PY2Fjl5eVpwIABmjdvnpWRAQAAYBGHMcZYHaIy5ebmyuVyKScnp8rud52+5VC55k/qFlxJSQAAAKq/sva1anWPKwAAAFAaiisAAABsgeIKAAAAW6C4AgAAwBYorgAAALAFiisAAABsgeIKAAAAW6C4AgAAwBYorgAAALAFiisAAABsgeIKAAAAW6C4AgAAwBYorgAAALAFiisAAABsgeIKAAAAW6C4AgAAwBYorgAAALAFiisAAABsgeIKAAAAW6C4AgAAwBYorgAAALAFiisAAABsgeIKAAAAW6C4AgAAwBYorgAAALAFiisAAABsgeIKAAAAW6C4AgAAwBa8Kq6bN2/W9u3b3a/fe+89DRkyRI888ojy8/MrLBwAAABQxKviOnbsWH333XeSpB9++EHDhg1T7dq1tXDhQj300EMVGhAAAACQvCyu3333nbp27SpJWrhwofr27av58+frjTfe0OLFiysyHwAAACDJy+JqjFFhYaEkaeXKlbruuuskSRERETp06FDFpQMAAAD+l1fF9bLLLtNTTz2lt99+WykpKRo0aJAkKT09XSEhIRUaEAAAAJC8LK6zZ8/W5s2bNW7cOD366KNq1aqVJGnRokXq1atXhQYEAAAAJKmmN1/UuXNnj6cKFJk5c6Zq1Khx3qEAAACAM3n9HNfs7Gz94x//UGJioo4cOSJJ2rlzpw4ePFhh4QAAAIAiXl1x3bZtm6666ioFBgZq7969uuuuuxQUFKQlS5YoIyNDb731VkXnBAAAwEXOqyuuCQkJGjVqlPbs2SM/Pz/3+HXXXafPPvuswsIBAAAARbwqrhs3btTYsWOLjTdu3FiZmZnnHQoAAAA4k1fF1el0Kjc3t9j4d999p4YNG553KAAAAOBMXhXXG2+8UVOnTtXp06clSQ6HQxkZGXr44YcVGxtboQEBAAAAycvi+uyzz+r48eNq1KiRfv31V/Xr10+tWrVSvXr19Le//a2iMwIAAADePVXA5XJpxYoVWrdunb7++msdP35cl156qWJiYio6HwAAACDJy+JapHfv3urdu3dFZQEAAABK5dWtAvfff7/mzJlTbPzFF1/U+PHjzzcTAAAAUIxXxXXx4sUlXmnt1auXFi1adN6hAAAAgDN5VVwPHz4sl8tVbDwgIECHDh0671AAAADAmbwqrq1atdLHH39cbPyjjz5SixYtzjsUAAAAcCavPpyVkJCgcePG6ZdfflH//v0lSatWrdKzzz6r2bNnV2Q+AAAAQJKXxXX06NHKy8vT3/72Nz355JOSpGbNmumll17SiBEjKjQgAAAAIHl5q4Ak3Xvvvfrpp5+UlZWl3Nxc/fDDD+dVWqdPny6Hw+HxVIJTp04pPj5eDRo0UN26dRUbG6usrCyv3wMAAAD25XVxLdKwYUPVrVv3vI6xceNG/f3vf1fnzp09xidMmKAPPvhACxcuVEpKivbv36+hQ4ee13sBAADAnrwqrllZWbrzzjsVHh6umjVrqkaNGh5beRw/flzDhw/Xq6++qvr167vHc3Jy9Nprr+m5555T//79FRUVpeTkZH3xxRdav369N7EBAABgY17d4zpy5EhlZGToscceU1hYmBwOh9cB4uPjNWjQIMXExOipp55yj2/atEmnT5/2+DWybdu2VdOmTZWamqqePXuWeLy8vDzl5eW5X+fm5nqdDQAAANWHV8V17dq1+vzzz9W1a9fzevMFCxZo8+bN2rhxY7F9mZmZ8vX1VWBgoMd4SEiIMjMzSz1mUlKSnnjiifPKBQAAgOrHq1sFIiIiZIw5rzfet2+fHnjgAb3zzjvy8/M7r2P9UWJionJyctzbvn37KuzYAAAAsI5XxXX27NmaNGmS9u7d6/Ubb9q0SQcPHtSll16qmjVrqmbNmkpJSdGcOXNUs2ZNhYSEKD8/X9nZ2R5fl5WVpdDQ0FKP63Q6FRAQ4LEBAADA/ry6VeC2227TyZMn1bJlS9WuXVu1atXy2H/kyJFzHuOqq67S9u3bPcZGjRqltm3b6uGHH1ZERIRq1aqlVatWKTY2VpK0e/duZWRkKDo62pvYAAAAsDGvimtF/HasevXqqWPHjh5jderUUYMGDdzjY8aMUUJCgoKCghQQEKD77rtP0dHRpX4wCwAAABcur4prXFxcReco0axZs+Tj46PY2Fjl5eVpwIABmjdvXpW8NwAAAKoXh/HyU1ZpaWlKTk5WWlqann/+eTVq1EgfffSRmjZtqg4dOlR0Tq/l5ubK5XIpJyenyu53nb7lULnmT+oWXElJAAAAqr+y9jWvPpyVkpKiTp06acOGDVqyZImOHz8uSfr66681efJk7xIDAAAAZ+FVcZ00aZKeeuoprVixQr6+vu7x/v3781utAAAAUCm8Kq7bt2/XTTfdVGy8UaNGOnSofP+bHAAAACgLr4prYGCgDhw4UGx8y5Ytaty48XmHAgAAAM7kVXEdNmyYHn74YWVmZsrhcKiwsFDr1q3Tgw8+qBEjRlR0RgAAAMC74jpt2jS1bdtWEREROn78uNq3b6++ffuqV69e+utf/1rRGQEAAIDyP8fVGKPMzEzNmTNHjz/+uLZv367jx4+rW7duat26dWVkBAAAALwrrq1atdI333yj1q1bKyIiojJyAQAAAB7KfauAj4+PWrdurcOHD1dGHgAAAKBEXt3jOn36dE2cOFE7duyo6DwAAABAicp9q4AkjRgxQidPnlSXLl3k6+srf39/j/1HjhypkHAAAABAEa+K6+zZsys4BgAAAHB25S6up0+fVkpKih577DE1b968MjIBAAAAxZT7HtdatWpp8eLFlZEFAAAAKJVXH84aMmSIli1bVsFRAAAAgNJ5dY9r69atNXXqVK1bt05RUVGqU6eOx/7777+/QsIBAAAARRzGGFPeLzrbva0Oh0M//PDDeYWqSLm5uXK5XMrJyVFAQECVvOf0LYfKNX9St+BKSgIAAFD9lbWveXXFNT093etgAAAAgDe8uscVAAAAqGpeXXEdPXr0Wfe//vrrXoUBAAAASuNVcT169KjH69OnT2vHjh3Kzs5W//79KyQYAAAA8EdeFdelS5cWGyssLNS9996rli1bnncoAAAA4EwVdo+rj4+PEhISNGvWrIo6JAAAAOBWoR/OSktL02+//VaRhwQAAAAkeXmrQEJCgsdrY4wOHDig//znP4qLi6uQYAAAAMAfeVVct2zZ4vHax8dHDRs21LPPPnvOJw4AAAAA3vCquK5Zs6aicwAAAABn5dU9runp6dqzZ0+x8T179mjv3r3nmwkAAAAoxqviOnLkSH3xxRfFxjds2KCRI0eebyYAAACgGK+K65YtW9S7d+9i4z179tTWrVvPNxMAAABQjFfF1eFw6NixY8XGc3JyVFBQcN6hAAAAgDN5VVz79u2rpKQkj5JaUFCgpKQkXXHFFRUWDgAAACji1VMFnn76afXt21dt2rRRnz59JEmff/65cnNztXr16goNCAAAAEheXnFt3769tm3bpltvvVUHDx7UsWPHNGLECO3atUsdO3as6IwAAACAd1dcJSk8PFzTpk2ryCwAAABAqby64pqcnKyFCxcWG1+4cKHefPPN8w4FAAAAnMmr4pqUlKTg4OBi440aNeIqLAAAACqFV8U1IyNDzZs3LzYeGRmpjIyM8w4FAAAAnMmr4tqoUSNt27at2PjXX3+tBg0anHcoAAAA4ExeFdfbb79d999/v9asWaOCggIVFBRo9erVeuCBBzRs2LCKzggAAAB491SBJ598Unv37tVVV12lmjV/P0RBQYHi4uK4xxUAAACVwqvi6uvrq3fffVcPPvig9u7dK39/f3Xq1EmRkZEVnQ8AAACQ5EVxzc7O1qOPPqp3331XR48elSTVr19fw4YN01NPPaXAwMCKzggAAACUr7geOXJE0dHR+vnnnzV8+HC1a9dOkrRz50698cYbWrVqlb744gvVr1+/UsICAADg4lWu4jp16lT5+voqLS1NISEhxfZdc801mjp1qmbNmlWhIQEAAIByPVVg2bJleuaZZ4qVVkkKDQ3VjBkztHTp0goLBwAAABQpV3E9cOCAOnToUOr+jh07KjMz87xDAQAAAGcqV3ENDg7W3r17S92fnp6uoKCg880EAAAAFFOu4jpgwAA9+uijys/PL7YvLy9Pjz32mK699toKCwcAAAAUKfeHsy677DK1bt1a8fHxatu2rYwx+vbbbzVv3jzl5eXp7bffrqysAAAAuIiV64prkyZNlJqaqvbt2ysxMVFDhgzRTTfdpEcffVTt27fXunXrFBERUebjvfTSS+rcubMCAgIUEBCg6OhoffTRR+79p06dUnx8vBo0aKC6desqNjZWWVlZ5YkMAACAC0S5fwFB8+bN9dFHH+no0aPas2ePJKlVq1Ze3dvapEkTTZ8+Xa1bt5YxRm+++aYGDx6sLVu2qEOHDpowYYL+85//aOHChXK5XBo3bpyGDh2qdevWlfu9AAAAYG8OY4yxOsQfBQUFaebMmbr55pvVsGFDzZ8/XzfffLMkadeuXWrXrp1SU1PVs2fPMh0vNzdXLpdLOTk5CggIqMzobtO3HCrX/EndgispCQAAQPVX1r5WrlsFKlNBQYEWLFigEydOKDo6Wps2bdLp06cVExPjntO2bVs1bdpUqamppR4nLy9Pubm5HhsAAADsz/Liun37dtWtW1dOp1P33HOPli5dqvbt2yszM1O+vr4KDAz0mB8SEnLWZ8UmJSXJ5XK5t/LccwsAAIDqy/Li2qZNG23dulUbNmzQvffeq7i4OO3cudPr4yUmJionJ8e97du3rwLTAgAAwCrl/nBWRfP19VWrVq0kSVFRUdq4caOef/553XbbbcrPz1d2drbHVdesrCyFhoaWejyn0ymn01nZsQEAAFDFLL/ieqbCwkLl5eUpKipKtWrV0qpVq9z7du/erYyMDEVHR1uYEAAAAFaw9IprYmKiBg4cqKZNm+rYsWOaP3++Pv30Uy1fvlwul0tjxoxRQkKCgoKCFBAQoPvuu0/R0dFlfqIAAAAALhyWFteDBw9qxIgROnDggFwulzp37qzly5fr6quvliTNmjVLPj4+io2NVV5engYMGKB58+ZZGRkAAAAWqXbPca1oPMcVAACgerPdc1wBAACAs6G4AgAAwBYorgAAALAFiisAAABsgeIKAAAAW6C4AgAAwBYorgAAALAFiisAAABsgeIKAAAAW6C4AgAAwBYorgAAALAFiisAAABsgeIKAAAAW6C4AgAAwBYorgAAALAFiisAAABsgeIKAAAAW6C4AgAAwBYorgAAALAFiisAAABsgeIKAAAAW6C4AgAAwBYorgAAALAFiisAAABsgeIKAAAAW6C4AgAAwBYorgAAALAFiisAAABsgeIKAAAAW6C4AgAAwBYorgAAALAFiisAAABsgeIKAAAAW6C4AgAAwBYorgAAALAFiisAAABsgeIKAAAAW6C4AgAAwBYorgAAALAFiisAAABsgeIKAAAAW6C4AgAAwBYorgAAALAFiisAAABsgeIKAAAAW6C4AgAAwBYorgAAALAFiisAAABsgeIKAAAAW6C4AgAAwBYorgAAALAFS4trUlKSLr/8ctWrV0+NGjXSkCFDtHv3bo85p06dUnx8vBo0aKC6desqNjZWWVlZFiUGAACAVSwtrikpKYqPj9f69eu1YsUKnT59Wtdcc41OnDjhnjNhwgR98MEHWrhwoVJSUrR//34NHTrUwtQAAACwgsMYY6wOUeSXX35Ro0aNlJKSor59+yonJ0cNGzbU/PnzdfPNN0uSdu3apXbt2ik1NVU9e/Y85zFzc3PlcrmUk5OjgICAyv4WJEnTtxwq1/xJ3YIrKQkAAED1V9a+Vq3ucc3JyZEkBQUFSZI2bdqk06dPKyYmxj2nbdu2atq0qVJTU0s8Rl5ennJzcz02AAAA2F+1Ka6FhYUaP368evfurY4dO0qSMjMz5evrq8DAQI+5ISEhyszMLPE4SUlJcrlc7i0iIqKyowMAAKAKVJviGh8frx07dmjBggXndZzExETl5OS4t3379lVQQgAAAFipptUBJGncuHH68MMP9dlnn6lJkybu8dDQUOXn5ys7O9vjqmtWVpZCQ0NLPJbT6ZTT6azsyAAAAKhill5xNcZo3LhxWrp0qVavXq3mzZt77I+KilKtWrW0atUq99ju3buVkZGh6Ojoqo4LAAAAC1l6xTU+Pl7z58/Xe++9p3r16rnvW3W5XPL395fL5dKYMWOUkJCgoKAgBQQE6L777lN0dHSZnigAAACAC4elxfWll16SJF155ZUe48nJyRo5cqQkadasWfLx8VFsbKzy8vI0YMAAzZs3r4qTAgAAwGqWFteyPELWz89Pc+fO1dy5c6sgEQAAAKqravNUAQAAAOBsKK4AAACwBYorAAAAbIHiCgAAAFuguAIAAMAWKK4AAACwBYorAAAAbIHiCgAAAFuguAIAAMAWKK4AAACwBYorAAAAbIHiCgAAAFuguAIAAMAWKK4AAACwBYorAAAAbIHiCgAAAFuguAIAAMAWKK4AAACwBYorAAAAbIHiCgAAAFuguAIAAMAWKK4AAACwBYorAAAAbIHiCgAAAFuguAIAAMAWKK4AAACwBYorAAAAbIHiCgAAAFuguAIAAMAWKK4AAACwBYorAAAAbIHiCgAAAFuguAIAAMAWKK4AAACwBYorAAAAbIHiCgAAAFuguAIAAMAWKK4AAACwBYorAAAAbIHiCgAAAFuguAIAAMAWKK4AAACwBYorAAAAbIHiCgAAAFuguAIAAMAWKK4AAACwBYorAAAAbIHiCgAAAFuguAIAAMAWKK4AAACwBUuL62effaYbbrhB4eHhcjgcWrZsmcd+Y4wef/xxhYWFyd/fXzExMdqzZ481YQEAAGApS4vriRMn1KVLF82dO7fE/TNmzNCcOXP08ssva8OGDapTp44GDBigU6dOVXFSAAAAWK2mlW8+cOBADRw4sMR9xhjNnj1bf/3rXzV48GBJ0ltvvaWQkBAtW7ZMw4YNq8qoAAAAsFi1vcc1PT1dmZmZiomJcY+5XC716NFDqamppX5dXl6ecnNzPTYAAADYX7UtrpmZmZKkkJAQj/GQkBD3vpIkJSXJ5XK5t4iIiErNCQAAgKpRbYurtxITE5WTk+Pe9u3bZ3UkAAAAVIBqW1xDQ0MlSVlZWR7jWVlZ7n0lcTqdCggI8NgAAABgf9W2uDZv3lyhoaFatWqVeyw3N1cbNmxQdHS0hckAAABgBUufKnD8+HF9//337tfp6enaunWrgoKC1LRpU40fP15PPfWUWrdurebNm+uxxx5TeHi4hgwZYl1oAAAAWMLS4vrVV1/pT3/6k/t1QkKCJCkuLk5vvPGGHnroIZ04cUJ33323srOzdcUVV+jjjz+Wn5+fVZEBAABgEYcxxlgdojLl5ubK5XIpJyenyu53nb7lULnmT+oWXElJAAAAqr+y9rVqe48rAAAA8EcUVwAAANgCxRUAAAC2QHEFAACALVBcAQAAYAsUVwAAANgCxRUAAAC2QHEFAACALVBcAQAAYAsUVwAAANgCxRUAAAC2UNPqAPA0fcuhMs+d1C24EpMAAABUL1xxBQAAgC1QXAEAAGALFFcAAADYAsUVAAAAtkBxBQAAgC3wVIELRHmeRiDxRAIAAGA/XHEFAACALVBcAQAAYAsUVwAAANgCxRUAAAC2QHEFAACALfBUAXiNJxkAAICqxBVXAAAA2ALFFQAAALZAcQUAAIAtUFwBAABgCxRXAAAA2ALFFQAAALZAcQUAAIAtUFwBAABgCxRXAAAA2ALFFQAAALZAcQUAAIAtUFwBAABgCxRXAAAA2ALFFQAAALZAcQUAAIAtUFwBAABgCxRXAAAA2ALFFQAAALZQ0+oAsN70LYfKPHdSt+BKTFI9lWd9pItzjQAAqApccQUAAIAtUFwBAABgCxRXAAAA2ALFFQAAALZAcQUAAIAt8FQBWOJieZLBxfJ9esuqJzZY8XPhXABgtQvhKTlccQUAAIAt2KK4zp07V82aNZOfn5969OihL7/80upIAAAAqGLVvri+++67SkhI0OTJk7V582Z16dJFAwYM0MGDB62OBgAAgCpU7Yvrc889p7vuukujRo1S+/bt9fLLL6t27dp6/fXXrY4GAACAKlStP5yVn5+vTZs2KTEx0T3m4+OjmJgYpaamlvg1eXl5ysvLc7/OycmRJOXm5lZu2D84dfxYuebn5vp69bXefp2d39MKF8v3aYXzWduqel87vycA/JFVf+eW7b1+72nGmLNPNNXYzz//bCSZL774wmN84sSJpnv37iV+zeTJk40kNjY2NjY2NjY2m2379u07azes1ldcvZGYmKiEhAT368LCQh05ckQNGjSQw+E4r2Pn5uYqIiJC+/btU0BAwPlGvSCxRufGGp0d63NurNG5sUZnx/qcG2t0dhW9PsYYHTt2TOHh4WedV62La3BwsGrUqKGsrCyP8aysLIWGhpb4NU6nU06n02MsMDCwQnMFBARwEp8Da3RurNHZsT7nxhqdG2t0dqzPubFGZ1eR6+Nyuc45p1p/OMvX11dRUVFatWqVe6ywsFCrVq1SdHS0hckAAABQ1ar1FVdJSkhIUFxcnC677DJ1795ds2fP1okTJzRq1CirowEAAKAKVfvietttt+mXX37R448/rszMTHXt2lUff/yxQkJCqjyL0+nU5MmTi92KgP/DGp0ba3R2rM+5sUbnxhqdHetzbqzR2Vm1Pg5jzvXcAQAAAMB61foeVwAAAKAIxRUAAAC2QHEFAACALVBcAQAAYAsU13KYO3eumjVrJj8/P/Xo0UNffvml1ZGqjSlTpsjhcHhsbdu2tTqWZT777DPdcMMNCg8Pl8Ph0LJlyzz2G2P0+OOPKywsTP7+/oqJidGePXusCWuRc63RyJEji51T1157rTVhLZCUlKTLL79c9erVU6NGjTRkyBDt3r3bY86pU6cUHx+vBg0aqG7duoqNjS32C1suZGVZoyuvvLLYeXTPPfdYlLhqvfTSS+rcubP7AfHR0dH66KOP3Psv9vNHOvcaXcznT0mmT58uh8Oh8ePHu8eq+jyiuJbRu+++q4SEBE2ePFmbN29Wly5dNGDAAB08eNDqaNVGhw4ddODAAfe2du1aqyNZ5sSJE+rSpYvmzp1b4v4ZM2Zozpw5evnll7VhwwbVqVNHAwYM0KlTp6o4qXXOtUaSdO2113qcU//617+qMKG1UlJSFB8fr/Xr12vFihU6ffq0rrnmGp04ccI9Z8KECfrggw+0cOFCpaSkaP/+/Ro6dKiFqatWWdZIku666y6P82jGjBkWJa5aTZo00fTp07Vp0yZ99dVX6t+/vwYPHqxvvvlGEuePdO41ki7e8+dMGzdu1N///nd17tzZY7zKzyODMunevbuJj493vy4oKDDh4eEmKSnJwlTVx+TJk02XLl2sjlEtSTJLly51vy4sLDShoaFm5syZ7rHs7GzjdDrNv/71LwsSWu/MNTLGmLi4ODN48GBL8lRHBw8eNJJMSkqKMeb3c6ZWrVpm4cKF7jnffvutkWRSU1OtimmpM9fIGGP69etnHnjgAetCVTP169c3//jHPzh/zqJojYzh/Cly7Ngx07p1a7NixQqPNbHiPOKKaxnk5+dr06ZNiomJcY/5+PgoJiZGqampFiarXvbs2aPw8HC1aNFCw4cPV0ZGhtWRqqX09HRlZmZ6nE8ul0s9evTgfDrDp59+qkaNGqlNmza69957dfjwYasjWSYnJ0eSFBQUJEnatGmTTp8+7XEetW3bVk2bNr1oz6Mz16jIO++8o+DgYHXs2FGJiYk6efKkFfEsVVBQoAULFujEiROKjo7m/CnBmWtUhPNHio+P16BBgzzOF8mav4eq/W/Oqg4OHTqkgoKCYr+tKyQkRLt27bIoVfXSo0cPvfHGG2rTpo0OHDigJ554Qn369NGOHTtUr149q+NVK5mZmZJU4vlUtA+/3yYwdOhQNW/eXGlpaXrkkUc0cOBApaamqkaNGlbHq1KFhYUaP368evfurY4dO0r6/Tzy9fVVYGCgx9yL9TwqaY0k6X/+538UGRmp8PBwbdu2TQ8//LB2796tJUuWWJi26mzfvl3R0dE6deqU6tatq6VLl6p9+/baunUr58//Km2NJM4fSVqwYIE2b96sjRs3Fttnxd9DFFdUiIEDB7r/3LlzZ/Xo0UORkZH697//rTFjxliYDHY1bNgw9587deqkzp07q2XLlvr000911VVXWZis6sXHx2vHjh0X9X3j51LaGt19993uP3fq1ElhYWG66qqrlJaWppYtW1Z1zCrXpk0bbd26VTk5OVq0aJHi4uKUkpJidaxqpbQ1at++/UV//uzbt08PPPCAVqxYIT8/P6vjSOLDWWUSHBysGjVqFPuUXFZWlkJDQy1KVb0FBgbqkksu0ffff291lGqn6JzhfCqfFi1aKDg4+KI7p8aNG6cPP/xQa9asUZMmTdzjoaGhys/PV3Z2tsf8i/E8Km2NStKjRw9JumjOI19fX7Vq1UpRUVFKSkpSly5d9Pzzz3P+/EFpa1SSi+382bRpkw4ePKhLL71UNWvWVM2aNZWSkqI5c+aoZs2aCgkJqfLziOJaBr6+voqKitKqVavcY4WFhVq1apXHfTD4P8ePH1daWprCwsKsjlLtNG/eXKGhoR7nU25urjZs2MD5dBY//fSTDh8+fNGcU8YYjRs3TkuXLtXq1avVvHlzj/1RUVGqVauWx3m0e/duZWRkXDTn0bnWqCRbt26VpIvmPDpTYWGh8vLyOH/OomiNSnKxnT9XXXWVtm/frq1bt7q3yy67TMOHD3f/ucrPo0r5yNcFaMGCBcbpdJo33njD7Ny509x9990mMDDQZGZmWh2tWvjLX/5iPv30U5Oenm7WrVtnYmJiTHBwsDl48KDV0Sxx7Ngxs2XLFrNlyxYjyTz33HNmy5Yt5scffzTGGDN9+nQTGBho3nvvPbNt2zYzePBg07x5c/Prr79anLzqnG2Njh07Zh588EGTmppq0tPTzcqVK82ll15qWrdubU6dOmV19Cpx7733GpfLZT799FNz4MAB93by5En3nHvuucc0bdrUrF692nz11VcmOjraREdHW5i6ap1rjb7//nszdepU89VXX5n09HTz3nvvmRYtWpi+fftanLxqTJo0yaSkpJj09HSzbds2M2nSJONwOMwnn3xijOH8Mebsa3Sxnz+lOfNJC1V9HlFcy+GFF14wTZs2Nb6+vqZ79+5m/fr1VkeqNm677TYTFhZmfH19TePGjc1tt91mvv/+e6tjWWbNmjVGUrEtLi7OGPP7I7Eee+wxExISYpxOp7nqqqvM7t27rQ1dxc62RidPnjTXXHONadiwoalVq5aJjIw0d91110X1H4olrY0kk5yc7J7z66+/mj//+c+mfv36pnbt2uamm24yBw4csC50FTvXGmVkZJi+ffuaoKAg43Q6TatWrczEiRNNTk6OtcGryOjRo01kZKTx9fU1DRs2NFdddZW7tBrD+WPM2dfoYj9/SnNmca3q88hhjDGVcy0XAAAAqDjc4woAAABboLgCAADAFiiuAAAAsAWKKwAAAGyB4goAAABboLgCAADAFiiuAAAAsAWKKwAAAGyB4goAF4C9e/fK4XC4f5c6AFyIKK4AUEFGjhwph8Oh6dOne4wvW7ZMDofDolQAcOGguAJABfLz89PTTz+to0ePWh2lQuTn51sdAQDcKK4AUIFiYmIUGhqqpKSkEvdPmTJFXbt29RibPXu2mjVr5n49cuRIDRkyRNOmTVNISIgCAwM1depU/fbbb5o4caKCgoLUpEkTJScnFzv+rl271KtXL/n5+aljx45KSUnx2L9jxw4NHDhQdevWVUhIiO68804dOnTIvf/KK6/UuHHjNH78eAUHB2vAgAHeLwYAVDCKKwBUoBo1amjatGl64YUX9NNPP3l9nNWrV2v//v367LPP9Nxzz2ny5Mm6/vrrVb9+fW3YsEH33HOPxo4dW+w9Jk6cqL/85S/asmWLoqOjdcMNN+jw4cOSpOzsbPXv31/dunXTV199pY8//lhZWVm69dZbPY7x5ptvytfXV+vWrdPLL7/s9fcAABWN4goAFeymm25S165dNXnyZK+PERQUpDlz5qhNmzYaPXq02rRpo5MnT+qRRx5R69atlZiYKF9fX61du9bj68aNG6fY2Fi1a9dOL730klwul1577TVJ0osvvqhu3bpp2rRpatu2rbp166bXX39da9as0Xfffec+RuvWrTVjxgy1adNGbdq08fp7AICKRnEFgErw9NNP680339S3337r1dd36NBBPj7/91d0SEiIOnXq5H5do0YNNWjQQAcPHvT4uujoaPefa9asqcsuu8yd4euvv9aaNWtUt25d99a2bVtJUlpamvvroqKivMoMAJWtptUBAOBC1LdvXw0YMECJiYkaOXKke9zHx0fGGI+5p0+fLvb1tWrV8njtcDhKHCssLCxzpuPHj+uGG27Q008/XWxfWFiY+8916tQp8zEBoCpRXAGgkkyfPl1du3b1+N/tDRs2VGZmpowx7kdkVeSzV9evX6++fftKkn777Tdt2rRJ48aNkyRdeumlWrx4sZo1a6aaNfnrH4D9cKsAAFSSTp06afjw4ZozZ4577Morr9Qvv/yiGTNmKC0tTXPnztVHH31UYe85d+5cLV26VLt27VJ8fLyOHj2q0aNHS5Li4+N15MgR3X777dq4caPS0tK0fPlyjRo1SgUFBRWWAQAqC8UVACrR1KlTPf53frt27TRv3jzNnTtXXbp00ZdffqkHH3ywwt5v+vTpmj59urp06aK1a9fq/fffV3BwsCQpPDxc69atU0FBga655hp16tRJ48ePV2BgoMf9tABQXTnMmTdbAQAAANUQ/4kNAAAAW6C4AgAAwBYorgAAALAFiisAAABsgeIKAAAAW6C4AgAAwBYorgAAALAFiisAAABsgeIKAAAAW6C4AgAAwBYorgAAALCF/w9b6VuwdhkbCQAAAABJRU5ErkJggg==",
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAArYAAAIjCAYAAAD2qFgcAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy80BEi2AAAACXBIWXMAAA9hAAAPYQGoP6dpAAA+EklEQVR4nO3de1yUZf7/8feAMqAGqCgnSTzlOTFdDc1DLUZmlh3VXEGyMtNNY9Okg5S2YplmB8vVTa12+2UesnYzTVErlbQ85DmNRMsExQOgFijcvz/6MtsIKIzA4OXr+XjM4+Fc93Xf92fua8Z5e3vd99gsy7IEAAAAXOY83F0AAAAAUB4ItgAAADACwRYAAABGINgCAADACARbAAAAGIFgCwAAACMQbAEAAGAEgi0AAACMQLAFAACAEQi2AFABvvnmG3Xp0kU1a9aUzWbT1q1b3V2Sk/DwcN12220ur2+z2fTcc8+VX0GllJaWJpvNppdfftnlbQwZMkTh4eHlVlN5b68k8+bNk81mU1pamqPtUscRMA3BFriM7dy5U3/5y18UGhoqu92ukJAQDRo0SDt37nR3aVe0s2fP6t5779Xx48f1yiuv6L333lPDhg3dXRYAGK+auwsA4JrFixdr4MCBqlOnjoYOHapGjRopLS1Nb7/9thYuXKgPPvhAd955p7vLvCKlpqbqwIEDmj17th588EF3l4MKNnv2bBUUFLi7DAAi2AKXpdTUVA0ePFiNGzfWl19+qXr16jmWjRo1St26ddPgwYO1bds2NW7c2I2VFnXmzBnVqFHD3WVUqCNHjkiS/P393VsIKkX16tXdXQKA/8NUBOAyNGXKFJ05c0azZs1yCrWSFBAQoH/84x86ffq0XnrpJadlhw4d0tChQxUSEiK73a5GjRpp+PDhysvLc/Q5efKkHn/8cYWHh8tut6tBgwaKiYlRZmampOLn+UnSmjVrZLPZtGbNGkdbz5491aZNG23atEndu3dXjRo19NRTT0mSPv74Y/Xp08dRS5MmTTRx4kTl5+c7bbdwG7t27dKNN96oGjVqKDQ0tMhrk6TffvtNzz33nK655hp5e3srODhYd911l1JTUx19CgoKNH36dLVu3Vre3t4KDAzUsGHDdOLEiVId+1WrVqlbt26qWbOm/P39dccdd2j37t2O5UOGDFGPHj0kSffee69sNpt69ux5wW2ePHlSo0ePVlhYmOx2u5o2baoXX3yxyFnAl19+WV26dFHdunXl4+OjDh06aOHChcVu81//+pc6deqkGjVqqHbt2urevbs+//zzIv3Wrl2rTp06ydvbW40bN9a7775bquNwvgMHDujRRx9V8+bN5ePjo7p16+ree+8t8j4pfP+sXbtWjz32mOrVqyd/f38NGzZMeXl5OnnypGJiYlS7dm3Vrl1bY8eOlWVZxe7zlVdeUcOGDeXj46MePXpox44dRfosWbJEbdq0kbe3t9q0aaOPPvqo2G2V5die7/w5tn+cBzxr1iw1adJEdrtdf/rTn/TNN9+Uaps7d+7UTTfdJB8fHzVo0EAvvPDCBc8Kf/7554qIiJC3t7datWqlxYsXl2o/gGk4Ywtchv7zn/8oPDxc3bp1K3Z59+7dFR4erk8//dTR9ssvv6hTp046efKkHn74YbVo0UKHDh3SwoULdebMGXl5eenUqVPq1q2bdu/erQceeEDXXXedMjMz9cknn+jnn39WQEBAmWs9duyYevfurQEDBugvf/mLAgMDJf0ecGrVqqX4+HjVqlVLq1at0vjx45Wdna0pU6Y4bePEiRO65ZZbdNddd+m+++7TwoUL9eSTT6pt27bq3bu3JCk/P1+33XabkpOTNWDAAI0aNUo5OTlasWKFduzYoSZNmkiShg0bpnnz5ikuLk6PPfaY9u/frzfeeENbtmzRunXrLnj2beXKlerdu7caN26s5557Tr/++qtef/11de3aVZs3b1Z4eLiGDRum0NBQTZo0SY899pj+9Kc/OV5zcc6cOaMePXro0KFDGjZsmK6++mqtX79eCQkJOnz4sKZPn+7o++qrr+r222/XoEGDlJeXpw8++ED33nuv/vvf/6pPnz6Ofs8//7yee+45denSRRMmTJCXl5c2bNigVatW6eabb3b0++GHH3TPPfdo6NChio2N1Zw5czRkyBB16NBBrVu3Lv0g6/eL5davX68BAwaoQYMGSktL01tvvaWePXtq165dRc7S//Wvf1VQUJCef/55ff3115o1a5b8/f21fv16XX311Zo0aZKWLl2qKVOmqE2bNoqJiXFa/91331VOTo5GjBih3377Ta+++qpuuukmbd++3XG8P//8c919991q1aqVkpKSdOzYMcXFxalBgwZF6i/tsS2L999/Xzk5ORo2bJhsNpteeukl3XXXXfrxxx8v+D5LT0/XjTfeqHPnzmncuHGqWbOmZs2aJR8fn2L779u3T/3799cjjzyi2NhYzZ07V/fee6+WLVumXr16uVQ7cNmyAFxWTp48aUmy7rjjjgv2u/322y1JVnZ2tmVZlhUTE2N5eHhY33zzTZG+BQUFlmVZ1vjx4y1J1uLFi0vsM3fuXEuStX//fqflq1evtiRZq1evdrT16NHDkmTNnDmzyPbOnDlTpG3YsGFWjRo1rN9++63INt59911HW25urhUUFGTdfffdjrY5c+ZYkqxp06aVWPtXX31lSbL+/e9/Oy1ftmxZse3ni4iIsOrXr28dO3bM0fbdd99ZHh4eVkxMjKOt8FgsWLDggtuzLMuaOHGiVbNmTWvv3r1O7ePGjbM8PT2tgwcPOtrOP2Z5eXlWmzZtrJtuusnRtm/fPsvDw8O68847rfz8fKf+hcfBsiyrYcOGliTryy+/dLQdOXLEstvt1t/+9reL1i3JSkxMLLE2y7KslJSUImNX+P6Jjo52qicyMtKy2WzWI4884mg7d+6c1aBBA6tHjx6Otv3791uSLB8fH+vnn392tG/YsMGSZD3++OOOtoiICCs4ONg6efKko+3zzz+3JFkNGzZ0qrU0x7YksbGxTtsrrLFu3brW8ePHHe0ff/yxJcn6z3/+c8HtjR492pJkbdiwwdF25MgRy8/Pr8hnr3AcFy1a5GjLysqygoODrfbt21+0dsA0TEUALjM5OTmSpKuuuuqC/QqXZ2dnq6CgQEuWLFHfvn3VsWPHIn1tNpskadGiRWrXrl2xF50V9ikru92uuLi4Iu1/PPuUk5OjzMxMdevWTWfOnNGePXuc+taqVUt/+ctfHM+9vLzUqVMn/fjjj462RYsWKSAgQH/9619LrH3BggXy8/NTr169lJmZ6Xh06NBBtWrV0urVq0t8HYcPH9bWrVs1ZMgQ1alTx9F+7bXXqlevXlq6dGkpjkZRCxYsULdu3VS7dm2nmqKiopSfn68vv/zS0fePx+zEiRPKyspSt27dtHnzZkf7kiVLVFBQoPHjx8vDw/mv+PPHsFWrVk5n/evVq6fmzZs7HdfS+mNtZ8+e1bFjx9S0aVP5+/s71Vdo6NChTvV07txZlmVp6NChjjZPT0917Nix2Hr69eun0NBQx/NOnTqpc+fOjnEoHK/Y2Fj5+fk5+vXq1UutWrW6YP0lHduy6t+/v2rXru14XnisL3Z8ly5dquuvv16dOnVytNWrV0+DBg0qtn9ISIjTZ9bX11cxMTHasmWL0tPTXa4fuBwxFQG4zBQG1sKAW5I/BuCjR48qOztbbdq0ueA6qampuvvuu8un0P8TGhoqLy+vIu07d+7UM888o1WrVik7O9tpWVZWltPzBg0aFAlltWvX1rZt2xzPU1NT1bx5c1WrVvJfa/v27VNWVpbq169f7PLCi76Kc+DAAUlS8+bNiyxr2bKlli9frtOnT6tmzZolbqOkmrZt21ZkrnRxNf33v//VCy+8oK1btyo3N9fR/sdjk5qaKg8Pj2LD2/muvvrqIm21a9cu9XzjP/r111+VlJSkuXPn6tChQ07zYs8fz+L2XRg+w8LCirQXV0+zZs2KtF1zzTX68MMPJf1vvIrr17x58yKBtTTHtqzOf42FIfdix/fAgQPq3Llzkfbi3nuS1LRp0yJ1XnPNNZJ+n+8bFBRU6pqByx3BFrjM+Pn5KTg42CnUFWfbtm0KDQ2Vr6+vfv3113Lbf0lf9Odf9FWouHmBJ0+eVI8ePeTr66sJEyaoSZMm8vb21ubNm/Xkk08WuUjG09Oz2G1bJVxUVJKCggLVr19f//73v4tdXlK4rEgFBQXq1auXxo4dW+zywoDy1Vdf6fbbb1f37t315ptvKjg4WNWrV9fcuXP1/vvvu7Tv8jqu0u9zZufOnavRo0crMjJSfn5+stlsGjBgQLEXPZW07+LaXamnLCri2Erle3wBlA7BFrgM3XbbbZo9e7bWrl2rG264ocjyr776SmlpaRo2bJik3wObr69vsVeN/1GTJk0u2qfwrNPJkyed2gvPkJXGmjVrdOzYMS1evFjdu3d3tO/fv7/U2zhfkyZNtGHDBp09e7bEC3OaNGmilStXqmvXriVeiFOSwh9Y+P7774ss27NnjwICAsp8trawplOnTikqKuqC/RYtWiRvb28tX75cdrvd0T537twi2ysoKNCuXbsUERFR5npctXDhQsXGxmrq1KmOtt9++63I+6S87Nu3r0jb3r17HXcnKByv4vqdP4alPbaVpWHDhqWqu9APP/wgy7Kc/tG5d+9eSaqUX0QDqhLm2AKXoTFjxsjHx0fDhg3TsWPHnJYdP35cjzzyiGrUqKExY8ZIkjw8PNSvXz/95z//0bfffltke4VnkO6++2599913xd4SqbBP4d0F/jj3Mz8/X7NmzSp1/YVnsv545iovL09vvvlmqbdxvrvvvluZmZl64403iiwr3M99992n/Px8TZw4sUifc+fOXTCEBQcHKyIiQu+8845Tvx07dujzzz/Xrbfe6lLd9913n1JSUrR8+fIiy06ePKlz585J+v2Y2Ww2pzPjaWlpWrJkidM6/fr1k4eHhyZMmFDkTGlFnin09PQssv3XX3+9xDP5l2rJkiU6dOiQ4/nGjRu1YcMGx10y/jhef5wKsWLFCu3atatI7aU5tpXl1ltv1ddff62NGzc62o4ePVri/zT88ssvTp/Z7Oxsvfvuu4qIiGAaAq44nLEFLkPNmjXTO++8o0GDBqlt27ZFfnksMzNT/+///T9HCJWkSZMm6fPPP1ePHj308MMPq2XLljp8+LAWLFigtWvXyt/fX2PGjNHChQt177336oEHHlCHDh10/PhxffLJJ5o5c6batWun1q1b6/rrr1dCQoKOHz+uOnXq6IMPPnAEsNLo0qWLateurdjYWD322GOy2Wx67733Lil4xcTE6N1331V8fLw2btyobt266fTp01q5cqUeffRR3XHHHerRo4eGDRumpKQkbd26VTfffLOqV6+uffv2acGCBXr11Vd1zz33lLiPKVOmqHfv3oqMjNTQoUMdt/vy8/PTc88951LdY8aM0SeffKLbbrvNcaut06dPa/v27Vq4cKHS0tIUEBCgPn36aNq0abrlllt0//3368iRI5oxY4aaNm3qNC2ladOmevrppzVx4kR169ZNd911l+x2u7755huFhIQoKSnJpTov5rbbbtN7770nPz8/tWrVSikpKVq5cqXq1q1bIftr2rSpbrjhBg0fPly5ubmaPn266tat6zSlIykpSX369NENN9ygBx54QMePH9frr7+u1q1b69SpU45+pT22lWXs2LF67733dMstt2jUqFGO2301bNiw2HquueYaDR06VN98840CAwM1Z84cZWRkuO2MM+BW7rgVA4DysW3bNmvgwIFWcHCwVb16dSsoKMgaOHCgtX379mL7HzhwwIqJibHq1atn2e12q3HjxtaIESOs3NxcR59jx45ZI0eOtEJDQy0vLy+rQYMGVmxsrJWZmenok5qaakVFRVl2u90KDAy0nnrqKWvFihXF3u6rdevWxdaybt066/rrr7d8fHyskJAQa+zYsdby5ctLvY3zb7FkWb/fsunpp5+2GjVq5Dge99xzj5WamurUb9asWVaHDh0sHx8f66qrrrLatm1rjR071vrll19KOtQOK1eutLp27Wr5+PhYvr6+Vt++fa1du3Y59SnL7b4sy7JycnKshIQEq2nTppaXl5cVEBBgdenSxXr55ZetvLw8R7+3337batasmWW3260WLVpYc+fOtRITE63i/iqfM2eO1b59e8tut1u1a9e2evToYa1YscKxvGHDhlafPn2KrNejRw+n22uVROfd7uvEiRNWXFycFRAQYNWqVcuKjo629uzZYzVs2NCKjY119Cu83df5t50rfB1Hjx51ao+NjbVq1qzpeF54K60pU6ZYU6dOtcLCwiy73W5169bN+u6774rUuWjRIqtly5aW3W63WrVqZS1evLjY905Zju35Srrd15QpUy563Eqybds2q0ePHpa3t7cVGhpqTZw40Xr77beLvd1Xnz59rOXLl1vXXnuto/7SvvcA09gsi1nsAAAAuPwxxxYAAABGINgCAADACARbAAAAGIFgCwAAACMQbAEAAGAEgi0AAACMcMX9QENBQYF++eUXXXXVVSX+5j0AAADcx7Is5eTkKCQkRB4epT8Pe8UF219++UVhYWHuLgMAAAAX8dNPP6lBgwal7n/FBdurrrpK0u8HytfX183VAAAA4HzZ2dkKCwtz5LbSuuKCbeH0A19fX4ItAABAFVbWaaNcPAYAAAAjEGwBAABgBIItAAAAjECwBQAAgBEItgAAADACwRYAAABGINgCAADACARbAAAAGIFgCwAAACMQbAEAAGAEgi0AAACMQLAFAACAEQi2AAAAMALBFgAAAEYg2AIAAMAIbg22X375pfr27auQkBDZbDYtWbLkouusWbNG1113nex2u5o2bap58+ZVeJ0AAACo+twabE+fPq127dppxowZpeq/f/9+9enTRzfeeKO2bt2q0aNH68EHH9Ty5csruFIAAABUddXcufPevXurd+/epe4/c+ZMNWrUSFOnTpUktWzZUmvXrtUrr7yi6OjoiioTAAAAl4HLao5tSkqKoqKinNqio6OVkpJS4jq5ubnKzs52egAAAMA8bj1jW1bp6ekKDAx0agsMDFR2drZ+/fVX+fj4FFknKSlJzz//fGWVWKzJWzLdun8AQNUyrn1Aqfrx/YGqpLTvW3e6rM7YuiIhIUFZWVmOx08//eTukgAAAFABLqsztkFBQcrIyHBqy8jIkK+vb7FnayXJbrfLbrdXRnkAAABwo8vqjG1kZKSSk5Od2lasWKHIyEg3VQQAAICqwq3B9tSpU9q6dau2bt0q6ffbeW3dulUHDx6U9Ps0gpiYGEf/Rx55RD/++KPGjh2rPXv26M0339SHH36oxx9/3B3lAwAAoApxa7D99ttv1b59e7Vv316SFB8fr/bt22v8+PGSpMOHDztCriQ1atRIn376qVasWKF27dpp6tSp+uc//8mtvgAAAODeObY9e/aUZVklLi/uV8V69uypLVu2VGBVAAAAuBxdVnNsAQAAgJIQbAEAAGAEgi0AAACMQLAFAACAEQi2AAAAMALBFgAAAEYg2AIAAMAIBFsAAAAYgWALAAAAIxBsAQAAYASCLQAAAIxAsAUAAIARCLYAAAAwAsEWAAAARiDYAgAAwAgEWwAAABiBYAsAAAAjEGwBAABgBIItAAAAjECwBQAAgBEItgAAADACwRYAAABGINgCAADACARbAAAAGIFgCwAAACMQbAEAAGAEgi0AAACMQLAFAACAEQi2AAAAMALBFgAAAEYg2AIAAMAIBFsAAAAYgWALAAAAIxBsAQAAYASCLQAAAIxAsAUAAIARCLYAAAAwAsEWAAAARiDYAgAAwAgEWwAAABiBYAsAAAAjEGwBAABgBIItAAAAjECwBQAAgBEItgAAADACwRYAAABGINgCAADACARbAAAAGIFgCwAAACMQbAEAAGAEgi0AAACMQLAFAACAEQi2AAAAMALBFgAAAEYg2AIAAMAIBFsAAAAYgWALAAAAIxBsAQAAYASCLQAAAIxAsAUAAIARCLYAAAAwAsEWAAAARiDYAgAAwAgEWwAAABiBYAsAAAAjEGwBAABgBIItAAAAjECwBQAAgBEItgAAADACwRYAAABGINgCAADACARbAAAAGIFgCwAAACMQbAEAAGAEgi0AAACMQLAFAACAEQi2AAAAMILbg+2MGTMUHh4ub29vde7cWRs3brxg/+nTp6t58+by8fFRWFiYHn/8cf3222+VVC0AAACqKrcG2/nz5ys+Pl6JiYnavHmz2rVrp+joaB05cqTY/u+//77GjRunxMRE7d69W2+//bbmz5+vp556qpIrBwAAQFXj1mA7bdo0PfTQQ4qLi1OrVq00c+ZM1ahRQ3PmzCm2//r169W1a1fdf//9Cg8P180336yBAwde9CwvAAAAzOe2YJuXl6dNmzYpKirqf8V4eCgqKkopKSnFrtOlSxdt2rTJEWR//PFHLV26VLfeemuJ+8nNzVV2drbTAwAAAOap5q4dZ2ZmKj8/X4GBgU7tgYGB2rNnT7Hr3H///crMzNQNN9wgy7J07tw5PfLIIxecipCUlKTnn3++XGsHAABA1eP2i8fKYs2aNZo0aZLefPNNbd68WYsXL9ann36qiRMnlrhOQkKCsrKyHI+ffvqpEisGAABAZXHbGduAgAB5enoqIyPDqT0jI0NBQUHFrvPss89q8ODBevDBByVJbdu21enTp/Xwww/r6aeflodH0Zxut9tlt9vL/wUAAACgSnHbGVsvLy916NBBycnJjraCggIlJycrMjKy2HXOnDlTJLx6enpKkizLqrhiAQAAUOW57YytJMXHxys2NlYdO3ZUp06dNH36dJ0+fVpxcXGSpJiYGIWGhiopKUmS1LdvX02bNk3t27dX586d9cMPP+jZZ59V3759HQEXAAAAVya3Btv+/fvr6NGjGj9+vNLT0xUREaFly5Y5Lig7ePCg0xnaZ555RjabTc8884wOHTqkevXqqW/fvvr73//urpcAAACAKsJmXWH/h5+dnS0/Pz9lZWXJ19e3UvY5eUtmpewHAHB5GNc+oFT9+P5AVVLa9215cDWvXVZ3RQAAAABKQrAFAACAEQi2AAAAMALBFgAAAEYg2AIAAMAIBFsAAAAYgWALAAAAIxBsAQAAYASCLQAAAIxAsAUAAIARCLYAAAAwAsEWAAAARiDYAgAAwAgEWwAAABiBYAsAAAAjEGwBAABgBIItAAAAjECwBQAAgBEItgAAADACwRYAAABGINgCAADACARbAAAAGIFgCwAAACMQbAEAAGAEgi0AAACMQLAFAACAEQi2AAAAMALBFgAAAEYg2AIAAMAIBFsAAAAYgWALAAAAIxBsAQAAYASCLQAAAIxAsAUAAIARCLYAAAAwAsEWAAAARiDYAgAAwAgEWwAAABiBYAsAAAAjEGwBAABgBIItAAAAjECwBQAAgBEItgAAADACwRYAAABGINgCAADACARbAAAAGIFgCwAAACMQbAEAAGAEgi0AAACMQLAFAACAEQi2AAAAMALBFgAAAEYg2AIAAMAIBFsAAAAYgWALAAAAIxBsAQAAYASCLQAAAIxAsAUAAIARCLYAAAAwAsEWAAAARiDYAgAAwAgEWwAAABiBYAsAAAAjEGwBAABgBIItAAAAjECwBQAAgBEItgAAADACwRYAAABGINgCAADACARbAAAAGIFgCwAAACMQbAEAAGAEgi0AAACMQLAFAACAEVwKtps3b9b27dsdzz/++GP169dPTz31lPLy8sqtOAAAAKC0XAq2w4YN0969eyVJP/74owYMGKAaNWpowYIFGjt2bLkWCAAAAJSGS8F27969ioiIkCQtWLBA3bt31/vvv6958+Zp0aJF5VkfAAAAUCouBVvLslRQUCBJWrlypW699VZJUlhYmDIzM8u0rRkzZig8PFze3t7q3LmzNm7ceMH+J0+e1IgRIxQcHCy73a5rrrlGS5cudeVlAAAAwCDVXFmpY8eOeuGFFxQVFaUvvvhCb731liRp//79CgwMLPV25s+fr/j4eM2cOVOdO3fW9OnTFR0dre+//17169cv0j8vL0+9evVS/fr1tXDhQoWGhurAgQPy9/d35WUAAADAIC4F2+nTp2vQoEFasmSJnn76aTVt2lSStHDhQnXp0qXU25k2bZoeeughxcXFSZJmzpypTz/9VHPmzNG4ceOK9J8zZ46OHz+u9evXq3r16pKk8PBwV14CAAAADONSsL322mud7opQaMqUKfL09CzVNvLy8rRp0yYlJCQ42jw8PBQVFaWUlJRi1/nkk08UGRmpESNG6OOPP1a9evV0//3368knnyxxv7m5ucrNzXU8z87OLlV9AAAAuLy4fB/bkydP6p///KcSEhJ0/PhxSdKuXbt05MiRUq2fmZmp/Pz8IlMXAgMDlZ6eXuw6P/74oxYuXKj8/HwtXbpUzz77rKZOnaoXXnihxP0kJSXJz8/P8QgLCyvlKwQAAMDlxKUzttu2bdOf//xn+fv7Ky0tTQ899JDq1KmjxYsX6+DBg3r33XfLu05JUkFBgerXr69Zs2bJ09NTHTp00KFDhzRlyhQlJiYWu05CQoLi4+Mdz7Ozswm3AAAABnLpjG18fLzi4uK0b98+eXt7O9pvvfVWffnll6XaRkBAgDw9PZWRkeHUnpGRoaCgoGLXCQ4O1jXXXOM07aBly5ZKT08v8Ych7Ha7fH19nR4AAAAwj0vB9ptvvtGwYcOKtIeGhpY4jeB8Xl5e6tChg5KTkx1tBQUFSk5OVmRkZLHrdO3aVT/88IPjVmPS7/fUDQ4OlpeXVxlfBQAAAEziUrC12+3FXoS1d+9e1atXr9TbiY+P1+zZs/XOO+9o9+7dGj58uE6fPu24S0JMTIzTxWXDhw/X8ePHNWrUKO3du1effvqpJk2apBEjRrjyMgAAAGAQl+bY3n777ZowYYI+/PBDSZLNZtPBgwf15JNP6u677y71dvr376+jR49q/PjxSk9PV0REhJYtW+a4oOzgwYPy8Phf9g4LC9Py5cv1+OOP69prr1VoaKhGjRqlJ5980pWXAQAAAIPYLMuyyrpSVlaW7rnnHn377bfKyclRSEiI0tPTFRkZqaVLl6pmzZoVUWu5yM7Olp+fn7Kysiptvu3kLWX7NTYAgNnGtQ8oVT++P1CVlPZ9Wx5czWsunbH18/PTihUrtG7dOn333Xc6deqUrrvuOkVFRbmyOQAAAOCSuRRsC3Xt2lVdu3Ytr1oAAAAAl7l08dhjjz2m1157rUj7G2+8odGjR19qTQAAAECZuRRsFy1aVOyZ2i5dumjhwoWXXBQAAABQVi4F22PHjsnPz69Iu6+vrzIzmegOAACAyudSsG3atKmWLVtWpP2zzz5T48aNL7koAAAAoKxcungsPj5eI0eO1NGjR3XTTTdJkpKTkzV16lRNnz69POsDAAAASsWlYPvAAw8oNzdXf//73zVx4kRJUnh4uN566y3FxMSUa4EAAABAabh8u6/hw4dr+PDhOnr0qHx8fFSrVq3yrAsAAAAok0u6j60k1atXrzzqAAAAAC6JSxePZWRkaPDgwQoJCVG1atXk6enp9AAAAAAqm0tnbIcMGaKDBw/q2WefVXBwsGw2W3nXBQAAAJSJS8F27dq1+uqrrxQREVHO5QAAAACucWkqQlhYmCzLKu9aAAAAAJe5FGynT5+ucePGKS0trZzLAQAAAFzj0lSE/v3768yZM2rSpIlq1Kih6tWrOy0/fvx4uRQHAAAAlJZLwZZfFwMAAEBV41KwjY2NLe86AAAAgEvi0hxbSUpNTdUzzzyjgQMH6siRI5Kkzz77TDt37iy34gAAAIDScinYfvHFF2rbtq02bNigxYsX69SpU5Kk7777TomJieVaIAAAAFAaLgXbcePG6YUXXtCKFSvk5eXlaL/pppv09ddfl1txAAAAQGm5FGy3b9+uO++8s0h7/fr1lZmZeclFAQAAAGXlUrD19/fX4cOHi7Rv2bJFoaGhl1wUAAAAUFYuBdsBAwboySefVHp6umw2mwoKCrRu3To98cQTiomJKe8aAQAAgItyKdhOmjRJLVq0UFhYmE6dOqVWrVqpe/fu6tKli5555pnyrhEAAAC4qDLfx9ayLKWnp+u1117T+PHjtX37dp06dUrt27dXs2bNKqJGAAAA4KJcCrZNmzbVzp071axZM4WFhVVEXQAAAECZlHkqgoeHh5o1a6Zjx45VRD0AAACAS1yaYzt58mSNGTNGO3bsKO96AAAAAJeUeSqCJMXExOjMmTNq166dvLy85OPj47T8+PHj5VIcAAAAUFouBdvp06eXcxkAAADApSlzsD179qy++OILPfvss2rUqFFF1AQAAACUWZnn2FavXl2LFi2qiFoAAAAAl7l08Vi/fv20ZMmSci4FAAAAcJ1Lc2ybNWumCRMmaN26derQoYNq1qzptPyxxx4rl+IAAACA0nIp2L799tvy9/fXpk2btGnTJqdlNpuNYAsAAIBK51Kw3b9/f3nXAQAAAFwSl+bYAgAAAFWNS2dsH3jggQsunzNnjkvFAAAAAK5yKdieOHHC6fnZs2e1Y8cOnTx5UjfddFO5FAYAAACUhUvB9qOPPirSVlBQoOHDh6tJkyaXXBQAAABQVuU2x9bDw0Px8fF65ZVXymuTAAAAQKmV68VjqampOnfuXHluEgAAACgVl6YixMfHOz23LEuHDx/Wp59+qtjY2HIpDAAAACgLl4Ltli1bnJ57eHioXr16mjp16kXvmAAAAABUBJeC7erVq8u7DgAAAOCSuDTHdv/+/dq3b1+R9n379iktLe1SawIAAADKzKVgO2TIEK1fv75I+4YNGzRkyJBLrQkAAAAoM5eC7ZYtW9S1a9ci7ddff722bt16qTUBAAAAZeZSsLXZbMrJySnSnpWVpfz8/EsuCgAAACgrl4Jt9+7dlZSU5BRi8/PzlZSUpBtuuKHcigMAAABKy6W7Irz44ovq3r27mjdvrm7dukmSvvrqK2VnZ2vVqlXlWiAAAABQGi6dsW3VqpW2bdum++67T0eOHFFOTo5iYmK0Z88etWnTprxrBAAAAC7KpTO2khQSEqJJkyaVZy0AAACAy1w6Yzt37lwtWLCgSPuCBQv0zjvvXHJRAAAAQFm5FGyTkpIUEBBQpL1+/fqcxQUAAIBbuBRsDx48qEaNGhVpb9iwoQ4ePHjJRQEAAABl5VKwrV+/vrZt21ak/bvvvlPdunUvuSgAAACgrFwKtgMHDtRjjz2m1atXKz8/X/n5+Vq1apVGjRqlAQMGlHeNAAAAwEW5dFeEiRMnKi0tTX/+859Vrdrvm8jPz1dsbCxzbAEAAOAWLgVbLy8vzZ8/X0888YTS0tLk4+Ojtm3bqmHDhuVdHwAAAFAqZQ62J0+e1NNPP6358+frxIkTkqTatWtrwIABeuGFF+Tv71/eNQIAAAAXVaZge/z4cUVGRurQoUMaNGiQWrZsKUnatWuX5s2bp+TkZK1fv161a9eukGIBAACAkpQp2E6YMEFeXl5KTU1VYGBgkWU333yzJkyYoFdeeaVciwQAAAAupkx3RViyZIlefvnlIqFWkoKCgvTSSy/po48+KrfiAAAAgNIqU7A9fPiwWrduXeLyNm3aKD09/ZKLAgAAAMqqTME2ICBAaWlpJS7fv3+/6tSpc6k1AQAAAGVWpmAbHR2tp59+Wnl5eUWW5ebm6tlnn9Utt9xSbsUBAAAApVXmi8c6duyoZs2aacSIEWrRooUsy9Lu3bv15ptvKjc3V++9915F1QoAAACUqEzBtkGDBkpJSdGjjz6qhIQEWZYlSbLZbOrVq5feeOMNhYWFVUihAAAAwIWU+QcaGjVqpM8++0wnTpzQvn37JElNmzZlbi0AAADcyqWf1JV+/7WxTp06lWctAAAAgMvKdPEYAAAAUFURbAEAAGAEgi0AAACMQLAFAACAEQi2AAAAMEKVCLYzZsxQeHi4vL291blzZ23cuLFU633wwQey2Wzq169fxRYIAACAKs/twXb+/PmKj49XYmKiNm/erHbt2ik6OlpHjhy54HppaWl64okn1K1bt0qqFAAAAFWZ24PttGnT9NBDDykuLk6tWrXSzJkzVaNGDc2ZM6fEdfLz8zVo0CA9//zzaty4cSVWCwAAgKrKrcE2Ly9PmzZtUlRUlKPNw8NDUVFRSklJKXG9CRMmqH79+ho6dOhF95Gbm6vs7GynBwAAAMzj1mCbmZmp/Px8BQYGOrUHBgYqPT292HXWrl2rt99+W7Nnzy7VPpKSkuTn5+d4hIWFXXLdAAAAqHrcPhWhLHJycjR48GDNnj1bAQEBpVonISFBWVlZjsdPP/1UwVUCAADAHaq5c+cBAQHy9PRURkaGU3tGRoaCgoKK9E9NTVVaWpr69u3raCsoKJAkVatWTd9//72aNGnitI7dbpfdbq+A6gEAAFCVuPWMrZeXlzp06KDk5GRHW0FBgZKTkxUZGVmkf4sWLbR9+3Zt3brV8bj99tt14403auvWrUwzAAAAuIK59YytJMXHxys2NlYdO3ZUp06dNH36dJ0+fVpxcXGSpJiYGIWGhiopKUne3t5q06aN0/r+/v6SVKQdAAAAVxa3B9v+/fvr6NGjGj9+vNLT0xUREaFly5Y5Lig7ePCgPDwuq6nAAAAAcAObZVmWu4uoTNnZ2fLz81NWVpZ8fX0rZZ+Tt2RWyn4AAJeHce1LdwE03x+oSkr7vi0PruY1ToUCAADACARbAAAAGIFgCwAAACMQbAEAAGAEgi0AAACMQLAFAACAEQi2AAAAMALBFgAAAEYg2AIAAMAIBFsAAAAYgWALAAAAIxBsAQAAYASCLQAAAIxAsAUAAIARCLYAAAAwAsEWAAAARiDYAgAAwAgEWwAAABiBYAsAAAAjEGwBAABgBIItAAAAjECwBQAAgBEItgAAADACwRYAAABGINgCAADACARbAAAAGIFgCwAAACMQbAEAAGAEgi0AAACMQLAFAACAEQi2AAAAMALBFgAAAEYg2AIAAMAIBFsAAAAYgWALAAAAIxBsAQAAYASCLQAAAIxAsAUAAIARCLYAAAAwAsEWAAAARiDYAgAAwAgEWwAAABiBYAsAAAAjEGwBAABgBIItAAAAjECwBQAAgBEItgAAADACwRYAAABGINgCAADACARbAAAAGIFgCwAAACMQbAEAAGAEgi0AAACMQLAFAACAEQi2AAAAMALBFgAAAEYg2AIAAMAIBFsAAAAYgWALAAAAIxBsAQAAYASCLQAAAIxAsAUAAIARCLYAAAAwAsEWAAAARiDYAgAAwAgEWwAAABiBYAsAAAAjEGwBAABgBIItAAAAjECwBQAAgBEItgAAADACwRYAAABGINgCAADACARbAAAAGIFgCwAAACMQbAEAAGAEgi0AAACMUCWC7YwZMxQeHi5vb2917txZGzduLLHv7Nmz1a1bN9WuXVu1a9dWVFTUBfsDAADgyuD2YDt//nzFx8crMTFRmzdvVrt27RQdHa0jR44U23/NmjUaOHCgVq9erZSUFIWFhenmm2/WoUOHKrlyAAAAVCVuD7bTpk3TQw89pLi4OLVq1UozZ85UjRo1NGfOnGL7//vf/9ajjz6qiIgItWjRQv/85z9VUFCg5OTkSq4cAAAAVYlbg21eXp42bdqkqKgoR5uHh4eioqKUkpJSqm2cOXNGZ8+eVZ06dYpdnpubq+zsbKcHAAAAzOPWYJuZman8/HwFBgY6tQcGBio9Pb1U23jyyScVEhLiFI7/KCkpSX5+fo5HWFjYJdcNAACAqsftUxEuxeTJk/XBBx/oo48+kre3d7F9EhISlJWV5Xj89NNPlVwlAAAAKkM1d+48ICBAnp6eysjIcGrPyMhQUFDQBdd9+eWXNXnyZK1cuVLXXnttif3sdrvsdnu51AsAAICqy61nbL28vNShQwenC78KLwSLjIwscb2XXnpJEydO1LJly9SxY8fKKBUAAABVnFvP2EpSfHy8YmNj1bFjR3Xq1EnTp0/X6dOnFRcXJ0mKiYlRaGiokpKSJEkvvviixo8fr/fff1/h4eGOubi1atVSrVq13PY6AAAA4F5uD7b9+/fX0aNHNX78eKWnpysiIkLLli1zXFB28OBBeXj878TyW2+9pby8PN1zzz1O20lMTNRzzz1XmaUDAACgCnF7sJWkkSNHauTIkcUuW7NmjdPztLS0ii8IAAAAl53L+q4IAAAAQCGCLQAAAIxAsAUAAIARCLYAAAAwAsEWAAAARiDYAgAAwAgEWwAAABiBYAsAAAAjEGwBAABgBIItAAAAjECwBQAAgBEItgAAADACwRYAAABGINgCAADACARbAAAAGIFgCwAAACMQbAEAAGAEgi0AAACMQLAFAACAEQi2AAAAMALBFgAAAEYg2AIAAMAIBFsAAAAYgWALAAAAIxBsAQAAYASCLQAAAIxAsAUAAIARCLYAAAAwAsEWAAAARiDYAgAAwAgEWwAAABiBYAsAAAAjEGwBAABgBIItAAAAjECwBQAAgBEItgAAADACwRYAAABGINgCAADACARbAAAAGIFgCwAAACMQbAEAAGAEgi0AAACMQLAFAACAEQi2AAAAMALBFgAAAEYg2AIAAMAIBFsAAAAYgWALAAAAIxBsAQAAYASCLQAAAIxAsAUAAIARCLYAAAAwAsEWAAAARiDYAgAAwAgEWwAAABiBYAsAAAAjEGwBAABgBIItAAAAjECwBQAAgBEItgAAADACwRYAAABGINgCAADACARbAAAAGIFgCwAAACMQbAEAAGAEgi0AAACMQLAFAACAEQi2AAAAMALBFgAAAEYg2AIAAMAIBFsAAAAYgWALAAAAIxBsAQAAYASCLQAAAIxAsAUAAIARCLYAAAAwAsEWAAAARqgSwXbGjBkKDw+Xt7e3OnfurI0bN16w/4IFC9SiRQt5e3urbdu2Wrp0aSVVCgAAgKrK7cF2/vz5io+PV2JiojZv3qx27dopOjpaR44cKbb/+vXrNXDgQA0dOlRbtmxRv3791K9fP+3YsaOSKwcAAEBV4vZgO23aND300EOKi4tTq1atNHPmTNWoUUNz5swptv+rr76qW265RWPGjFHLli01ceJEXXfddXrjjTcquXIAAABUJdXcufO8vDxt2rRJCQkJjjYPDw9FRUUpJSWl2HVSUlIUHx/v1BYdHa0lS5YU2z83N1e5ubmO51lZWZKk7OzsS6y+9H47lVNp+wIAVH3Z2V6l6sf3B6qS0r5vy2dfv+c0y7LKtJ5bg21mZqby8/MVGBjo1B4YGKg9e/YUu056enqx/dPT04vtn5SUpOeff75Ie1hYmItVAwBwaYp+KwFVnzvetzk5OfLz8yt1f7cG28qQkJDgdIa3oKBAx48fV926dWWz2dxYGaTf/0UWFhamn376Sb6+vu4uB3/A2FRNjEvVxdhUTYxL1XWhsbEsSzk5OQoJCSnTNt0abAMCAuTp6amMjAyn9oyMDAUFBRW7TlBQUJn62+122e12pzZ/f3/Xi0aF8PX15S+cKoqxqZoYl6qLsamaGJeqq6SxKcuZ2kJuvXjMy8tLHTp0UHJysqOtoKBAycnJioyMLHadyMhIp/6StGLFihL7AwAA4Mrg9qkI8fHxio2NVceOHdWpUydNnz5dp0+fVlxcnCQpJiZGoaGhSkpKkiSNGjVKPXr00NSpU9WnTx998MEH+vbbbzVr1ix3vgwAAAC4mduDbf/+/XX06FGNHz9e6enpioiI0LJlyxwXiB08eFAeHv87sdylSxe9//77euaZZ/TUU0+pWbNmWrJkidq0aeOul4BLYLfblZiYWGS6CNyPsamaGJeqi7GpmhiXqqsixsZmlfU+CgAAAEAV5PYfaAAAAADKA8EWAAAARiDYAgAAwAgEWwAAABiBYIsKN2PGDIWHh8vb21udO3fWxo0bL9h/wYIFatGihby9vdW2bVstXbq0kiq98pRlbObNmyebzeb08Pb2rsRqrwxffvml+vbtq5CQENlsNi1ZsuSi66xZs0bXXXed7Ha7mjZtqnnz5lV4nVeaso7LmjVrinxebDZbiT//DtckJSXpT3/6k6666irVr19f/fr10/fff3/R9fieqXiujE15fM8QbFGh5s+fr/j4eCUmJmrz5s1q166doqOjdeTIkWL7r1+/XgMHDtTQoUO1ZcsW9evXT/369dOOHTsquXLzlXVspN9/Hebw4cOOx4EDByqx4ivD6dOn1a5dO82YMaNU/ffv368+ffroxhtv1NatWzV69Gg9+OCDWr58eQVXemUp67gU+v77750+M/Xr16+gCq9MX3zxhUaMGKGvv/5aK1as0NmzZ3XzzTfr9OnTJa7D90zlcGVspHL4nrGACtSpUydrxIgRjuf5+flWSEiIlZSUVGz/++67z+rTp49TW+fOna1hw4ZVaJ1XorKOzdy5cy0/P79Kqg6WZVmSrI8++uiCfcaOHWu1bt3aqa1///5WdHR0BVZ2ZSvNuKxevdqSZJ04caJSasLvjhw5YkmyvvjiixL78D3jHqUZm/L4nuGMLSpMXl6eNm3apKioKEebh4eHoqKilJKSUuw6KSkpTv0lKTo6usT+cI0rYyNJp06dUsOGDRUWFqY77rhDO3furIxycQF8Zqq2iIgIBQcHq1evXlq3bp27yzFeVlaWJKlOnTol9uEz4x6lGRvp0r9nCLaoMJmZmcrPz3f8ilyhwMDAEueZpaenl6k/XOPK2DRv3lxz5szRxx9/rH/9618qKChQly5d9PPPP1dGyShBSZ+Z7Oxs/frrr26qCsHBwZo5c6YWLVqkRYsWKSwsTD179tTmzZvdXZqxCgoKNHr0aHXt2vWCv0bK90zlK+3YlMf3jNt/UhfA5SEyMlKRkZGO5126dFHLli31j3/8QxMnTnRjZUDV07x5czVv3tzxvEuXLkpNTdUrr7yi9957z42VmWvEiBHasWOH1q5d6+5ScJ7Sjk15fM9wxhYVJiAgQJ6ensrIyHBqz8jIUFBQULHrBAUFlak/XOPK2JyvevXqat++vX744YeKKBGlVNJnxtfXVz4+Pm6qCsXp1KkTn5cKMnLkSP33v//V6tWr1aBBgwv25XumcpVlbM7nyvcMwRYVxsvLSx06dFBycrKjraCgQMnJyU7/IvujyMhIp/6StGLFihL7wzWujM358vPztX37dgUHB1dUmSgFPjOXj61bt/J5KWeWZWnkyJH66KOPtGrVKjVq1Oii6/CZqRyujM35XPqeuaRLz4CL+OCDDyy73W7NmzfP2rVrl/Xwww9b/v7+Vnp6umVZljV48GBr3Lhxjv7r1q2zqlWrZr388svW7t27rcTERKt69erW9u3b3fUSjFXWsXn++eet5cuXW6mpqdamTZusAQMGWN7e3tbOnTvd9RKMlJOTY23ZssXasmWLJcmaNm2atWXLFuvAgQOWZVnWuHHjrMGDBzv6//jjj1aNGjWsMWPGWLt377ZmzJhheXp6WsuWLXPXSzBSWcfllVdesZYsWWLt27fP2r59uzVq1CjLw8PDWrlypbtegpGGDx9u+fn5WWvWrLEOHz7seJw5c8bRh+8Z93BlbMrje4Zgiwr3+uuvW1dffbXl5eVlderUyfr6668dy3r06GHFxsY69f/www+ta665xvLy8rJat25tffrpp5Vc8ZWjLGMzevRoR9/AwEDr1ltvtTZv3uyGqs1WeJuo8x+FYxEbG2v16NGjyDoRERGWl5eX1bhxY2vu3LmVXrfpyjouL774otWkSRPL29vbqlOnjtWzZ09r1apV7ineYMWNiSSnzwDfM+7hytiUx/eM7f92DgAAAFzWmGMLAAAAIxBsAQAAYASCLQAAAIxAsAUAAIARCLYAAAAwAsEWAAAARiDYAgAAwAgEWwAAABiBYAsAhkpLS5PNZtPWrVvdXQoAVAqCLQBUoCFDhshms2ny5MlO7UuWLJHNZnNTVQBgJoItAFQwb29vvfjiizpx4oS7SykXeXl57i4BAIpFsAWAChYVFaWgoCAlJSUVu/y5555TRESEU9v06dMVHh7ueD5kyBD169dPkyZNUmBgoPz9/TVhwgSdO3dOY8aMUZ06ddSgQQPNnTu3yPb37NmjLl26yNvbW23atNEXX3zhtHzHjh3q3bu3atWqpcDAQA0ePFiZmZmO5T179tTIkSM1evRoBQQEKDo62vWDAQAViGALABXM09NTkyZN0uuvv66ff/7Z5e2sWrVKv/zyi7788ktNmzZNiYmJuu2221S7dm1t2LBBjzzyiIYNG1ZkH2PGjNHf/vY3bdmyRZGRkerbt6+OHTsmSTp58qRuuukmtW/fXt9++62WLVumjIwM3XfffU7beOedd+Tl5aV169Zp5syZLr8GAKhIBFsAqAR33nmnIiIilJiY6PI26tSpo9dee03NmzfXAw88oObNm+vMmTN66qmn1KxZMyUkJMjLy0tr1651Wm/kyJG6++671bJlS7311lvy8/PT22+/LUl644031L59e02aNEktWrRQ+/btNWfOHK1evVp79+51bKNZs2Z66aWX1Lx5czVv3tzl1wAAFYlgCwCV5MUXX9Q777yj3bt3u7R+69at5eHxv7+2AwMD1bZtW8dzT09P1a1bV0eOHHFaLzIy0vHnatWqqWPHjo4avvvuO61evVq1atVyPFq0aCFJSk1NdazXoUMHl2oGgMpUzd0FAMCVonv37oqOjlZCQoKGDBniaPfw8JBlWU59z549W2T96tWrOz232WzFthUUFJS6plOnTqlv37568cUXiywLDg52/LlmzZql3iYAuAvBFgAq0eTJkxUREeH03/n16tVTenq6LMty3AKsPO89+/XXX6t79+6SpHPnzmnTpk0aOXKkJOm6667TokWLFB4ermrV+EoAcHljKgIAVKK2bdtq0KBBeu211xxtPXv21NGjR/XSSy8pNTVVM2bM0GeffVZu+5wxY4Y++ugj7dmzRyNGjNCJEyf0wAMPSJJGjBih48ePa+DAgfrmm2+Umpqq5cuXKy4uTvn5+eVWAwBUBoItAFSyCRMmOE0XaNmypd58803NmDFD7dq108aNG/XEE0+U2/4mT56syZMnq127dlq7dq0++eQTBQQESJJCQkK0bt065efn6+abb1bbtm01evRo+fv7O83nBYDLgc06f2IXAAAAcBnin+MAAAAwAsEWAAAARiDYAgAAwAgEWwAAABiBYAsAAAAjEGwBAABgBIItAAAAjECwBQAAgBEItgAAADACwRYAAABGINgCAADACP8fokuEr7WVXOQAAAAASUVORK5CYII=",
"text/plain": [
""
]
@@ -1077,7 +1123,7 @@
"outputs": [
{
"data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAs0AAAIoCAYAAACSxtawAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy80BEi2AAAACXBIWXMAAA9hAAAPYQGoP6dpAABlT0lEQVR4nO3daXRUVdr28asqIQMJCSGEBASSKHOYxyRtIwgSfJBWhG5AWmlAmYIIUVG6FQT0wXaeUJwAW0EQWkSwZRABhwRQEIUoNCKDCiEMGSCSsfb7gTf1WCRQJ0WgAvx/a2Utau9dp+66OejFYdcpmzHGCAAAAMBZ2b1dAAAAAFDVEZoBAAAANwjNAAAAgBuEZgAAAMANQjMAAADgBqEZAAAAcIPQDAAAALhBaAYAAADcIDQDAAAAbhCaAVyR/va3v8lms2nfvn3nfax9+/bJZrPpb3/723kfCwBQNRGaAVSq0gDZu3dvb5eCSvDZZ5/JZrPJZrNp8eLF3i6nysnKytKjjz6qhIQEhYeHq1q1aoqIiFDPnj314osv6uTJk94u8Zy6desmm83m7TKASwKhGQBwVm+++aYkyWazac6cOV6upmpZu3atGjVqpIcfflg5OTn685//rEmTJql///46ePCgxo8frzZt2ni7TACVxNfbBQAAqqbc3FwtWbJErVu3VmRkpFavXq2ff/5ZDRo08HZpXvftt9+qb9++kqR33nlHQ4YMKbNm/fr1mjx58sUuDcAFwpVmAF6Tk5Ojf/7zn7ruuutUr149+fn5qV69errjjju0Z8+eMusfeeQR2Ww2rV+/XnPnzlWrVq0UGBio2NhYvfDCC5IkY4yefvppNW3aVAEBAWrcuLH+9a9/nbUGh8OhJ554Qo0bN1ZAQIBiY2M1ffp0FRUVlVlbUlKif/7zn2rUqJECAgLUqFEjzZw5Uw6Ho9xjr1u3TsOHD1fTpk0VHBys4OBgdezYUa+99prlHvXo0UN2u1379+8vd378+PGy2Wxas2aNc+zf//63rrvuOtWpU0cBAQGqV6+eevbsqX//+9+WX1eS3n33Xf3222+64447dMcdd8jhcGjevHlnXZ+Zmal7771XTZs2VWBgoGrVqqUuXbroqaeeKrP222+/1ZAhQ1S/fn35+/urbt266t27t5YvX15m7bJly9SjRw+FhYUpICBALVu21FNPPaWSkhKXdQ6HQ2+88YY6d+6sWrVqKTAwUPXr11ffvn21fv16l7Xn26Px48fr1KlTevHFF8sNzNLprQ9nvq4kzZ07V126dHGeE126dCm3r/PmzZPNZit3bv369bLZbHrkkUdcxm02m7p166bDhw9r6NChql27tgIDAxUfH1+mFpvNpg0bNjh/XfrD3nzgLAwAVKK9e/caSSYpKcnt2rS0NOPn52eSkpLM2LFjzf3332/69u1rfHx8TK1atcy+fftc1k+dOtVIMjfffLMJDQ01d9xxhxk/fry56qqrjCTz+uuvm7Fjx5rIyEgzYsQIM2bMGBMWFmYkmQ0bNrgca+jQoUaS6du3r6lVq5YZPXq0ue+++0zTpk2NJNO/f/8y9Q4fPtxIMrGxsSYlJcWMHTvW1K5d29x0001Gkhk6dKjL+qSkJHPNNdeYIUOGmAceeMCMGjXKREdHG0kmJSXFUj/nzp1rJJnHHnuszFxRUZGJiIgw9erVMyUlJcYYY15++WUjydStW9eMHDnSTJ482QwbNszExcWZIUOGWHrNUp06dTI+Pj7m0KFDJi8vzwQHB5vY2FjjcDjKrN25c6epW7eukWSuvfZaM2nSJJOcnGy6detmwsLCXNYuWbLE+Pn5mWrVqplbb73VTJ482YwYMcK0bNnS3HzzzS5rH3zwQSPJXHXVVWb48OFm4sSJpmPHjkaSGTBggMvaSZMmGUnmmmuuMcnJyebBBx80t99+u4mNjTX/+Mc/nOvOt0e7d+82kkyDBg2cfbfq7rvvdr6f8ePHu5y/48ePd1lb+ns/d+7cMsdZt26dkWSmTp3qMi7JtGnTxjRq1Mh06NDBTJgwwdx2223Gx8fH+Pn5me3btzvXTp061Xk+Tp061fmzdOnSCr0n4EpBaAZQqSoSmrOzs82xY8fKjH/66afGbrebO++802W8NDTXqlXL7Nmzxzl+4MAB4+fnZ0JDQ02TJk1MZmamc27jxo3OcPx7paE5IiLC/Pzzz87xgoIC07VrVyPJLFmyxDleGlLatGljTp486Rz/5ZdfTO3atcsNzT/99FOZ91ZUVGRuuOEG4+PjY/bv3++mQ8bk5uaawMBA06JFizJzy5cvN5LMfffd5xxr37698fPzM4cPHy6z/ujRo25fr9R3331X5vfxjjvuMJLMJ598UmZ9aZB97bXXysz9vr8ZGRkmKCjIBAUFma1bt55z7erVq501/L7nDofDjB49uszvUa1atUy9evVMXl5emeP+/jw73x7NmzfPSDJ//etf3a79vQ0bNhhJpnnz5iY7O9s5fvz4cdOkSRMjyXz22WfOcU9DsyQzduxYl0D/xhtvGElm1KhRLuuvu+46w/UzwBq2ZwDwmtDQUNWqVavMePfu3RUXF6dPPvmk3Ofdc889uvrqq52PGzRooGuvvVY5OTn6xz/+oYiICOdcly5ddPXVV+vbb78967Hq16/vfOzn56fHHntMklz+Wbx0i8eUKVMUFBTkHL/qqqt0zz33lHvs2NjYMmO+vr4aPXq0SkpKtG7dunKf93s1atTQLbfcou+//15bt251mXv77bclSX/9619dxqtVq6Zq1aqVOVZ4eLjb1ytV+gHAO+64wzlW+uvSuVKbN2/W119/ra5du+quu+4qc6zf9/ett95SXl6e7r33XrVr1+6ca1966SVJ0muvvebSc5vNpscff1w2m03vvvuuy/P9/Pzk4+NT5rhnnmfn06OMjIwytVrx1ltvSTq9zSg0NNQ5HhYWpqlTp0rSObe/WBUUFKR//vOfstv/73/xQ4cOla+vr7766qvzPj5wpeKDgAC8av369Xruuee0adMmHT16VMXFxc45Pz+/cp/Ttm3bMmN169Y959ymTZvKPdYf//jHMmMJCQny9fXVN9984xwrDd3lrS9vTJJOnDihp556Sh988IH27NmjvLw8l/mDBw+W+7wz3X777Xr33Xf19ttvq3379pJOf0hv+fLlatWqlcsdGgYNGqRJkyapZcuWuu2229S9e3dde+21CgkJsfRaklRQUKB33nlHNWrUUL9+/Zzj3bt3V4MGDbR06VJlZWUpLCxM0unQLEm9evVye+yKrN24caOCgoLOeteOwMBA7dy50/l40KBBevnll9WyZUsNGjRI3bt3V0JCggIDA12eVxk98kTp+dStW7cyc927d5ckbdu27bxfp0mTJgoODnYZ8/X1VWRkpLKzs8/7+MCVitAMwGsWL16sgQMHKjg4WElJSYqJiVH16tWdH34624ffygs3vr6+55z7fRj/vcjIyDJjPj4+Cg8PV05OjnMsJydHdrtdtWvXtnSMwsJCdevWTVu3blW7du10++23Kzw8XL6+vtq3b5/eeustFRQUlFvTmXr16qXIyEgtXLhQTz31lHx8fLRkyRKdOnVKt99+u8va++67T+Hh4XrllVf09NNP66mnnpKvr6/69OmjZ599ttyr32f64IMPdOzYMQ0bNswlcNrtdg0ZMkSPP/64FixYoOTkZGdvpNNX3d2pyNrjx4+ruLhY06ZNO+ua3/9F5Pnnn1dsbKzmzp2rRx99VI8++qgCAgL0l7/8RU8//bTz9+58exQVFSVJ+vXXX92+h9/Lzc2V3W53+ZeQUpGRkbLZbMrNza3QMctztvDv6+tb5sOTAKwjNAPwmkceeUQBAQHasmWLGjdu7DK3cOHCi1LD4cOH1bRpU5exkpISHTt2zCUMh4aGyuFw6OjRo2VCz+HDh8scd9myZdq6datGjBihN954w2Vu4cKFzn+qt8LHx0eDBw/Wc889p08++URJSUl6++23Zbfbddttt7mstdlsGj58uIYPH65jx47p888/17vvvqv33ntPu3fv1nfffVfu9oXfK91+MXfuXM2dO/esa0pDc82aNSVZC5G/XxsTE3POtSEhIbLZbDp69Kjb40qnQ+F9992n++67TwcPHtSGDRs0d+5c/etf/1JGRoZWrVol6fx79Ic//EHS6X8lcTgcLtsg3L0fh8OhI0eOqE6dOi5zmZmZMsa4BN7S45b3F77f/4UOwMXBnmYAXrNnzx41b968TGA+dOiQfvrpp4tSw+eff15mLC0tTcXFxS57bku3QJS3vryx0lvm3XzzzZbWu1N6Rfmdd97Rzz//rA0bNqh79+7nvGIbHh6uW265RYsWLdL111+v77//Xj/++OM5X2f//v1au3atIiMjNWLEiHJ/YmNj9c033zi3G3Tu3FmStHr1arfvoyJru3TpomPHjmn37t1u156pXr16Gjx4sFauXKlGjRrpk08+0alTp8qs86RHjRo1UteuXfXzzz+7/cvP7/81ofR8Ku82dKVjv99eVLr9pby/jPx+69D5KP3LAVegAfcIzQC8Jjo6Wj/++KPLldr8/HyNGTOm3PskXwjPP/+8fvnlF+fjwsJC/eMf/5Akl/vVlobW6dOnu2wJ+PXXX/X888+XOW50dLQk6YsvvnAZ37Bhg15//fUK19m+fXu1aNFCS5cu1auvvipjTJmtGdLp8GWMcRkrKirS8ePHJUkBAQHnfJ25c+fK4XBo1KhReuONN8r9efDBByX93xXpTp06qVOnTvrss8/KfW+/D31Dhw5VcHCwnn766XL37/5+7fjx4yXJeUX4TBkZGfrhhx8knQ6nqampZdbk5eXp5MmTqlatmvPK7fn2SDp93gQGBmrcuHFatGhRuWs+//xzXX/99c7HQ4cOlSRNmzbNZRtGTk6OcwtK6RpJ6tChg2w2mxYuXKj8/Hzn+O7du8s95zxR+gHJn3/+uVKOB1zO2J4B4ILYvn37Wb8koVmzZnrwwQd199136+6771a7du00YMAAFRcXa82aNTLGqE2bNme940Vlio+PV5s2bTRw4EAFBQVp+fLl2rVrl2699Vb179/fua579+4aNmyY80tV+vXrp4KCAi1atEjx8fFasWKFy3H79u2rmJgYPfHEE9qxY4datmypXbt2acWKFerXr5+WLFlS4Vpvv/12TZ48WU888YSqV6/uUl+pW265RSEhIYqPj1d0dLSKioq0Zs0aff/99xowYIAzzJfH4XBo7ty5br/gYuDAgZowYYLmz5+vp556SgEBAZo/f766deumkSNH6u2331ZCQoLy8/OVnp6ub775xhl669Spo3/9618aNGiQOnfurD/96U9q2rSpjh49qk2bNikmJkYffPCBJKl37956+OGHNWPGDDVq1Ei9e/dWdHS0jh07ph9//FGff/65Hn30UTVv3lynTp3SH/7wBzVp0kQdOnRQw4YNdfLkSa1YsUIZGRm677775O/vf949KtW2bVstX75cf/nLXzRo0CBNnz5dXbt2Va1atXT8+HF9+eWX2r59uxo1auR8TteuXXX33XfrxRdfVMuWLdW/f38ZY/Tvf/9bv/zyi8aPH6+uXbs615deLV+wYIE6dOig3r17KzMzU0uXLlXv3r0r/GU15bn++uu1ZMkS9e/fXzfeeKMCAgLUpk0b57cdAvgdb97vDsDlp/Q+zef6ue6664wxp++3O3v2bBMXF2cCAgJMVFSUGTFihMnMzCz3/rGl92let25dmdctve/y3r17y8yVd6zS9Xv27DGPP/64adSokfHz8zPR0dHmkUceMQUFBWWOU1xcbGbOnGmuvvpq4+fnZ66++mrzv//7v+bHH388632a+/fvbyIiIkz16tVNp06dzMKFC896j113Dhw4YOx2u5FkBg8eXO6al19+2fzpT38y0dHRJiAgwISHh5vOnTubV155xRQWFp7z+KtWrXL5/TmXIUOGGElm/vz5zrGMjAxzzz33OPtTq1Yt06VLF/PMM8+Uef4333xj/vKXv5jIyEhTrVo1U7duXXPjjTeaFStWlFm7Zs0a07dvXxMREWGqVatmoqKiTEJCgpkxY4Y5cOCAMcaYwsJC889//tP06tXL1K9f3/j5+ZnIyEjTtWtXs2DBApcvZDmfHp3p2LFjZsaMGSY+Pt6EhYUZX19fEx4ebrp162ZeeOEFl/tLl5ozZ47p1KmTqV69uvO8mDNnTrnH/+2338z48eNNZGSk8ff3N61btzbz588/532az/b7Fx0dbaKjo13GioqKzKRJk0zDhg2Nr69vuecxgNNsxpzxb1QAAAAAXLCnGQAAAHCD0AwAAAC4QWgGAAAA3CA0AwAAAG4QmgEAAAA3CM0AAACAG3y5yQXicDh08OBB1ahRQzabzdvlAAAA4AzGGJ04cUL16tVzfmvo2RCaL5CDBw+qQYMG3i4DAAAAbvz888+qX7/+OdcQmi+QGjVqSDr9mxASEmL5eQ6HQ0eOHFFERITbv/FcyeiTNfTJGvpkDX2yhj5ZQ5+so1fWeNKn3NxcNWjQwJnbzoXQfIGUbskICQmpcGjOz89XSEgIfzDOgT5ZQ5+soU/W0Cdr6JM19Mk6emXN+fTJylZaOg8AAAC4QWgGAAAA3CA0AwAAAG4QmgEAAAA3CM0AAACAG4RmAAAAwA1CMwAAAOAGoRkAAABwg9AMAAAAuEFoBgAAANwgNAMAAABuEJoBAAAANwjNAAAAgBu+3i4AAAAAcDgcSk9PV1ZWlsLCwhQXFye7vepc3yU0AwAAwKtSU1M1a/Zr2rXvVxUWl8jP10dNY65S8uiRSkxM9HZ5ktieAQAAAC9KTU3VpIena+fJAMXcOErthk1XzI2jtCsvQJMenq7U1FRvlyiJ0AwAAAAvcTgcmjX7NZ0KjVGbvsMVWjdavtX8FVo3Wq1vGq78mjF6+dXX5XA4vF0qoRkAAADekZ6erl37flVsp56y2WwuczabTdEde2jn3l+Unp7upQr/D6EZAAAAXpGVlaXC4hIF1Y4qdz44PEqFxSXKysq6yJWVRWgGAACAV4SFhcnP10d5RzPKnT95LEN+vj4KCwu7yJWVRWgGAACAV8TFxalpzFXa9/UnMsa4zBljtP/rtWoWW19xcXFeqvD/EJoBAADgFXa7XcmjRyoge5++WzFH2Yf2qbgwX9mHTj8OyN6nsaPuqhL3a+Y+zQAAAPCaxMREPTFjyun7NH/8mvM+zc1i62vsvVOqzH2aCc0AAADwqsTERMXHx/ONgAAAAMC52O12tWrVyttlnFXVie8AAABAFUVoBgAAANwgNAMAAABuEJoBAAAANwjNAAAAgBuEZgAAAMANQjMAAADgBqEZAAAAcIPQDAAAALhBaAYAAADcIDQDAAAAbhCaAQAAADcIzQAAAIAbhGYAAADADUIzAAAA4EaVCs2PPPKIbDaby0+zZs2c8/n5+UpOTlZ4eLiCg4PVv39/HT582OUYBw4cUJ8+fVS9enXVqVNH999/v4qLi13WrF+/Xu3bt5e/v78aNWqkefPmlall1qxZiomJUUBAgLp06aLNmzdfkPcMAACAqq9KhWZJiouL06FDh5w/X3zxhXNu4sSJWr58uRYvXqwNGzbo4MGDuvXWW53zJSUl6tOnjwoLC5Wamqq33npL8+bN05QpU5xr9u7dqz59+qh79+7atm2bJkyYoDvvvFOrVq1yrlm0aJFSUlI0depUbd26VW3atFFSUpIyMzMvThMAAABQpVS50Ozr66uoqCjnT+3atSVJOTk5evPNN/XMM8/o+uuvV4cOHTR37lylpqZq48aNkqTVq1fr+++/1zvvvKO2bdvqxhtv1IwZMzRr1iwVFhZKkmbPnq3Y2Fg9/fTTat68ucaNG6cBAwbo2WefddbwzDPP6K677tKwYcPUokULzZ49W9WrV9ecOXMufkMAAADgdb7eLuBMu3fvVr169RQQEKCEhATNnDlTDRs21JYtW1RUVKSePXs61zZr1kwNGzZUWlqa4uPjlZaWplatWikyMtK5JikpSWPGjFF6erratWuntLQ0l2OUrpkwYYIkqbCwUFu2bNHkyZOd83a7XT179lRaWtpZ6y4oKFBBQYHzcW5uriTJ4XDI4XBYfv8Oh0PGmAo950pEn6yhT9bQJ2vokzX0yRr6ZB29ssaTPlVkbZUKzV26dNG8efPUtGlTHTp0SNOmTdMf//hH7dixQxkZGfLz81PNmjVdnhMZGamMjAxJUkZGhktgLp0vnTvXmtzcXJ06dUpZWVkqKSkpd83OnTvPWvvMmTM1bdq0MuNHjhxRfn6+tQbo9G9eTk6OjDGy26vcPwRUGfTJGvpkDX2yhj5ZQ5+soU/W0StrPOnTiRMnLB+/SoXmG2+80fnr1q1bq0uXLoqOjtZ7772nwMBAL1bm3uTJk5WSkuJ8nJubqwYNGigiIkIhISGWj+NwOGSz2RQREcEfjHOgT9bQJ2vokzX0yRr6ZA19so5eWeNJnwICAiwfv0qF5jPVrFlTTZo00Y8//qgbbrhBhYWFys7OdrnafPjwYUVFRUmSoqKiytzlovTuGr9fc+YdNw4fPqyQkBAFBgbKx8dHPj4+5a4pPUZ5/P395e/vX2bcbrdX+AS32WwePe9KQ5+soU/W0Cdr6JM19Mka+mQdvbKmon2qSD+rdOdPnjypPXv2qG7duurQoYOqVaumtWvXOud37dqlAwcOKCEhQZKUkJCg7du3u9zlYs2aNQoJCVGLFi2ca35/jNI1pcfw8/NThw4dXNY4HA6tXbvWuQYAAABXlioVmu+77z5t2LBB+/btU2pqqvr16ycfHx8NHjxYoaGhGjFihFJSUrRu3Tpt2bJFw4YNU0JCguLj4yVJvXr1UosWLXT77bfr22+/1apVq/TQQw8pOTnZeRV49OjR+umnnzRp0iTt3LlTL7/8st577z1NnDjRWUdKSopef/11vfXWW/rhhx80ZswY5eXladiwYV7pCwAAALyrSm3P+OWXXzR48GAdO3ZMERERuvbaa7Vx40ZFRERIkp599lnZ7Xb1799fBQUFSkpK0ssvv+x8vo+Pj1asWKExY8YoISFBQUFBGjp0qKZPn+5cExsbq48++kgTJ07U888/r/r16+uNN95QUlKSc83AgQN15MgRTZkyRRkZGWrbtq1WrlxZ5sOBAAAAuDLYjDHG20VcjnJzcxUaGqqcnJwKfxAwMzNTderUYd/SOdAna+iTNfTJGvpkDX2yhj5ZR6+s8aRPFclrdB4AAABwg9AMAAAAuEFoBgAAANwgNAMAAABuEJoBAAAANwjNAAAAgBuEZgAAAMANQjMAAADgBqEZAAAAcIPQDAAAALhBaAYAAADcIDQDAAAAbhCaAQAAADcIzQAAAIAbhGYAAADADUIzAAAA4AahGQAAAHCD0AwAAAC4QWgGAAAA3CA0AwAAAG4QmgEAAAA3CM0AAACAG4RmAAAAwA1CMwAAAOAGoRkAAABwg9AMAAAAuEFoBgAAANwgNAMAAABuEJoBAAAANwjNAAAAgBuEZgAAAMANQjMAAADgBqEZAAAAcIPQDAAAALhBaAYAAADcIDQDAAAAbhCaAQAAADcIzQAAAIAbhGYAAADADUIzAAAA4AahGQAAAHCD0AwAAAC4QWgGAAAA3CA0AwAAAG4QmgEAAAA3CM0AAACAG4RmAAAAwA1CMwAAAOAGoRkAAABwg9AMAAAAuEFoBgAAANwgNAMAAABuEJoBAAAANwjNAAAAgBuEZgAAAMANQjMAAADgBqEZAAAAcIPQDAAAALhBaAYAAADcIDQDAAAAbhCaAQAAADcIzQAAAIAbhGYAAADADUIzAAAA4AahGQAAAHCD0AwAAAC4QWgGAAAA3CA0AwAAAG4QmgEAAAA3qmxofvzxx2Wz2TRhwgTnWH5+vpKTkxUeHq7g4GD1799fhw8fdnnegQMH1KdPH1WvXl116tTR/fffr+LiYpc169evV/v27eXv769GjRpp3rx5ZV5/1qxZiomJUUBAgLp06aLNmzdfiLcJAACAS0CVDM1fffWVXn31VbVu3dplfOLEiVq+fLkWL16sDRs26ODBg7r11lud8yUlJerTp48KCwuVmpqqt956S/PmzdOUKVOca/bu3as+ffqoe/fu2rZtmyZMmKA777xTq1atcq5ZtGiRUlJSNHXqVG3dulVt2rRRUlKSMjMzL/ybBwAAQJVT5ULzyZMnNWTIEL3++usKCwtzjufk5OjNN9/UM888o+uvv14dOnTQ3LlzlZqaqo0bN0qSVq9ere+//17vvPOO2rZtqxtvvFEzZszQrFmzVFhYKEmaPXu2YmNj9fTTT6t58+YaN26cBgwYoGeffdb5Ws8884zuuusuDRs2TC1atNDs2bNVvXp1zZkz5+I2AwAAAFWCr7cLOFNycrL69Omjnj176tFHH3WOb9myRUVFRerZs6dzrFmzZmrYsKHS0tIUHx+vtLQ0tWrVSpGRkc41SUlJGjNmjNLT09WuXTulpaW5HKN0Tek2kMLCQm3ZskWTJ092ztvtdvXs2VNpaWlnrbugoEAFBQXOx7m5uZIkh8Mhh8Nh+f07HA4ZYyr0nCsRfbKGPllDn6yhT9bQJ2vok3X0yhpP+lSRtVUqNC9cuFBbt27VV199VWYuIyNDfn5+qlmzpst4ZGSkMjIynGt+H5hL50vnzrUmNzdXp06dUlZWlkpKSspds3PnzrPWPnPmTE2bNq3M+JEjR5Sfn3/W553J4XAoJydHxhjZ7VXuHwKqDPpkDX2yhj5ZQ5+soU/W0Cfr6JU1nvTpxIkTlo9fZULzzz//rHvuuUdr1qxRQECAt8upsMmTJyslJcX5ODc3Vw0aNFBERIRCQkIsH8fhcMhmsykiIoI/GOdAn6yhT9bQJ2vokzX0yRr6ZB29ssaTPlUkc1aZ0LxlyxZlZmaqffv2zrGSkhJ99tlneumll7Rq1SoVFhYqOzvb5Wrz4cOHFRUVJUmKiooqc5eL0rtr/H7NmXfcOHz4sEJCQhQYGCgfHx/5+PiUu6b0GOXx9/eXv79/mXG73V7hE9xms3n0vCsNfbKGPllDn6yhT9bQJ2vok3X0ypqK9qki/awyne/Ro4e2b9+ubdu2OX86duyoIUOGOH9drVo1rV271vmcXbt26cCBA0pISJAkJSQkaPv27S53uVizZo1CQkLUokUL55rfH6N0Tekx/Pz81KFDB5c1DodDa9euda4BAADAlaXKXGmuUaOGWrZs6TIWFBSk8PBw5/iIESOUkpKiWrVqKSQkRHfffbcSEhIUHx8vSerVq5datGih22+/XU888YQyMjL00EMPKTk52XkVePTo0XrppZc0adIkDR8+XJ9++qnee+89ffTRR87XTUlJ0dChQ9WxY0d17txZzz33nPLy8jRs2LCL1A0AAABUJVUmNFvx7LPPym63q3///iooKFBSUpJefvll57yPj49WrFihMWPGKCEhQUFBQRo6dKimT5/uXBMbG6uPPvpIEydO1PPPP6/69evrjTfeUFJSknPNwIEDdeTIEU2ZMkUZGRlq27atVq5cWebDgQAAALgy2IwxxttFXI5yc3MVGhqqnJycCn8QMDMzU3Xq1GHf0jnQJ2vokzX0yRr6ZA19soY+WUevrPGkTxXJa3QeAAAAcIPQDAAAALhBaAYAAADcIDQDAAAAbhCaAQAAADcIzQAAAIAbhGYAAADADUIzAAAA4AahGQAAAHCD0AwAAAC4QWgGAAAA3CA0AwAAAG4QmgEAAAA3CM0AAACAG4RmAAAAwA1CMwAAAOAGoRkAAABwg9AMAAAAuEFoBgAAANwgNAMAAABuEJoBAAAANwjNAAAAgBuEZgAAAMANQjMAAADgBqEZAAAAcIPQDAAAALhBaAYAAADcIDQDAAAAbhCaAQAAADcIzQAAAIAbhGYAAADADUIzAAAA4AahGQAAAHCD0AwAAAC4QWgGAAAA3CA0AwAAAG4QmgEAAAA3CM0AAACAG4RmAAAAwA1CMwAAAOAGoRkAAABwg9AMAAAAuOFRaD5w4IBOnTp11vlTp07pwIEDHhcFAAAAVCUehebY2FgtXbr0rPMffvihYmNjPS4KAAAAqEo8Cs3GmHPOFxUVyW5n5wcAAAAuD75WF+bm5io7O9v5+NixY+VuwcjOztbChQtVt27dSikQAAAA8DbLofnZZ5/V9OnTJUk2m00TJkzQhAkTyl1rjNGjjz5aKQUCAAAA3mY5NPfq1UvBwcEyxmjSpEkaPHiw2rdv77LGZrMpKChIHTp0UMeOHSu9WAAAAMAbLIfmhIQEJSQkSJLy8vLUv39/tWzZ8oIVBgAAAFQVlkPz702dOrWy6wAAAACqLI9CsyRlZWXp3Xff1U8//aSsrKwyd9Sw2Wx68803z7tAAAAAwNs8Cs2rVq3SgAEDlJeXp5CQEIWFhZVZY7PZzrs4AAAAoCrwKDTfe++9ioqK0vvvv69WrVpVdk0AAABAleLRN5D8+OOPGj9+PIEZAAAAVwSPQnPjxo114sSJyq4FAAAAqJI8Cs2PPvqoXn75Ze3bt6+SywEAAACqHo/2NK9du1YRERFq3ry5brjhBjVo0EA+Pj4ua2w2m55//vlKKRIAAADwJo9C80svveT89YoVK8pdQ2gGAADA5cKj0OxwOCq7DgAAAKDK8mhPMwAAAHAlITQDAAAAbni0PcNut1v6xr+SkhJPDg8AAABUKR6F5ilTppQJzSUlJdq3b58++OADNW3aVDfddFOlFAgAAAB4m0eh+ZFHHjnr3KFDhxQfH68mTZp4WhMAAABQpVT6nua6detq9OjRmjFjRmUfGgAAAPCKC/JBwKCgIO3du/dCHBoAAAC46Co9NO/YsUMvvPAC2zMAAABw2fBoT3NsbGy5d8/Izs5WTk6Oqlevrg8++OB8awMAAACqBI9C83XXXVcmNNtsNoWFhemaa67RoEGDVKtWrUopEAAAAPA2j0LzvHnzKrkMAAAAoOqqlD3Np06d0qlTp877OK+88opat26tkJAQhYSEKCEhQR9//LFzPj8/X8nJyQoPD1dwcLD69++vw4cPuxzjwIED6tOnj6pXr646dero/vvvV3Fxscua9evXq3379vL391ejRo3K/UvArFmzFBMTo4CAAHXp0kWbN28+7/cHAACAS5PHofnAgQMaNmyYIiMjFRwcrODgYEVGRmr48OHav3+/R8esX7++Hn/8cW3ZskVff/21rr/+et18881KT0+XJE2cOFHLly/X4sWLtWHDBh08eFC33nqr8/klJSXq06ePCgsLlZqaqrfeekvz5s3TlClTnGv27t2rPn36qHv37tq2bZsmTJigO++8U6tWrXKuWbRokVJSUjR16lRt3bpVbdq0UVJSkjIzMz3sFgAAAC5lNmOMqeiTdu7cqWuvvVbZ2dm64YYb1Lx5c+f46tWrFRYWpi+++EJNmzY97wJr1aqlJ598UgMGDFBERIQWLFigAQMGOF+vefPmSktLU3x8vD7++GPddNNNOnjwoCIjIyVJs2fP1gMPPKAjR47Iz89PDzzwgD766CPt2LHD+RqDBg1Sdna2Vq5cKUnq0qWLOnXqpJdeekmS5HA41KBBA91999168MEHy62zoKBABQUFzse5ublq0KCBsrKyFBISYvn9OhwOHTlyRBEREbLbL8gdAS8L9Mka+mQNfbKGPllDn6yhT9bRK2s86VNubq7CwsKUk5PjNq95tKf5wQcflN1u1zfffKNWrVq5zO3YsUM9evTQgw8+qKVLl3pyeEmnrxovXrxYeXl5SkhI0JYtW1RUVKSePXs61zRr1kwNGzZ0hua0tDS1atXKGZglKSkpSWPGjFF6erratWuntLQ0l2OUrpkwYYIkqbCwUFu2bNHkyZOd83a7XT179lRaWtpZ6505c6amTZtWZvzIkSPKz8+3/L4dDodycnJkjOEPxjnQJ2vokzX0yRr6ZA19soY+WUevrPGkTydOnLB8fI9C84YNG3TvvfeWCcyS1LJlS40bN07PPPOMJ4fW9u3blZCQoPz8fAUHB2vp0qVq0aKFtm3bJj8/P9WsWdNlfWRkpDIyMiRJGRkZLoG5dL507lxrcnNzderUKWVlZamkpKTcNTt37jxr3ZMnT1ZKSorzcemV5oiIiApfabbZbPxt0g36ZA19soY+WUOfrKFP1tAn6+iVNZ70KSAgwPLxPQrNRUVFCgwMPOt89erVVVRU5Mmh1bRpU23btk05OTlasmSJhg4dqg0bNnh0rIvJ399f/v7+ZcbtdnuFT3CbzebR86409Mka+mQNfbKGPllDn6yhT9bRK2sq2qeK9NOjzrdr105vvPGGcnJyyszl5ubqzTffVPv27T05tPz8/NSoUSN16NBBM2fOVJs2bfT8888rKipKhYWFys7Odll/+PBhRUVFSZKioqLK3E2j9LG7NSEhIQoMDFTt2rXl4+NT7prSYwAAAODK4lFonjZtmvbs2aNmzZrp73//u+bNm6d58+Zp8uTJatasmfbs2VPu/l5POBwOFRQUqEOHDqpWrZrWrl3rnNu1a5cOHDighIQESVJCQoK2b9/ucpeLNWvWKCQkRC1atHCu+f0xSteUHsPPz08dOnRwWeNwOLR27VrnGgAAAFxZPNqecf311+s///mP7r//fj3++OMuc23bttXbb7+t7t27V/i4kydP1o033qiGDRvqxIkTWrBggdavX69Vq1YpNDRUI0aMUEpKimrVqqWQkBDdfffdSkhIUHx8vCSpV69eatGihW6//XY98cQTysjI0EMPPaTk5GTn1onRo0frpZde0qRJkzR8+HB9+umneu+99/TRRx8560hJSdHQoUPVsWNHde7cWc8995zy8vI0bNgwT9oFAACAS5xHoVmSevbsqW+++UYZGRnO+zJHR0ef1xaGzMxM3XHHHTp06JBCQ0PVunVrrVq1SjfccIMk6dlnn5Xdblf//v1VUFCgpKQkvfzyy87n+/j4aMWKFRozZowSEhIUFBSkoUOHavr06c41sbGx+uijjzRx4kQ9//zzql+/vt544w0lJSU51wwcOFBHjhzRlClTlJGRobZt22rlypVlPhwIAACAK4NH92mGe7m5uQoNDbV037/fczgcyszMVJ06ddjsfw70yRr6ZA19soY+WUOfrKFP1tErazzpU0XymuXO7969WwEBAZo0adI5191///0KDAzU3r17rR4aAAAAqNIsh+YXXnhBUVFReuyxx8657rHHHlNUVJReeOGF8y4OAAAAqAosh+bVq1dr0KBBqlat2jnX+fn5adCgQfr444/PuzgAAACgKrAcmg8cOKCmTZtaWtu4cWPnhwMBAACAS53l0Ozv76+TJ09aWpuXlyc/Pz+PiwIAAACqEsuhuVmzZvrkk08srV27dq2aN2/ucVEAAABAVWI5NA8cOFArVqzQBx98cM51y5Yt04oVKzRw4MDzrQ0AAACoEiyH5rFjx6pdu3b685//rDFjxujLL79Ubm6ujDHKzc3Vl19+qTFjxmjAgAFq06aNxo4deyHrBgAAAC4ay98I6O/vr1WrVmno0KF69dVX9dprr5VZY4xR79699a9//cv5tdUAAADApa5CX6MdHh6uFStWaPPmzfrwww/1ww8/KDc3VyEhIWrWrJn69u2r+Pj4C1UrAAAA4BUVCs2lOnfurM6dO1d2LQAAAECVxBeYAwAAAG4QmgEAAAA3CM0AAACAG4RmAAAAwA1CMwAAAOBGpYbmn376ST/88ENlHhIAAADwOo9C8wsvvKBBgwa5jA0bNkyNGzdWy5Yt1bFjR2VmZlZKgQAAAIC3eRSa33jjDUVGRjofr1q1Sm+99ZZGjhypF198UT/99JOmTZtWaUUCAAAA3uTRl5vs379fzZs3dz5+7733FBsbq1deeUWSlJGRobfffrtyKgQAAAC8zKMrzcYYl8erV6/WjTfe6HwcExOjjIyM86sMAAAAqCI8Cs1NmjTR0qVLJZ3emnHw4EGX0PzLL7+oZs2alVIgAAAA4G0ebc+47777dNtttyksLEx5eXlq3ry5kpKSnPOffvqp2rZtW1k1AgAAAF7lUWgeNGiQwsPD9Z///Ec1a9bU2LFj5et7+lDHjx9XrVq1dPvtt1dqoQAAAIC3eBSaJemGG27QDTfcUGa8Vq1aev/998+rKABA5XM4HEpPT1dWVpbCwsIUFxcnu53vuAIAKzwOzWf67bfftHDhQhUUFOh//ud/FB0dXVmHBgCcp9TUVM2a/Zp27ftVhcUl8vP1UdOYq5Q8eqQSExO9XR4AVHkeheYRI0Zo06ZN2rFjhySpsLBQ8fHxzsehoaH69NNP1a5du8qrFADgkdTUVE16eLpOhcYo9sZRCqodpbyjGdr19Sea9PB0PTFjCsEZANzw6N/l1q1bp1tvvdX5eMGCBdqxY4fmz5+vHTt2KCoqii83AYAqwOFwaNbs13QqNEZt+g5XaN1o+VbzV2jdaLW+abjya8bo5Vdfl8Ph8HapAFCleRSaMzIyFBMT43z8wQcfqGPHjho8eLBatGihu+66S5s2baqsGgEAHkpPT9eufb8qtlNP2Ww2lzmbzabojj20c+8vSk9P91KFAHBp8Cg0BwUFKTs7W5JUXFys9evXu9xyrkaNGsrJyamUAgEAnsvKylJhcYmCakeVOx8cHqXC4hJlZWVd5MoA4NLi0Z7m9u3b6/XXX1f37t314Ycf6sSJE+rbt69zfs+ePYqMjKy0IgEAngkLC5Ofr4/yjmYotG7ZD2ifPJYhP18fhYWFeaE6ALh0eBSaH3vsMSUlJaljx44yxmjAgAHq3Lmzc37p0qX6wx/+UGlFAgA8ExcXp6YxV2nX15+o9U3DXbZoGGO0/+u1ahZbX3FxcV6sEgCqPo9Cc8eOHbVz506lpqaqZs2auu6665xz2dnZGjt2rMsYAMA77Ha7kkeP1KSHp+u7FXMU3bGHgsOjdPJYhvZ/vVYB2fs09t4p3K8ZANzw+D7NERERuvnmm8uM16xZU/fcc895FQUAqDyJiYl6YsaU0/dp/vg1532am8XW19h7ud0cAFjhcWguKSnR4sWLtW7dOmVmZmr69Olq1aqVcnJytHbtWv3hD39gXzMAVBGJiYmKj4/nGwEBwEMehebs7Gz17t1bmzdvVnBwsPLy8nT33XdLkoKDgzV+/Hjdcccd+t///d9KLRYA4Dm73a5WrVp5uwwAuCR5dInhwQcfVHp6ulatWqWffvpJxhjnnI+PjwYMGKD//Oc/lVYkAAAA4E0eheYPPvhAd999t2644YYyN8uXpCZNmmjfvn3nWxsAAABQJXgUmnNychQbG3vW+aKiIhUXF3tcFAAAAFCVeBSar7nmGm3duvWs86tXr1aLFi08LgoAAACoSjwKzXfeeafmzJmjRYsWOfcz22w2FRQU6B//+IdWrlypUaNGVWqhAAAAgLd4dPeMe+65R+np6Ro8eLBq1qwpSbrtttt07NgxFRcXa9SoURoxYkRl1gkAAAB4jUeh2Waz6fXXX9fQoUO1ZMkS7d69Ww6HQ9dcc43+8pe/qGvXrpVdJwAAAOA1Hn+5iSRde+21uvbaayurFgAAAKBK8mhP8969e7V8+fKzzi9fvpxbzgEAAOCy4dGV5vvuu0+5ubnq27dvufOzZs1SzZo1tXDhwvMqDgAuVw6Hg6+0BoBLiEehOS0tTRMmTDjrfI8ePfTcc895WBIAXN5SU1M1a/Zr2rXvVxUWl8jP10dNY65S8uiRSkxM9HZ5AIByeHRZIysrSzVq1DjrfHBwsI4dO+ZxUQBwuUpNTdWkh6dr58kAxdw4Su2GTVfMjaO0Ky9Akx6ertTUVG+XCAAoh0ehuWHDhvryyy/POv/555+rfv36HhcFAJcjh8OhWbNf06nQGLXpO1yhdaPlW81foXWj1fqm4cqvGaOXX31dDofD26UCAM7gUWgePHiw3n33Xb3wwgsu/3EvKSnR888/r0WLFum2226rtCIB4HKQnp6uXft+VWynnrLZbC5zNptN0R17aOfeX5Senu6lCgEAZ+PRnubJkyfriy++0IQJE/TYY4+padOmkqRdu3bpyJEj6tatm/7xj39UaqEAcKnLyspSYXGJgmpHlTsfHB6lwuISZWVlXeTKAADueHSl2d/fX6tXr9abb76pzp076+jRozp69Kg6d+6sOXPm6JNPPpG/v39l1woAl7SwsDD5+foo72hGufMnj2XIz9dHYWFhF7kyAIA7Hn+5id1u17BhwzRs2LDKrAcALltxcXFqGnOVdn39iVrfNNxli4YxRvu/XqtmsfUVFxfnxSoBAOXx6Erz8ePH9d133511fvv27fzzIgCcwW63K3n0SAVk79N3K+Yo+9A+FRfmK/vQ6ccB2fs0dtRd3K8ZAKogj640T5w4Ubt27dLGjRvLnR81apSaN2+uN99887yKA4DLTWJiop6YMeX0fZo/fs15n+ZmsfU19t4p3KcZAKooj0Lzp59+qjFjxpx1vm/fvpo9e7bHRQHA5SwxMVHx8fF8IyAAXEI8Cs1HjhxR7dq1zzofHh6uzMxMj4sCgMud3W5Xq1atvF0GAMAijy5r1K1bV998881Z57ds2aKIiAiPiwIAAACqEo9C8y233KI333xTH374YZm5ZcuWae7cuerXr995FwcAAABUBR5tz3jkkUf0ySefqF+/fmrTpo1atmwpSdqxY4e+/fZbNW/eXNOmTavUQgEAAABv8ehKc2hoqDZu3KiHHnpIRUVFWrJkiZYsWaKioiI9/PDD2rRpk2rWrFnJpQIAAADe4fGXmwQFBWnatGlnvaJc+olwAAAA4FJXqfc3Kigo0OLFi3XLLbeobt26lXloAAAAwGs8vtJcyhijtWvXav78+Vq6dKlyc3MVERGh2267rTLqAwAAALzO49C8ZcsWzZ8/XwsXLlRGRoZsNpsGDRqkcePGKT4+XjabrTLrBAAAALymQqH5p59+0vz58zV//nzt3r1bV111lYYMGaLOnTtr4MCB6t+/vxISEi5UrQAAAIBXWA7NCQkJ2rx5s2rXrq0BAwbojTfe0LXXXitJ2rNnzwUrEAAAAPA2y6F506ZNio2N1TPPPKM+ffrI1/e8t0MDAAAAlwTLd8946aWXVLduXfXr109RUVEaNWqU1q1bJ2PMhawPAAAA8DrLoXns2LH64osvtGfPHk2YMEGff/65evTooauuukpTpkyRzWY77w//zZw5U506dVKNGjVUp04d3XLLLdq1a5fLmvz8fCUnJys8PFzBwcHq37+/Dh8+7LLmwIED6tOnj6pXr646dero/vvvV3Fxscua9evXq3379vL391ejRo00b968MvXMmjVLMTExCggIUJcuXbR58+bzen8AAAC4NFX4Ps2xsbF66KGH9P333+urr77SoEGDtH79ehljNHbsWI0cOVIrVqxQfn5+hYvZsGGDkpOTtXHjRq1Zs0ZFRUXq1auX8vLynGsmTpyo5cuXa/HixdqwYYMOHjyoW2+91TlfUlKiPn36qLCwUKmpqXrrrbc0b948TZkyxblm79696tOnj7p3765t27ZpwoQJuvPOO7Vq1SrnmkWLFiklJUVTp07V1q1b1aZNGyUlJSkzM7PC7wtA1eVwOLRjxw7nj8Ph8HZJAICqyFSCkpISs2bNGjN06FATEhJibDabCQoKOu/jZmZmGklmw4YNxhhjsrOzTbVq1czixYuda3744QcjyaSlpRljjPnPf/5j7Ha7ycjIcK555ZVXTEhIiCkoKDDGGDNp0iQTFxfn8loDBw40SUlJzsedO3c2ycnJLu+xXr16ZubMmZZqz8nJMZJMTk5Ohd5zSUmJOXTokCkpKanQ86409Mka+nRuX375pbnt9qGmY9cbzIC/Djcdu95gbrt9qPnyyy+9XVqVxPlkDX2yhj5ZR6+s8aRPFclrlfJpPrvdrp49e6pnz56aPXu2li1bpgULFpz3cXNyciRJtWrVknT63tBFRUXq2bOnc02zZs3UsGFDpaWlKT4+XmlpaWrVqpUiIyOda5KSkjRmzBilp6erXbt2SktLczlG6ZoJEyZIkgoLC7VlyxZNnjy5zHtMS0srt9aCggIVFBQ4H+fm5ko6fRWrIleuHA6HjDFc7XKDPllDn84uLS1ND059VKdCY3R175GKrRcm28Es/XfLWj0wZYYen/YQt9A8A+eTNfTJGvpkHb2yxpM+VWRtpd8CIyAgQAMHDtTAgQPP6zgOh0MTJkzQH/7wB7Vs2VKSlJGRIT8/P9WsWdNlbWRkpDIyMpxrfh+YS+dL5861Jjc3V6dOnVJWVpZKSkrKXbNz585y6505c6amTZtWZvzIkSMV2qricDiUk5MjY4zs9kr9lvPLCn2yhj6Vz+FwaOmHy1W/RSfFdO4pu00K9SmSb8M6uqbBYO376hN98OEKxcbG0rff4Xyyhj5ZQ5+so1fWeNKnEydOWD5+lb1vXHJysnbs2KEvvvjC26VYMnnyZKWkpDgf5+bmqkGDBoqIiFBISIjl4zgcDtlsNkVERPAH4xzokzX0qXw7duzQho1bFdN7pI4UB8gmIyPpSJG/jGwqimql9Stf1+1Djjr/0g7OJ6vokzX0yTp6ZY0nfQoICLB8/CoZmseNG6cVK1bos88+U/369Z3jUVFRKiwsVHZ2tsvV5sOHDysqKsq55sy7XJTeXeP3a86848bhw4cVEhKiwMBA+fj4yMfHp9w1pcc4k7+/v/z9/cuM2+32Cp/gNpvNo+ddaeiTNfSprOzsbBUUFat67SgZld71xybz/3+CwqNUUFSs7Oxs+nYGzidr6JM19Mk6emVNRftUkX5Wqc4bYzRu3DgtXbpUn376qWJjY13mO3TooGrVqmnt2rXOsV27dunAgQPOvYcJCQnavn27y10u1qxZo5CQELVo0cK55vfHKF1Tegw/Pz916NDBZY3D4dDatWvZ4whcBsLCwuTn66O8oxnlzp88liE/Xx+FhYVd5MoAAFVVlQrNycnJeuedd7RgwQLVqFFDGRkZysjI0KlTpyRJoaGhGjFihFJSUrRu3Tpt2bJFw4YNU0JCguLj4yVJvXr1UosWLXT77bfr22+/1apVq/TQQw8pOTnZeSV49OjR+umnnzRp0iTt3LlTL7/8st577z1NnDjRWUtKSopef/11vfXWW/rhhx80ZswY5eXladiwYRe/MQAqVVxcnJrGXKV9X39S5guajDHa//VaNYutr7i4OC9VCACoaqpUaH7llVeUk5Ojbt26qW7dus6fRYsWOdc8++yzuummm9S/f3917dpVUVFRev/9953zPj4+WrFihXx8fJSQkKC//vWvuuOOOzR9+nTnmtjYWH300Udas2aN2rRpo6efflpvvPGGkpKSnGsGDhyop556SlOmTFHbtm21bds2rVy5ssyHAwFceux2u5JHj1RA9j59t2KOsg/tV0lRobIP7dd3K+YoIHufxo66i38GBQA42cyZl1lQKXJzcxUaGqqcnJwKfxAwMzNTderU4X/Y50CfrKFP55aamqpZs1/Tf/cfVEzDBtp34Gc1jblKY0fdpcTERG+XV+VwPllDn6yhT9bRK2s86VNF8lqV/CAgAFwMiYmJio+P144dO5z/oW3ZsiX/UwIAlEFoBnBFs9vtatmyJVdxAADnxP8dAAAAADcIzQAAAIAbhGYAAADADUIzAAAA4AahGQAAAHCD0AwAAAC4QWgGAAAA3CA0AwAAAG4QmgEAAAA3CM0AAACAG4RmAAAAwA1CMwAAAOAGoRkAAABwg9AMAAAAuEFoBgAAANwgNAMAAABuEJoBAAAANwjNAAAAgBuEZgAAAMANQjMAAADgBqEZAAAAcIPQDAAAALhBaAYAAADcIDQDAAAAbhCaAQAAADcIzQAAAIAbhGYAAADADUIzAAAA4AahGQAAAHCD0AwAAAC4QWgGAAAA3CA0AwAAAG4QmgEAAAA3CM0AAACAG4RmAAAAwA1CMwAAAOAGoRkAAABwg9AMAAAAuEFoBgAAANwgNAMAAABuEJoBAAAANwjNAAAAgBuEZgAAAMANQjMAAADgBqEZuEw5HA7t2LHD+eNwOLxdEgAAlyxfbxcAoPKlpqZq1uzX9N/9BxXTsIH2HfhZTaLrKXn0SCUmJnq7PAAALjlcaQYuM6mpqZr08HTtPBmgmN4jdXXPIYrpPVK78gI06eHpSk1N9XaJAABccgjNwGXE4XBo1uzXdCo0Rm36Dldo3Yby8a2m0LoN1fqm4cqvGaOXX32drRoAAFQQoRm4jKSnp2vXvl8V26mnbDaby5zNZlN0xx7aufcXpaene6lCAAAuTYRm4DKSlZWlwuISBdWOKnc+ODxKhcUlysrKusiVAQBwaSM0A5eRsLAw+fn6KO9oRrnzJ49lyM/XR2FhYRe5MgAALm2EZuAyEhcXp6YxV2nf15/IGOMyZ4zR/q/XqllsfcXFxXmpQgAALk2EZuAyYrfblTx6pAKy9+m7FXOUfWi/SooKlX1ov75bMUcB2fs0dtRdstv5ow8AQEXwf07gMpOYmKgnZkxR06B87V/5un5au0D7V76uZsEFemLGFO7TDACAB/hyE6AKczgcSk9PV1ZWlsLCwhQXF2fpKnFiYqLi4+O1Y8cOZWZmqk6dOmrZsiVXmAEA8BChGaiiUlNT9dIrr+rb7/+r/IICBfj7q02LJho3ZpSlq8V2u10tW7Z0hmYCMwAAniM0A1VQamqqRo+fqF+PnZTNr7rk46+ck8Va9cXX2vHDTs1+4Vm2WQAAcBERmoEqxuFw6JHpj2pfRpZqNE1QWMvr5BcaqcKcw8rasUH7dqVp2ozH9PFHy7l6DADARcL/cYEqZvv27dryXbqCrumkqOuGKKB2A9mr+SmgdgNFXTdE1a/pqC3f7tD27du9XSoAAFcMQjNQxWzdulUFDpvC2nQv96uwa7W+XvkOm7Zu3eqlCgEAuPIQmoEqyObjK5/qNcud86keKpsPO6sAALiYCM1AFdO+fXsF+NqV+/MumTPmjKTcX3YpwNeu9u3be6M8AACuSIRmoIpp1aqV2rdoorz/pionY7+KCk7JYRwqKjilnIz9yvtvmtrHNVGrVq28XSoAAFcMQjNQxdjtdk19+O+6ypat37YuV/Z/Nyt773Zl/3ezftu6XFfZsjX1ob9z5wwAAC4i/q8LVEGJiYl65bkn1a1RTdXYu172b/6tGnvXq3vjML3y3JPcoxkAgIuMTxMBVVTpV2F78jXaAACgchGagSrMbrezdxkAgCqgSl2y+uyzz9S3b1/Vq1dPNptNH3zwgcu8MUZTpkxR3bp1FRgYqJ49e2r37t0ua44fP64hQ4YoJCRENWvW1IgRI3Ty5EmXNd99953++Mc/KiAgQA0aNNATTzxRppbFixerWbNmCggIUKtWrfSf//yn0t8vAAAALg1VKjTn5eWpTZs2mjVrVrnzTzzxhF544QXNnj1bmzZtUlBQkJKSkpSfn+9cM2TIEKWnp2vNmjVasWKFPvvsM40cOdI5n5ubq169eik6OlpbtmzRk08+qUceeUSvvfaac01qaqoGDx6sESNG6JtvvtEtt9yiW265RTt27Lhwbx4AAABVl6miJJmlS5c6HzscDhMVFWWefPJJ51h2drbx9/c37777rjHGmO+//95IMl999ZVzzccff2xsNpv59ddfjTHGvPzyyyYsLMwUFBQ41zzwwAOmadOmzsd/+ctfTJ8+fVzq6dKlixk1apTl+nNycowkk5OTY/k5xhhTUlJiDh06ZEpKSir0vCsNfbKGPllDn6yhT9bQJ2vok3X0yhpP+lSRvHbJ7Gneu3evMjIy1LNnT+dYaGiounTporS0NA0aNEhpaWmqWbOmOnbs6FzTs2dP2e12bdq0Sf369VNaWpq6du0qPz8/55qkpCT985//dH7YKi0tTSkpKS6vn5SUVGa7yO8VFBSooKDA+Tg3N1eS5HA45HA4LL9Ph8MhY0yFnnMlok/W0Cdr6JM19Mka+mQNfbKOXlnjSZ8qsvaSCc0ZGRmSpMjISJfxyMhI51xGRobq1KnjMu/r66tatWq5rImNjS1zjNK5sLAwZWRknPN1yjNz5kxNmzatzPiRI0dcto+443A4lJOTI2MMd0k4B/pkDX2yhj5ZQ5+soU/W0Cfr6JU1nvTpxIkTlo9/yYTmqm7y5MkuV6dzc3PVoEEDRUREKCQkxPJxHA6HbDabIiIi+INxDvTJGvpkDX2yhj5ZQ5+soU/W0StrPOlTQECA5eNfMqE5KipKknT48GHVrVvXOX748GG1bdvWuSYzM9PlecXFxTp+/Ljz+VFRUTp8+LDLmtLH7taUzpfH399f/v7+ZcbtdnuFT3CbzebR86409Mka+mQNfbKGPllDn6yhT9bRK2sq2qeK9POS6XxsbKyioqK0du1a51hubq42bdqkhIQESVJCQoKys7O1ZcsW55pPP/1UDodDXbp0ca757LPPVFRU5FyzZs0aNW3aVGFhYc41v3+d0jWlrwMAAIArS5UKzSdPntS2bdu0bds2Sac//Ldt2zYdOHBANptNEyZM0KOPPqoPP/xQ27dv1x133KF69erplltukSQ1b95cvXv31l133aXNmzfryy+/1Lhx4zRo0CDVq1dPknTbbbfJz89PI0aMUHp6uhYtWqTnn3/eZWvFPffco5UrV+rpp5/Wzp079cgjj+jrr7/WuHHjLnZLAAAAUAVUqe0ZX3/9tbp37+58XBpkhw4dqnnz5mnSpEnKy8vTyJEjlZ2drWuvvVYrV6502Y8yf/58jRs3Tj169JDdblf//v31wgsvOOdDQ0O1evVqJScnq0OHDqpdu7amTJnici/nxMRELViwQA899JD+/ve/q3Hjxvrggw/UsmXLi9AFAAAAVDU2Y4zxdhGXo9zcXIWGhionJ6fCHwTMzMxUnTp12Ld0DvTJGvpkDX2yhj5ZQ5+soU/W0StrPOlTRfIanQcAAADcIDQDAAAAbhCaAQAAADcIzQAAAIAbhGYAAADADUIzAAAA4AahGQAAAHCD0AwAAAC4QWgGAAAA3KhSX6MNXEgOh0Pp6enKyspSWFiY4uLi+GYlAABgCaEZV4TU1FTNmv2adu37VYXFJfLz9VHTmKuUPHqkEhMTvV0eAACo4rjMhsteamqqJj08XTtPBijmxlFqN2y6Ym4cpV15AZr08HSlpqZ6u0QAAFDFEZpxWXM4HJo1+zWdCo1Rm77DFVo3Wr7V/BVaN1qtbxqu/JoxevnV1+VwOLxdKgAAqMIIzbispaena9e+XxXbqadsNpvLnM1mU3THHtq59xelp6d7qUIAAHApIDTjspaVlaXC4hIF1Y4qdz44PEqFxSXKysq6yJUBAIBLCaEZl7WwsDD5+foo72hGufMnj2XIz9dHYWFhF7kyAABwKSE047IWFxenpjFXad/Xn8gY4zJnjNH+r9eqWWx9xcXFealCAABwKSA047Jmt9uVPHqkArL36bsVc5R9aJ+KC/OVfej044DsfRo76i7u1wwAAM6J+zTjspeYmKgnZkw5fZ/mj19z3qe5WWx9jb13CvdpBgAAbhGaccnJz8/Xww8/rKKiIlWrVk0zZsxQQEDAOZ+TmJio+Ph4vhEQAAB4hNCMS8qQIUP03tIPZQ+ooXbt2uqbb7bpuVmz9Zd+f9L8+fPP+Vy73a5WrVpdpEoBAMDlhNCMS8aQIUO06MOVCmzWVcHNu6pm4/qqFXWdTn7/mRZ9uFIaMsRtcAYAAPAEoRmXhPz8fC16f5kCm12nmtf9Tb7V/OQTYFfAVc3kW+dqSUaL3l+mN/Pz3W7VAAAAqCg2dOKS8NBDD0n+wQqK6yYf/+qy2X0km2Sz+8jHv7qC4rpL/sGn1wEAAFQyQjMuCd9++61svn7yi4gud75a7Yay+frp22+/vciVAQCAKwGhGZeE2rVryxQXquj4oXLni7MOyRQXqnbt2he5MgAAcCUgNOOSkJKSIkf+SZ3c8YmMw+EyZxwOndyxVo78k0pJSfFShQAA4HLGBwFxSejQoYMaXhWpX3Zv1HFJIa16yBFcXwUZvyh3+1qd2r1RDa+KUocOHbxdKgAAuAwRmnFJsNvtWvD227p5wEBl7fxChfu/VXbbVjq6bbtKTp1QWGiwFrz9L76sBAAAXBAkDHiFw+HQ9u3b9dlnn2n79u1ynLHlojyJiYlatmSRBtxyk8Jr+MtfJQqv4a8/9+urZUsW8XXYAADgguFKMy661NRUvfTKq/r2+/8qv6BAAf7+atOiicaNGeU2+JZ+HfaOHTuUmZmpOnXqqGXLllxhBgAAFxShGRdVamqqRo+fqF+PnZTNr7rk46+ck8Va9cXX2vHDTs1+4Vm3wdlut6tly5bO0ExgBgAAFxqhGReNw+HQI9Mf1b6MLNVomqCwltfJLzRShTmHlbVjg/btStO0GY/p44+WE4QBAECVQjLBRbN9+3Zt+S5dQdd0UtR1QxRQu4Hs1fwUULuBoq4bourXdNSWb3do+/bt3i4VAADABaEZF83WrVtV4LAprE132Ww2lzmbzaZara9XvsOmrVu3eqlCAACA8hGacVHZfHzlU71muXM+1UNl82HHEAAAqHoIzbho2rdvrwBfu3J/3iVzxpyRlPvLLgX42tW+fXtvlAcAAHBWhGZcNK1atVL7Fk2U999U5WTsV1HBKTmMQ0UFp5STsV95/01T+7gmatWqlbdLBQAAcEFoxkVjt9s19eG/6ypbtn7bulzZ/92s7L3blf3fzfpt63JdZcvW1If+zp0zAABAlUM6wUWVmJioV557Ut0a1VSNvetl/+bfqrF3vbo3DtMrzz3Jt/oBAIAqiU9dwWP5+fl6+OGHtXfvXsXGxmrGjBkKCAhw+7zSb/VLT09XVlaWwsLCFBcXxxVmAABQZRGa4ZEhQ4Zo0fvLZHz9ZbP5yJh1evalVzTw1ps1f/58t8+32+3sXQYAAJcMLu2hwoYMGaKF7y+XLShc1UIj5RtWV9VCI2ULqqWF7y/XkCFDvF0iAABApeJKMyokPz9fC5f8W/YadVS9SYKCWnSVb2iUinMylPf9Z/rtv6lauOR9vflmvqWtGgAAAJcCrjSjQv7+97/L2P0U2Kizal47RH61o2Wv5i+/2tGqee0QBTbqLGP309///ndvlwoAAFBpCM2okLS0NNkDghQc1122Mz64Z7PbFdS8m+wB1ZWWlualCgEAACofoRkVEhgYKJv9HF+FHVxTNruvAgMDL25hAAAAFxChGRUycuRImeJCFRzaLWNcvwzbGKPCQ7tligs1cuRIL1UIAABQ+QjNqJABAwYowFas33Z9ocJjP8tR8JuMo0SOgt9UeOxn/bbrSwXaijVgwABvlwoAAFBpuHsGKsTX11dP//N/Nf6Bh3RCUkBMO/kE11LJyePK3/eNin7+Vi/883/l68upBQAALh8kG1TYqFGjJEkzn3xGGak/yNh9ZHOUKKpWsCb/81HnPAAAwOWC0HyFO3nypIYMGaJ9+/YpJiZG8+fPV3BwsNvnjRo1SiNGjNCyZct08OBB1atXTzfffDNXmAEAwGWJhHMF69y5s77+dofsgSGy+fopff9hhYTXUcc2LbV582a3z/f19VX//v0vQqUAAADeRWi+QnXu3Flbvv9RQS26q3rzrqoWFqWirAz99sMGbfl+ozp37mwpOAMAAFwJCM1XoJMnT+rrb3coqEV31ez2N9mr+Us2u3yCwuQXebUk6etv1+vkyZOWtmoAAABc7rjl3BXotttukz0wREFx3WT3C5TN7iObzSab3Ud2v0AFxXWXPTBEt912m7dLBQAAqBIIzVegXbt2yebrJ7+IaNlsNpc5m80m3/CGsvn6adeuXV6qEAAAoGohNF+BateuLVNcqMLjh8qdL84+KFNcqNq1a1/kygAAAKomQvMV6Omnn5bj1Anl7fhEDofDZc7hcChvx6dy5J/Q008/7aUKAQAAqhY+CHgF6ty5s8JCgpSze6MkKbhlD/nWukrFx3/VyR1rdWr3RoXVCFbnzp29XCkAAEDVwJXmy8CUKVNOf5Dv//9MmTLlnOvtdruWL/tA1X2l33Z+rqPLn9Thd+7X0eVP6redn6u6r7R82VLZ7ZweAAAAEqH5kmez2TTj8SflExop3/AG8gmN1IzHnyzzAb8zJSYmauWKZer/pz4K9rPJt+g3BfvZNODmm7RyxTIlJiZepHcAAABQ9bE94xJms9lkDwpT9SaJCmrZXdVq1VfR8V+Ut+NT/fbfNNlsNhljzvr8xMRExcfHKz09XVlZWQoLC1NcXBxXmAEAAM5AaL5ETZkyRaoWoOpNEhV2/V2y+fhIkvzrNpVfnUaSpJM7PtWUKVM0ffr0sx7HbrerVatWF6VmAACASxWXFC9RM2bMkE/1UAW1vF42Hx+XPc02Hx8FxV0vn+qhmjFjhrdLBQAAuOQRmi9hNl8/+YU3OMsXlDSQzdfPS5UBAABcXgjNl7DTX1Dya7lzxcd/kSkuvMgVAQAAXJ4IzZeohg0bynEqV3nbz/EFJady1bBhQy9VCAAAcPngg4CXqPT0dNWoEapTu9MkSUEtr1e1Wg1UdPxn5e34VKd2p8kUFig9Pd3LlQIAAFz6CM2XqODgYHXq1EFfbd2mvO/X69TeLbL5VJMpKZLj1AmZ4kJ16tRBwcHB3i4VAADgksf2DDdmzZqlmJgYBQQEqEuXLtq8ebO3S3LavHmzOrVvK1OQr5LfclVy4qhKfsuVKchXp/Ztq1StAAAAlzJC8zksWrRIKSkpmjp1qrZu3ao2bdooKSlJmZmZ3i7NafPmzTpxIlt/6t1TrZo11p9699SJE9kEZgAAgEpEaD6HZ555RnfddZeGDRumFi1aaPbs2apevbrmzJnj7dJcBAcHa9myZfr222+1bNkytmQAAABUMvY0n0VhYaG2bNmiyZMnO8fsdrt69uyptLS0MusLCgpUUFDgfJybmyvp9J0szry7xbk4HA4ZYyr0nCsRfbKGPllDn6yhT9bQJ2vok3X0yhpP+lSRtYTmszh69KhKSkoUGRnpMh4ZGamdO3eWWT9z5kxNmzatzPiRI0eUn59v+XUdDodycnJkjJHdzj8EnA19soY+WUOfrKFP1tAna+iTdfTKGk/6dOLECcvHJzRXksmTJyslJcX5ODc3Vw0aNFBERIRCQkIsH8fhcMhmsykiIoI/GOdAn6yhT9bQJ2vokzX0yRr6ZB29ssaTPgUEBFg+PqH5LGrXri0fHx8dPnzYZfzw4cOKiooqs97f31/+/v5lxu12e4VPcJvN5tHzrjT0yRr6ZA19soY+WUOfrKFP1tErayrap4r0k86fhZ+fnzp06KC1a9c6xxwOh9auXauEhAQvVgYAAICLjSvN55CSkqKhQ4eqY8eO6ty5s5577jnl5eVp2LBh3i4NAAAAFxGh+RwGDhyoI0eOaMqUKcrIyFDbtm21cuXKMh8OBAAAwOWN0OzGuHHjNG7cOG+XAQAAAC9iTzMAAADgBqEZAAAAcIPQDAAAALhBaAYAAADcIDQDAAAAbnD3jAvEGCPp9NdpV4TD4dCJEycUEBDAt/6cA32yhj5ZQ5+soU/W0Cdr6JN19MoaT/pUmtNKc9u5EJovkBMnTkiSGjRo4OVKAAAAcC4nTpxQaGjoOdfYjJVojQpzOBw6ePCgatSoIZvNZvl5ubm5atCggX7++WeFhIRcwAovbfTJGvpkDX2yhj5ZQ5+soU/W0StrPOmTMUYnTpxQvXr13F6d5krzBWK321W/fn2Pnx8SEsIfDAvokzX0yRr6ZA19soY+WUOfrKNX1lS0T+6uMJdiYwwAAADgBqEZAAAAcIPQXMX4+/tr6tSp8vf393YpVRp9soY+WUOfrKFP1tAna+iTdfTKmgvdJz4ICAAAALjBlWYAAADADUIzAAAA4AahGQAAAHCD0AwAAAC4QWiuQmbNmqWYmBgFBASoS5cu2rx5s7dLqlIeeeQR2Ww2l59mzZp5u6wq4bPPPlPfvn1Vr1492Ww2ffDBBy7zxhhNmTJFdevWVWBgoHr27Kndu3d7p1gvctenv/3tb2XOsd69e3unWC+ZOXOmOnXqpBo1aqhOnTq65ZZbtGvXLpc1+fn5Sk5OVnh4uIKDg9W/f38dPnzYSxV7j5VedevWrcw5NXr0aC9V7B2vvPKKWrdu7fzCiYSEBH388cfOec6n09z1iXOpfI8//rhsNpsmTJjgHLtQ5xShuYpYtGiRUlJSNHXqVG3dulVt2rRRUlKSMjMzvV1alRIXF6dDhw45f7744gtvl1Ql5OXlqU2bNpo1a1a580888YReeOEFzZ49W5s2bVJQUJCSkpKUn59/kSv1Lnd9kqTevXu7nGPvvvvuRazQ+zZs2KDk5GRt3LhRa9asUVFRkXr16qW8vDznmokTJ2r58uVavHixNmzYoIMHD+rWW2/1YtXeYaVXknTXXXe5nFNPPPGElyr2jvr16+vxxx/Xli1b9PXXX+v666/XzTffrPT0dEmcT6Xc9UniXDrTV199pVdffVWtW7d2Gb9g55RBldC5c2eTnJzsfFxSUmLq1atnZs6c6cWqqpapU6eaNm3aeLuMKk+SWbp0qfOxw+EwUVFR5sknn3SOZWdnG39/f/Puu+96ocKq4cw+GWPM0KFDzc033+yVeqqqzMxMI8ls2LDBGHP63KlWrZpZvHixc80PP/xgJJm0tDRvlVklnNkrY4y57rrrzD333OO9oqqosLAw88Ybb3A+uVHaJ2M4l8504sQJ07hxY7NmzRqX3lzIc4orzVVAYWGhtmzZop49ezrH7Ha7evbsqbS0NC9WVvXs3r1b9erV09VXX60hQ4bowIED3i6pytu7d68yMjJczq/Q0FB16dKF86sc69evV506ddS0aVONGTNGx44d83ZJXpWTkyNJqlWrliRpy5YtKioqcjmfmjVrpoYNG17x59OZvSo1f/581a5dWy1bttTkyZP122+/eaO8KqGkpEQLFy5UXl6eEhISOJ/O4sw+leJc+j/Jycnq06ePy7kjXdj/Rvme17NRKY4ePaqSkhJFRka6jEdGRmrnzp1eqqrq6dKli+bNm6emTZvq0KFDmjZtmv74xz9qx44dqlGjhrfLq7IyMjIkqdzzq3QOp/Xu3Vu33nqrYmNjtWfPHv3973/XjTfeqLS0NPn4+Hi7vIvO4XBowoQJ+sMf/qCWLVtKOn0++fn5qWbNmi5rr/TzqbxeSdJtt92m6Oho1atXT999950eeOAB7dq1S++//74Xq734tm/froSEBOXn5ys4OFhLly5VixYttG3bNs6n3zlbnyTOpd9buHChtm7dqq+++qrM3IX8bxShGZeMG2+80fnr1q1bq0uXLoqOjtZ7772nESNGeLEyXC4GDRrk/HWrVq3UunVrXXPNNVq/fr169Ojhxcq8Izk5WTt27OCzAxacrVcjR450/rpVq1aqW7euevTooT179uiaa6652GV6TdOmTbVt2zbl5ORoyZIlGjp0qDZs2ODtsqqcs/WpRYsWnEv/388//6x77rlHa9asUUBAwEV9bbZnVAG1a9eWj49PmU92Hj58WFFRUV6qquqrWbOmmjRpoh9//NHbpVRppecQ51fFXX311apdu/YVeY6NGzdOK1as0Lp161S/fn3neFRUlAoLC5Wdne2y/ko+n87Wq/J06dJFkq64c8rPz0+NGjVShw4dNHPmTLVp00bPP/8859MZztan8lyp59KWLVuUmZmp9u3by9fXV76+vtqwYYNeeOEF+fr6KjIy8oKdU4TmKsDPz08dOnTQ2rVrnWMOh0Nr16512csEVydPntSePXtUt25db5dSpcXGxioqKsrl/MrNzdWmTZs4v9z45ZdfdOzYsSvqHDPGaNy4cVq6dKk+/fRTxcbGusx36NBB1apVczmfdu3apQMHDlxx55O7XpVn27ZtknRFnVPlcTgcKigo4Hxyo7RP5blSz6UePXpo+/bt2rZtm/OnY8eOGjJkiPPXF+qcYntGFZGSkqKhQ4eqY8eO6ty5s5577jnl5eVp2LBh3i6tyrjvvvvUt29fRUdH6+DBg5o6dap8fHw0ePBgb5fmdSdPnnS52rB3715t27ZNtWrVUsOGDTVhwgQ9+uijaty4sWJjY/Xwww+rXr16uuWWW7xXtBecq0+1atXStGnT1L9/f0VFRWnPnj2aNGmSGjVqpKSkJC9WfXElJydrwYIFWrZsmWrUqOHcAxgaGqrAwECFhoZqxIgRSklJUa1atRQSEqK7775bCQkJio+P93L1F5e7Xu3Zs0cLFizQ//zP/yg8PFzfffedJk6cqK5du5a5RdblbPLkybrxxhvVsGFDnThxQgsWLND69eu1atUqzqffOVefOJf+T40aNVw+NyBJQUFBCg8Pd45fsHPqvO69gUr14osvmoYNGxo/Pz/TuXNns3HjRm+XVKUMHDjQ1K1b1/j5+ZmrrrrKDBw40Pz444/eLqtKWLdunZFU5mfo0KHGmNO3nXv44YdNZGSk8ff3Nz169DC7du3ybtFecK4+/fbbb6ZXr14mIiLCVKtWzURHR5u77rrLZGRkeLvsi6q8/kgyc+fOda45deqUGTt2rAkLCzPVq1c3/fr1M4cOHfJe0V7irlcHDhwwXbt2NbVq1TL+/v6mUaNG5v777zc5OTneLfwiGz58uImOjjZ+fn4mIiLC9OjRw6xevdo5z/l02rn6xLl0bmfeju9CnVM2Y4w5v9gNAAAAXN7Y0wwAAAC4QWgGAAAA3CA0AwAAAG4QmgEAAAA3CM0AAACAG4RmAAAAwA1CMwAAAOAGoRkAAABwg9AMAPBITEyMbrrpJo+fP2/ePNlsNu3bt6/yigKAC4TQDACXkNKg+fXXX3u7FAC4ohCaAQAAADcIzQAAAIAbhGYAuIwUFhZqypQp6tChg0JDQxUUFKQ//vGPWrduncu6ffv2yWaz6amnntKsWbN09dVXq3r16urVq5d+/vlnGWM0Y8YM1a9fX4GBgbr55pt1/Pjxcl9z9erVatu2rQICAtSiRQu9//77Zdakp6fr+uuvV2BgoOrXr69HH31UDoejzLply5apT58+qlevnvz9/XXNNddoxowZKikpqZwGAYCHbMYY4+0iAADWzJs3T8OGDdNXX32ljh07lpk/evSoWrdurcGDB6tx48Y6ceKE3nzzTf3000/avHmz2rZtK+l0aI6NjVXbtm1VWFioO++8U8ePH9cTTzyh9u3b6/rrr9f69es1aNAg/fjjj3rxxRf1t7/9TXPmzHG+VkxMjPz9/ZWZmanRo0erTp06mjt3rtLT07Vy5UrdcMMNkqSMjAy1bt1axcXFuueeexQUFKTXXntNgYGB+u6777R3717FxMRIkvr16yc/Pz916tRJwcHB+vTTT7V48WLdd999evLJJy94fwHgrAwA4JIxd+5cI8l89dVX5c4XFxebgoICl7GsrCwTGRlphg8f7hzbu3evkWQiIiJMdna2c3zy5MlGkmnTpo0pKipyjg8ePNj4+fmZ/Px851h0dLSRZP797387x3JyckzdunVNu3btnGMTJkwwksymTZucY5mZmSY0NNRIMnv37nWO//bbb2Xe06hRo0z16tVdXhsALja2ZwDAZcTHx0d+fn6SJIfDoePHj6u4uFgdO3bU1q1by6z/85//rNDQUOfjLl26SJL++te/ytfX12W8sLBQv/76q8vz69Wrp379+jkfh4SE6I477tA333yjjIwMSdJ//vMfxcfHq3Pnzs51ERERGjJkSJl6AgMDnb8+ceKEjh49qj/+8Y/67bfftHPnzgr1AgAqE6EZAC4zb731llq3bq2AgACFh4crIiJCH330kXJycsqsbdiwocvj0gDdoEGDcsezsrJcxhs1aiSbzeYy1qRJE0ly3n95//79aty4cZnXbtq0aZmx9PR09evXT6GhoQoJCVFERIT++te/SlK59QPAxeLrfgkA4FLxzjvv6G9/+5tuueUW3X///apTp458fHw0c+ZM7dmzp8x6Hx+fco9ztnFzAT8Gk52dreuuu04hISGaPn26rrnmGgUEBGjr1q164IEHyv3gIABcLIRmALiMLFmyRFdffbXef/99lyvAU6dOvSCv9+OPP8oY4/Ja//3vfyXJ+eG+6Oho7d69u8xzd+3a5fJ4/fr1OnbsmN5//3117drVOb53794LUDkAVAzbMwDgMlJ6hfj3V4Q3bdqktLS0C/J6Bw8e1NKlS52Pc3Nz9a9//Utt27ZVVFSUJOl//ud/tHHjRm3evNm57siRI5o/f77b2gsLC/Xyyy9fkNoBoCK40gwAl6A5c+Zo5cqVZca7deum999/X/369VOfPn20d+9ezZ49Wy1atNDJkycrvY4mTZpoxIgR+uqrrxQZGak5c+bo8OHDmjt3rnPNpEmT9Pbbb6t3794ut5yLjo7Wd99951yXmJiosLAwDR06VOPHj5fNZtPbb799QbeEAIBVhGYAuAS98sor5Y4fOHBAJ0+e1KuvvqpVq1apRYsWeuedd7R48WKtX7++0uto3LixXnzxRd1///3atWuXYmNjtWjRIiUlJTnX1K1bV+vWrdPdd9+txx9/XOHh4Ro9erTq1aunESNGONeFh4drxYoVuvfee/XQQw8pLCxMf/3rX9WjRw+X4wGAN/DlJgAAAIAb7GkGAAAA3CA0AwAAAG4QmgEAAAA3CM0AAACAG4RmAAAAwA1CMwAAAOAGoRkAAABwg9AMAAAAuEFoBgAAANwgNAMAAABuEJoBAAAANwjNAAAAgBv/DzgEwSpwKuqHAAAAAElFTkSuQmCC",
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAs0AAAIoCAYAAACSxtawAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy80BEi2AAAACXBIWXMAAA9hAAAPYQGoP6dpAAB9PUlEQVR4nO3deVwV5f4H8M+cA+ccFlllTQTcBXHDZKlME0XzetWs65aZmitmSml5M9e6lrfNSjMzxcrdUkvNDUMzUAv1qpRcNdzSAy7ssp55fn/4Y64n8AwgAsLn/XrxyjPzPTPPfBnpwzjnGUkIIUBERERERHelqekBEBERERHVdgzNREREREQqGJqJiIiIiFQwNBMRERERqWBoJiIiIiJSwdBMRERERKSCoZmIiIiISAVDMxERERGRCoZmIiIiIiIVDM1EVC89//zzkCQJ58+fv+dtnT9/HpIk4fnnn7/nbRERUe3E0ExEVaokQPbq1aumh0JV4MCBA5AkCZIkYePGjTU9nFonPT0db775JsLCwuDq6gpra2u4ubkhIiICH3/8MXJycmp6iBZ17doVkiTV9DCIHggMzUREdFdffPEFAECSJKxYsaKGR1O7xMbGolmzZnjjjTeQmZmJZ555BtOnT8fAgQNx5coVTJ48Ge3atavpYRJRFbGq6QEQEVHtlJWVhU2bNqFt27bw8PDA7t27cenSJfj4+NT00Grcf/7zH/Tt2xcA8PXXX2PYsGGlauLi4jBjxozqHhoR3Se80kxENSYzMxPvvPMOHn/8cXh7e0On08Hb2xvPPfcczp07V6p+zpw5kCQJcXFxWLlyJYKCgmBjYwN/f3989NFHAAAhBN577z20bNkSBoMBzZs3x5dffnnXMciyjIULF6J58+YwGAzw9/fHvHnzUFRUVKrWZDLhnXfeQbNmzWAwGNCsWTMsWLAAsiyXue0ff/wRo0aNQsuWLWFvbw97e3t06tQJy5YtK3ePunfvDo1GgwsXLpS5fvLkyZAkCXv27FGWffPNN3j88cfh7u4Og8EAb29vRERE4Jtvvin3fgFg7dq1uHXrFp577jk899xzkGUZMTExd61PS0vDyy+/jJYtW8LGxgYuLi4ICQnBu+++W6r2P//5D4YNG4ZGjRpBr9fDy8sLvXr1wvfff1+qduvWrejevTucnZ1hMBjQpk0bvPvuuzCZTGZ1sixj+fLl6Ny5M1xcXGBjY4NGjRqhb9++iIuLM6u91x5NnjwZeXl5+Pjjj8sMzMDtWx/+ul8AWLlyJUJCQpRzIiQkpMy+xsTEQJKkMtfFxcVBkiTMmTPHbLkkSejatStSU1MxYsQINGzYEDY2NggNDS01FkmSsH//fuXPJV+8N5/oLgQRURVKSUkRAERkZKRqbUJCgtDpdCIyMlJMnDhRTJs2TfTt21dotVrh4uIizp8/b1Y/e/ZsAUD069dPODo6iueee05MnjxZPPTQQwKA+Pzzz8XEiROFh4eHGD16tJgwYYJwdnYWAMT+/fvNtjVixAgBQPTt21e4uLiI8ePHi1deeUW0bNlSABADBw4sNd5Ro0YJAMLf319ER0eLiRMnioYNG4q//e1vAoAYMWKEWX1kZKRo2rSpGDZsmHj11VfFuHHjhK+vrwAgoqOjy9XPlStXCgDirbfeKrWuqKhIuLm5CW9vb2EymYQQQixZskQAEF5eXmLs2LFixowZYuTIkSIwMFAMGzasXPss8fDDDwutViuuXr0qcnNzhb29vfD39xeyLJeqPX36tPDy8hIAxKOPPiqmT58uoqKiRNeuXYWzs7NZ7aZNm4ROpxPW1tbiqaeeEjNmzBCjR48Wbdq0Ef369TOrfe211wQA8dBDD4lRo0aJqVOnik6dOgkA4umnnzarnT59ugAgmjZtKqKiosRrr70mhg8fLvz9/cXrr7+u1N1rj86cOSMACB8fH6Xv5fXiiy8qxzN58mSz83fy5MlmtSXf+5UrV5bazo8//igAiNmzZ5stByDatWsnmjVrJoKDg8WUKVPE0KFDhVarFTqdTpw8eVKpnT17tnI+zp49W/navHlzhY6JqL5gaCaiKlWR0JyRkSFu3LhRavm+ffuERqMRL7zwgtnyktDs4uIizp07pyy/ePGi0Ol0wtHRUbRo0UKkpaUp6w4dOqSE4zuVhGY3Nzdx6dIlZXlBQYHo0qWLACA2bdqkLC8JKe3atRM5OTnK8suXL4uGDRuWGZr/+OOPUsdWVFQkevToIbRarbhw4YJKh4TIysoSNjY2IiAgoNS677//XgAQr7zyirKsY8eOQqfTidTU1FL1169fV91fiRMnTpT6Pj733HMCgNi7d2+p+pIgu2zZslLr7uyv0WgUdnZ2ws7OThw9etRi7e7du5Ux3NlzWZbF+PHjS32PXFxchLe3t8jNzS213TvPs3vtUUxMjAAgnn32WdXaO+3fv18AEK1btxYZGRnK8ps3b4oWLVoIAOLAgQPK8sqGZgBi4sSJZoF++fLlAoAYN26cWf3jjz8ueP2MqHx4ewYR1RhHR0e4uLiUWt6tWzcEBgZi7969Zb7vpZdeQpMmTZTXPj4+ePTRR5GZmYnXX38dbm5uyrqQkBA0adIE//nPf+66rUaNGimvdTod3nrrLQAw+2fxkls8Zs2aBTs7O2X5Qw89hJdeeqnMbfv7+5daZmVlhfHjx8NkMuHHH38s8313atCgAfr374/ffvsNR48eNVv31VdfAQCeffZZs+XW1tawtrYutS1XV1fV/ZUo+QDgc889pywr+XPJuhJHjhzBr7/+ii5dumDMmDGltnVnf1etWoXc3Fy8/PLL6NChg8XaTz75BACwbNkys55LkoS3334bkiRh7dq1Zu/X6XTQarWltvvX8+xeemQ0GkuNtTxWrVoF4PZtRo6OjspyZ2dnzJ49GwAs3v5SXnZ2dnjnnXeg0fzvf/EjRoyAlZUVfvnll3vePlF9xQ8CElGNiouLw4cffojDhw/j+vXrKC4uVtbpdLoy39O+fftSy7y8vCyuO3z4cJnbeuyxx0otCwsLg5WVFY4dO6YsKwndZdWXtQwAsrOz8e6772LLli04d+4ccnNzzdZfuXKlzPf91fDhw7F27Vp89dVX6NixI4DbH9L7/vvvERQUZDZDw+DBgzF9+nS0adMGQ4cORbdu3fDoo4/CwcGhXPsCgIKCAnz99ddo0KABBgwYoCzv1q0bfHx8sHnzZqSnp8PZ2RnA7dAMAD179lTddkVqDx06BDs7u7vO2mFjY4PTp08rrwcPHowlS5agTZs2GDx4MLp164awsDDY2NiYva8qelQZJedT165dS63r1q0bAOD48eP3vJ8WLVrA3t7ebJmVlRU8PDyQkZFxz9snqq8YmomoxmzcuBGDBg2Cvb09IiMj4efnB1tbW+XDT3f78FtZ4cbKysriujvD+J08PDxKLdNqtXB1dUVmZqayLDMzExqNBg0bNizXNgoLC9G1a1ccPXoUHTp0wPDhw+Hq6gorKyucP38eq1atQkFBQZlj+quePXvCw8MD69atw7vvvgutVotNmzYhLy8Pw4cPN6t95ZVX4Orqik8//RTvvfce3n33XVhZWaFPnz744IMPyrz6/VdbtmzBjRs3MHLkSLPAqdFoMGzYMLz99ttYs2YNoqKilN4At6+6q6lI7c2bN1FcXIy5c+fetebOX0QWLVoEf39/rFy5Em+++SbefPNNGAwG/OMf/8B7772nfO/utUeenp4AgD///FP1GO6UlZUFjUZj9i8hJTw8PCBJErKysiq0zbLcLfxbWVmV+vAkEZUfQzMR1Zg5c+bAYDAgMTERzZs3N1u3bt26ahlDamoqWrZsabbMZDLhxo0bZmHY0dERsizj+vXrpUJPampqqe1u3boVR48exejRo7F8+XKzdevWrVP+qb48tFothgwZgg8//BB79+5FZGQkvvrqK2g0GgwdOtSsVpIkjBo1CqNGjcKNGzfw008/Ye3atdiwYQPOnDmDEydOlHn7wp1Kbr9YuXIlVq5cedeaktDs5OQEoHwh8s5aPz8/i7UODg6QJAnXr19X3S5wOxS+8soreOWVV3DlyhXs378fK1euxJdffgmj0Yhdu3YBuPcePfLIIwBu/yuJLMtmt0GoHY8sy7h27Rrc3d3N1qWlpUEIYRZ4S7Zb1i98d/5CR0TVg/c0E1GNOXfuHFq3bl0qMF+9ehV//PFHtYzhp59+KrUsISEBxcXFZvfcltwCUVZ9WctKpszr169fuerVlFxR/vrrr3Hp0iXs378f3bp1s3jF1tXVFf3798f69evxxBNP4LfffsPZs2ct7ufChQuIjY2Fh4cHRo8eXeaXv78/jh07ptxu0LlzZwDA7t27VY+jIrUhISG4ceMGzpw5o1r7V97e3hgyZAh27tyJZs2aYe/evcjLyytVV5keNWvWDF26dMGlS5dUf/m5818TSs6nsqahK1l25+1FJbe/lPXLyJ23Dt2Lkl8OeAWaSB1DMxHVGF9fX5w9e9bsSm1+fj4mTJhQ5jzJ98OiRYtw+fJl5XVhYSFef/11ADCbr7YktM6bN8/sloA///wTixYtKrVdX19fAMDBgwfNlu/fvx+ff/55hcfZsWNHBAQEYPPmzfjss88ghCh1awZwO3wJIcyWFRUV4ebNmwAAg8FgcT8rV66ELMsYN24cli9fXubXa6+9BuB/V6QffvhhPPzwwzhw4ECZx3Zn6BsxYgTs7e3x3nvvlXn/7p21kydPBgDlivBfGY1G/P777wBuh9P4+PhSNbm5ucjJyYG1tbVy5fZeewTcPm9sbGwwadIkrF+/vsyan376CU888YTyesSIEQCAuXPnmt2GkZmZqdyCUlIDAMHBwZAkCevWrUN+fr6y/MyZM2Wec5VR8gHJS5cuVcn2iOoy3p5BRPfFyZMn7/qQhFatWuG1117Diy++iBdffBEdOnTA008/jeLiYuzZswdCCLRr1+6uM15UpdDQULRr1w6DBg2CnZ0dvv/+eyQnJ+Opp57CwIEDlbpu3bph5MiRykNVBgwYgIKCAqxfvx6hoaHYtm2b2Xb79u0LPz8/LFy4EKdOnUKbNm2QnJyMbdu2YcCAAdi0aVOFxzp8+HDMmDEDCxcuhK2trdn4SvTv3x8ODg4IDQ2Fr68vioqKsGfPHvz22294+umnlTBfFlmWsXLlStUHXAwaNAhTpkzB6tWr8e6778JgMGD16tXo2rUrxo4di6+++gphYWHIz89HUlISjh07poRed3d3fPnllxg8eDA6d+6Mv//972jZsiWuX7+Ow4cPw8/PD1u2bAEA9OrVC2+88Qbmz5+PZs2aoVevXvD19cWNGzdw9uxZ/PTTT3jzzTfRunVr5OXl4ZFHHkGLFi0QHByMxo0bIycnB9u2bYPRaMQrr7wCvV5/zz0q0b59e3z//ff4xz/+gcGDB2PevHno0qULXFxccPPmTfz88884efIkmjVrprynS5cuePHFF/Hxxx+jTZs2GDhwIIQQ+Oabb3D58mVMnjwZXbp0UepLrpavWbMGwcHB6NWrF9LS0rB582b06tWrwg+rKcsTTzyBTZs2YeDAgejduzcMBgPatWunPO2QiO5Qk/PdEVHdUzJPs6Wvxx9/XAhxe77dpUuXisDAQGEwGISnp6cYPXq0SEtLK3P+2JJ5mn/88cdS+y2ZdzklJaXUurK2VVJ/7tw58fbbb4tmzZoJnU4nfH19xZw5c0RBQUGp7RQXF4sFCxaIJk2aCJ1OJ5o0aSL+9a9/ibNnz951nuaBAwcKNzc3YWtrKx5++GGxbt26u86xq+bixYtCo9EIAGLIkCFl1ixZskT8/e9/F76+vsJgMAhXV1fRuXNn8emnn4rCwkKL29+1a5fZ98eSYcOGCQBi9erVyjKj0SheeuklpT8uLi4iJCREvP/++6Xef+zYMfGPf/xDeHh4CGtra+Hl5SV69+4ttm3bVqp2z549om/fvsLNzU1YW1sLT09PERYWJubPny8uXrwohBCisLBQvPPOO6Jnz56iUaNGQqfTCQ8PD9GlSxexZs0aswey3EuP/urGjRti/vz5IjQ0VDg7OwsrKyvh6uoqunbtKj766COz+aVLrFixQjz88MPC1tZWOS9WrFhR5vZv3bolJk+eLDw8PIRerxdt27YVq1evtjhP892+f76+vsLX19dsWVFRkZg+fbpo3LixsLKyKvM8JqLbJCH+8m9URERERERkhvc0ExERERGpYGgmIiIiIlLB0ExEREREpIKhmYiIiIhIBUMzEREREZEKhmYiIiIiIhV8uMl9Issyrly5ggYNGkCSpJoeDhERERH9hRAC2dnZ8Pb2Vp4aejcMzffJlStX4OPjU9PDICIiIiIVly5dQqNGjSzWMDTfJw0aNABw+5vg4OBQ7vfJsoxr167Bzc1N9Tee+oj9sYz9UcceWcb+WMb+WMb+qGOPLKvu/mRlZcHHx0fJbZYwNN8nJbdkODg4VDg05+fnw8HBgX+ZysD+WMb+qGOPLGN/LGN/LGN/1LFHltVUf8pzKy2/W0REREREKhiaiYiIiIhUMDQTEREREalgaCYiIiIiUlFrQ/Pbb78NSZIwZcoUZVl+fj6ioqLg6uoKe3t7DBw4EKmpqWbvu3jxIvr06QNbW1u4u7tj2rRpKC4uNquJi4tDx44dodfr0axZM8TExJTa/+LFi+Hn5weDwYCQkBAcOXLkfhwmERERET0AamVo/uWXX/DZZ5+hbdu2ZsunTp2K77//Hhs3bsT+/ftx5coVPPXUU8p6k8mEPn36oLCwEPHx8Vi1ahViYmIwa9YspSYlJQV9+vRBt27dcPz4cUyZMgUvvPACdu3apdSsX78e0dHRmD17No4ePYp27dohMjISaWlp9//giYiIiKjWqXWhOScnB8OGDcPnn38OZ2dnZXlmZia++OILvP/++3jiiScQHByMlStXIj4+HocOHQIA7N69G7/99hu+/vprtG/fHr1798b8+fOxePFiFBYWAgCWLl0Kf39/vPfee2jdujUmTZqEp59+Gh988IGyr/fffx9jxozByJEjERAQgKVLl8LW1hYrVqyo3mYQERERUa1Q6+ZpjoqKQp8+fRAREYE333xTWZ6YmIiioiJEREQoy1q1aoXGjRsjISEBoaGhSEhIQFBQEDw8PJSayMhITJgwAUlJSejQoQMSEhLMtlFSU3IbSGFhIRITEzFjxgxlvUajQUREBBISEu467oKCAhQUFCivs7KyANyeb1CW5XIfvyzLEEJU6D31CftjGfujjj2yjP2xjP2xjP1Rxx5ZVt39qch+alVoXrduHY4ePYpffvml1Dqj0QidTgcnJyez5R4eHjAajUrNnYG5ZH3JOks1WVlZyMvLQ3p6OkwmU5k1p0+fvuvYFyxYgLlz55Zafu3aNeTn59/1fX8lyzIyMzMhhOCk52Vgfyxjf9SxR5axP5axP5axP+rYI8uquz/Z2dnlrq01ofnSpUt46aWXsGfPHhgMhpoeToXNmDED0dHRyuuSxzK6ublV+ImAkiTx8Zp3wf5Yxv6oY48sY38sY38sY3/UsUeWVXd/KpI5a01oTkxMRFpaGjp27KgsM5lMOHDgAD755BPs2rULhYWFyMjIMLvanJqaCk9PTwCAp6dnqVkuSmbXuLPmrzNupKamwsHBATY2NtBqtdBqtWXWlGyjLHq9Hnq9vtRyjUZT4W+6JEmVel99wf5Yxv6oY48sY38sY38sY3/UsUeWVWd/KrKPWvPd6t69O06ePInjx48rX506dcKwYcOUP1tbWyM2NlZ5T3JyMi5evIiwsDAAQFhYGE6ePGk2y8WePXvg4OCAgIAApebObZTUlGxDp9MhODjYrEaWZcTGxio1RERERFS/1JorzQ0aNECbNm3MltnZ2cHV1VVZPnr0aERHR8PFxQUODg548cUXERYWhtDQUABAz549ERAQgOHDh2PhwoUwGo2YOXMmoqKilKvA48ePxyeffILp06dj1KhR2LdvHzZs2IDt27cr+42OjsaIESPQqVMndO7cGR9++CFyc3MxcuTIauoGEREREdUmtSY0l8cHH3wAjUaDgQMHoqCgAJGRkViyZImyXqvVYtu2bZgwYQLCwsJgZ2eHESNGYN68eUqNv78/tm/fjqlTp2LRokVo1KgRli9fjsjISKVm0KBBuHbtGmbNmgWj0Yj27dtj586dpT4cSERERERVQ5ZlnDp1CmlpaXB3d0ebNm1q1S0skhBC1PQg6qKsrCw4OjoiMzOzwh8ELDlZatOJUluwP5axP+rYI8vYH8vYH8vYH3XsUdni4+OxeOky/PfCFfg19sH5i5fQwtcbUePHIjw8/L7ttyJ5jd8tIiIiIqox8fHxmP7GPJzOMcCv11g0iRgGv15jkZxrwPQ35iE+Pr6mhwiAoZmIiIiIaogsy1i8dBnyHP3Qru8oOHo1htbKGo5ejdH2b6OQ7+SHJZ99XiseBsPQTEREREQ1IikpCcnn/4T/wxGQJMlsnSRJ8O3UHadTLiMpKamGRvg/DM1EREREVCPS09NRWGyCXcOyn4Vh7+qJwmIT0tPTq3lkpTE0ExEREVGNcHZ2hs5Ki9zrxjLX59wwQmelhbOzczWPrDSGZiIiIiKqEYGBgWjp9xDO/7oXf53QTQiBC7/GopV/IwQGBtbQCP+HoZmIiIiIaoRGo0HU+LEwZJzHiW0rkHH1AkxFhci4egEntq2AIeM8Jo4bUyum56v5ERARERFRvRUeHo6F82ehpV0+Luz8HH/ErsGFnZ+jlX0BFs6fdV/naa6IB+qJgERERERU94SHhyM0NLRWPxGQoZmIiIiIapxGo0GbNm1q7RMTa9doiIiIiIhqIYZmIiIiIiIVDM1ERERERCoYmomIiIiIVDA0ExERERGpYGgmIiIiIlLB0ExEREREpIKhmYiIiIhIBUMzEREREZEKhmYiIiIiIhUMzUREREREKhiaiYiIiIhUMDQTEREREalgaCYiIiIiUsHQTERERESkgqGZiIiIiEgFQzMRERERkQqGZiIiIiIiFQzNREREREQqGJqJiIiIiFQwNBMRERERqWBoJiIiIiJSwdBMRERERKSCoZmIiIiISAVDMxERERGRCoZmIiIiIiIVDM1ERERERCoYmomIiIiIVDA0ExERERGpYGgmIiIiIlLB0ExEREREpIKhmYiIiIhIBUMzEREREZEKhmYiIiIiIhW1KjR/+umnaNu2LRwcHODg4ICwsDD88MMPyvquXbtCkiSzr/Hjx5tt4+LFi+jTpw9sbW3h7u6OadOmobi42KwmLi4OHTt2hF6vR7NmzRATE1NqLIsXL4afnx8MBgNCQkJw5MiR+3LMRERERFT71arQ3KhRI7z99ttITEzEr7/+iieeeAL9+vVDUlKSUjNmzBhcvXpV+Vq4cKGyzmQyoU+fPigsLER8fDxWrVqFmJgYzJo1S6lJSUlBnz590K1bNxw/fhxTpkzBCy+8gF27dik169evR3R0NGbPno2jR4+iXbt2iIyMRFpaWvU0goiIiIhqlVoVmvv27Ysnn3wSzZs3R4sWLfDWW2/B3t4ehw4dUmpsbW3h6empfDk4OCjrdu/ejd9++w1ff/012rdvj969e2P+/PlYvHgxCgsLAQBLly6Fv78/3nvvPbRu3RqTJk3C008/jQ8++EDZzvvvv48xY8Zg5MiRCAgIwNKlS2Fra4sVK1ZUXzOIiIiIqNawqukB3I3JZMLGjRuRm5uLsLAwZfnq1avx9ddfw9PTE3379sUbb7wBW1tbAEBCQgKCgoLg4eGh1EdGRmLChAlISkpChw4dkJCQgIiICLN9RUZGYsqUKQCAwsJCJCYmYsaMGcp6jUaDiIgIJCQk3HW8BQUFKCgoUF5nZWUBAGRZhizL5T5uWZYhhKjQe+oT9scy9kcde2QZ+2MZ+2MZ+6OOPbKsuvtTkf3UutB88uRJhIWFIT8/H/b29ti8eTMCAgIAAEOHDoWvry+8vb1x4sQJvPrqq0hOTsa3334LADAajWaBGYDy2mg0WqzJyspCXl4e0tPTYTKZyqw5ffr0Xce9YMECzJ07t9Tya9euIT8/v9zHL8syMjMzIYSARlOr/iGgVmB/LGN/1LFHlrE/lrE/lrE/6tgjy6q7P9nZ2eWurXWhuWXLljh+/DgyMzOxadMmjBgxAvv370dAQADGjh2r1AUFBcHLywvdu3fHuXPn0LRp0xocNTBjxgxER0crr7OysuDj4wM3NzezW0jUyLIMSZLg5ubGv0xlYH8sY3/UsUeWsT+WsT+WsT/q2CPLqrs/BoOh3LW1LjTrdDo0a9YMABAcHIxffvkFixYtwmeffVaqNiQkBABw9uxZNG3aFJ6enqVmuUhNTQUAeHp6Kv8tWXZnjYODA2xsbKDVaqHVasusKdlGWfR6PfR6fanlGo2mwt90SZIq9b76gv2xjP1Rxx5Zxv5Yxv5Yxv6oY48sq87+VGQftf67Jcuy2b3Cdzp+/DgAwMvLCwAQFhaGkydPms1ysWfPHjg4OCi3eISFhSE2NtZsO3v27FHum9bpdAgODjarkWUZsbGxZvdWExEREVH9UauuNM+YMQO9e/dG48aNkZ2djTVr1iAuLg67du3CuXPnsGbNGjz55JNwdXXFiRMnMHXqVHTp0gVt27YFAPTs2RMBAQEYPnw4Fi5cCKPRiJkzZyIqKkq5Cjx+/Hh88sknmD59OkaNGoV9+/Zhw4YN2L59uzKO6OhojBgxAp06dULnzp3x4YcfIjc3FyNHjqyRvhARERFRzapVoTktLQ3PPfccrl69CkdHR7Rt2xa7du1Cjx49cOnSJezdu1cJsD4+Phg4cCBmzpypvF+r1WLbtm2YMGECwsLCYGdnhxEjRmDevHlKjb+/P7Zv346pU6di0aJFaNSoEZYvX47IyEilZtCgQbh27RpmzZoFo9GI9u3bY+fOnaU+HEhERERE9YMkhBA1PYi6KCsrC46OjsjMzKzwBwHT0tLg7u7Oe53KwP5Yxv6oY48sY38sY38sY3/UsUeWVXd/KpLX+N0iIiIiIlLB0ExEREREpIKhmYiIiIhIBUMzEREREZEKhmYiIiIiIhUMzUREREREKhiaiYiIiIhUMDQTEREREalgaCYiIiIiUsHQTERERESkgqGZiIiIiEgFQzMRERERkQqGZiIiIiIiFQzNREREREQqGJqJiIiIiFQwNBMRERERqWBoJiIiIiJSwdBMRERERKSCoZmIiIiISAVDMxERERGRCoZmIiIiIiIVDM1ERERERCoYmomIiIiIVDA0ExERERGpYGgmIiIiIlLB0ExEREREpIKhmYiIiIhIBUMzEREREZEKhmYiIiIiIhUMzUREREREKhiaiYiIiIhUMDQTEREREalgaCYiIiIiUsHQTERERESkgqGZiIiIiEgFQzMRERERkQqGZiIiIiIiFQzNREREREQqGJqJiIiIiFQwNBMRERERqWBoJiIiIiJSwdBMRERERKSCoZmIiIiISAVDMxERERGRiloVmj/99FO0bdsWDg4OcHBwQFhYGH744QdlfX5+PqKiouDq6gp7e3sMHDgQqampZtu4ePEi+vTpA1tbW7i7u2PatGkoLi42q4mLi0PHjh2h1+vRrFkzxMTElBrL4sWL4efnB4PBgJCQEBw5cuS+HDMRERER1X61KjQ3atQIb7/9NhITE/Hrr7/iiSeeQL9+/ZCUlAQAmDp1Kr7//nts3LgR+/fvx5UrV/DUU08p7zeZTOjTpw8KCwsRHx+PVatWISYmBrNmzVJqUlJS0KdPH3Tr1g3Hjx/HlClT8MILL2DXrl1Kzfr16xEdHY3Zs2fj6NGjaNeuHSIjI5GWllZ9zSAiIiKi2kPUcs7OzmL58uUiIyNDWFtbi40bNyrrfv/9dwFAJCQkCCGE2LFjh9BoNMJoNCo1n376qXBwcBAFBQVCCCGmT58uAgMDzfYxaNAgERkZqbzu3LmziIqKUl6bTCbh7e0tFixYUO5xZ2ZmCgAiMzOzQsdrMpnE1atXhclkqtD76gv2xzL2Rx17ZBn7Yxn7Yxn7o449sqy6+1ORvGZVw5n9rkwmEzZu3Ijc3FyEhYUhMTERRUVFiIiIUGpatWqFxo0bIyEhAaGhoUhISEBQUBA8PDyUmsjISEyYMAFJSUno0KEDEhISzLZRUjNlyhQAQGFhIRITEzFjxgxlvUajQUREBBISEu463oKCAhQUFCivs7KyAACyLEOW5XIftyzLEEJU6D31CftjGfujjj2yjP2xjP2xjP1Rxx5ZVt39qch+al1oPnnyJMLCwpCfnw97e3ts3rwZAQEBOH78OHQ6HZycnMzqPTw8YDQaAQBGo9EsMJesL1lnqSYrKwt5eXlIT0+HyWQqs+b06dN3HfeCBQswd+7cUsuvXbuG/Pz88h08bn/zMjMzIYSARlOr7p6pFdgfy9gfdeyRZeyPZeyPZeyPOvbIsuruT3Z2drlra11obtmyJY4fP47MzExs2rQJI0aMwP79+2t6WKpmzJiB6Oho5XVWVhZ8fHzg5uYGBweHcm9HlmVIkgQ3Nzf+ZSoD+2MZ+6OOPbKM/bGM/bGM/VHHHllW3f0xGAzlrq11oVmn06FZs2YAgODgYPzyyy9YtGgRBg0ahMLCQmRkZJhdbU5NTYWnpycAwNPTs9QsFyWza9xZ89cZN1JTU+Hg4AAbGxtotVpotdoya0q2URa9Xg+9Xl9quUajqfA3XZKkSr2vvmB/LGN/1LFHlrE/lrE/lrE/6tgjy6qzPxXZR63/bsmyjIKCAgQHB8Pa2hqxsbHKuuTkZFy8eBFhYWEAgLCwMJw8edJslos9e/bAwcEBAQEBSs2d2yipKdmGTqdDcHCwWY0sy4iNjVVqiIiIiKh+qVVXmmfMmIHevXujcePGyM7Oxpo1axAXF4ddu3bB0dERo0ePRnR0NFxcXODg4IAXX3wRYWFhCA0NBQD07NkTAQEBGD58OBYuXAij0YiZM2ciKipKuQo8fvx4fPLJJ5g+fTpGjRqFffv2YcOGDdi+fbsyjujoaIwYMQKdOnVC586d8eGHHyI3NxcjR46skb4QERERUc2qVaE5LS0Nzz33HK5evQpHR0e0bdsWu3btQo8ePQAAH3zwATQaDQYOHIiCggJERkZiyZIlyvu1Wi22bduGCRMmICwsDHZ2dhgxYgTmzZun1Pj7+2P79u2YOnUqFi1ahEaNGmH58uWIjIxUagYNGoRr165h1qxZMBqNaN++PXbu3Fnqw4FEREREVD9IQghR04Ooi7KysuDo6IjMzMwKfxAwLS0N7u7uvNepDOyPZeyPOvbIMvbHMvbHMvZHHXtkWXX3pyJ5jd8tIiIiIiIVDM1ERERERCoYmomIiIiIVDA0ExERERGpYGgmIiIiIlLB0ExEREREpIKhmYiIiIhIBUMzEREREZEKhmYiIiIiIhUMzUREREREKhiaiYiIiIhUMDQTEREREalgaCYiIiIiUsHQTERERESkgqGZiIiIiEgFQzMRERERkQqGZiIiIiIiFQzNREREREQqGJqJiIiIiFQwNBMRERERqWBoJiIiIiJSwdBMRERERKSCoZmIiIiISAVDMxERERGRCoZmIiIiIiIVDM1ERERERCoYmomIiIiIVDA0ExERERGpYGgmIiIiIlLB0ExEREREpIKhmYiIiIhIBUMzEREREZEKhmYiIiIiIhUMzUREREREKhiaiYiIiIhUMDQTEREREalgaCYiIiIiUsHQTERERESkgqGZiIiIiEgFQzMRERERkQqGZiIiIiIiFQzNREREREQqGJqJiIiIiFQwNBMRERERqahVoXnBggV4+OGH0aBBA7i7u6N///5ITk42q+natSskSTL7Gj9+vFnNxYsX0adPH9ja2sLd3R3Tpk1DcXGxWU1cXBw6duwIvV6PZs2aISYmptR4Fi9eDD8/PxgMBoSEhODIkSNVfsxEREREVPvVqtC8f/9+REVF4dChQ9izZw+KiorQs2dP5ObmmtWNGTMGV69eVb4WLlyorDOZTOjTpw8KCwsRHx+PVatWISYmBrNmzVJqUlJS0KdPH3Tr1g3Hjx/HlClT8MILL2DXrl1Kzfr16xEdHY3Zs2fj6NGjaNeuHSIjI5GWlnb/G0FEREREtYpVTQ/gTjt37jR7HRMTA3d3dyQmJqJLly7KcltbW3h6epa5jd27d+O3337D3r174eHhgfbt22P+/Pl49dVXMWfOHOh0OixduhT+/v547733AACtW7fGwYMH8cEHHyAyMhIA8P7772PMmDEYOXIkAGDp0qXYvn07VqxYgddee+1+HD4RERER1VK1KjT/VWZmJgDAxcXFbPnq1avx9ddfw9PTE3379sUbb7wBW1tbAEBCQgKCgoLg4eGh1EdGRmLChAlISkpChw4dkJCQgIiICLNtRkZGYsqUKQCAwsJCJCYmYsaMGcp6jUaDiIgIJCQklDnWgoICFBQUKK+zsrIAALIsQ5blch+zLMsQQlToPfUJ+2MZ+6OOPbKM/bGM/bGM/VHHHllW3f2pyH4qFZovXrwINzc32NjYlLk+Ly8P165dQ+PGjSuzeQC3D2LKlCl45JFH0KZNG2X50KFD4evrC29vb5w4cQKvvvoqkpOT8e233wIAjEajWWAGoLw2Go0Wa7KyspCXl4f09HSYTKYya06fPl3meBcsWIC5c+eWWn7t2jXk5+dX6LgzMzMhhIBGU6vunqkV2B/L2B917JFl7I9l7I9l7I869siy6u5PdnZ2uWsrFZr9/f3x1VdfYejQoWWu/+677zB06FCYTKbKbB4AEBUVhVOnTuHgwYNmy8eOHav8OSgoCF5eXujevTvOnTuHpk2bVnp/92rGjBmIjo5WXmdlZcHHxwdubm5wcHAo93ZkWYYkSXBzc+NfpjKwP5axP+rYI8vYH8vYH8vYH3XskWXV3R+DwVDu2kqFZiGExfVFRUX3dKCTJk3Ctm3bcODAATRq1MhibUhICADg7NmzaNq0KTw9PUvNcpGamgoAyn3Qnp6eyrI7axwcHGBjYwOtVgutVltmzd3updbr9dDr9aWWazSaCvdCkqRKva++YH8sY3/UsUeWsT+WsT+WsT/q2CPLqrM/FdlHuSuzsrJw8eJFXLx4EQBw48YN5fWdXydOnMC6devg5eVV4YELITBp0iRs3rwZ+/btg7+/v+p7jh8/DgDK/sLCwnDy5EmzWS727NkDBwcHBAQEKDWxsbFm29mzZw/CwsIAADqdDsHBwWY1siwjNjZWqSEiIiKi+qPcV5o/+OADzJs3D8Dt3wCmTJmifHDur4QQePPNNys8mKioKKxZswZbt25FgwYNlHuQHR0dYWNjg3PnzmHNmjV48skn4erqihMnTmDq1Kno0qUL2rZtCwDo2bMnAgICMHz4cCxcuBBGoxEzZ85EVFSUciV4/Pjx+OSTTzB9+nSMGjUK+/btw4YNG7B9+3ZlLNHR0RgxYgQ6deqEzp0748MPP0Rubq4ymwYRERER1R/lDs09e/aEvb09hBCYPn06hgwZgo4dO5rVSJIEOzs7BAcHo1OnThUezKeffgrg9gNM7rRy5Uo8//zz0Ol02Lt3rxJgfXx8MHDgQMycOVOp1Wq12LZtGyZMmICwsDDY2dlhxIgRSuAHbt+TvX37dkydOhWLFi1Co0aNsHz5cmW6OQAYNGgQrl27hlmzZsFoNKJ9+/bYuXNnqQ8HEhEREVHdV+7QHBYWptyakJubi4EDB5rNalEV1O6V9vHxwf79+1W34+vrix07dlis6dq1K44dO2axZtKkSZg0aZLq/oiIiIiobqvUBwFnz55d1eMgIiIiIqq1Kv1wk/T0dKxduxZ//PEH0tPTS10lliQJX3zxxT0PkIiIiIioplUqNO/atQtPP/00cnNz4eDgAGdn51I1kiTd8+CIiIiIiGqDSoXml19+GZ6envj2228RFBRU1WMiIiIiIqpVKjVr9NmzZzF58mQGZiIiIiKqFyoVmps3b16hZ3UTERERET3IKhWa33zzTSxZsgTnz5+v4uEQEREREdU+lbqnOTY2Fm5ubmjdujV69OgBHx8faLVasxpJkrBo0aIqGSQRERERUU2qVGj+5JNPlD9v27atzBqGZiIiIiKqKyoVmmVZrupxEBERERHVWpW6p5mIiIiIqD5haCYiIiIiUlGp2zM0Gk25nvhnMpkqs3kiIiIiolqlUqF51qxZpUKzyWTC+fPnsWXLFrRs2RJ/+9vfqmSAREREfyXLMpKSkpCeng5nZ2cEBgZCo+E/nhLR/VOp0Dxnzpy7rrt69SpCQ0PRokWLyo6JiIjoruLj47F46TIkn/8ThcUm6Ky0aOn3EKLGj0V4eHhND4+I6qgq/7Xcy8sL48ePx/z586t600REVM/Fx8dj+hvzcDrHAL/e49Bh5Dz49R6H5FwDpr8xD/Hx8TU9RCKqo+7Lv2XZ2dkhJSXlfmyaiIjqKVmWsXjpMuQ5+qFd31Fw9PKFlbUejl6+aPu3Uch38sOSzz7ntKhEdF9UeWg+deoUPvroI96eQUREVSopKQnJ5/+E/8MRpT5XI0kSfDt1x+mUy0hKSqqhERJRXVape5r9/f3LnD0jIyMDmZmZsLW1xZYtW+51bERERIr09HQUFptg19CzzPX2rp4oLDYhPT29mkdGRPVBpULz448/XuZv+c7OzmjatCkGDx4MFxeXKhkgERERADg7O0NnpUXudSMcvXxLrc+5YYTOSgtnZ+caGB0R1XWVCs0xMTFVPAwiIiLLAgMD0dLvIST/uhdt/zbK7OKNEAIXfo1FK/9GCAwMrMFRElFdVSX3NOfl5SEvL68qNkVERFQmjUaDqPFjYcg4jxPbViDj6nkUF+Yj4+rt14aM85g4bgznayai+6LSP1kuXryIkSNHwsPDA/b29rC3t4eHhwdGjRqFCxcuVOUYiYiIAADh4eFYOH8WWtrl48IPy3AsZjYu/LAMrewLsHD+LM7TTET3TaVuzzh9+jQeffRRZGRkoEePHmjdurWy/Msvv8T333+PgwcPomXLllU6WCIiovDwcISGhvKJgERUrSoVml977TVoNBocO3YMQUFBZutOnTqF7t2747XXXsPmzZurZJBERER30mg0pf7/Q0R0P1Xq1/L9+/dj8uTJZf7AatOmDSZNmoS4uLh7HRsRERERUa1QqdBcVFQEGxubu663tbVFUVFRpQdFRERERFSbVCo0d+jQAcuXL0dmZmapdVlZWfjiiy/QsWPHex4cEREREVFtUKl7mufOnYtevXqhVatWGDlypPLI7OTkZKxatQo3btzA4sWLq3SgREREREQ1pVKh+YknnsCOHTswbdo0vP3222br2rdvj6+++grdunWrkgESEREREdW0SoVmAIiIiMCxY8dgNBqVeZl9fX3h6elZZYMjIiIiIqoNKh2aS3h6ejIoExEREVGdVu4PAp45cwYGgwHTp0+3WDdt2jTY2NggJSXlngdHRERERFQblDs0f/TRR/D09MRbb71lse6tt96Cp6cnPvroo3seHBERERFRbVDu0Lx7924MHjwY1tbWFut0Oh0GDx6MH3744Z4HR0RERERUG5Q7NF+8eBEtW7YsV23z5s2VDwcSERERET3oyh2a9Xo9cnJyylWbm5sLnU5X6UEREREREdUm5Q7NrVq1wt69e8tVGxsbi9atW1d6UEREREREtUm5Q/OgQYOwbds2bNmyxWLd1q1bsW3bNgwaNOhex0ZEREREVCuUOzRPnDgRHTp0wDPPPIMJEybg559/RlZWFoQQyMrKws8//4wJEybg6aefRrt27TBx4sT7OW4iIiIiompT7oeb6PV67Nq1CyNGjMBnn32GZcuWlaoRQqBXr1748ssvodfrq3SgREREREQ1pUJPBHR1dcW2bdtw5MgRfPfdd/j999+RlZUFBwcHtGrVCn379kVoaOj9GisRERERUY2o1GO0O3fujM6dO1f1WIiIiIiIaqVy39NMRERERFRf1arQvGDBAjz88MNo0KAB3N3d0b9/fyQnJ5vV5OfnIyoqCq6urrC3t8fAgQORmppqVnPx4kX06dMHtra2cHd3x7Rp01BcXGxWExcXh44dO0Kv16NZs2aIiYkpNZ7FixfDz88PBoMBISEhOHLkSJUfMxERERHVfrUqNO/fvx9RUVE4dOgQ9uzZg6KiIvTs2RO5ublKzdSpU/H9999j48aN2L9/P65cuYKnnnpKWW8ymdCnTx8UFhYiPj4eq1atQkxMDGbNmqXUpKSkoE+fPujWrRuOHz+OKVOm4IUXXsCuXbuUmvXr1yM6OhqzZ8/G0aNH0a5dO0RGRiItLa16mkFEREREtYeoxdLS0gQAsX//fiGEEBkZGcLa2lps3LhRqfn9998FAJGQkCCEEGLHjh1Co9EIo9Go1Hz66afCwcFBFBQUCCGEmD59uggMDDTb16BBg0RkZKTyunPnziIqKkp5bTKZhLe3t1iwYEG5xp6ZmSkAiMzMzAods8lkElevXhUmk6lC76sv2B/L2B917JFl7I9l7I9l7I869siy6u5PRfJapT4IWF0yMzMBAC4uLgCAxMREFBUVISIiQqlp1aoVGjdujISEBISGhiIhIQFBQUHw8PBQaiIjIzFhwgQkJSWhQ4cOSEhIMNtGSc2UKVMAAIWFhUhMTMSMGTOU9RqNBhEREUhISChzrAUFBSgoKFBeZ2VlAQBkWYYsy+U+ZlmWIYSo0HvqE/bHMvZHHXtkGftjGftjGfujjj2yrLr7U5H9VGlo/uOPP1BQUFAlj9CWZRlTpkzBI488gjZt2gAAjEYjdDodnJyczGo9PDxgNBqVmjsDc8n6knWWarKyspCXl4f09HSYTKYya06fPl3meBcsWIC5c+eWWn7t2jXk5+eX86hvH3dmZiaEENBoatXdM7UC+2MZ+6OOPbKM/bGM/bGM/VHHHllW3f3Jzs4ud22lQvNHH32E+Ph4rFu3Tlk2cuRIfPnllwCADh06YMeOHXB3d6/M5gEAUVFROHXqFA4ePFjpbVSnGTNmIDo6WnmdlZUFHx8fuLm5wcHBodzbkWUZkiTBzc2Nf5nKwP5Yxv6oY48sY38sY38sY3/UsUeWVXd/DAZDuWsrFZqXL1+Obt26Ka937dqFVatWYdy4cQgKCsLMmTMxd+5cLF68uDKbx6RJk7Bt2zYcOHAAjRo1UpZ7enqisLAQGRkZZlebU1NT4enpqdT8dZaLktk17qz564wbqampcHBwgI2NDbRaLbRabZk1Jdv4K71eX+ZTEDUaTYW/6ZIkVep99QX7Yxn7o449soz9sYz9sYz9UcceWVad/anIPio1mgsXLpjdgrFhwwb4+/vj008/xcSJEzFp0iTs2LGjwtsVQmDSpEnYvHkz9u3bB39/f7P1wcHBsLa2RmxsrLIsOTkZFy9eRFhYGAAgLCwMJ0+eNJvlYs+ePXBwcEBAQIBSc+c2SmpKtqHT6RAcHGxWI8syYmNjlRoiIiIiqj8qdaVZCGH2evfu3ejXr5/y2s/PT7l/uCKioqKwZs0abN26FQ0aNFC24ejoCBsbGzg6OmL06NGIjo6Gi4sLHBwc8OKLLyIsLEx5fHfPnj0REBCA4cOHY+HChTAajZg5cyaioqKUK8Hjx4/HJ598gunTp2PUqFHYt28fNmzYgO3btytjiY6OxogRI9CpUyd07twZH374IXJzczFy5MgKHxcRERERPdgqFZpbtGiBzZs3Y/z48di1axeuXLmC3r17K+svX75c6sN65fHpp58CALp27Wq2fOXKlXj++ecBAB988AE0Gg0GDhyIgoICREZGYsmSJUqtVqvFtm3bMGHCBISFhcHOzg4jRozAvHnzlBp/f39s374dU6dOxaJFi9CoUSMsX74ckZGRSs2gQYNw7do1zJo1C0ajEe3bt8fOnTtLfTiQiIiIiOo+Sfz1snE5rFu3DkOHDoWjoyNyc3PRokULHD9+HFZWtzN4165dYWNjgx9++KHKB/ygyMrKgqOjIzIzMyv8QcC0tDS4u7vzXqcysD+WsT/q2CPL2B/L2B/L2B917JFl1d2fiuS1Sl1pHjx4MFxdXbFjxw44OTlh4sSJSmC+efMmXFxcMHz48MpsmoiIiIio1qn0PM09evRAjx49Si13cXHBt99+e0+DIiIiIiKqTars4Sa3bt3CunXrUFBQgCeffBK+vr5VtWkiIiIiohpVqdA8evRoHD58GKdOnQJw+7HToaGhymtHR0fs27cPHTp0qLqREhERERHVkErdYf3jjz/iqaeeUl6vWbMGp06dwurVq3Hq1Cl4enqW+UhpIiIiIqIHUaVCs9FohJ+fn/J6y5Yt6NSpE4YMGYKAgACMGTMGhw8frqoxEhERERHVqEqFZjs7O2RkZAAAiouLERcXZzbHcYMGDZCZmVklAyQiIiIiqmmVuqe5Y8eO+Pzzz9GtWzd89913yM7ORt++fZX1586d40NAiIiIiKjOqFRofuuttxAZGYlOnTpBCIGnn34anTt3VtZv3rwZjzzySJUNkoiIiIioJlUqNHfq1AmnT59GfHw8nJyc8PjjjyvrMjIyMHHiRLNlREREREQPskrP0+zm5oZ+/fqVWu7k5ISXXnrpngZFRERERFSbVPqh3iaTCevWrcO4ceMwYMAAnDx5EgCQmZmJb7/9FqmpqVU2SCIiIiKimlSp0JyRkYFHHnkEQ4cOxdq1a/Hdd9/h2rVrAAB7e3tMnjwZixYtqtKBEhERERHVlEqF5tdeew1JSUnYtWsX/vjjDwghlHVarRZPP/00duzYUWWDJCIiIiKqSZUKzVu2bMGLL76IHj16QJKkUutbtGiB8+fP3+vYiIiIiIhqhUqF5szMTPj7+991fVFREYqLiys9KCIiIiKi2qRSoblp06Y4evToXdfv3r0bAQEBlR4UEREREVFtUqnQ/MILL2DFihVYv369cj+zJEkoKCjA66+/jp07d2LcuHFVOlAiIiIioppSqXmaX3rpJSQlJWHIkCFwcnICAAwdOhQ3btxAcXExxo0bh9GjR1flOImIiIiIakylQrMkSfj8888xYsQIbNq0CWfOnIEsy2jatCn+8Y9/oEuXLlU9TiIiIiKiGlPpJwICwKOPPopHH320qsZCRERERFQrVeqe5pSUFHz//fd3Xf/9999zyjkiIiIiqjMqdaX5lVdeQVZWFvr27Vvm+sWLF8PJyQnr1q27p8EREREREdUGlbrSnJCQgB49etx1fffu3fHTTz9VelBERERERLVJpUJzeno6GjRocNf19vb2uHHjRqUHRURERERUm1QqNDdu3Bg///zzXdf/9NNPaNSoUaUHRURERERUm1QqNA8ZMgRr167FRx99BFmWleUmkwmLFi3C+vXrMXTo0CobJBERERFRTarUBwFnzJiBgwcPYsqUKXjrrbfQsmVLAEBycjKuXbuGrl274vXXX6/SgRIRERER1ZRKXWnW6/XYvXs3vvjiC3Tu3BnXr1/H9evX0blzZ6xYsQJ79+6FXq+v6rESEREREdWISj/cRKPRYOTIkRg5cmRVjoeIiIiIqNap1JXmmzdv4sSJE3ddf/LkSaSnp1d6UEREDxpZlnHy5EkcOHAAJ0+eNPu8BxERPfgqdaV56tSpSE5OxqFDh8pcP27cOLRu3RpffPHFPQ2OiOhBEB8fj8VLlyH5/J8oLDZBZ6VFS7+HEDV+LMLDw2t6eEREVAUqdaV53759+Pvf/37X9X379sXevXsrPSgiogdFfHw8pr8xD6dzDPDrPQ4dRs6DX+9xSM41YPob8xAfH1/TQyQioipQqdB87do1NGzY8K7rXV1dkZaWVulBERE9CGRZxuKly5Dn6Id2fUfB0csXVtZ6OHr5ou3fRiHfyQ9LPvuct2oQEdUBlQrNXl5eOHbs2F3XJyYmws3NrdKDIiJ6ECQlJSH5/J/wfzgCkiSZrZMkCb6duuN0ymUkJSXV0AiJiKiqVCo09+/fH1988QW+++67Uuu2bt2KlStXYsCAAfc8OCKi2iw9PR2FxSbYNfQsc729qycKi038YDQRUR1QqQ8CzpkzB3v37sWAAQPQrl07tGnTBgBw6tQp/Oc//0Hr1q0xd+7cKh0oEVFt4+zsDJ2VFrnXjXD08i21PueGETorLZydnWtgdEREVJUqdaXZ0dERhw4dwsyZM1FUVIRNmzZh06ZNKCoqwhtvvIHDhw/DycmpiodKRFS7BAYGoqXfQzj/614IIczWCSFw4ddYtPJvhMDAwBoaIRERVZVKhWYAsLOzw9y5c3Hy5EncunULt27dwsmTJzFnzhzY2dnxnyOJqM7TaDSIGj8WhozzOLFtBTKunkdxYT4yrt5+bcg4j4njxkCjqfSPWiIiqiWq9Cd5QUEBNm7ciP79+8PLy6sqN01EVCuFh4dj4fxZaGmXjws/LMOxmNm48MMytLIvwML5szhPMxFRHVHpx2iXEEIgNjYWq1evxubNm5GVlQU3NzcMHTq0KsZHRFTrhYeHIzQ0FElJSUhPT4ezszMCAwN5hZmIqA6pdGhOTEzE6tWrsW7dOhiNRkiShMGDB2PSpEkIDQ0tNf0SEVFdptFoEBQUVNPDICKi+6RCofmPP/7A6tWrsXr1apw5cwYPPfQQhg0bhs6dO2PQoEEYOHAgwsLC7tdYiYiIiIhqRLlDc1hYGI4cOYKGDRvi6aefxvLly/Hoo48CAM6dO3ffBkhEREREVNPKfcPd4cOH4efnh2XLlmHRokVKYK5KBw4cQN++feHt7Q1JkrBlyxaz9c8//zwkSTL76tWrl1nNzZs3MWzYMDg4OMDJyQmjR49GTk6OWc2JEyfw2GOPwWAwwMfHBwsXLiw1lo0bN6JVq1YwGAwICgrCjh07qvx4iYiIiOjBUO7Q/Mknn8DLywsDBgyAp6cnxo0bhx9//LHU3KT3Ijc3F+3atcPixYvvWtOrVy9cvXpV+Vq7dq3Z+mHDhiEpKQl79uzBtm3bcODAAYwdO1ZZn5WVhZ49e8LX1xeJiYn497//jTlz5mDZsmVKTXx8PIYMGYLRo0fj2LFj6N+/P/r3749Tp05V2bESERER0YOj3LdnTJw4ERMnTkRKSgpWr16NNWvW4PPPP4enpye6deumXPm9F71790bv3r0t1uj1enh6lv3I2t9//x07d+7EL7/8gk6dOgEAPv74Yzz55JN499134e3tjdWrV6OwsBArVqyATqdDYGAgjh8/jvfff18J14sWLUKvXr0wbdo0AMD8+fOxZ88efPLJJ1i6dOk9HSMRERERPXgqPHuGv78/Zs6ciZkzZyozaKxfvx5CCEycOBE//PAD/v73vyMiIgIGg6HKBxwXFwd3d3c4OzvjiSeewJtvvglXV1cAQEJCApycnJTADAARERHQaDQ4fPgwBgwYgISEBHTp0gU6nU6piYyMxDvvvKNMFZWQkIDo6Giz/UZGRpa6XeROBQUFKCgoUF5nZWUBAGRZhizL5T4+WZYhhKjQe+oT9scy9kcde2QZ+2MZ+2MZ+6OOPbKsuvtTkf3c0zzNwcHBCA4Oxrvvvot9+/bh66+/xvr167F8+XLY2tqWupf4XvXq1QtPPfUU/P39ce7cOfzzn/9E7969kZCQAK1WC6PRCHd3d7P3WFlZwcXFBUajEQBgNBrh7+9vVuPh4aGsc3Z2htFoVJbdWVOyjbIsWLAAc+fOLbX82rVryM/PL/cxyrKMzMxMCCE4x2sZ2B/L2B917JFl7I9l7I9l7I869siy6u5PdnZ2uWvv+eEmwO35SSMiIhAREYGlS5di69atWLNmTVVs2szgwYOVPwcFBaFt27Zo2rQp4uLi0L179yrfX0XMmDHD7Op0VlYWfHx84ObmBgcHh3JvR5ZlSJIENzc3/mUqA/tjGfujjj2yjP2xjP2xjP1Rxx5ZVt39qchdEVUSmv+680GDBmHQoEFVvelSmjRpgoYNG+Ls2bPo3r07PD09kZaWZlZTXFyMmzdvKvdBe3p6IjU11aym5LVazd3upQZu32ut1+tLLddoNBX+pkuSVKn31Rfsj2Xsjzr2yDL2xzL2xzL2Rx17ZFl19qci+3igv1uXL1/GjRs34OXlBeD2XNIZGRlITExUavbt2wdZlhESEqLUHDhwAEVFRUrNnj170LJlSzg7Oys1sbGxZvvas2cPH9xCREREVE/VqtCck5OD48eP4/jx4wCAlJQUHD9+HBcvXkROTg6mTZuGQ4cO4fz584iNjUW/fv3QrFkzREZGAgBat26NXr16YcyYMThy5Ah+/vlnTJo0CYMHD4a3tzcAYOjQodDpdBg9ejSSkpKwfv16LFq0yOzWipdeegk7d+7Ee++9h9OnT2POnDn49ddfMWnSpGrvCRERERHVvFoVmn/99Vd06NABHTp0AABER0ejQ4cOmDVrFrRaLU6cOIG///3vaNGiBUaPHo3g4GD89NNPZrdFrF69Gq1atUL37t3x5JNP4tFHHzWbg9nR0RG7d+9GSkoKgoOD8fLLL2PWrFlmczmHh4djzZo1WLZsGdq1a4dNmzZhy5YtaNOmTfU1g4iIiIhqjSq/p/ledO3a1eLDUnbt2qW6DRcXF9UPIbZt2xY//fSTxZpnnnkGzzzzjOr+iIiIiKjuq1VXmomIiIiIaiOGZiIiIiIiFQzNREREREQqGJqJiIiIiFQwNBMRERERqWBoJiIiIiJSwdBMRERERKSCoZmIiIiISAVDMxERERGRilr1REAiqp9kWUZSUhLS09Ph7OyMwMBAaDT8nZ6IiGoPhmYiqlHx8fFYvHQZks//icJiE3RWWrT0ewhR48ciPDy8podHREQEgLdnEFENio+Px/Q35uF0jgF+vcehw8h58Os9Dsm5Bkx/Yx7i4+NreohEREQAGJqJqIbIsozFS5chz9EP7fqOgqOXL6ys9XD08kXbv41CvpMflnz2OWRZrumhEhERMTQTUc1ISkpC8vk/4f9wBCRJMlsnSRJ8O3XH6ZTLSEpKqqEREhER/Q9DMxHViPT0dBQWm2DX0LPM9faunigsNiE9Pb2aR0ZERFQaQzMR1QhnZ2forLTIvW4sc33ODSN0Vlo4OztX88iIiIhKY2gmohoRGBiIln4P4fyveyGEMFsnhMCFX2PRyr8RAgMDa2iERERE/8PQTEQ1QqPRIGr8WBgyzuPEthXIuHoexYX5yLh6+7Uh4zwmjhvD+ZqJiKhW4DzNRFRjwsPDsXD+rNvzNP+wTJmnuZV/I0x8eRbnaSYiolqDoZmIalR4eDhCQ0P5REAiIqrVGJqJqMZpNBoEBQXV9DCIiIjuipdyiIiIiIhUMDQTEREREalgaCYiIiIiUsHQTERERESkgqGZiIiIiEgFQzMRERERkQqGZiIiIiIiFQzNREREREQqGJqJiIiIiFQwNBMRERERqWBoJiIiIiJSwdBMRERERKSCoZmIiIiISAVDMxERERGRCquaHgAR1TxZlpGUlIT09HQ4OzsjMDAQGg1/pyYiIirB0ExUz8XHx2Px0mVIPv8nCotN0Flp0dLvIUSNH4vw8PCaHh4REVGtwEtJRPVYfHw8pr8xD6dzDPDrPQ4dRs6DX+9xSM41YPob8xAfH1/TQyQiIqoVGJqJ6ilZlrF46TLkOfqhXd9RcPTyhZW1Ho5evmj7t1HId/LDks8+hyzLNT1UIiKiGsfQTFRPJSUlIfn8n/B/OAKSJJmtkyQJvp2643TKZSQlJdXQCImIiGoPhmaieio9PR2FxSbYNfQsc729qycKi01IT0+v5pERERHVPgzNRPWUs7MzdFZa5F43lrk+54YROistnJ2dq3lkREREtQ9DM1E9FRgYiJZ+D+H8r3shhDBbJ4TAhV9j0cq/EQIDA2tohERERLUHQzNRPaXRaBA1fiwMGedxYtsKZFw9j+LCfGRcvf3akHEeE8eN4XzNRERE4DzNRPVaeHg4Fs6fdXue5h+WKfM0t/JvhIkvz+I8zURERP+vVl1COnDgAPr27Qtvb29IkoQtW7aYrRdCYNasWfDy8oKNjQ0iIiJw5swZs5qbN29i2LBhcHBwgJOTE0aPHo2cnByzmhMnTuCxxx6DwWCAj48PFi5cWGosGzduRKtWrWAwGBAUFIQdO3ZU+fES1Qbh4eH4KmYFVi5+H5+8PQcrF7+PL1d+wcBMRER0h1oVmnNzc9GuXTssXry4zPULFy7ERx99hKVLl+Lw4cOws7NDZGQk8vPzlZphw4YhKSkJe/bswbZt23DgwAGMHTtWWZ+VlYWePXvC19cXiYmJ+Pe//405c+Zg2bJlSk18fDyGDBmC0aNH49ixY+jfvz/69++PU6dO3b+DJ6pBGo0GQUFB6NKlC4KCgnhLBhER0V9I4q+fAKolJEnC5s2b0b9/fwC3rzJ7e3vj5ZdfxiuvvAIAyMzMhIeHB2JiYjB48GD8/vvvCAgIwC+//IJOnToBAHbu3Iknn3wSly9fhre3Nz799FO8/vrrMBqN0Ol0AIDXXnsNW7ZswenTpwEAgwYNQm5uLrZt26aMJzQ0FO3bt8fSpUvLHG9BQQEKCgqU11lZWfDx8UF6ejocHBzKfdyyLOPatWtwc3NjcCkD+2MZ+6OOPbKM/bGM/bGM/VHHHllW3f3JysqCs7MzMjMzVfPaA3NPc0pKCoxGIyIiIpRljo6OCAkJQUJCAgYPHoyEhAQ4OTkpgRkAIiIioNFocPjwYQwYMAAJCQno0qWLEpgBIDIyEu+88w7S09Ph7OyMhIQEREdHm+0/MjKy1O0id1qwYAHmzp1bavm1a9fMroSrkWUZmZmZEELwL1MZ2B/L2B917JFl7I9l7I9l7I869siy6u5PdnZ2uWsfmNBsNN6eS9bDw8NsuYeHh7LOaDTC3d3dbL2VlRVcXFzMavz9/Utto2Sds7MzjEajxf2UZcaMGWZBu+RKs5ubW4WvNEuSxN9A74L9ud2D3377TfklLyAgQOkF+6OOPbKM/bGM/bGM/VHHHllW3f0xGAzlrn1gQnNtp9frodfrSy3XaDQV/qZLklSp99UX9bk/8fHxt2e6OP+nMtNFS7+HEDV+rPLBvfrcn/Jijyxjfyxjfyxjf9SxR5ZVZ38qso8H5rvl6Xn7Ub+pqalmy1NTU5V1np6eSEtLM1tfXFyMmzdvmtWUtY0793G3mpL1RDUhPj4e09+Yh9M5Bvj1HocOI+fBr/c4JOcaMP2NeYiPj6/pIRIREdVZD0xo9vf3h6enJ2JjY5VlWVlZOHz4MMLCwgAAYWFhyMjIQGJiolKzb98+yLKMkJAQpebAgQMoKipSavbs2YOWLVsqjwsOCwsz209JTcl+iKqbLMtYvHQZ8hz90K7vKDh6+cLKWg9HL1+0/dso5Dv5Yclnn0OW5ZoeKhERUZ1Uq0JzTk4Ojh8/juPHjwO4/eG/48eP4+LFi5AkCVOmTMGbb76J7777DidPnsRzzz0Hb29vZYaN1q1bo1evXhgzZgyOHDmCn3/+GZMmTcLgwYPh7e0NABg6dCh0Oh1Gjx6NpKQkrF+/HosWLTK7H/mll17Czp078d577+H06dOYM2cOfv31V0yaNKm6W0IEAEhKSkLy+T/h/3AEJEkyWydJEnw7dcfplMv47bffamiEREREdVutuqf5119/Rbdu3ZTXJUF2xIgRiImJwfTp05Gbm4uxY8ciIyMDjz76KHbu3Gl2E/fq1asxadIkdO/eHRqNBgMHDsRHH32krHd0dMTu3bsRFRWF4OBgNGzYELNmzTKbyzk8PBxr1qzBzJkz8c9//hPNmzfHli1b0KZNm2roAlFp6enpKCw2wa5h2bcI2bt6orDYhPT09FIfhiUiIqJ7V6tCc9euXWFp2mhJkjBv3jzMmzfvrjUuLi5Ys2aNxf20bdsWP/30k8WaZ555Bs8884zlARNVE2dnZ+istMi9boSjl2+p9Tk3jNBZaZVbjIiIiKhq1arbM4iobIGBgWjp9xDO/7q31C+WQghc+DUWrfwbISAgoIZGSEREVLcxNBM9ADQaDaLGj4Uh4zxObFuBjKvnUVyYj4yrt18bMs5j4rgxnL6IiIjoPqlVt2cQ0d2Fh4dj4fxZt+dp/mGZMk9zK/9GmPjyLISHh3P2DCIiovuEoZnoARIeHo7Q0FAkJSUpTwQMDAzkFWYiIqL7jKGZ6AGj0WgQFBRU08MgIiKqVxiaiaqZLMu8UkxERPSAYWgmqkbx8fG370k+/6dyT3JLv4cQNX4swsPDa3p4REREdBe8vEVUTeLj4zH9jXk4nWOAX+9x6DByHvx6j0NyrgHT35iH+Pj4mh4iERER3QVDM1E1kGUZi5cuQ56jH9r1HQVHL19YWevh6OWLtn8bhXwnPyz57HPOfkFERFRLMTQTVYOkpCQkn/8T/g9HQJIks3WSJMG3U3ecTrmMpKSkGhohERERWcLQTFQN0tPTUVhsgl1DzzLX27t6orDYhPT09GoeGREREZUHQzNRNXB2dobOSovc68Yy1+fcMEJnpYWzs3M1j4yIiIjKg6GZqBoEBgaipd9DOP/rXgghzNYJIXDh11i08m+EwMDAGhohERERWcLQTFQNNBoNosaPhSHjPE5sW4GMq+dRXJiPjKu3XxsyzmPiuDGcr5mIiKiW4jzNRNUkPDwcC+fPuj1P8w/LlHmaW/k3wsSXZ3GeZiIiolqMoZmoGoWHhyM0NJRPBCQiInrAMDQT3YPKPBJbo9EgKCiomkZIREREVYGhmaiS+EhsIiKi+oP/JkxUCXwkNhERUf3C0ExUQXwkNhERUf3D0ExUQXwkNhERUf3D0ExUQXwkNhERUf3D0ExUQXwkNhERUf3D0Ex0F7Is4+TJkzhw4ABOnjyp3KPMR2ITERHVP5xyjqgMatPJRY0fi+lvzMOJbSvg26k77F09kXPDiAu/xt5+JPbLs/jAEiIiojqEoZnoL0qmk8tz9IN/73Gwa+iJ3OtGJP+6F9PfmIeF82fxkdhERET1DEMz0R3+Op1cyewYJdPJndi2Aks++xyhoaF8JDYREVE9wtBMdAdlOrne4+4+ndwPy5CUlISgoCA+EpuIiKie4CUxojtwOjkiIiIqC0Mz0R04nRwRERGVhaGZ6iVOJ0dEREQVwXuaqd7hdHJERERUUQzNVKfJsmw2u0VmZiZem/0mp5MjIiKiCmFopjrrr1eUrbUa3DRehk3zEIRyOjkiIiKqAIZmqpPKekDJlVOH8d9vP4ebQ2OkZ2TA5Y4P83E6OSIiIrKEoZnqnLs9oERnaw99AxdITg/h/IULcHZ2goT/zcXM6eSIiIjobvhvzVTnKA8oeTjC7AElOlsHaDSAlSQj51Y+srOzzd7H6eSIiIjobnilmeqEOz/wd+7cuTIfUOL8UBM4ODVEdvIh2DQJRlFRkbKO08kRERGRJQzN9MD76wf+TAV5SLt+A+5/JMO3ZVulTtJo0Orxfjj8zVIUZN1AnqcDiu3tOJ0cERERqWJopgdaWR/4y0m7AuPyuTi+91vYuzWCq4uLUu/eLAiung+h4Mpp3DiwGleLZU4nR0RERKoYmumBdbcP/Dk95I/QoVPx06qFOLJxCUL/PgwNXL2UK8oNtfl4e8VyODo6cjo5IiIiKheGZnpgKR/46z3O7AN/AODZvB06/u05nPzuc/z32xvQWOt4RZmIiIgqjaGZHljp6ellfuCvhG/Hx3HjP7GIHvscmjZtyivKREREVGkMzfTAkWUZp06dwrlz5yAXFSLn+lU4efmVqsu5YYTe2gqdOnXiQ0qIiIjonjxQl9zmzJkDSZLMvlq1aqWsz8/PR1RUFFxdXWFvb4+BAwciNTXVbBsXL15Enz59YGtrC3d3d0ybNg3FxcVmNXFxcejYsSP0ej2aNWuGmJiY6jg8KoeEhAS8v+gjjH7xFby/7Etc/fMSEr77Gjdu3jSr4xRyREREVJUeuCvNgYGB2Lt3r/Layup/hzB16lRs374dGzduhKOjIyZNmoSnnnoKP//8MwDAZDKhT58+8PT0RHx8PK5evYrnnnsO1tbW+Ne//gUASElJQZ8+fTB+/HisXr0asbGxeOGFF+Dl5YXIyMjqPVgC8L85mH/66Sd88fV6tOj0OPx6jYVtQ080TNyPxG2rcHDtR2jffQAeatKSU8gRERFRlXvgQrOVlRU8PUvfw5qZmYkvvvgCa9aswRNPPAEAWLlyJVq3bo1Dhw4hNDQUu3fvxm+//Ya9e/fCw8MD7du3x/z58/Hqq69izpw50Ol0WLp0Kfz9/fHee+8BAFq3bo2DBw/igw8+YGiuASVzMJ9OuYw/ziTDyqcdmjZsApOhAays9WgS2hO2rh44tOYD/GftQqQ91Igf+CMiIqIq98CF5jNnzsDb2xsGgwFhYWFYsGABGjdujMTERBQVFSEiIkKpbdWqFRo3boyEhASEhoYiISEBQUFB8PDwUGoiIyMxYcIEJCUloUOHDkhISDDbRknNlClTLI6roKAABQUFyuusrCwAt6+SyrJc7uOTZRlCiAq9p65KSEjAa7PfRJ6jH1yDe+PPjFtw7fwkCmUtzp45gxbNm8PF2Rlezdui6wuz8N/NizB1zHAEBwcjICAAGo2m3vWR54869sgy9scy9scy9kcde2RZdfenIvt5oEJzSEgIYmJi0LJlS1y9ehVz587FY489hlOnTsFoNEKn08HJycnsPR4eHjAajQAAo9FoFphL1pess1STlZWFvLw82NjYlDm2BQsWYO7cuaWWX7t2Dfn5+eU+RlmWkZmZCSFEvb6tQJZlbP7uezQKeBh+nSOQ8ecfkJs3hVsTH3jbawAJsM4xws3dBhIkuD7UEJrWreHj4wN3d3dcv369pg+hRvD8UcceWcb+WMb+WMb+qGOPLKvu/mRnZ5e79oEKzb1791b+3LZtW4SEhMDX1xcbNmy4a5itLjNmzEB0dLTyOisrCz4+PnBzc4ODg0O5tyPLMiRJgpubW739yyTLMrZu3Yof9h5A495jkVasR3qhHqfO/gFP32uQfD1xqcgBOdcuQjgVwqGBAzKuGnHh4iW4u7vD3d29pg+hxvD8UcceWcb+WMb+WMb+qGOPLKvu/hgMhnLXPlCh+a+cnJzQokULnD17Fj169EBhYSEyMjLMrjanpqYq90B7enriyJEjZtsomV3jzpq/zriRmpoKBwcHi8Fcr9dDr9eXWq7RaCr8TZckqVLve5Dd+WG/7Tt34+yFS/jzWibyr9yEMecEfH18YO/gihsnD0D4DgJ0ephkgcKiYsgCOP9rLFr5PYQ2bdrUq76VpT6ePxXFHlnG/ljG/ljG/qhjjyyrzv5UZB8P9HcrJycH586dg5eXF4KDg2FtbY3Y2FhlfXJyMi5evIiwsDAAQFhYGE6ePIm0tDSlZs+ePXBwcEBAQIBSc+c2SmpKtkFVLz4+HsOfH4Vnho/Cq3MX4NCVIhT6hkHXwAVWegNyijU4feYsvDt2g3ztHNJPxeHW1T8gTEXIu3kVJ7atuD1Txrgx/AFERERE98UDlTBeeeUV7N+/H+fPn0d8fDwGDBgArVaLIUOGwNHREaNHj0Z0dDR+/PFHJCYmYuTIkQgLC0NoaCgAoGfPnggICMDw4cPxn//8B7t27cLMmTMRFRWlXCUeP348/vjjD0yfPh2nT5/GkiVLsGHDBkydOrUmD73Oio+Px/Q35uH3bD3ytA3QILAbHoocC61PO5g0Vsg8nYAG7j4wWdkgW2OPDn8bAV1RDq7s+AQZ+5bjxoHVaGVfgIXzOVMGERER3T8P1O0Zly9fxpAhQ3Djxg24ubnh0UcfxaFDh+Dm5gYA+OCDD6DRaDBw4EAUFBQgMjISS5YsUd6v1Wqxbds2TJgwAWFhYbCzs8OIESMwb948pcbf3x/bt2/H1KlTsWjRIjRq1AjLly/ndHP3QXFxMd56eyFu6NzRqGUnXD5zEu5BXaEz2MLa0w/5AY8j6/hOpO5fDfvmIci6lQcPexc4O7qgmZcLRj83FI899hgfjU1ERET3nSSEEDU9iLooKysLjo6OyMzMrPAHAdPS0uDu7l4ng+Cd9y6v3bAJx5NT4PzoUMj5Ocj47Sf4DZoFg40dAKCoIA83Tv4Ibepp5GVl4FbGNfh6uePJiMfR/+9/wyOPPFLDR1P71PXzpyqwR5axP5axP5axP+rYI8uquz8VyWsP1JVmerCVPKgk8UQS/rxqhOTUCLK+ARo0C0bRjctIT/oJGVcvwMWnOXTW1tDq9DC4+yPwsR7IvfQ7LsWtxbx/voywsLAyH3BDREREdL/wVxyqFgcPHsSkl19DYpoJWbBBg8Bu8OwyGNBYIdN4CXqPJjA4uSP3vwm4desWBABTYQEkSYK1ToeMy2fwcPsg9OvXj7+ZExERUbVj+qD77uDBgxg+8gVcKGqAXFtvZGZmwdq/E/SeTZWgnJeXj4bBvVCc9gduxG9EjjEFOdf/hFV+Os7HbeLsGERERFSjmEDovpFlGV999RVGjYvCtTwZDR/uAxsnN0hWOqCBG3Jv5cGpXYQSlKG3hecjA1Fk/C/+3PIurn3/HpD0A1o14OwYREREVLN4TzPdF/Hx8fjk08+wKzYOhfZekK01KDY4QyvfnrQc+dkQ9q7QNvSH1+ODYfxpE67v/QJCyMCtdHRs3QSDn3mas2MQERFRrcDQTFXu4MGDmDztn0jXOkK2c4Vbp15I+2UHCjKvwdrJA1a2jsj5/Sc4hf0DxYV5sHXzg3uXQfB3tcXFhO/RrOVD2PrtJlhZ8fQkIiKi2oGX76hKHThwAIOHPYeUAjvkO/iioFgA7s1hbeeEvHO/QEha2AU8jiLjGWQkbEDhzT+Re/0KrAsykf7fRLhZFeL116YzMBMREVGtwmRC96Rk3uUbN25g7dq1WPfNd8jX2sA1oBsgSYCUgILMG7Bp3QXZid8j65ctsGkSDLfQ/rh+5HtcP/0zrLUSfLzc0apNK0x8hfcuExERUe3D0EyVdue8y5cvnEdefgH0PoHQFBfC2r0JNNZW0Ng5IffMITh2fgqOnSTknT6A9LhV0Ov1MOVmwM0g8Nq0aDz++OO8d5mIiIhqLSYUqpT4+HhMmzkXCWevITWnCEXWdrBydIddmycgaTQozkqDEBo4te+NQuMZZB75FkJnC7duz8GxZWc4ubig+UMNsW71V5g0aRKCgoIYmImIiKjWYkqhCpNlGXPn/wt/3NLj+o10mOw8ACs9NDYNYOPfERpbJ+Qmx0MIAWvvFnAJewbFGUakx8Xg0vr5KD4dh/DmHlj8wb/x6KOP1vThEBEREaliaKYK++qrrxB/7BRkZx/IpiLY+AZB0loDGiuYMq/Bvm1PFF79LzIPbUTh9UvQeTRDg3Y9YGXTAA856vH+m2/gq5gVvHeZiIiIHhi8p5nKreRhJdHTXkWhtgFsbZ0hC0Dj5AVJZwONlR65yQfhGDYIDiEDkXsyFulxKyFJEoqzb8DNRsKKr1fx6jIRERE9cHilmcrl4MGDeLRLV4yfMg1ZxVpI1jYQQgCSBMlaD62dEzQGOxRePYPM+HXQ6u3hGjEa9m26QWOth72mCGu+XMnATERERA8kXmmmuyqZTm7VqlVYsWYjcvKLYeXiC01RIbT2TihI/QMaGwfc+u8h2LeJQNaRb6C1c0Zh2h8ovHIawlQEFOSigZUJ8+fMRJcuXWr6kIiIiIgqhaGZylQyndwvx08i5dxZWDX0AwrTYdOsM26dPQKbpg/j1u8HoLF1RP7FU4CQYdMsBPl/JMKUmw6pKB9aUwHaBTTHwgX/4hVmIiIieqAxNFMpJdPJXcnT4nLKecDWGbKpEJLOBrYBXVFw9b8ozjDCIeRp5JzcA1Gcj5xTP0KjtQIkCQaNjJAObfDcs8MwbNgwTiVHREREDzyGZjJTWFiICZNeQkqOBnk3rkAA0Gh1gKSBRmeAKfsG7Nv2QNahbwAADg/3h5yfi8LUsyj84xd4GUyYNWMawzIRERHVKUw1pPjss8/g5uGFU2cvoLCwEAKAZHCApNFA0uqgtXfBreSD0Hm3hkPo0yjOTEN6XAwyD21A7sm9cCjOwMplSzB8+HAGZiIiIqpTmGwIAPDpp59i6quvIzuvEBqdAcJUCK3eDlpbR0g6G8gFOTD4d0Th1TPISlgPjcEeTk+8ALvAbrDS28Gq+BYWzJ/De5eJiIioTuLtGfWcLMtYuXIlXnp5OoS+AbR2ttBY6YDiIkg2DrCyc4KQNCi+lIrCq8mwD+6LW7/vR/qPXwCyCTAVQ49ChHcOxvDhw2v6cIiIiIjuC4bmeiw+Ph4vTY1G4vH/QNLZQquzgcamATRWehRlXIWV3g42fh2Q+/sBWLv6IO+Po5CLCmDw7QBReAtFGVdhV5yJJo5azH7jdd6SQURERHUWQ3M9dfDgQQx+biSuXE2FZGWApLWCpDNA0lrDptVjKDi4GqZbmShK/xMNQgYi98QemAyZyE85ioJLpyBptLDTW+GJ7l0QNX4sH4lNREREdRpDcz0jyzJWrFiBiZOnwGRtB43OAMnKAFFcCEhWkKz0MGUa4dh5ALIOf4Pc0z9DLsqHXdsesC3IRWHaHzD9mQR360LMef1VzpJBRERE9QJDcz1y8OBBDBo0GFdS06Ax2EPSWgGyDE2DhjBlXYPIz4bG2RMFV89A79Ucjo89i5zjO3Hr95+Qd+YwJI0GdnprhLcLwOyZ/+TVZSIiIqo3eImwnliyZAm6RvTElbQbgNbq9u0YGmsAAhrIsGv9GOT8bBReSYbGYIfC1BTc+i0OkCRAYwVNfhaG9HkCcTs244dt3zEwExERUb3CK811nCzLeP755/HVmg2AJEGjM/z/Gg0kax3kwlsw5edC0mjgEPoMsg5/i/yUY5CsDQAERFEB7Kw12LZzO7p06VKTh0JERERUYxia67ADBw7gqaeexo3MLMDaGpKkASQNJGs9hCxDyDI0OgPkwlu49d8E2DTthIZP/ROFV88hPyURxelXodcC2zZvYGAmIiKieo2huQ4qLi7GgAEDsG3nHgDi9lVjIUPSaAEJgKSBlYMLTLnp//8OAbmoALlJcbiVnABJo4EoLoCNxoR//2s+AzMRERHVe7ynuY5ZsmQJbO0aYNsPuwBIgJX+/8OyBkKSIKCBKMyDlZ3T7af9abQQBfmQ83MgZBPk/BwU59xACx937Nj6LcaNG1fTh0RERERU43iluQ4ZNGgQNnz7HVBcCBjsANkESZJuB2aNBijMh9a2AYSpGAVX/wudZ3NobBxg0mdBzsuCyM+FXHgLw4cOQkxMDKeSIyIiIvp/DM11QHFxMZo1a4YLl68CQgCSBEkIQGsFIQRgKoLW0ACyKIYoyIWks4WQTci/eBKS3hYScHueZlMBXpk6Gf/+979r+pCIiIiIahVeSnzAffbZZ7C2tsaFi5cBKx2g0QBaawgICI0WMBXfDtKQodHbQUgamHIzIBcVQGitIAryYMrLgoNegx/37GRgJiIiIioDrzQ/wD777DOMHz8BkLSARgsI0+3QrLG6HZaLCiHpDBBFBYAsA1prSFodhMEaKMwDinMhZBmtW7XEif8ch5UVTwciIiKisjAlPaCKi4sx71/vAJBuB2YJt68oa3W3X8syAHH7Ng2NFnLBLWhsHSEZ7GBVXHz7KrOQ4eflhuWfL2NgJiIiIrKAt2c8oLZu3YqrV64AGgmAuB2YTTJgKgJMRdDoDNBY6SFMJkAICNkEU85NiFtZEEV5EMUFCA5ohq9WLOPT/YiIiIhUMDQ/oK5cuQIhFwOSBoBG+QAgZBMkCEAugqTVQtLbQGi0kKx0gCRBLswDCnMxY8pEHPr5JwZmIiIionLgv8k/oLy9vXH71gzr21PMQQAaQNJaA0JALioGCgsBrRUkK2tIsgAgwcO9ITauW4NHH320ho+AiIiI6MHB0PyA6tevHxydnJCZlf3/T/mTACHfvvKstQKK8gGtNSAXQeQXQsgm9OzRHT/88APnXyYiIiKqIKanB5SVlRXemjcHMBXdvvVCAIAEUZgHUZQHWOv//8Emt+95fjl6Cnbt2sXATERERFQJTFAPsKioKAwdMhjCVPT/9zPLuH1/M4CCWxCFeXBxdMD+fXvx7rvv1vRwiYiIiB5YDM0PuNWrV2PxRx/C2cUVsLICYAJEMRrY22HGq6/gmvEKunTpUtPDJCIiInqg8Z7mOmDixIkYO3Ystm7diitXrsDb2xv9+vXj3MtEREREVYSpqo6wsrLCwIEDa3oYRERERHUSb89QsXjxYvj5+cFgMCAkJARHjhyp6SERERERUTVjaLZg/fr1iI6OxuzZs3H06FG0a9cOkZGRSEtLq+mhEREREVE1Ymi24P3338eYMWMwcuRIBAQEYOnSpbC1tcWKFStqemhEREREVI14T/NdFBYWIjExETNmzFCWaTQaREREICEhoVR9QUEBCgoKlNdZWVkAAFmWIctyufcryzKEEBV6T33C/ljG/qhjjyxjfyxjfyxjf9SxR5ZVd38qsh+G5ru4fv06TCYTPDw8zJZ7eHjg9OnTpeoXLFiAuXPnllp+7do15Ofnl3u/siwjMzMTQgg+iKQM7I9l7I869sgy9scy9scy9kcde2RZdfcnOzu73LUMzVVkxowZiI6OVl5nZWXBx8cHbm5ucHBwKPd2ZFmGJElwc3PjX6YysD+WsT/q2CPL2B/L2B/L2B917JFl1d0fg8FQ7lqG5rto2LAhtFotUlNTzZanpqbC09OzVL1er4dery+1XKPRVPibLklSpd5XX7A/lrE/6tgjy9gfy9gfy9gfdeyRZdXZn4rsg9+tu9DpdAgODkZsbKyyTJZlxMbGIiwsrAZHRkRERETVjVeaLYiOjsaIESPQqVMndO7cGR9++CFyc3MxcuTImh4aEREREVUjhmYLBg0ahGvXrmHWrFkwGo1o3749du7cWerDgURERERUtzE0q5g0aRImTZpU08MgIiIiohrEe5qJiIiIiFQwNBMRERERqeDtGfeJEALA/54MWF6yLCM7OxsGg4FT0ZSB/bGM/VHHHlnG/ljG/ljG/qhjjyyr7v6U5LSS3GYJQ/N9UvKEGR8fnxoeCRERERFZkp2dDUdHR4s1kihPtKYKk2UZV65cQYMGDSBJUrnfV/IkwUuXLlXoSYL1BftjGfujjj2yjP2xjP2xjP1Rxx5ZVt39EUIgOzsb3t7eqle2eaX5PtFoNGjUqFGl3+/g4MC/TBawP5axP+rYI8vYH8vYH8vYH3XskWXV2R+1K8wleDMNEREREZEKhmYiIiIiIhUMzbWMXq/H7Nmzodfra3ootRL7Yxn7o449soz9sYz9sYz9UcceWVab+8MPAhIRERERqeCVZiIiIiIiFQzNREREREQqGJqJiIiIiFQwNBMRERERqWBovs8WL14MPz8/GAwGhISE4MiRIxbrN27ciFatWsFgMCAoKAg7duwwWy+EwKxZs+Dl5QUbGxtERETgzJkz9/MQ7ruK9Ojzzz/HY489BmdnZzg7OyMiIqJU/fPPPw9Jksy+evXqdb8P476pSH9iYmJKHbvBYDCrqWvnUEX607Vr11L9kSQJffr0UWrq0vlz4MAB9O3bF97e3pAkCVu2bFF9T1xcHDp27Ai9Xo9mzZohJiamVE1Ff67VVhXtz7fffosePXrAzc0NDg4OCAsLw65du8xq5syZU+r8adWq1X08ivuroj2Ki4sr8++Y0Wg0q6uv51BZP18kSUJgYKBSU5fOoQULFuDhhx9GgwYN4O7ujv79+yM5OVn1fbU1CzE030fr169HdHQ0Zs+ejaNHj6Jdu3aIjIxEWlpamfXx8fEYMmQIRo8ejWPHjqF///7o378/Tp06pdQsXLgQH330EZYuXYrDhw/Dzs4OkZGRyM/Pr67DqlIV7VFcXByGDBmCH3/8EQkJCfDx8UHPnj3x559/mtX16tULV69eVb7Wrl1bHYdT5SraH+D2U5TuPPYLFy6Yra9L51BF+/Ptt9+a9ebUqVPQarV45plnzOrqyvmTm5uLdu3aYfHixeWqT0lJQZ8+fdCtWzccP34cU6ZMwQsvvGAWDCtzTtZWFe3PgQMH0KNHD+zYsQOJiYno1q0b+vbti2PHjpnVBQYGmp0/Bw8evB/DrxYV7VGJ5ORksx64u7sr6+rzObRo0SKzvly6dAkuLi6lfgbVlXNo//79iIqKwqFDh7Bnzx4UFRWhZ8+eyM3Nvet7anUWEnTfdO7cWURFRSmvTSaT8Pb2FgsWLCiz/h//+Ifo06eP2bKQkBAxbtw4IYQQsiwLT09P8e9//1tZn5GRIfR6vVi7du19OIL7r6I9+qvi4mLRoEEDsWrVKmXZiBEjRL9+/ap6qDWiov1ZuXKlcHR0vOv26to5dK/nzwcffCAaNGggcnJylGV16fy5EwCxefNmizXTp08XgYGBZssGDRokIiMjldf32vPaqjz9KUtAQICYO3eu8nr27NmiXbt2VTewWqQ8Pfrxxx8FAJGenn7XGp5D/7N582YhSZI4f/68sqwun0NpaWkCgNi/f/9da2pzFuKV5vuksLAQiYmJiIiIUJZpNBpEREQgISGhzPckJCSY1QNAZGSkUp+SkgKj0WhW4+joiJCQkLtuszarTI/+6tatWygqKoKLi4vZ8ri4OLi7u6Nly5aYMGECbty4UaVjrw6V7U9OTg58fX3h4+ODfv36ISkpSVlXl86hqjh/vvjiCwwePBh2dnZmy+vC+VMZaj+DqqLndYksy8jOzi718+fMmTPw9vZGkyZNMGzYMFy8eLGGRlhz2rdvDy8vL/To0QM///yzspznkLkvvvgCERER8PX1NVteV8+hzMxMACj1d+ZOtTkLMTTfJ9evX4fJZIKHh4fZcg8Pj1L3dpUwGo0W60v+W5Ft1maV6dFfvfrqq/D29jb7y9OrVy98+eWXiI2NxTvvvIP9+/ejd+/eMJlMVTr++60y/WnZsiVWrFiBrVu34uuvv4YsywgPD8fly5cB1K1z6F7PnyNHjuDUqVN44YUXzJbXlfOnMu72MygrKwt5eXlV8ne2Lnn33XeRk5ODf/zjH8qykJAQxMTEYOfOnfj000+RkpKCxx57DNnZ2TU40urj5eWFpUuX4ptvvsE333wDHx8fdO3aFUePHgVQNT/364orV67ghx9+KPUzqK6eQ7IsY8qUKXjkkUfQpk2bu9bV5ixkdV+3TnQfvf3221i3bh3i4uLMPuw2ePBg5c9BQUFo27YtmjZtiri4OHTv3r0mhlptwsLCEBYWprwODw9H69at8dlnn2H+/Pk1OLLa54svvkBQUBA6d+5strw+nz9UfmvWrMHcuXOxdetWs/t1e/furfy5bdu2CAkJga+vLzZs2IDRo0fXxFCrVcuWLdGyZUvldXh4OM6dO4cPPvgAX331VQ2OrPZZtWoVnJyc0L9/f7PldfUcioqKwqlTpx7Y+7MBXmm+bxo2bAitVovU1FSz5ampqfD09CzzPZ6enhbrS/5bkW3WZpXpUYl3330Xb7/9Nnbv3o22bdtarG3SpAkaNmyIs2fP3vOYq9O99KeEtbU1OnTooBx7XTqH7qU/ubm5WLduXbn+B/Sgnj+VcbefQQ4ODrCxsamSc7IuWLduHV544QVs2LCh1D8j/5WTkxNatGhRL86fu+ncubNy/DyHbhNCYMWKFRg+fDh0Op3F2rpwDk2aNAnbtm3Djz/+iEaNGlmsrc1ZiKH5PtHpdAgODkZsbKyyTJZlxMbGml0JvFNYWJhZPQDs2bNHqff394enp6dZTVZWFg4fPnzXbdZmlekRcPtTs/Pnz8fOnTvRqVMn1f1cvnwZN27cgJeXV5WMu7pUtj93MplMOHnypHLsdekcupf+bNy4EQUFBXj22WdV9/Ognj+VofYzqCrOyQfd2rVrMXLkSKxdu9ZsqsK7ycnJwblz5+rF+XM3x48fV46f59Bt+/fvx9mzZ8v1i/uDfA4JITBp0iRs3rwZ+/btg7+/v+p7anUWuq8fM6zn1q1bJ/R6vYiJiRG//fabGDt2rHBychJGo1EIIcTw4cPFa6+9ptT//PPPwsrKSrz77rvi999/F7NnzxbW1tbi5MmTSs3bb78tnJycxNatW8WJEydEv379hL+/v8jLy6v246sKFe3R22+/LXQ6ndi0aZO4evWq8pWdnS2EECI7O1u88sorIiEhQaSkpIi9e/eKjh07iubNm4v8/PwaOcZ7UdH+zJ07V+zatUucO3dOJCYmisGDBwuDwSCSkpKUmrp0DlW0PyUeffRRMWjQoFLL69r5k52dLY4dOyaOHTsmAIj3339fHDt2TFy4cEEIIcRrr70mhg8frtT/8ccfwtbWVkybNk38/vvvYvHixUKr1YqdO3cqNWo9f5BUtD+rV68WVlZWYvHixWY/fzIyMpSal19+WcTFxYmUlBTx888/i4iICNGwYUORlpZW7cdXFSraow8++EBs2bJFnDlzRpw8eVK89NJLQqPRiL179yo19fkcKvHss8+KkJCQMrdZl86hCRMmCEdHRxEXF2f2d+bWrVtKzYOUhRia77OPP/5YNG7cWOh0OtG5c2dx6NAhZd3jjz8uRowYYVa/YcMG0aJFC6HT6URgYKDYvn272XpZlsUbb7whPDw8hF6vF927dxfJycnVcSj3TUV65OvrKwCU+po9e7YQQohbt26Jnj17Cjc3N2FtbS18fX3FmDFjHsgfxiUq0p8pU6YotR4eHuLJJ58UR48eNdteXTuHKvp37PTp0wKA2L17d6lt1bXzp2T6r79+lfRkxIgR4vHHHy/1nvbt2wudTieaNGkiVq5cWWq7lnr+IKlofx5//HGL9ULcnqLPy8tL6HQ68dBDD4lBgwaJs2fPVu+BVaGK9uidd94RTZs2FQaDQbi4uIiuXbuKffv2ldpufT2HhLg9PZqNjY1YtmxZmdusS+dQWb0BYPZz5UHKQtL/HxQREREREd0F72kmIiIiIlLB0ExEREREpIKhmYiIiIhIBUMzEREREZEKhmYiIiIiIhUMzUREREREKhiaiYiIiIhUMDQTEREREalgaCYiokrx8/PD3/72t0q/PyYmBpIk4fz581U3KCKi+4ShmYjoAVISNH/99deaHgoRUb3C0ExEREREpIKhmYiIiIhIBUMzEVEdUlhYiFmzZiE4OBiOjo6ws7PDY489hh9//NGs7vz585AkCe+++y4WL16MJk2awNbWFj179sSlS5cghMD8+fPRqFEj2NjYoF+/frh582aZ+9y9ezfat28Pg8GAgIAAfPvtt6VqkpKS8MQTT8DGxgaNGjXCm2++CVmWS9Vt3boVffr0gbe3N/R6PZo2bYr58+fDZDJVTYOIiCpJEkKImh4EERGVT0xMDEaOHIlffvkFnTp1KrX++vXraNu2LYYMGYLmzZsjOzsbX3zxBf744w8cOXIE7du3B3A7NPv7+6N9+/YoLCzECy+8gJs3b2LhwoXo2LEjnnjiCcTFxWHw4ME4e/YsPv74Yzz//PNYsWKFsi8/Pz/o9XqkpaVh/PjxcHd3x8qVK5GUlISdO3eiR48eAACj0Yi2bduiuLgYL730Euzs7LBs2TLY2NjgxIkTSElJgZ+fHwBgwIAB0Ol0ePjhh2Fvb499+/Zh48aNeOWVV/Dvf//7vveXiOiuBBERPTBWrlwpAIhffvmlzPXFxcWioKDAbFl6errw8PAQo0aNUpalpKQIAMLNzU1kZGQoy2fMmCEAiHbt2omioiJl+ZAhQ4ROpxP5+fnKMl9fXwFAfPPNN8qyzMxM4eXlJTp06KAsmzJligAgDh8+rCxLS0sTjo6OAoBISUlRlt+6davUMY0bN07Y2tqa7ZuIqLrx9gwiojpEq9VCp9MBAGRZxs2bN1FcXIxOnTrh6NGjpeqfeeYZODo6Kq9DQkIAAM8++yysrKzMlhcWFuLPP/80e7+3tzcGDBigvHZwcMBzzz2HY8eOwWg0AgB27NiB0NBQdO7cWalzc3PDsGHDSo3HxsZG+XN2djauX7+Oxx57DLdu3cLp06cr1AsioqrE0ExEVMesWrUKbdu2hcFggKurK9zc3LB9+3ZkZmaWqm3cuLHZ65IA7ePjU+by9PR0s+XNmjWDJElmy1q0aAEAyvzLFy5cQPPmzUvtu2XLlqWWJSUlYcCAAXB0dISDgwPc3Nzw7LPPAkCZ4yciqi5W6iVERPSg+Prrr/H888+jf//+mDZtGtzd3aHVarFgwQKcO3euVL1Wqy1zO3dbLu7jx2AyMjLw+OOPw8HBAfPmzUPTpk1hMBhw9OhRvPrqq2V+cJCIqLowNBMR1SGbNm1CkyZN8O2335pdAZ49e/Z92d/Zs2chhDDb13//+18AUD7c5+vrizNnzpR6b3JystnruLg43LhxA99++y26dOmiLE9JSbkPIyciqhjenkFEVIeUXCG+84rw4cOHkZCQcF/2d+XKFWzevFl5nZWVhS+//BLt27eHp6cnAODJJ5/EoUOHcOTIEaXu2rVrWL16terYCwsLsWTJkvsydiKiiuCVZiKiB9CKFSuwc+fOUsu7du2Kb7/9FgMGDECfPn2QkpKCpUuXIiAgADk5OVU+jhYtWmD06NH45Zdf4OHhgRUrViA1NRUrV65UaqZPn46vvvoKvXr1MptyztfXFydOnFDqwsPD4ezsjBEjRmDy5MmQJAlfffXVfb0lhIiovBiaiYgeQJ9++mmZyy9evIicnBx89tln2LVrFwICAvD1119j48aNiIuLq/JxNG/eHB9//DGmTZuG5ORk+Pv7Y/369YiMjFRqvLy88OOPP+LFF1/E22+/DVdXV4wfPx7e3t4YPXq0Uufq6opt27bh5ZdfxsyZM+Hs7Ixnn30W3bt3N9seEVFN4MNNiIiIiIhU8J5mIiIiIiIVDM1ERERERCoYmomIiIiIVDA0ExERERGpYGgmIiIiIlLB0ExEREREpIKhmYiIiIhIBUMzEREREZEKhmYiIiIiIhUMzUREREREKhiaiYiIiIhUMDQTEREREan4P+Nwy/zjMSg6AAAAAElFTkSuQmCC",
"text/plain": [
""
]
@@ -1177,6 +1223,64 @@
{
"cell_type": "code",
"execution_count": 25,
+ "id": "5b6dac2e-8596-4e7c-97d8-aaf9632e4154",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "count 0.0\n",
+ "mean NaN\n",
+ "std NaN\n",
+ "min NaN\n",
+ "25% NaN\n",
+ "50% NaN\n",
+ "75% NaN\n",
+ "max NaN\n",
+ "Name: lambda, dtype: float64"
+ ]
+ },
+ "execution_count": 25,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "merged[merged['hits']==0]['lambda'].describe()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 26,
+ "id": "29393374-e379-42c8-8333-abfecc18e828",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "count 100.000000\n",
+ "mean 0.162692\n",
+ "std 0.247757\n",
+ "min 0.050200\n",
+ "25% 0.063050\n",
+ "50% 0.086800\n",
+ "75% 0.148775\n",
+ "max 2.000000\n",
+ "Name: lambda, dtype: float64"
+ ]
+ },
+ "execution_count": 26,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "merged[merged['hits']>0]['lambda'].describe()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 27,
"id": "b47990b1-0231-43ac-8bc5-8340abe4a8b3",
"metadata": {},
"outputs": [],
@@ -1189,7 +1293,7 @@
},
{
"cell_type": "code",
- "execution_count": 26,
+ "execution_count": 28,
"id": "db83cad4-7cc6-4702-ae3a-d1af30a561d2",
"metadata": {},
"outputs": [],
diff --git a/00_aoi_caching_simulation/file_experiment/details.csv b/00_aoi_caching_simulation/file_experiment/details.csv
deleted file mode 100644
index 0ef2266..0000000
--- a/00_aoi_caching_simulation/file_experiment/details.csv
+++ /dev/null
@@ -1,101 +0,0 @@
-obj_id,access_count,hits,misses,mu,lambda,hit_rate,optimal_hitrates,expected_hit_rate,expected_hit_rate_delta,avg_cache_time,cache_time_delta,avg_age,expected_age,age_delta,age_delta in %
-1,2194,122,2072,0,2.0,0.05560619872379216,0.0513,0.051240559632190874,0.004365639091601287,0.03941351347468736,0.016192685249104798,0.000781094996965306,0.027889334560319015,-0.02710823956335371,-0.9719930572285275
-2,2237,98,2139,0,2.0,0.04380867232901207,0.0513,0.051240559632190874,-0.007431887303178807,0.040330662851234655,0.003478009477777412,0.0005472164029543024,0.02194645579745183,-0.02139923939449753,-0.9750658417010624
-3,6160,2458,3702,0,5.0,0.399025974025974,0.4,0.40010461661881447,-0.001078642592840462,0.3461281129242689,0.05289786110170508,0.030540206453468575,0.09491824117952462,-0.06437803472605605,-0.6782472360006542
-4,3576,842,2734,0,3.0,0.2354586129753915,0.2254,0.22531594212055184,0.010142670854839664,0.18738810795344676,0.04807050502194474,0.0125796577890349,0.0830929399348214,-0.0705132821457865,-0.8486073810975703
-5,1106,0,1106,0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0
-6,1092,0,1092,0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0
-7,53221,41881,11340,0,39.0,0.7869262133368408,0.7852,0.7848887622998704,0.0020374510369703946,0.750537584648816,0.03638862868802473,0.054863078839223686,0.05299473947796569,0.0018683393612579993,0.03525518531956975
-8,1028,0,1028,0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0
-9,3570,796,2774,0,3.0,0.22296918767507004,0.2254,0.22531594212055184,-0.002346754445481797,0.18854588063848216,0.034423307036587886,0.011230648389453497,0.07821136057910953,-0.06698071218965604,-0.8564064311591425
-10,1084,0,1084,0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0
-11,1080,0,1080,0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0
-12,1065,0,1065,0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0
-13,3592,837,2755,0,3.0,0.23301781737193764,0.2254,0.22531594212055184,0.007701875251385798,0.18893487064532435,0.04408294672661328,0.012613527255785382,0.08213216061931364,-0.06951863336352826,-0.8464240175751657
-14,1067,0,1067,0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0
-15,1014,0,1014,0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0
-16,1070,0,1070,0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0
-17,1064,0,1064,0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0
-18,1110,0,1110,0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0
-19,19736,12904,6832,0,15.0,0.6538305634373733,0.6536,0.6537173742753482,0.00011318916202518459,0.6043301974283786,0.04950036600899477,0.055639127367164906,0.07613673064854358,-0.020497603281378673,-0.26922095428549603
-20,1051,0,1051,0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0
-21,1076,0,1076,0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0
-22,1068,0,1068,0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0
-23,22889,15630,7259,0,17.0,0.6828607628118311,0.6746,0.6743721128414397,0.008488649970391338,0.632048683787555,0.05081207902427609,0.058028116220032455,0.07526361524976279,-0.01723549902973033,-0.22900174237623608
-24,1094,0,1094,0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0
-25,1058,0,1058,0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0
-26,1093,0,1093,0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0
-27,1067,0,1067,0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0
-28,4889,1592,3297,0,4.0,0.3256289629781141,0.3292,0.32914348336790533,-0.0035145203897912203,0.2831666983832757,0.04246226459483843,0.022555548604990573,0.09106303921820517,-0.0685074906132146,-0.7523084140543235
-29,2258,111,2147,0,2.0,0.0491585473870682,0.0513,0.051240559632190874,-0.0020820122451226733,0.04065835355828264,0.008500193828785564,0.0006345470298912082,0.024638814936683125,-0.02400426790679192,-0.9742460409917495
-30,1112,0,1112,0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0
-31,1124,0,1124,0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0
-32,1064,0,1064,0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0
-33,1087,0,1087,0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0
-34,1091,0,1091,0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0
-35,6188,2442,3746,0,5.0,0.39463477698771815,0.4,0.40010461661881447,-0.005469839631096318,0.34829627575351285,0.0463385012342053,0.02919589245861962,0.09348617513373864,-0.06429028267511902,-0.6876982888983016
-36,1104,0,1104,0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0
-37,2228,121,2107,0,2.0,0.05430879712746858,0.0513,0.051240559632190874,0.003068237495277709,0.04008008532174193,0.01422871180572665,0.0007714759538735471,0.02723472590200356,-0.026463249948130013,-0.9716730780897342
-38,1061,0,1061,0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0
-39,1057,0,1057,0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0
-40,1032,0,1032,0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0
-41,4773,1559,3214,0,4.0,0.32662895453593127,0.3292,0.32914348336790533,-0.002514528831974061,0.27635079564460147,0.050278158891329805,0.022796701696085605,0.09140938343814038,-0.06861268174205477,-0.7506087357922848
-42,7408,3335,4073,0,6.0,0.4501889848812095,0.4523,0.4521753363092973,-0.0019863514280877848,0.3914754349139922,0.05871354996721728,0.03639296869791629,0.09410345649984528,-0.057710487801928986,-0.6132663979460082
-43,6039,2408,3631,0,5.0,0.3987415134956119,0.4,0.40010461661881447,-0.0013631031232025914,0.3406989870266377,0.058042526468974176,0.03164518181414623,0.09482498108884868,-0.06317979927470245,-0.6662780055342645
-44,1093,0,1093,0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0
-45,1060,0,1060,0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0
-46,25496,17698,7798,0,19.0,0.694148101663006,0.6922,0.6921060889542794,0.002042012708726615,0.6510647347644756,0.04308336689853043,0.05685609169074605,0.07050760867763574,-0.01365151698688969,-0.19361764273278786
-47,1115,0,1115,0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0
-48,1083,0,1083,0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0
-49,1103,0,1103,0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0
-50,1061,0,1061,0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0
-51,2130,114,2016,0,2.0,0.05352112676056338,0.0513,0.051240559632190874,0.0022805671283725043,0.03834536660920154,0.015175760151361836,0.0007574288455191087,0.02683743952126305,-0.026080010675743944,-0.9717771568737397
-52,1046,0,1046,0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0
-53,3464,773,2691,0,3.0,0.22315242494226328,0.2254,0.22531594212055184,-0.0021635171782885543,0.18263458519980405,0.04051783974245923,0.011405334004384626,0.0782823691567573,-0.06687703515237269,-0.854305201449053
-54,2177,86,2091,0,2.0,0.03950390445567294,0.0513,0.051240559632190874,-0.01173665517651793,0.03952724687817992,-2.3342422506976435e-05,0.0006016578865182229,0.019782824482087975,-0.019181166595569753,-0.9695868561608589
-55,1036,0,1036,0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0
-56,1105,0,1105,0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0
-57,12805,7319,5486,0,10.0,0.5715736040609137,0.5757,0.5755665253002691,-0.0039929212393553515,0.5201969887649068,0.0513766152960069,0.049368777105202724,0.08489091565940458,-0.03552213855420186,-0.4184445211631613
-58,1103,0,1103,0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0
-59,2188,117,2071,0,2.0,0.05347349177330896,0.0513,0.051240559632190874,0.0022329321411180825,0.0392971591333651,0.014176332639943855,0.0007262004943140025,0.026813416553982217,-0.026087216059668215,-0.9729165250966069
-60,1096,0,1096,0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0
-61,1071,0,1071,0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0
-62,1089,0,1089,0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0
-63,1064,0,1064,0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0
-64,1029,0,1029,0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0
-65,1049,0,1049,0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0
-66,1024,0,1024,0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0
-67,1097,0,1097,0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0
-68,3569,799,2770,0,3.0,0.22387223311852059,0.2254,0.22531594212055184,-0.0014437090020312515,0.18772017059035154,0.03615206252816905,0.011433486669877405,0.07856148314180805,-0.06712799647193064,-0.8544644753047839
-69,1107,0,1107,0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0
-70,1114,0,1114,0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0
-71,1085,0,1085,0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0
-72,1086,0,1086,0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0
-73,1023,0,1023,0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0
-74,1081,0,1081,0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0
-75,1064,0,1064,0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0
-76,1068,0,1068,0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0
-77,1024,0,1024,0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0
-78,1117,0,1117,0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0
-79,1030,0,1030,0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0
-80,1144,0,1144,0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0
-81,1079,0,1079,0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0
-82,1053,0,1053,0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0
-83,1074,0,1074,0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0
-84,1092,0,1092,0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0
-85,1059,0,1059,0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0
-86,11589,6411,5178,0,9.0,0.5531969971524722,0.5528,0.5527332024982163,0.00046379465425583355,0.5010842399014717,0.05211275725100051,0.048652586687063584,0.08857163855628514,-0.03991905186922155,-0.45069790420388306
-87,1011,0,1011,0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0
-88,3490,775,2715,0,3.0,0.22206303724928367,0.2254,0.22531594212055184,-0.0032529048712681696,0.18495667896294724,0.03710635828633643,0.01157478755967022,0.07786046719158972,-0.0662856796319195,-0.8513393513143408
-89,1068,0,1068,0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0
-90,6143,2462,3681,0,5.0,0.40078137717727497,0.4,0.40010461661881447,0.0006767605584604985,0.3445572253849325,0.05622415179234247,0.030473885552490847,0.09549527142931784,-0.06502138587682699,-0.6808859214034851
-91,1088,0,1088,0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0
-92,1103,0,1103,0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0
-93,6180,2490,3690,0,5.0,0.4029126213592233,0.4,0.40010461661881447,0.0028080047404088204,0.34593397739043114,0.05697864396879215,0.030366954782236135,0.09619939798013896,-0.06583244319790282,-0.6843332139302409
-94,1047,0,1047,0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0
-95,1054,0,1054,0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0
-96,1000,0,1000,0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0
-97,1055,0,1055,0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0
-98,1063,0,1063,0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0
-99,11421,6278,5143,0,9.0,0.5496891690745118,0.5528,0.5527332024982163,-0.0030440334237045175,0.4951820979150468,0.054507071159465015,0.048120715252997284,0.08752208999022112,-0.03940137473722384,-0.4501877724997903
-100,1091,0,1091,0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0
diff --git a/00_aoi_caching_simulation/file_experiment/hit_age.csv b/00_aoi_caching_simulation/file_experiment/hit_age.csv
deleted file mode 100644
index 96b8db4..0000000
--- a/00_aoi_caching_simulation/file_experiment/hit_age.csv
+++ /dev/null
@@ -1,101 +0,0 @@
-obj_id,hit_rate,expected_hit_rate,avg_cache_time,avg_age,expected_age
-1,0.05560619872379216,0.051240559632190874,0.03941351347468736,0.000781094996965306,0.027889334560319015
-2,0.04380867232901207,0.051240559632190874,0.040330662851234655,0.0005472164029543024,0.02194645579745183
-3,0.399025974025974,0.40010461661881447,0.3461281129242689,0.030540206453468575,0.09491824117952462
-4,0.2354586129753915,0.22531594212055184,0.18738810795344676,0.0125796577890349,0.0830929399348214
-5,0.0,0.0,0.0,0.0,0.0
-6,0.0,0.0,0.0,0.0,0.0
-7,0.7869262133368408,0.7848887622998704,0.750537584648816,0.054863078839223686,0.05299473947796569
-8,0.0,0.0,0.0,0.0,0.0
-9,0.22296918767507004,0.22531594212055184,0.18854588063848216,0.011230648389453497,0.07821136057910953
-10,0.0,0.0,0.0,0.0,0.0
-11,0.0,0.0,0.0,0.0,0.0
-12,0.0,0.0,0.0,0.0,0.0
-13,0.23301781737193764,0.22531594212055184,0.18893487064532435,0.012613527255785382,0.08213216061931364
-14,0.0,0.0,0.0,0.0,0.0
-15,0.0,0.0,0.0,0.0,0.0
-16,0.0,0.0,0.0,0.0,0.0
-17,0.0,0.0,0.0,0.0,0.0
-18,0.0,0.0,0.0,0.0,0.0
-19,0.6538305634373733,0.6537173742753482,0.6043301974283786,0.055639127367164906,0.07613673064854358
-20,0.0,0.0,0.0,0.0,0.0
-21,0.0,0.0,0.0,0.0,0.0
-22,0.0,0.0,0.0,0.0,0.0
-23,0.6828607628118311,0.6743721128414397,0.632048683787555,0.058028116220032455,0.07526361524976279
-24,0.0,0.0,0.0,0.0,0.0
-25,0.0,0.0,0.0,0.0,0.0
-26,0.0,0.0,0.0,0.0,0.0
-27,0.0,0.0,0.0,0.0,0.0
-28,0.3256289629781141,0.32914348336790533,0.2831666983832757,0.022555548604990573,0.09106303921820517
-29,0.0491585473870682,0.051240559632190874,0.04065835355828264,0.0006345470298912082,0.024638814936683125
-30,0.0,0.0,0.0,0.0,0.0
-31,0.0,0.0,0.0,0.0,0.0
-32,0.0,0.0,0.0,0.0,0.0
-33,0.0,0.0,0.0,0.0,0.0
-34,0.0,0.0,0.0,0.0,0.0
-35,0.39463477698771815,0.40010461661881447,0.34829627575351285,0.02919589245861962,0.09348617513373864
-36,0.0,0.0,0.0,0.0,0.0
-37,0.05430879712746858,0.051240559632190874,0.04008008532174193,0.0007714759538735471,0.02723472590200356
-38,0.0,0.0,0.0,0.0,0.0
-39,0.0,0.0,0.0,0.0,0.0
-40,0.0,0.0,0.0,0.0,0.0
-41,0.32662895453593127,0.32914348336790533,0.27635079564460147,0.022796701696085605,0.09140938343814038
-42,0.4501889848812095,0.4521753363092973,0.3914754349139922,0.03639296869791629,0.09410345649984528
-43,0.3987415134956119,0.40010461661881447,0.3406989870266377,0.03164518181414623,0.09482498108884868
-44,0.0,0.0,0.0,0.0,0.0
-45,0.0,0.0,0.0,0.0,0.0
-46,0.694148101663006,0.6921060889542794,0.6510647347644756,0.05685609169074605,0.07050760867763574
-47,0.0,0.0,0.0,0.0,0.0
-48,0.0,0.0,0.0,0.0,0.0
-49,0.0,0.0,0.0,0.0,0.0
-50,0.0,0.0,0.0,0.0,0.0
-51,0.05352112676056338,0.051240559632190874,0.03834536660920154,0.0007574288455191087,0.02683743952126305
-52,0.0,0.0,0.0,0.0,0.0
-53,0.22315242494226328,0.22531594212055184,0.18263458519980405,0.011405334004384626,0.0782823691567573
-54,0.03950390445567294,0.051240559632190874,0.03952724687817992,0.0006016578865182229,0.019782824482087975
-55,0.0,0.0,0.0,0.0,0.0
-56,0.0,0.0,0.0,0.0,0.0
-57,0.5715736040609137,0.5755665253002691,0.5201969887649068,0.049368777105202724,0.08489091565940458
-58,0.0,0.0,0.0,0.0,0.0
-59,0.05347349177330896,0.051240559632190874,0.0392971591333651,0.0007262004943140025,0.026813416553982217
-60,0.0,0.0,0.0,0.0,0.0
-61,0.0,0.0,0.0,0.0,0.0
-62,0.0,0.0,0.0,0.0,0.0
-63,0.0,0.0,0.0,0.0,0.0
-64,0.0,0.0,0.0,0.0,0.0
-65,0.0,0.0,0.0,0.0,0.0
-66,0.0,0.0,0.0,0.0,0.0
-67,0.0,0.0,0.0,0.0,0.0
-68,0.22387223311852059,0.22531594212055184,0.18772017059035154,0.011433486669877405,0.07856148314180805
-69,0.0,0.0,0.0,0.0,0.0
-70,0.0,0.0,0.0,0.0,0.0
-71,0.0,0.0,0.0,0.0,0.0
-72,0.0,0.0,0.0,0.0,0.0
-73,0.0,0.0,0.0,0.0,0.0
-74,0.0,0.0,0.0,0.0,0.0
-75,0.0,0.0,0.0,0.0,0.0
-76,0.0,0.0,0.0,0.0,0.0
-77,0.0,0.0,0.0,0.0,0.0
-78,0.0,0.0,0.0,0.0,0.0
-79,0.0,0.0,0.0,0.0,0.0
-80,0.0,0.0,0.0,0.0,0.0
-81,0.0,0.0,0.0,0.0,0.0
-82,0.0,0.0,0.0,0.0,0.0
-83,0.0,0.0,0.0,0.0,0.0
-84,0.0,0.0,0.0,0.0,0.0
-85,0.0,0.0,0.0,0.0,0.0
-86,0.5531969971524722,0.5527332024982163,0.5010842399014717,0.048652586687063584,0.08857163855628514
-87,0.0,0.0,0.0,0.0,0.0
-88,0.22206303724928367,0.22531594212055184,0.18495667896294724,0.01157478755967022,0.07786046719158972
-89,0.0,0.0,0.0,0.0,0.0
-90,0.40078137717727497,0.40010461661881447,0.3445572253849325,0.030473885552490847,0.09549527142931784
-91,0.0,0.0,0.0,0.0,0.0
-92,0.0,0.0,0.0,0.0,0.0
-93,0.4029126213592233,0.40010461661881447,0.34593397739043114,0.030366954782236135,0.09619939798013896
-94,0.0,0.0,0.0,0.0,0.0
-95,0.0,0.0,0.0,0.0,0.0
-96,0.0,0.0,0.0,0.0,0.0
-97,0.0,0.0,0.0,0.0,0.0
-98,0.0,0.0,0.0,0.0,0.0
-99,0.5496891690745118,0.5527332024982163,0.4951820979150468,0.048120715252997284,0.08752208999022112
-100,0.0,0.0,0.0,0.0,0.0
diff --git a/00_aoi_caching_simulation/file_experiment/objects_in_cache_over_time.pdf b/00_aoi_caching_simulation/file_experiment/objects_in_cache_over_time.pdf
deleted file mode 100644
index dd67466..0000000
Binary files a/00_aoi_caching_simulation/file_experiment/objects_in_cache_over_time.pdf and /dev/null differ
diff --git a/00_aoi_caching_simulation/file_experiment/overall_hit_age.csv b/00_aoi_caching_simulation/file_experiment/overall_hit_age.csv
deleted file mode 100644
index e454b99..0000000
--- a/00_aoi_caching_simulation/file_experiment/overall_hit_age.csv
+++ /dev/null
@@ -1,9 +0,0 @@
-,hit_rate,expected_hit_rate,avg_cache_time,avg_age,expected_age
-count,100.0,100.0,100.0,100.0,100.0
-mean,0.09300682628867359,0.09307682224955467,0.08228884716449353,0.006811528965006264,0.019406710766047684
-std,0.19078236758508677,0.19063147098976466,0.1731236961557027,0.015248003362658972,0.03444760606043414
-min,0.0,0.0,0.0,0.0,0.0
-25%,0.0,0.0,0.0,0.0,0.0
-50%,0.0,0.0,0.0,0.0,0.0
-75%,0.05023728348362839,0.051240559632190874,0.0394419468255605,0.0006574603959969067,0.025182465341007897
-max,0.7869262133368408,0.7848887622998704,0.750537584648816,0.058028116220032455,0.09619939798013896
diff --git a/00_aoi_caching_simulation/lru-test-results/details.csv b/00_aoi_caching_simulation/lru-test-results/details.csv
new file mode 100644
index 0000000..0745686
--- /dev/null
+++ b/00_aoi_caching_simulation/lru-test-results/details.csv
@@ -0,0 +1,101 @@
+obj_id,access_count,hits,misses,mu,lambda,hit_rate,optimal_hitrates,expected_hit_rate,expected_hit_rate_delta,avg_cache_time,cache_time_delta,avg_age,expected_age,age_delta,age_delta in %
+0,1022,52,970,,0.0502,0.050880626223091974,0.0513,0.04896080236086586,0.001919823862226111,0.03841066639481686,0.012469959828275111,0.023130269003338155,1.0161890402260487,-0.9930587712227106,-0.9772382223309622
+1,1045,42,1003,,0.0506,0.04019138755980861,0.0513,0.04934114196692918,-0.00914975440712057,0.04033190825104728,-0.00014052069123866862,0.016009387481381924,0.7955813372649541,-0.7795719497835721,-0.9798771203753737
+2,1009,33,976,,0.0511,0.03270564915758176,0.4,0.04981635258339134,-0.01711070342580958,0.0390998460791795,-0.0063941969215977335,0.013227404886620874,0.6407176228261282,-0.6274902179395073,-0.9793553284389519
+3,1059,45,1014,,0.0515,0.042492917847025496,0.2254,0.05019635003780043,-0.007703432190774934,0.041095294854714325,0.0013976229923111719,0.01591446795733977,0.826597745534655,-0.8106832775773153,-0.9807470223052133
+4,1045,37,1008,,0.0519,0.0354066985645933,0.0,0.05057619552362358,-0.015169496959030276,0.041100158238940324,-0.005693459674347021,0.011847869123986644,0.6830663069644617,-0.6712184378404751,-0.9826548769816529
+5,1000,42,958,,0.0523,0.042,0.0,0.050955889101635954,-0.008955889101635951,0.03799929751665062,0.004000702483349383,0.017686238190562562,0.8044783732730159,-0.7867921350824533,-0.978015272034466
+6,1075,43,1032,,0.0528,0.04,0.7852,0.05143029254634057,-0.011430292546340572,0.04117492462299265,-0.0011749246229926513,0.01918061276290177,0.7587898212898214,-0.7396092085269197,-0.9747221006071249
+7,1037,31,1006,,0.0532,0.029893924783027964,0.0,0.0518096445538625,-0.021915719770834535,0.039465819942615596,-0.009571895159587632,0.013139942668628548,0.5624184828233159,-0.5492785401546874,-0.9766367161287685
+8,1054,41,1013,,0.0537,0.03889943074003795,0.2254,0.0522836212275426,-0.013384190487504645,0.03995440567097825,-0.0010549749309402973,0.017681682795599882,0.725481959528888,-0.7078002767332882,-0.9756276740401898
+9,1060,46,1014,,0.0542,0.04339622641509434,0.0,0.052757360972123135,-0.009361134557028798,0.040852273886548135,0.002543952528546202,0.020693989871551178,0.8021790737183616,-0.7814850838468105,-0.9742027802151112
+10,1107,46,1061,,0.0547,0.04155374887082204,0.0,0.05323086390603893,-0.011677115035216887,0.04264247678186014,-0.0010887279110380968,0.017581731424764428,0.7609803367669299,-0.7433986053421655,-0.9768959451705922
+11,1095,53,1042,,0.0551,0.048401826484018265,0.0,0.05360949582904351,-0.005207669345025243,0.04174263271605159,0.006659193767966677,0.018791594501009878,0.880498829357576,-0.8617072348565661,-0.9786580130779725
+12,1155,47,1108,,0.0556,0.04069264069264069,0.2254,0.05408257280202999,-0.013389932109389303,0.04458528408952389,-0.003892643396883201,0.01838430556267057,0.7330959538429553,-0.7147116482802848,-0.9749223748046918
+13,1157,50,1107,,0.0562,0.043215211754537596,0.0,0.05464995302725972,-0.011434741272722128,0.044525019248745704,-0.001309807494208108,0.020602951764606744,0.7703926961775835,-0.7497897444129769,-0.9732565588084736
+14,1112,38,1074,,0.0567,0.0341726618705036,0.0,0.05512250990168255,-0.02094984803117895,0.04264660930760569,-0.008473947437102093,0.014275866860134883,0.6033970787162162,-0.5891212118560812,-0.9763408419369412
+15,1129,52,1077,,0.0572,0.046058458813108945,0.0,0.05559483055672798,-0.009536371743619036,0.04312144079401798,0.0029370180190909645,0.018279268984200906,0.8069296170829501,-0.7886503480987491,-0.977347133384098
+16,1088,53,1035,,0.0578,0.04871323529411765,0.0,0.05616130369945693,-0.007448068405339285,0.04213980098076323,0.006573434313354415,0.02194576629739743,0.844794217144491,-0.8228484508470936,-0.9740223526013508
+17,1125,48,1077,,0.0583,0.042666666666666665,0.0,0.056633105087431024,-0.013966438420764359,0.04374718970366362,-0.001080523036996954,0.019660971320754773,0.7331814857451128,-0.713520514424358,-0.9731840319170446
+18,1164,38,1126,,0.0589,0.03264604810996564,0.6536,0.05719895545229359,-0.02455290734232795,0.04448152756426309,-0.01183547945429745,0.01855139467327505,0.5548536201767658,-0.5363022255034907,-0.9665652453211625
+19,1152,43,1109,,0.0595,0.03732638888888889,0.0,0.057764466408769866,-0.020438077519880977,0.04466055356167146,-0.00733416467278257,0.014552290152392226,0.6282095258090333,-0.6136572356566411,-0.9768352921206485
+20,1226,54,1172,,0.0601,0.04404567699836868,0.0,0.05832963816044401,-0.01428396116207533,0.04721879437912196,-0.003173117380753279,0.018170967782135065,0.734297714843861,-0.7161267470617259,-0.9752539502509565
+21,1232,68,1164,,0.0607,0.05519480519480519,0.0,0.05889447091077771,-0.003699665715972515,0.04759417763784826,0.007600627556956931,0.0264933171464117,0.9120834950077973,-0.8855901778613856,-0.9709529694469636
+22,1213,67,1146,,0.0613,0.055234954657873044,0.6746,0.05945896486311064,-0.004224010205237598,0.045696929085445225,0.009538025572427819,0.02530963493363661,0.9038170749240567,-0.8785074399904201,-0.971996949785704
+23,1165,50,1115,,0.0619,0.04291845493562232,0.0,0.06002312022066092,-0.017104665285038602,0.04452822457303021,-0.0016097696374078943,0.019822396615149625,0.694630958819385,-0.6748085622042354,-0.9714634132506269
+24,1185,56,1129,,0.0626,0.04725738396624472,0.0,0.06068087379589682,-0.013423489829652094,0.044905352393483075,0.002352031572761648,0.02228339729532531,0.7565999717102756,-0.7343165744149502,-0.9705479802689467
+25,1331,63,1268,,0.0632,0.0473328324567994,0.0,0.061244296227986994,-0.013911463771187592,0.050054856366735456,-0.002722023909936054,0.019595520114688673,0.7506189067859236,-0.7310233866712349,-0.9738941826037999
+26,1258,58,1200,,0.0639,0.046104928457869634,0.0,0.06190119527913607,-0.015796266821266433,0.048370716537119066,-0.002265788079249431,0.019890525442862076,0.7230538471173772,-0.7031633216745151,-0.9724909486033989
+27,1325,60,1265,,0.0646,0.045283018867924525,0.3292,0.06255763466185216,-0.017274615793927632,0.051300521950102186,-0.006017503082177661,0.0234038120332104,0.7024158643847899,-0.6790120523515795,-0.9666809745908734
+28,1291,72,1219,,0.0653,0.055770720371804805,0.0513,0.06321361469779041,-0.007442894325985605,0.04956474286783224,0.0062059775039725665,0.02235396807281049,0.8567339871597796,-0.834380019086969,-0.9739079242707321
+29,1272,48,1224,,0.0661,0.03773584905660377,0.0,0.06396274411431202,-0.026226895057708248,0.04898201703752606,-0.01124616798092229,0.013965728504277214,0.5717044072477016,-0.5577386787434243,-0.97557176693545
+30,1335,64,1271,,0.0668,0.04794007490636704,0.0,0.06461774091780503,-0.01667766601143799,0.0510467549575836,-0.0031066800512165593,0.02018027843537626,0.7193189673908162,-0.69913868895544,-0.9719452991646027
+31,1323,70,1253,,0.0676,0.05291005291005291,0.0,0.0653657474825512,-0.012455694572498288,0.04965226451488718,0.003257788395165724,0.023756274814332835,0.7848903703337021,-0.7611340955193693,-0.9697330025794141
+32,1400,79,1321,,0.0684,0.056428571428571425,0.0,0.06611315588134392,-0.009684584452772496,0.052440560674594947,0.003988010753976479,0.025115291494777106,0.8276143906835415,-0.8024990991887644,-0.9696533895767159
+33,1393,75,1318,,0.0692,0.05384063173007897,0.0,0.06685996659252447,-0.013019334862445497,0.052996432452765065,0.0008441992773139048,0.026407589772748635,0.7803057721323055,-0.7538981823595569,-0.9661573825084162
+34,1348,69,1279,,0.07,0.05118694362017804,0.4,0.06760618009405173,-0.016419236473873687,0.05108657802679661,0.00010036559338143236,0.022691069801567335,0.733163014475106,-0.7104719446735387,-0.9690504439618894
+35,1319,69,1250,,0.0709,0.052312357846853674,0.0,0.06844495702573039,-0.016132599178876716,0.05031372460126455,0.001998633245589125,0.023754877886484286,0.7398576555850468,-0.7161027776985625,-0.967892637580806
+36,1400,84,1316,,0.0718,0.06,0.0513,0.06928297939777339,-0.009282979397773394,0.05333632881559047,0.006663671184409525,0.0247150609634974,0.8386738218589709,-0.8139587608954735,-0.9705307828629789
+37,1376,78,1298,,0.0727,0.056686046511627904,0.0,0.07012024788897864,-0.013434201377350734,0.051943835305547394,0.00474221120608051,0.023734105831216823,0.7822391117042844,-0.7585050058730676,-0.96965875845877
+38,1433,79,1354,,0.0736,0.05512909979064899,0.0,0.07095676317753397,-0.015827663386884974,0.05447805131937094,0.0006510484712780526,0.023677172440715467,0.7513201072642504,-0.7276429348235349,-0.9684859060581646
+39,1475,88,1387,,0.0746,0.059661016949152545,0.0,0.07188534204753982,-0.012224325098387279,0.05602677790092625,0.0036342390482262954,0.024701307678027605,0.802602347959621,-0.7779010402815935,-0.9692234794218789
+40,1415,88,1327,,0.0756,0.06219081272084806,0.3292,0.0728129928028105,-0.010622180081962446,0.05383557168107564,0.00835524103977242,0.028097776340128815,0.8258238344160447,-0.7977260580759159,-0.9659760651495397
+41,1557,104,1453,,0.0766,0.06679511881824021,0.4523,0.07373971637099663,-0.006944597552756421,0.05868712870672106,0.00810799011151915,0.03078080371456335,0.8759068757022616,-0.8451260719876982,-0.9648583604394192
+42,1528,91,1437,,0.0777,0.05955497382198953,0.4,0.07475804250093576,-0.015203068678946233,0.05798283548971927,0.0015721383322702606,0.025255198204581247,0.7692014794520142,-0.743946281247433,-0.9671669921610483
+43,1519,97,1422,,0.0788,0.06385780118499013,0.0,0.0757752490879936,-0.011917447903003475,0.05730051384300811,0.006557287341982014,0.03390101552067795,0.8136962936478703,-0.7797952781271924,-0.958337016175044
+44,1634,113,1521,,0.0799,0.06915544675642595,0.0,0.07679133736298993,-0.007635890606563986,0.06064067872523289,0.008514768031193054,0.033408797084150454,0.8696842345128761,-0.8362754374287257,-0.9615851411830373
+45,1583,92,1491,,0.081,0.05811749842072015,0.6922,0.07780630855539195,-0.019688810134671796,0.06028195517730234,-0.002164456756582188,0.02639353800454761,0.7199316530594413,-0.6935381150548937,-0.9633388282173941
+46,1553,103,1450,,0.0822,0.06632324533161622,0.0,0.07891227727117978,-0.012589031939563552,0.05861732593717875,0.007705919394437474,0.026723378124568882,0.8104169731841298,-0.7836935950595608,-0.9670251500044814
+47,1600,105,1495,,0.0835,0.065625,0.0,0.08010891332876358,-0.014483913328763573,0.05999138717622494,0.005633612823775065,0.02374951827901878,0.7893274935627818,-0.7655779752837629,-0.9699117052519978
+48,1717,114,1603,,0.0848,0.06639487478159581,0.0,0.0813039947701919,-0.014909119988596092,0.06447583443583742,0.001919040345758391,0.028319372894812074,0.7864252110837618,-0.7581058381889497,-0.9639897443575269
+49,1729,112,1617,,0.0861,0.06477732793522267,0.0,0.08249752361515283,-0.017720195679930162,0.06551870263742948,-0.0007413747022068096,0.027909777226314457,0.7555201577538325,-0.727610380527518,-0.9630588582715113
+50,1749,109,1640,,0.0875,0.062321326472269865,0.0513,0.08378112834912232,-0.02145980187685246,0.06531262722527637,-0.0029913007530064997,0.02805580488521431,0.7150208346616759,-0.6869650297764616,-0.9607622554124743
+51,1770,113,1657,,0.0889,0.06384180790960452,0.0,0.0850629372938102,-0.021221129384205686,0.066206886296514,-0.0023650783869094832,0.028161215497163064,0.721069490701228,-0.692908275204065,-0.9609452128257753
+52,1818,123,1695,,0.0904,0.06765676567656766,0.2254,0.08643431409813307,-0.018777548421565413,0.0683821837181859,-0.0007254180416182421,0.031206762935197897,0.7518571288680578,-0.7206503659328599,-0.9584937593367233
+53,1825,115,1710,,0.0919,0.06301369863013699,0.0513,0.08780363537927727,-0.024789936749140276,0.06864898171028078,-0.005635283080143785,0.028481409832095045,0.6884102965384549,-0.6599288867063599,-0.9586272750780914
+54,1824,133,1691,,0.0935,0.07291666666666667,0.0,0.0892619825738008,-0.01634531590713413,0.06884148650632783,0.004075180160338837,0.0292434833191378,0.7840259381914553,-0.7547824548723174,-0.9627008726438375
+55,1915,148,1767,,0.0952,0.07728459530026109,0.0,0.09080892193241596,-0.013524326632154873,0.07245841906382249,0.004826176236438606,0.038224760964102406,0.8166909965778415,-0.7784662356137391,-0.953195564633044
+56,1897,147,1750,,0.0969,0.07749077490774908,0.5757,0.09235323372818272,-0.014862458820433633,0.06981146717247284,0.007679307735276239,0.03388942337807654,0.8045294541753255,-0.770640030797249,-0.957876715138025
+57,1846,112,1734,,0.0987,0.06067172264355363,0.0,0.09398552840154639,-0.03331380575799276,0.07009089420379112,-0.009419171560237492,0.028305374711024518,0.6169795736562523,-0.5886741989452278,-0.9541226712850711
+58,1998,166,1832,,0.1006,0.08308308308308308,0.0513,0.09570532157669598,-0.012622238493612895,0.07430162532964435,0.008781457753438734,0.035378137239857166,0.8316160555895552,-0.796237918349698,-0.9574585687685206
+59,2024,141,1883,,0.1025,0.06966403162055336,0.0,0.09742185024707439,-0.027757818626521033,0.07617924403564695,-0.006515212415093591,0.03118495101300779,0.6829635639510592,-0.6517786129380514,-0.954338777851343
+60,2045,157,1888,,0.1046,0.07677261613691931,0.0,0.09931527556913367,-0.022542659432214354,0.07611599088422011,0.0006566252526992028,0.036578350241657946,0.738315482391202,-0.7017371321495441,-0.9504570185590709
+61,2084,146,1938,,0.1067,0.07005758157389635,0.0,0.10120472887009846,-0.031147147296202105,0.07724463625596549,-0.0071870546820691356,0.032452792474864545,0.6598230990382319,-0.6273703065633673,-0.9508159194151157
+62,2188,205,1983,,0.1089,0.09369287020109689,0.0,0.10317990497621321,-0.009487034775116324,0.07973839359107356,0.01395447661002333,0.04335364644339692,0.8679763383101748,-0.824622691866778,-0.9500520411330564
+63,2109,172,1937,,0.1113,0.0815552394499763,0.0,0.10532969242743095,-0.02377445297745466,0.07890289192843941,0.0026523475215368825,0.0399716061565535,0.7376578293996698,-0.6976862232431164,-0.9458128083733841
+64,2290,191,2099,,0.1138,0.08340611353711791,0.0,0.10756357468006639,-0.024157461142948478,0.08566741233404172,-0.0022612987969238135,0.035708758201432114,0.738052719255409,-0.7023439610539769,-0.9516176049897124
+65,2365,201,2164,,0.1164,0.08498942917547568,0.0,0.10988089556332603,-0.02489146638785035,0.0860280450335957,-0.0010386158581200122,0.03582719939814374,0.7354621274827582,-0.6996349280846145,-0.9512861396129693
+66,2335,189,2146,,0.1191,0.08094218415417559,0.0,0.11228097557923511,-0.03133879142505952,0.08725502333445254,-0.006312839180276947,0.03467079310221945,0.6840972732833694,-0.64942648018115,-0.9493189134699884
+67,2395,213,2182,,0.122,0.08893528183716075,0.2254,0.11485163149737287,-0.025916349660212126,0.08795539235012496,0.0009798894870357844,0.041925505028436255,0.7347895262390678,-0.6928640212106315,-0.9429421575413207
+68,2597,223,2374,,0.125,0.08586830958798614,0.0,0.11750309741540454,-0.03163478782741841,0.09619863864041611,-0.010330329052429976,0.042723397803677794,0.6920492092228456,-0.6493258114191678,-0.9382653758803435
+69,2523,216,2307,,0.1282,0.08561236623067776,0.0,0.12032257393529056,-0.03471020770461279,0.093490107928911,-0.007877741698233243,0.03903212533757666,0.672733956959963,-0.6337018316223864,-0.9419798496363109
+70,2557,245,2312,,0.1316,0.09581540868204928,0.0,0.12330839840596675,-0.027492989723917463,0.09402156324351087,0.0017938454385384162,0.04377731681240563,0.7348267581401218,-0.6910494413277162,-0.9404249827221753
+71,2692,250,2442,,0.1352,0.09286775631500743,0.0,0.12645881402114978,-0.03359105770614235,0.09896610745172518,-0.00609835113671775,0.039254750924517676,0.692867267149545,-0.6536125162250274,-0.9433444863313984
+72,2799,281,2518,,0.1391,0.10039299749910682,0.0,0.12985898999359913,-0.029465992494492305,0.10273940114343916,-0.0023464036443323344,0.04492665295812732,0.7290807742508766,-0.6841541212927492,-0.9383790458549822
+73,2738,250,2488,,0.1432,0.09130752373995617,0.0,0.13341926458436437,-0.042111740844408205,0.10046340595112639,-0.009155882211170224,0.03750429347199607,0.6429829625254627,-0.6054786690534667,-0.9416714039751701
+74,2887,304,2583,,0.1476,0.10529961898164185,0.0,0.13722384360828832,-0.03192422462664647,0.10444589040776796,0.0008537285738738909,0.04803592737252314,0.721411065656447,-0.6733751382839238,-0.9334139304769148
+75,3053,341,2712,,0.1523,0.11169341631182443,0.0,0.14126937709249132,-0.02957596078066689,0.10977101410622506,0.0019224022055993745,0.050014985014212296,0.7426424270520526,-0.6926274420378403,-0.9326526694512342
+76,3214,358,2856,,0.1573,0.11138767890479154,0.0,0.14555231394212342,-0.034164635037331886,0.11603620055574271,-0.004648521650951171,0.049273323345434626,0.7170187673927396,-0.667745444047305,-0.9312802877885542
+77,3284,422,2862,,0.1628,0.1285018270401949,0.0,0.15023887635477018,-0.02173704931457529,0.11613203527407807,0.012369791766116814,0.058891358927684545,0.8025759738942848,-0.7436846149666003,-0.9266220758616409
+78,3295,398,2897,,0.1687,0.12078907435508346,0.0,0.15523770593624864,-0.03444863158116518,0.11621491698986029,0.0045741573652231665,0.05324677677153553,0.7266003547439223,-0.6733535779723867,-0.9267179317710332
+79,3442,402,3040,,0.1751,0.1167925624636839,0.0,0.16062692073572438,-0.04383435827204048,0.12331158336447769,-0.006519020900793787,0.050476642619519875,0.6762290294149081,-0.6257523867953882,-0.9253556998829322
+80,3599,468,3131,,0.1821,0.13003612114476243,0.0,0.1664820155504385,-0.03644589440567608,0.12691041193577812,0.0031257092089843064,0.056646599901718844,0.7263743735733729,-0.669727773671654,-0.9220145947288202
+81,3753,469,3284,,0.1897,0.12496669331201705,0.0,0.1727927410995721,-0.047826047787555045,0.13270073755725215,-0.007734044245235092,0.054109959601682946,0.6692104265594221,-0.6151004669577391,-0.9191435795764932
+82,3985,555,3430,,0.1981,0.13927227101631118,0.0,0.17971217974577025,-0.04043990872945907,0.14096123525035748,-0.0016889642340462974,0.06127491400502369,0.7169466840236481,-0.6556717700186244,-0.914533513620376
+83,4062,596,3466,,0.2073,0.14672575086164452,0.0,0.1872242193251994,-0.04049846846355487,0.1400096431620213,0.006716107699623219,0.0654315371120496,0.7233672361405287,-0.657935699028479,-0.909545893367863
+84,4341,639,3702,,0.2176,0.14720110573600553,0.0,0.19555284381816018,-0.04835173808215465,0.15049427836609908,-0.0032931726300935438,0.0663228113906617,0.6914583027026593,-0.6251354913119975,-0.9040827029895657
+85,4426,646,3780,,0.2292,0.14595571622232265,0.5528,0.20483051629609672,-0.058874800073774075,0.15421382862318556,-0.00825811240086291,0.06406477203245145,0.6506662336362129,-0.5866014616037615,-0.9015397315541811
+86,4771,769,4002,,0.2422,0.16118214210857262,0.0,0.21510081798360403,-0.05391867587503141,0.16318443099925253,-0.0020022888906799097,0.07199548641397638,0.6832423354632712,-0.6112468490492948,-0.8946267192808538
+87,4992,838,4154,,0.257,0.16786858974358973,0.2254,0.22663178623455094,-0.058763196490961206,0.1695088878260666,-0.001640298082476871,0.07487254179687183,0.6721255811799927,-0.5972530393831208,-0.8886033445335846
+88,5491,1015,4476,,0.274,0.18484793298124202,0.0,0.2396679247391179,-0.054819991757875886,0.18351335709217217,0.00133457588906985,0.08139486286242255,0.6984941711597515,-0.617099308297329,-0.883470949045605
+89,5951,1163,4788,,0.2937,0.19542933960678877,0.4,0.25449989206848234,-0.05907055246169357,0.19576230671147474,-0.0003329671046859717,0.08785231641626227,0.6918273323361233,-0.603975015919861,-0.8730141000361933
+90,6186,1232,4954,,0.317,0.19915939217588102,0.0,0.27166924487429833,-0.07250985269841731,0.20414976078515548,-0.004990368609274459,0.09140024417782795,0.654212036227783,-0.562811792049955,-0.8602895710925069
+91,6803,1495,5308,,0.3449,0.21975599000440982,0.0,0.29170882095563344,-0.07195283095122362,0.21681587112516157,0.002940118879248249,0.09436272445393173,0.6694900464268099,-0.5751273219728781,-0.8590528343810893
+92,7424,1748,5676,,0.3789,0.23545258620689655,0.4,0.31538592934961296,-0.07993334314271641,0.23347531788828704,0.001977268318609504,0.1040113131833863,0.6578825292182322,-0.5538712160348459,-0.8418998703203383
+93,8418,2194,6224,,0.4216,0.26063197909242103,0.0,0.34400361452508255,-0.08337163543266152,0.2573891814125125,0.003242797679908538,0.11665770278015059,0.6632513110934057,-0.5465936083132552,-0.8241123676215069
+94,9477,2672,6805,,0.477,0.2819457634272449,0.0,0.37935747070656267,-0.09741170727931775,0.2803816317319518,0.001564131695293125,0.12753576740048905,0.6421260572435807,-0.5145902898430916,-0.8013851548900618
+95,10811,3365,7446,,0.5519,0.31125705300157247,0.0,0.4241453535240651,-0.11288830052249266,0.3083560863561558,0.0029009666454166694,0.1376447000584078,0.6244732008115484,-0.48682850075314066,-0.7795826948545935
+96,13157,4684,8473,,0.6598,0.35600820855818194,0.0,0.4830452849036866,-0.12703707634550465,0.3534003397993998,0.0026078687587821614,0.16001972412083987,0.6178812980646886,-0.45786157394384874,-0.7410186639051071
+97,16227,6542,9685,,0.8305,0.40315523510199053,0.0,0.5641686838245477,-0.16101344872255713,0.4074347875952968,-0.004279552493306249,0.18586452955761298,0.5796496220295557,-0.3937850924719427,-0.6793502100340609
+98,22767,11201,11566,,1.1487,0.49198401194711644,0.5528,0.6829513351467044,-0.19096732319958792,0.48999465684287963,0.001989355104236812,0.22403357976846788,0.5650707390882707,-0.3410371593198028,-0.6035300285944001
+99,39079,24517,14562,,2.0,0.627370198828015,0.0,0.8646647167633873,-0.23729451793537226,0.6276009756806458,-0.0002307768526307319,0.2937134697339627,0.5172850724606094,-0.22357160272664672,-0.43220192236200944
diff --git a/00_aoi_caching_simulation/lru-test-results/hit_age.csv b/00_aoi_caching_simulation/lru-test-results/hit_age.csv
new file mode 100644
index 0000000..e3f1e51
--- /dev/null
+++ b/00_aoi_caching_simulation/lru-test-results/hit_age.csv
@@ -0,0 +1,101 @@
+obj_id,hit_rate,expected_hit_rate,avg_cache_time,avg_age,expected_age
+0,0.050880626223091974,0.04896080236086586,0.03841066639481686,0.023130269003338155,1.0161890402260487
+1,0.04019138755980861,0.04934114196692918,0.04033190825104728,0.016009387481381924,0.7955813372649541
+2,0.03270564915758176,0.04981635258339134,0.0390998460791795,0.013227404886620874,0.6407176228261282
+3,0.042492917847025496,0.05019635003780043,0.041095294854714325,0.01591446795733977,0.826597745534655
+4,0.0354066985645933,0.05057619552362358,0.041100158238940324,0.011847869123986644,0.6830663069644617
+5,0.042,0.050955889101635954,0.03799929751665062,0.017686238190562562,0.8044783732730159
+6,0.04,0.05143029254634057,0.04117492462299265,0.01918061276290177,0.7587898212898214
+7,0.029893924783027964,0.0518096445538625,0.039465819942615596,0.013139942668628548,0.5624184828233159
+8,0.03889943074003795,0.0522836212275426,0.03995440567097825,0.017681682795599882,0.725481959528888
+9,0.04339622641509434,0.052757360972123135,0.040852273886548135,0.020693989871551178,0.8021790737183616
+10,0.04155374887082204,0.05323086390603893,0.04264247678186014,0.017581731424764428,0.7609803367669299
+11,0.048401826484018265,0.05360949582904351,0.04174263271605159,0.018791594501009878,0.880498829357576
+12,0.04069264069264069,0.05408257280202999,0.04458528408952389,0.01838430556267057,0.7330959538429553
+13,0.043215211754537596,0.05464995302725972,0.044525019248745704,0.020602951764606744,0.7703926961775835
+14,0.0341726618705036,0.05512250990168255,0.04264660930760569,0.014275866860134883,0.6033970787162162
+15,0.046058458813108945,0.05559483055672798,0.04312144079401798,0.018279268984200906,0.8069296170829501
+16,0.04871323529411765,0.05616130369945693,0.04213980098076323,0.02194576629739743,0.844794217144491
+17,0.042666666666666665,0.056633105087431024,0.04374718970366362,0.019660971320754773,0.7331814857451128
+18,0.03264604810996564,0.05719895545229359,0.04448152756426309,0.01855139467327505,0.5548536201767658
+19,0.03732638888888889,0.057764466408769866,0.04466055356167146,0.014552290152392226,0.6282095258090333
+20,0.04404567699836868,0.05832963816044401,0.04721879437912196,0.018170967782135065,0.734297714843861
+21,0.05519480519480519,0.05889447091077771,0.04759417763784826,0.0264933171464117,0.9120834950077973
+22,0.055234954657873044,0.05945896486311064,0.045696929085445225,0.02530963493363661,0.9038170749240567
+23,0.04291845493562232,0.06002312022066092,0.04452822457303021,0.019822396615149625,0.694630958819385
+24,0.04725738396624472,0.06068087379589682,0.044905352393483075,0.02228339729532531,0.7565999717102756
+25,0.0473328324567994,0.061244296227986994,0.050054856366735456,0.019595520114688673,0.7506189067859236
+26,0.046104928457869634,0.06190119527913607,0.048370716537119066,0.019890525442862076,0.7230538471173772
+27,0.045283018867924525,0.06255763466185216,0.051300521950102186,0.0234038120332104,0.7024158643847899
+28,0.055770720371804805,0.06321361469779041,0.04956474286783224,0.02235396807281049,0.8567339871597796
+29,0.03773584905660377,0.06396274411431202,0.04898201703752606,0.013965728504277214,0.5717044072477016
+30,0.04794007490636704,0.06461774091780503,0.0510467549575836,0.02018027843537626,0.7193189673908162
+31,0.05291005291005291,0.0653657474825512,0.04965226451488718,0.023756274814332835,0.7848903703337021
+32,0.056428571428571425,0.06611315588134392,0.052440560674594947,0.025115291494777106,0.8276143906835415
+33,0.05384063173007897,0.06685996659252447,0.052996432452765065,0.026407589772748635,0.7803057721323055
+34,0.05118694362017804,0.06760618009405173,0.05108657802679661,0.022691069801567335,0.733163014475106
+35,0.052312357846853674,0.06844495702573039,0.05031372460126455,0.023754877886484286,0.7398576555850468
+36,0.06,0.06928297939777339,0.05333632881559047,0.0247150609634974,0.8386738218589709
+37,0.056686046511627904,0.07012024788897864,0.051943835305547394,0.023734105831216823,0.7822391117042844
+38,0.05512909979064899,0.07095676317753397,0.05447805131937094,0.023677172440715467,0.7513201072642504
+39,0.059661016949152545,0.07188534204753982,0.05602677790092625,0.024701307678027605,0.802602347959621
+40,0.06219081272084806,0.0728129928028105,0.05383557168107564,0.028097776340128815,0.8258238344160447
+41,0.06679511881824021,0.07373971637099663,0.05868712870672106,0.03078080371456335,0.8759068757022616
+42,0.05955497382198953,0.07475804250093576,0.05798283548971927,0.025255198204581247,0.7692014794520142
+43,0.06385780118499013,0.0757752490879936,0.05730051384300811,0.03390101552067795,0.8136962936478703
+44,0.06915544675642595,0.07679133736298993,0.06064067872523289,0.033408797084150454,0.8696842345128761
+45,0.05811749842072015,0.07780630855539195,0.06028195517730234,0.02639353800454761,0.7199316530594413
+46,0.06632324533161622,0.07891227727117978,0.05861732593717875,0.026723378124568882,0.8104169731841298
+47,0.065625,0.08010891332876358,0.05999138717622494,0.02374951827901878,0.7893274935627818
+48,0.06639487478159581,0.0813039947701919,0.06447583443583742,0.028319372894812074,0.7864252110837618
+49,0.06477732793522267,0.08249752361515283,0.06551870263742948,0.027909777226314457,0.7555201577538325
+50,0.062321326472269865,0.08378112834912232,0.06531262722527637,0.02805580488521431,0.7150208346616759
+51,0.06384180790960452,0.0850629372938102,0.066206886296514,0.028161215497163064,0.721069490701228
+52,0.06765676567656766,0.08643431409813307,0.0683821837181859,0.031206762935197897,0.7518571288680578
+53,0.06301369863013699,0.08780363537927727,0.06864898171028078,0.028481409832095045,0.6884102965384549
+54,0.07291666666666667,0.0892619825738008,0.06884148650632783,0.0292434833191378,0.7840259381914553
+55,0.07728459530026109,0.09080892193241596,0.07245841906382249,0.038224760964102406,0.8166909965778415
+56,0.07749077490774908,0.09235323372818272,0.06981146717247284,0.03388942337807654,0.8045294541753255
+57,0.06067172264355363,0.09398552840154639,0.07009089420379112,0.028305374711024518,0.6169795736562523
+58,0.08308308308308308,0.09570532157669598,0.07430162532964435,0.035378137239857166,0.8316160555895552
+59,0.06966403162055336,0.09742185024707439,0.07617924403564695,0.03118495101300779,0.6829635639510592
+60,0.07677261613691931,0.09931527556913367,0.07611599088422011,0.036578350241657946,0.738315482391202
+61,0.07005758157389635,0.10120472887009846,0.07724463625596549,0.032452792474864545,0.6598230990382319
+62,0.09369287020109689,0.10317990497621321,0.07973839359107356,0.04335364644339692,0.8679763383101748
+63,0.0815552394499763,0.10532969242743095,0.07890289192843941,0.0399716061565535,0.7376578293996698
+64,0.08340611353711791,0.10756357468006639,0.08566741233404172,0.035708758201432114,0.738052719255409
+65,0.08498942917547568,0.10988089556332603,0.0860280450335957,0.03582719939814374,0.7354621274827582
+66,0.08094218415417559,0.11228097557923511,0.08725502333445254,0.03467079310221945,0.6840972732833694
+67,0.08893528183716075,0.11485163149737287,0.08795539235012496,0.041925505028436255,0.7347895262390678
+68,0.08586830958798614,0.11750309741540454,0.09619863864041611,0.042723397803677794,0.6920492092228456
+69,0.08561236623067776,0.12032257393529056,0.093490107928911,0.03903212533757666,0.672733956959963
+70,0.09581540868204928,0.12330839840596675,0.09402156324351087,0.04377731681240563,0.7348267581401218
+71,0.09286775631500743,0.12645881402114978,0.09896610745172518,0.039254750924517676,0.692867267149545
+72,0.10039299749910682,0.12985898999359913,0.10273940114343916,0.04492665295812732,0.7290807742508766
+73,0.09130752373995617,0.13341926458436437,0.10046340595112639,0.03750429347199607,0.6429829625254627
+74,0.10529961898164185,0.13722384360828832,0.10444589040776796,0.04803592737252314,0.721411065656447
+75,0.11169341631182443,0.14126937709249132,0.10977101410622506,0.050014985014212296,0.7426424270520526
+76,0.11138767890479154,0.14555231394212342,0.11603620055574271,0.049273323345434626,0.7170187673927396
+77,0.1285018270401949,0.15023887635477018,0.11613203527407807,0.058891358927684545,0.8025759738942848
+78,0.12078907435508346,0.15523770593624864,0.11621491698986029,0.05324677677153553,0.7266003547439223
+79,0.1167925624636839,0.16062692073572438,0.12331158336447769,0.050476642619519875,0.6762290294149081
+80,0.13003612114476243,0.1664820155504385,0.12691041193577812,0.056646599901718844,0.7263743735733729
+81,0.12496669331201705,0.1727927410995721,0.13270073755725215,0.054109959601682946,0.6692104265594221
+82,0.13927227101631118,0.17971217974577025,0.14096123525035748,0.06127491400502369,0.7169466840236481
+83,0.14672575086164452,0.1872242193251994,0.1400096431620213,0.0654315371120496,0.7233672361405287
+84,0.14720110573600553,0.19555284381816018,0.15049427836609908,0.0663228113906617,0.6914583027026593
+85,0.14595571622232265,0.20483051629609672,0.15421382862318556,0.06406477203245145,0.6506662336362129
+86,0.16118214210857262,0.21510081798360403,0.16318443099925253,0.07199548641397638,0.6832423354632712
+87,0.16786858974358973,0.22663178623455094,0.1695088878260666,0.07487254179687183,0.6721255811799927
+88,0.18484793298124202,0.2396679247391179,0.18351335709217217,0.08139486286242255,0.6984941711597515
+89,0.19542933960678877,0.25449989206848234,0.19576230671147474,0.08785231641626227,0.6918273323361233
+90,0.19915939217588102,0.27166924487429833,0.20414976078515548,0.09140024417782795,0.654212036227783
+91,0.21975599000440982,0.29170882095563344,0.21681587112516157,0.09436272445393173,0.6694900464268099
+92,0.23545258620689655,0.31538592934961296,0.23347531788828704,0.1040113131833863,0.6578825292182322
+93,0.26063197909242103,0.34400361452508255,0.2573891814125125,0.11665770278015059,0.6632513110934057
+94,0.2819457634272449,0.37935747070656267,0.2803816317319518,0.12753576740048905,0.6421260572435807
+95,0.31125705300157247,0.4241453535240651,0.3083560863561558,0.1376447000584078,0.6244732008115484
+96,0.35600820855818194,0.4830452849036866,0.3534003397993998,0.16001972412083987,0.6178812980646886
+97,0.40315523510199053,0.5641686838245477,0.4074347875952968,0.18586452955761298,0.5796496220295557
+98,0.49198401194711644,0.6829513351467044,0.48999465684287963,0.22403357976846788,0.5650707390882707
+99,0.627370198828015,0.8646647167633873,0.6276009756806458,0.2937134697339627,0.5172850724606094
diff --git a/00_aoi_caching_simulation/file_experiment/lambda_distribution.pdf b/00_aoi_caching_simulation/lru-test-results/lambda_distribution.pdf
similarity index 67%
rename from 00_aoi_caching_simulation/file_experiment/lambda_distribution.pdf
rename to 00_aoi_caching_simulation/lru-test-results/lambda_distribution.pdf
index 2bbaf0c..ceaf084 100644
Binary files a/00_aoi_caching_simulation/file_experiment/lambda_distribution.pdf and b/00_aoi_caching_simulation/lru-test-results/lambda_distribution.pdf differ
diff --git a/00_aoi_caching_simulation/file_experiment/lambda_vs_access_count.pdf b/00_aoi_caching_simulation/lru-test-results/lambda_vs_access_count.pdf
similarity index 71%
rename from 00_aoi_caching_simulation/file_experiment/lambda_vs_access_count.pdf
rename to 00_aoi_caching_simulation/lru-test-results/lambda_vs_access_count.pdf
index 4f2ed6f..65aea0f 100644
Binary files a/00_aoi_caching_simulation/file_experiment/lambda_vs_access_count.pdf and b/00_aoi_caching_simulation/lru-test-results/lambda_vs_access_count.pdf differ
diff --git a/00_aoi_caching_simulation/lru-test-results/objects_in_cache_over_time.pdf b/00_aoi_caching_simulation/lru-test-results/objects_in_cache_over_time.pdf
new file mode 100644
index 0000000..c1ac971
Binary files /dev/null and b/00_aoi_caching_simulation/lru-test-results/objects_in_cache_over_time.pdf differ
diff --git a/00_aoi_caching_simulation/lru-test-results/overall_hit_age.csv b/00_aoi_caching_simulation/lru-test-results/overall_hit_age.csv
new file mode 100644
index 0000000..6f4819c
--- /dev/null
+++ b/00_aoi_caching_simulation/lru-test-results/overall_hit_age.csv
@@ -0,0 +1,9 @@
+,hit_rate,expected_hit_rate,avg_cache_time,avg_age,expected_age
+count,100.0,100.0,100.0,100.0,100.0
+mean,0.10011909679329882,0.13189042796851988,0.09999836898186214,0.04474686561684723,0.7328909998218629
+std,0.09623646235744594,0.13301351618227383,0.0961618391496294,0.04420955667679807,0.08523974374322014
+min,0.029893924783027964,0.04896080236086586,0.03799929751665062,0.011847869123986644,0.5172850724606094
+25%,0.04828638858960546,0.06110344061996445,0.04817658181230136,0.022198989545843338,0.6830406212111111
+50%,0.06597412266580811,0.08313932598213758,0.06541566493135292,0.02840039136345356,0.7331294841590307
+75%,0.10682163396242927,0.13823522697933907,0.10577717133238224,0.04834527636575101,0.7871507817035168
+max,0.627370198828015,0.8646647167633873,0.6276009756806458,0.2937134697339627,1.0161890402260487
diff --git a/test.csv b/test.csv
new file mode 100644
index 0000000..c85bb7a
--- /dev/null
+++ b/test.csv
@@ -0,0 +1,101 @@
+Lambda,h_opt,u_opt,h_opt_2,u_opt_2
+0.0502,0.0000,0.9873,0.0000,1.0000
+0.0506,-0.0000,0.9872,0.0000,1.0000
+0.0511,-0.0000,0.9871,0.0000,1.0000
+0.0515,0.0000,0.9870,0.0000,1.0000
+0.0519,-0.0000,0.9869,0.0000,1.0000
+0.0523,0.0000,0.9868,0.0000,1.0000
+0.0528,0.0000,0.9867,0.0000,1.0000
+0.0532,-0.0000,0.9866,0.0000,1.0000
+0.0537,0.0000,0.9865,0.0000,1.0000
+0.0542,0.0000,0.9864,0.0000,1.0000
+0.0547,-0.0000,0.9863,0.0000,1.0000
+0.0551,0.0000,0.9861,0.0000,1.0000
+0.0556,-0.0000,0.9860,0.0000,1.0000
+0.0562,-0.0000,0.9859,0.0000,1.0000
+0.0567,0.0000,0.9858,0.0000,1.0000
+0.0572,-0.0000,0.9857,0.0000,1.0000
+0.0578,-0.0000,0.9855,0.0000,1.0000
+0.0583,-0.0000,0.9854,0.0000,1.0000
+0.0589,0.0000,0.9853,0.0000,1.0000
+0.0595,0.0000,0.9851,0.0000,1.0000
+0.0601,0.0000,0.9850,0.0000,1.0000
+0.0607,0.0000,0.9848,0.0000,1.0000
+0.0613,0.0000,0.9847,0.0000,1.0000
+0.0619,0.0000,0.9845,0.0000,1.0000
+0.0626,0.0000,0.9843,0.0000,1.0000
+0.0632,0.0000,0.9842,0.0000,1.0000
+0.0639,-0.0000,0.9840,0.0000,1.0000
+0.0646,-0.0000,0.9838,0.0000,1.0000
+0.0653,-0.0000,0.9836,0.0000,1.0000
+0.0661,0.0000,0.9834,0.0000,1.0000
+0.0668,0.0000,0.9832,0.0000,1.0000
+0.0676,-0.0000,0.9830,0.0000,1.0000
+0.0684,-0.0000,0.9828,0.0000,1.0000
+0.0692,0.0000,0.9826,0.0000,1.0000
+0.0700,0.0000,0.9824,0.0000,1.0000
+0.0709,-0.0000,0.9822,0.0000,1.0000
+0.0718,0.0000,0.9819,0.0000,1.0000
+0.0727,-0.0000,0.9817,0.0000,1.0000
+0.0736,0.0000,0.9814,0.0000,1.0000
+0.0746,0.0000,0.9812,0.0000,1.0000
+0.0756,0.0000,0.9809,0.0000,1.0000
+0.0766,-0.0000,0.9806,0.0000,1.0000
+0.0777,0.0000,0.9803,0.0000,1.0000
+0.0788,0.0000,0.9800,0.0000,1.0000
+0.0799,-0.0000,0.9797,0.0000,1.0000
+0.0810,0.0000,0.9793,0.0000,1.0000
+0.0822,0.0000,0.9790,0.0000,1.0000
+0.0835,-0.0000,0.9786,0.0000,1.0000
+0.0848,-0.0000,0.9783,0.0000,1.0000
+0.0861,-0.0000,0.9779,0.0000,1.0000
+0.0875,-0.0000,0.9774,0.0000,1.0000
+0.0889,0.0000,0.9770,0.0000,1.0000
+0.0904,0.0000,0.9766,0.0000,1.0000
+0.0919,-0.0000,0.9761,0.0000,1.0000
+0.0935,-0.0000,0.9756,0.0000,1.0000
+0.0952,-0.0000,0.9751,0.0000,1.0000
+0.0969,-0.0000,0.9745,0.0000,1.0000
+0.0987,0.0000,0.9739,0.0000,1.0000
+0.1006,-0.0000,0.9733,0.0000,1.0000
+0.1025,-0.0000,0.9727,0.0000,1.0000
+0.1046,-0.0000,0.9720,0.0000,1.0000
+0.1067,-0.0000,0.9713,0.0000,1.0000
+0.1089,0.0000,0.9705,0.0000,1.0000
+0.1113,0.0000,0.9697,0.0000,1.0000
+0.1138,-0.0000,0.9688,0.0000,1.0000
+0.1164,-0.0000,0.9679,0.0000,1.0000
+0.1191,0.0000,0.9669,0.0000,1.0000
+0.1220,-0.0000,0.9658,0.0000,1.0000
+0.1250,0.0000,0.9647,0.0000,1.0000
+0.1282,0.0000,0.9634,0.0000,1.0000
+0.1316,-0.0000,0.9621,0.0000,1.0000
+0.1352,-0.0000,0.9607,0.0000,1.0000
+0.1391,-0.0000,0.9591,0.0000,1.0000
+0.1432,0.0000,0.9574,0.0000,1.0000
+0.1476,0.0000,0.9556,0.0000,1.0000
+0.1523,0.0000,0.9536,0.0000,1.0000
+0.1573,-0.0000,0.9514,0.0000,1.0000
+0.1628,0.0000,0.9489,0.0000,1.0000
+0.1687,-0.0000,0.9462,0.0000,1.0000
+0.1751,0.0000,0.9425,0.0000,1.0000
+0.1821,-0.0000,0.9381,0.0000,1.0000
+0.1897,0.0000,0.9328,0.0000,1.0000
+0.1981,-0.0000,0.9264,0.0000,1.0000
+0.2073,-0.0000,0.9187,0.0000,1.0000
+0.2176,0.0000,0.9089,0.0000,1.0000
+0.2292,0.0000,0.8961,0.0000,1.0000
+0.2422,0.0000,0.8754,0.0000,1.0000
+0.2570,0.0000,0.8390,0.0000,1.0000
+0.2740,-0.0000,0.7661,0.0000,1.0000
+0.2937,0.0000,0.6928,0.0000,1.0000
+0.3170,1.0000,0.6861,1.0000,0.6861
+0.3449,1.0000,0.6578,1.0000,0.6578
+0.3789,1.0000,0.6275,1.0000,0.6275
+0.4216,1.0000,0.5949,1.0000,0.5949
+0.4770,1.0000,0.5593,1.0000,0.5593
+0.5519,1.0000,0.5200,1.0000,0.5200
+0.6598,1.0000,0.4756,1.0000,0.4756
+0.8305,1.0000,0.4239,1.0000,0.4239
+1.1487,1.0000,0.3604,1.0000,0.3604
+2.0000,1.0000,0.2731,1.0000,0.2731