diff --git a/00_aoi_caching_simulation/.gitignore b/.gitignore
similarity index 76%
rename from 00_aoi_caching_simulation/.gitignore
rename to .gitignore
index 87620ac..a8172fa 100644
--- a/00_aoi_caching_simulation/.gitignore
+++ b/.gitignore
@@ -1 +1,2 @@
.ipynb_checkpoints/
+*.csv
diff --git a/01_nb_cncf_optimization/.ipynb_checkpoints/nb_cost_optimization-checkpoint.ipynb b/01_nb_cncf_optimization/00-hitrate_optimization.ipynb
similarity index 100%
rename from 01_nb_cncf_optimization/.ipynb_checkpoints/nb_cost_optimization-checkpoint.ipynb
rename to 01_nb_cncf_optimization/00-hitrate_optimization.ipynb
diff --git a/01_nb_cncf_optimization/01-objective_gridsearch.ipynb b/01_nb_cncf_optimization/01-objective_gridsearch.ipynb
new file mode 100644
index 0000000..84a8fa7
--- /dev/null
+++ b/01_nb_cncf_optimization/01-objective_gridsearch.ipynb
@@ -0,0 +1,287 @@
+{
+ "cells": [
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "id": "ab5cd7d1-1a57-46fc-8282-dae0a6cc2944",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import matplotlib.pyplot as plt\n",
+ "import numpy as np\n",
+ "import random\n",
+ "import pandas as pd\n",
+ "import itertools\n",
+ "from tqdm import tqdm"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "id": "3d1ad0b9-f6a8-4e98-84aa-6e02e4279954",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "SEED = 42\n",
+ "np.random.seed(SEED)\n",
+ "random.seed(SEED)\n",
+ "\n",
+ "ZIPF_CONSTANT = 2"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "id": "5a27d416-8f98-4814-af9e-6c6bef95f4ef",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "def eta_star(db_object_count, c_f, cache_sz, c_delta, lambda_vals):\n",
+ " num = (db_object_count * c_f - cache_sz * c_delta)\n",
+ " denom = np.sum(1.0/lambda_vals)\n",
+ " if denom == 0:\n",
+ " print(\"sum(1.0/lambda_vals) == 0\")\n",
+ " print(db_object_count, c_f, cache_sz, c_delta, lambda_vals)\n",
+ " return max(0, num/denom)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "id": "6276a9ce-f839-4fe6-90f2-2195cf065fc8",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "def h_i_star(c_f, eta, lambda_vals, c_delta):\n",
+ " optimized_hitrate = (c_f - (eta/lambda_vals)) / c_delta\n",
+ " return optimized_hitrate"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "id": "dcd31a8c-6864-4b9a-8bb3-998f0c32baf6",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "def get_index_of_furthest_hitrate_from_boundary(hitrates):\n",
+ " lower_bound_violation = hitrates[(hitrates < 0)]\n",
+ " upper_bound_violation = hitrates[(hitrates > 1)]\n",
+ " smallest_delta = np.abs(np.min(lower_bound_violation))\n",
+ " biggest_delta = np.max(upper_bound_violation) - 1\n",
+ " if smallest_delta > biggest_delta:\n",
+ " print(smallest_delta)\n",
+ " index = np.where(hitrates == np.min(local_hitrates))[0][0]\n",
+ " return index\n",
+ " else:\n",
+ " \n",
+ " index = np.where(hitrates == np.max(local_hitrates))[0][0]\n",
+ " return index"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "id": "9d774304-ae68-43b3-a76a-e970c06c5236",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "def get_index_of_furthest_hitrate_from_boundary(hitrates):\n",
+ " outside_bounds = (hitrates < 0) | (hitrates > 1)\n",
+ " distances = np.where(outside_bounds, np.maximum(np.abs(hitrates - 0), np.abs(hitrates - 1)), -np.inf)\n",
+ " index = np.argmax(distances)\n",
+ " return index"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "id": "0e21c26f-058a-4e56-a5ad-1c47bf28656c",
+ "metadata": {
+ "scrolled": true
+ },
+ "outputs": [],
+ "source": [
+ "def optimize_hitrates(db_object_count, cache_size, c_f, c_delta, lambda_vals):\n",
+ " optimized_hitrates = np.zeros(db_object_count)\n",
+ " current_db_object_count = db_object_count\n",
+ " current_cache_size = cache_size\n",
+ " \n",
+ " differenc_set = np.arange(db_object_count)\n",
+ " fix_i = []\n",
+ " while True:\n",
+ " if current_db_object_count == 0:\n",
+ " if current_cache_size > 0:\n",
+ " # print(\"Re-optimize objects with optimal hitrate of 0.\")\n",
+ " differenc_set = np.where(optimized_hitrates == 0)[0]\n",
+ " fix_i = np.setdiff1d(np.arange(db_object_count), differenc_set).tolist()\n",
+ " current_db_object_count = len(differenc_set)\n",
+ " continue\n",
+ " else:\n",
+ " # print(\"Stop optimization.\")\n",
+ " optimized_hitrates[differenc_set] = 0\n",
+ " break\n",
+ " \n",
+ " eta = eta_star(current_db_object_count, c_f, current_cache_size, c_delta, lambda_vals[differenc_set])\n",
+ " optimized_hitrates[differenc_set] = h_i_star(c_f, eta, lambda_vals[differenc_set], c_delta)\n",
+ "\n",
+ " if eta < 0:\n",
+ " # print(\"eta was negative.\")\n",
+ " current_cache_size = current_db_object_count * c_f / c_delta # Adjust cache size for next iteration\n",
+ " continue\n",
+ " \n",
+ " if len((optimized_hitrates[differenc_set])[((optimized_hitrates[differenc_set]) < 0) | ((optimized_hitrates[differenc_set])> 1)]) == 0:\n",
+ " # print(\"All values optimized.\")\n",
+ " break\n",
+ " \n",
+ " max_outbound_index = get_index_of_furthest_hitrate_from_boundary(optimized_hitrates)\n",
+ " fix_i.append(max_outbound_index)\n",
+ " differenc_set = np.setdiff1d(np.arange(db_object_count), fix_i)\n",
+ " \n",
+ " old_hitrate = optimized_hitrates[max_outbound_index]\n",
+ " optimized_hitrates[max_outbound_index] = (1 if optimized_hitrates[max_outbound_index] > 1 else 0)\n",
+ " \n",
+ " current_db_object_count -= 1\n",
+ " current_cache_size -= optimized_hitrates[max_outbound_index]\n",
+ " return optimized_hitrates"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "id": "b6bf3329-3a63-4807-ab8b-8a54f824f47e",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "def objective_function(optimized_hitrates, c_f, c_delta, lambda_vals):\n",
+ " return np.sum(lambda_vals*(1-optimized_hitrates)*c_f+0.5*np.power(optimized_hitrates,2)*c_delta)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "id": "7a998837-72b8-4039-95a5-ca8d9c8e65ab",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# Perform grid search\n",
+ "def grid_search(db_object_counts, cache_sizes, c_f_values, c_delta_values):\n",
+ " best_objective = float('inf')\n",
+ " best_params = None\n",
+ "\n",
+ " # Iterate through all combinations of parameters\n",
+ " for db_object_count, cache_size, c_f, c_delta in tqdm(itertools.product(db_object_counts, cache_sizes, c_f_values, c_delta_values), total=len(db_object_counts) * len(cache_sizes) * len(c_f_values) * len(c_delta_values), desc=\"Grid Search Progress\"):\n",
+ " if db_object_count < cache_size:\n",
+ " continue\n",
+ " lambda_vals = np.array([np.random.zipf(ZIPF_CONSTANT) for i in np.arange(1, db_object_count + 1,1)])\n",
+ " # print(db_object_count, cache_size, c_f, c_delta)\n",
+ " # Call the optimization function\n",
+ " optimized_hitrates = optimize_hitrates(db_object_count, cache_size, c_f, c_delta, lambda_vals)\n",
+ "\n",
+ " # Compute the objective function\n",
+ " objective = objective_function(optimized_hitrates, c_f, c_delta, lambda_vals)\n",
+ " \n",
+ " # Track the best (minimum) objective and corresponding parameters\n",
+ " if objective < best_objective:\n",
+ " best_objective = objective\n",
+ " best_params = (db_object_count, cache_size, c_f, c_delta)\n",
+ "\n",
+ " return best_objective, best_params"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 10,
+ "id": "a271b52d-1f24-4670-ae3f-af5dd9096a2f",
+ "metadata": {
+ "scrolled": true
+ },
+ "outputs": [
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Grid Search Progress: 100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 64152/64152 [12:27<00:00, 85.87it/s]"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "CPU times: user 12min 16s, sys: 11.5 s, total: 12min 28s\n",
+ "Wall time: 12min 27s\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\n"
+ ]
+ }
+ ],
+ "source": [
+ "%%time\n",
+ "\n",
+ "# Define the grid search space\n",
+ "test_ratios = np.array([0.1, 0.2, 0.5, 0.7, 1, 1.5, 2, 5, 10])\n",
+ "db_object_count_values = np.round(np.array([10, 15, 30, 100, 200, 500]))\n",
+ "cache_size_values = np.unique(np.round(np.array([db_object_count_values * i for i in test_ratios]).flatten()))\n",
+ "c_f_values = np.array([0.1, 0.2, 0.5, 0.7, 1, 1.5, 2, 5, 10])\n",
+ "c_delta_values = np.unique(np.array([c_f_values * i for i in test_ratios]).flatten())\n",
+ "\n",
+ "best_objective, best_params = grid_search(db_object_count_values, cache_size_values, c_f_values, c_delta_values)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 11,
+ "id": "b2f625d0-ebe0-4a5d-92ff-7de03942ef51",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "(0.05000000000000002, (10, 10.0, 1.5, 0.010000000000000002))"
+ ]
+ },
+ "execution_count": 11,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "best_objective, best_params "
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "86a23d02-6f14-4d4d-ad8a-39084ea69151",
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "graphs",
+ "language": "python",
+ "name": "graphs"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.12.7"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 5
+}
diff --git a/01_nb_cncf_optimization/02-objective_multi-core_gridsearch.ipynb b/01_nb_cncf_optimization/02-objective_multi-core_gridsearch.ipynb
new file mode 100644
index 0000000..4e5a32e
--- /dev/null
+++ b/01_nb_cncf_optimization/02-objective_multi-core_gridsearch.ipynb
@@ -0,0 +1,270 @@
+{
+ "cells": [
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "id": "ab5cd7d1-1a57-46fc-8282-dae0a6cc2944",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import matplotlib.pyplot as plt\n",
+ "import numpy as np\n",
+ "import random\n",
+ "import pandas as pd\n",
+ "import itertools\n",
+ "from joblib import Parallel, delayed\n",
+ "import os.path"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "id": "3d1ad0b9-f6a8-4e98-84aa-6e02e4279954",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "SEED = 42\n",
+ "np.random.seed(SEED)\n",
+ "random.seed(SEED)\n",
+ "\n",
+ "ZIPF_CONSTANT = 2"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "id": "5a27d416-8f98-4814-af9e-6c6bef95f4ef",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "def eta_star(db_object_count, c_f, cache_sz, c_delta, lambda_vals):\n",
+ " num = (db_object_count * c_f - cache_sz * c_delta)\n",
+ " denom = np.sum(1.0/lambda_vals)\n",
+ " if denom == 0:\n",
+ " print(\"sum(1.0/lambda_vals) == 0\")\n",
+ " print(db_object_count, c_f, cache_sz, c_delta, lambda_vals)\n",
+ " return max(0, num/denom)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "id": "6276a9ce-f839-4fe6-90f2-2195cf065fc8",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "def h_i_star(c_f, eta, lambda_vals, c_delta):\n",
+ " optimized_hitrate = (c_f - (eta/lambda_vals)) / c_delta\n",
+ " return optimized_hitrate"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "id": "dcd31a8c-6864-4b9a-8bb3-998f0c32baf6",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "def get_index_of_furthest_hitrate_from_boundary(hitrates):\n",
+ " lower_bound_violation = hitrates[(hitrates < 0)]\n",
+ " upper_bound_violation = hitrates[(hitrates > 1)]\n",
+ " smallest_delta = np.abs(np.min(lower_bound_violation))\n",
+ " biggest_delta = np.max(upper_bound_violation) - 1\n",
+ " if smallest_delta > biggest_delta:\n",
+ " index = np.where(hitrates == np.min(local_hitrates))[0][0]\n",
+ " return index\n",
+ " else:\n",
+ " \n",
+ " index = np.where(hitrates == np.max(local_hitrates))[0][0]\n",
+ " return index"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "id": "9d774304-ae68-43b3-a76a-e970c06c5236",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "def get_index_of_furthest_hitrate_from_boundary(hitrates):\n",
+ " outside_bounds = (hitrates < 0) | (hitrates > 1)\n",
+ " distances = np.where(outside_bounds, np.maximum(np.abs(hitrates - 0), np.abs(hitrates - 1)), -np.inf)\n",
+ " index = np.argmax(distances)\n",
+ " return index"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "id": "0e21c26f-058a-4e56-a5ad-1c47bf28656c",
+ "metadata": {
+ "scrolled": true
+ },
+ "outputs": [],
+ "source": [
+ "def optimize_hitrates(db_object_count, cache_size, c_f, c_delta, lambda_vals):\n",
+ " optimized_hitrates = np.zeros(db_object_count)\n",
+ " current_db_object_count = db_object_count\n",
+ " current_cache_size = cache_size\n",
+ " \n",
+ " differenc_set = np.arange(db_object_count)\n",
+ " fix_i = []\n",
+ " while True:\n",
+ " if current_db_object_count == 0:\n",
+ " if current_cache_size > 0:\n",
+ " # print(\"Re-optimize objects with optimal hitrate of 0.\")\n",
+ " differenc_set = np.where(optimized_hitrates == 0)[0]\n",
+ " fix_i = np.setdiff1d(np.arange(db_object_count), differenc_set).tolist()\n",
+ " current_db_object_count = len(differenc_set)\n",
+ " continue\n",
+ " else:\n",
+ " # print(\"Stop optimization.\")\n",
+ " optimized_hitrates[differenc_set] = 0\n",
+ " break\n",
+ " \n",
+ " eta = eta_star(current_db_object_count, c_f, current_cache_size, c_delta, lambda_vals[differenc_set])\n",
+ " optimized_hitrates[differenc_set] = h_i_star(c_f, eta, lambda_vals[differenc_set], c_delta)\n",
+ "\n",
+ " if eta < 0:\n",
+ " # print(\"eta was negative.\")\n",
+ " current_cache_size = current_db_object_count * c_f / c_delta # Adjust cache size for next iteration\n",
+ " continue\n",
+ " \n",
+ " if len((optimized_hitrates[differenc_set])[((optimized_hitrates[differenc_set]) < 0) | ((optimized_hitrates[differenc_set])> 1)]) == 0:\n",
+ " # print(\"All values optimized.\")\n",
+ " break\n",
+ " \n",
+ " max_outbound_index = get_index_of_furthest_hitrate_from_boundary(optimized_hitrates)\n",
+ " fix_i.append(max_outbound_index)\n",
+ " differenc_set = np.setdiff1d(np.arange(db_object_count), fix_i)\n",
+ " \n",
+ " old_hitrate = optimized_hitrates[max_outbound_index]\n",
+ " optimized_hitrates[max_outbound_index] = (1 if optimized_hitrates[max_outbound_index] > 1 else 0)\n",
+ " \n",
+ " current_db_object_count -= 1\n",
+ " current_cache_size -= optimized_hitrates[max_outbound_index]\n",
+ " return optimized_hitrates"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "id": "b6bf3329-3a63-4807-ab8b-8a54f824f47e",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "def objective_function(optimized_hitrates, c_f, c_delta, lambda_vals):\n",
+ " return np.sum(lambda_vals*(1-optimized_hitrates)*c_f+0.5*np.power(optimized_hitrates,2)*c_delta)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "id": "bd4536e9-273b-4f49-b06c-2f00605e0f7d",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# Define the task to be parallelized\n",
+ "def grid_search_task(db_object_count, cache_size, c_f, c_delta, db_object_counts, cache_sizes, c_f_values, c_delta_values):\n",
+ " if db_object_count < cache_size:\n",
+ " return None # Skip this combination if db_object_count < cache_size\n",
+ " \n",
+ " # Generate lambda_vals\n",
+ " lambda_vals = np.array([np.random.zipf(ZIPF_CONSTANT) for _ in np.arange(1, db_object_count + 1, 1)])\n",
+ " \n",
+ " # Call the optimization function\n",
+ " optimized_hitrates = optimize_hitrates(db_object_count, cache_size, c_f, c_delta, lambda_vals)\n",
+ "\n",
+ " # Compute the objective function\n",
+ " objective = objective_function(optimized_hitrates, c_f, c_delta, lambda_vals)\n",
+ "\n",
+ " return (objective, db_object_count, cache_size, c_f, c_delta)\n",
+ "\n",
+ "# Perform grid search with parallelization and tqdm progress bar\n",
+ "def grid_search(db_object_counts, cache_sizes, c_f_values, c_delta_values):\n",
+ " results = [] # List to collect the results (objective, parameters)\n",
+ " total_combinations = len(db_object_counts) * len(cache_sizes) * len(c_f_values) * len(c_delta_values)\n",
+ " \n",
+ " # Use Parallel from joblib to parallelize the grid search\n",
+ " task_results = Parallel(n_jobs=-1, verbose=1)(\n",
+ " delayed(grid_search_task)(db_object_count, cache_size, c_f, c_delta, db_object_counts, cache_sizes, c_f_values, c_delta_values)\n",
+ " for db_object_count, cache_size, c_f, c_delta in itertools.product(db_object_counts, cache_sizes, c_f_values, c_delta_values)\n",
+ " )\n",
+ "\n",
+ " # Collect valid results\n",
+ " for result in task_results:\n",
+ " if result is not None:\n",
+ " results.append(result)\n",
+ " \n",
+ " # Convert the results into a pandas DataFrame\n",
+ " df = pd.DataFrame(results, columns=[\"Objective\", \"db_object_count\", \"cache_size\", \"c_f (Miss Cost)\", \"c_delta (Refresh Cost)\"])\n",
+ " \n",
+ " return df\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 11,
+ "id": "a92c6772-6609-41a8-a3d1-4d640b69a864",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "CPU times: user 7.96 ms, sys: 21.6 ms, total: 29.6 ms\n",
+ "Wall time: 27 ms\n"
+ ]
+ }
+ ],
+ "source": [
+ "%%time\n",
+ "# Define the grid search space\n",
+ "test_ratios = np.array([0.1, 0.2, 0.5, 0.7, 1, 1.5, 2, 5, 10])\n",
+ "db_object_count_values = np.round(np.array([10, 15, 30, 100, 200, 500]))\n",
+ "cache_size_values = np.unique(np.round(np.array([db_object_count_values * i for i in test_ratios]).flatten()))\n",
+ "c_f_values = np.array([0.1, 0.2, 0.5, 0.7, 1, 1.5, 2, 5, 10])\n",
+ "c_delta_values = np.unique(np.array([c_f_values * i for i in test_ratios]).flatten())\n",
+ "\n",
+ "objective_result_file = \"./objective_grid-search_multi-core.csv\"\n",
+ "\n",
+ "results_df = None\n",
+ "if not os.path.isfile(objective_result_file):\n",
+ " # Call the grid search function\n",
+ " results_df = grid_search(db_object_count_values, cache_size_values, c_f_values, c_delta_values)\n",
+ " results_df.to_csv(objective_result_file,index=False)\n",
+ "else:\n",
+ " results_df = pd.read_csv(objective_result_file)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "45d7f86f-edee-4fc5-835f-1e311ab2e411",
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "graphs",
+ "language": "python",
+ "name": "graphs"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.12.7"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 5
+}
diff --git a/01_nb_cncf_optimization/nb_cost_optimization.ipynb b/01_nb_cncf_optimization/nb_cost_optimization.ipynb
deleted file mode 100644
index 88de62d..0000000
--- a/01_nb_cncf_optimization/nb_cost_optimization.ipynb
+++ /dev/null
@@ -1,566 +0,0 @@
-{
- "cells": [
- {
- "cell_type": "code",
- "execution_count": 1,
- "id": "ab5cd7d1-1a57-46fc-8282-dae0a6cc2944",
- "metadata": {},
- "outputs": [],
- "source": [
- "import matplotlib.pyplot as plt\n",
- "import numpy as np\n",
- "import random\n",
- "import pandas as pd"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 2,
- "id": "3d1ad0b9-f6a8-4e98-84aa-6e02e4279954",
- "metadata": {},
- "outputs": [],
- "source": [
- "DATABASE_OBJECT_COUNT = 100\n",
- "CACHE_SIZE = DATABASE_OBJECT_COUNT/2\n",
- "ZIPF_CONSTANT = 2\n",
- "\n",
- "CACHE_MISS_COST = 2\n",
- "CACHE_REFRESH_COST = 1\n",
- "\n",
- "SEED = 42\n",
- "np.random.seed(SEED)\n",
- "random.seed(SEED)\n",
- "\n",
- "LAMBDA_VALUES = np.array([np.random.zipf(ZIPF_CONSTANT) for i in np.arange(1, DATABASE_OBJECT_COUNT + 1,1)])"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 3,
- "id": "9cc83cf6-5c78-4f0d-b7cb-08cdb80c362e",
- "metadata": {},
- "outputs": [],
- "source": [
- "# LAMBDA_VALUES = np.array([0.03, 0.04,0.05,0.06,0.07,1,1.1,1.2,1.3,1.4,1.5])\n",
- "# DATABASE_OBJECT_COUNT = len(LAMBDA_VALUES)\n",
- "# CACHE_SIZE = 4.4\n",
- "# CACHE_MISS_COST = 7\n",
- "# CACHE_REFRESH_COST = 1"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 4,
- "id": "3dc07233-0b56-4fee-a93b-212836c18b42",
- "metadata": {},
- "outputs": [],
- "source": [
- "db_object_count = DATABASE_OBJECT_COUNT\n",
- "cache_sz = CACHE_SIZE\n",
- "\n",
- "lambda_vals = LAMBDA_VALUES\n",
- "c_f = CACHE_MISS_COST\n",
- "c_delta = CACHE_REFRESH_COST"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 5,
- "id": "5a27d416-8f98-4814-af9e-6c6bef95f4ef",
- "metadata": {},
- "outputs": [],
- "source": [
- "def eta_star(db_object_count, c_f, cache_sz, c_delta, lambda_vals):\n",
- " num = (db_object_count * c_f - cache_sz * c_delta)\n",
- " denom = np.sum(1.0/lambda_vals)\n",
- " return max(0, num/denom)"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 6,
- "id": "6276a9ce-f839-4fe6-90f2-2195cf065fc8",
- "metadata": {},
- "outputs": [],
- "source": [
- "def h_i_star(c_f, eta, lambda_vals, c_delta):\n",
- " optimized_hitrate = (c_f - (eta/lambda_vals)) / c_delta\n",
- " return optimized_hitrate"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 7,
- "id": "dcd31a8c-6864-4b9a-8bb3-998f0c32baf6",
- "metadata": {},
- "outputs": [],
- "source": [
- "def get_index_of_furthest_hitrate_from_boundary(hitrates):\n",
- " lower_bound_violation = hitrates[(hitrates < 0)]\n",
- " upper_bound_violation = hitrates[(hitrates > 1)]\n",
- " smallest_delta = np.abs(np.min(lower_bound_violation))\n",
- " biggest_delta = np.max(upper_bound_violation) - 1\n",
- " if smallest_delta > biggest_delta:\n",
- " print(smallest_delta)\n",
- " index = np.where(hitrates == np.min(local_hitrates))[0][0]\n",
- " return index\n",
- " else:\n",
- " \n",
- " index = np.where(hitrates == np.max(local_hitrates))[0][0]\n",
- " return index"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 8,
- "id": "9d774304-ae68-43b3-a76a-e970c06c5236",
- "metadata": {},
- "outputs": [],
- "source": [
- "def get_index_of_furthest_hitrate_from_boundary(hitrates):\n",
- " outside_bounds = (hitrates < 0) | (hitrates > 1)\n",
- " distances = np.where(outside_bounds, np.maximum(np.abs(hitrates - 0), np.abs(hitrates - 1)), -np.inf)\n",
- " index = np.argmax(distances)\n",
- " return index"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 9,
- "id": "19678083-15e1-439b-be8c-42033d501644",
- "metadata": {},
- "outputs": [
- {
- "data": {
- "text/plain": [
- "array([ 1, 3, 1, 1, 2, 1, 5, 1, 1, 1, 2, 1, 1, 1, 2, 2, 1,\n",
- " 1, 3, 1, 1, 1, 1, 2, 1, 1, 1, 5, 1, 1, 1, 4, 1, 4,\n",
- " 1, 1, 1, 3, 8, 1, 4, 4, 2, 1, 1, 1, 10, 1, 1, 1, 5,\n",
- " 9, 1, 1, 1, 1, 1, 17, 2, 1, 26, 1, 1, 2, 1, 10, 1, 69,\n",
- " 1, 1, 2, 1, 1, 1, 3, 2, 2, 3, 15, 1, 1, 5, 2, 1, 1,\n",
- " 2, 1, 2, 1, 1, 2, 2, 3, 1, 2, 1, 1, 37, 4, 2])"
- ]
- },
- "execution_count": 9,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "lambda_vals"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 10,
- "id": "ccd4b95d-1cdd-4c99-a22e-4b31338993cf",
- "metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "2.1159070575516945\n"
- ]
- },
- {
- "data": {
- "text/plain": [
- "array([-0.11590706, 1.29469765, -0.11590706, -0.11590706, 0.94204647,\n",
- " -0.11590706, -0.11590706, -0.11590706, -0.11590706, 0.94204647,\n",
- " -0.11590706, -0.11590706, -0.11590706, 0.94204647, 0.94204647,\n",
- " -0.11590706, -0.11590706, 1.29469765, -0.11590706, -0.11590706,\n",
- " -0.11590706, -0.11590706, 0.94204647, -0.11590706, -0.11590706,\n",
- " -0.11590706, -0.11590706, -0.11590706, -0.11590706, 1.47102324,\n",
- " -0.11590706, 1.47102324, -0.11590706, -0.11590706, -0.11590706,\n",
- " 1.29469765, 1.73551162, -0.11590706, 1.47102324, 1.47102324,\n",
- " 0.94204647, -0.11590706, -0.11590706, -0.11590706, 1.78840929,\n",
- " -0.11590706, -0.11590706, -0.11590706, 1.76489922, -0.11590706,\n",
- " -0.11590706, -0.11590706, -0.11590706, -0.11590706, 1.87553488,\n",
- " 0.94204647, -0.11590706, 1.91861896, -0.11590706, -0.11590706,\n",
- " 0.94204647, -0.11590706, 1.78840929, -0.11590706, 1.96933468,\n",
- " -0.11590706, -0.11590706, 0.94204647, -0.11590706, -0.11590706,\n",
- " -0.11590706, 1.29469765, 0.94204647, 0.94204647, 1.29469765,\n",
- " 1.85893953, -0.11590706, -0.11590706, 0.94204647, -0.11590706,\n",
- " -0.11590706, 0.94204647, -0.11590706, 0.94204647, -0.11590706,\n",
- " -0.11590706, 0.94204647, 0.94204647, 1.29469765, -0.11590706,\n",
- " 0.94204647, -0.11590706, -0.11590706, 1.94281332, 1.47102324,\n",
- " 0.94204647])"
- ]
- },
- "execution_count": 10,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "eta = eta_star(db_object_count, c_f, cache_sz, c_delta, lambda_vals[lambda_vals != lambda_vals[6]])\n",
- "print(eta)\n",
- "optimized_hitrates = (c_f - eta / lambda_vals[lambda_vals != lambda_vals[6]]) / c_delta\n",
- "optimized_hitrates"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 11,
- "id": "05b17074-719f-4bca-8434-2aaee26094d0",
- "metadata": {},
- "outputs": [
- {
- "data": {
- "text/html": [
- "
\n",
- "\n",
- "
\n",
- " \n",
- " \n",
- " | \n",
- " 0 | \n",
- "
\n",
- " \n",
- " \n",
- " \n",
- " | count | \n",
- " 96.000000 | \n",
- "
\n",
- " \n",
- " | mean | \n",
- " 0.437500 | \n",
- "
\n",
- " \n",
- " | std | \n",
- " 0.726101 | \n",
- "
\n",
- " \n",
- " | min | \n",
- " -0.115907 | \n",
- "
\n",
- " \n",
- " | 25% | \n",
- " -0.115907 | \n",
- "
\n",
- " \n",
- " | 50% | \n",
- " -0.115907 | \n",
- "
\n",
- " \n",
- " | 75% | \n",
- " 0.942046 | \n",
- "
\n",
- " \n",
- " | max | \n",
- " 1.969335 | \n",
- "
\n",
- " \n",
- "
\n",
- "
"
- ],
- "text/plain": [
- " 0\n",
- "count 96.000000\n",
- "mean 0.437500\n",
- "std 0.726101\n",
- "min -0.115907\n",
- "25% -0.115907\n",
- "50% -0.115907\n",
- "75% 0.942046\n",
- "max 1.969335"
- ]
- },
- "execution_count": 11,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "pd.DataFrame(optimized_hitrates).describe()"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 12,
- "id": "0e21c26f-058a-4e56-a5ad-1c47bf28656c",
- "metadata": {
- "scrolled": true
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Optimized: 67 1.97 // [ 1.79077042 -0.09229584 1. -0.09229584 -0.09229584]\n",
- "Optimized: 97 1.94 // [-0.07876743 -0.07876743 1. 1.48030814 0.96061628]\n",
- "Optimized: 60 1.92 // [ 0.96720258 -0.06559484 1. -0.06559484 -0.06559484]\n",
- "Optimized: 57 1.88 // [-0.05274002 -0.05274002 1. 0.97362999 -0.05274002]\n",
- "Optimized: 78 1.86 // [ 0.97977406 1.31984937 1. -0.04045188 -0.04045188]\n",
- "Optimized: 46 1.80 // [-0.02836604 -0.02836604 1. -0.02836604 -0.02836604]\n",
- "Optimized: 65 1.80 // [ 0.99140044 -0.01719911 1. -0.01719911 1. ]\n",
- "Optimized: 51 1.78 // [-0.00600086 1.59879983 1. -0.00600086 -0.00600086]\n",
- "Optimized: 38 1.75 // [0.00491746 1.33497249 1. 0.00491746 1.50122936]\n",
- "Optimized: 6 1.60 // [1.00774103 0.01548205 1. 0.01548205 0.01548205]\n",
- "Optimized: 27 1.60 // [0.02399435 0.02399435 1. 0.02399435 0.02399435]\n",
- "Optimized: 50 1.61 // [0.03255485 0.03255485 1. 1. 0.03255485]\n",
- "Optimized: 81 1.61 // [0.04116395 0.04116395 1. 1.02058197 0.04116395]\n",
- "Optimized: 31 1.51 // [0.04982206 0.04982206 1. 0.04982206 1.51245552]\n",
- "Optimized: 33 1.51 // [1. 0.05714286 1. 0.05714286 0.05714286]\n",
- "Optimized: 40 1.52 // [1. 0.06451613 1. 1.51612903 1.03225806]\n",
- "Optimized: 41 1.52 // [0.07194245 1. 1. 1.03597122 0.07194245]\n",
- "Optimized: 98 1.52 // [0.07942238 1. 1. 1.03971119]\n",
- "Optimized: 1 1.36 // []\n",
- "Optimized: 18 1.36 // [0.09223301 0.09223301 1. 0.09223301 0.09223301]\n",
- "Optimized: 37 1.37 // [0.09756098 0.09756098 1. 1. 0.09756098]\n",
- "Optimized: 74 1.37 // [0.10294118 0.10294118 1. 1.05147059 1.05147059]\n",
- "Optimized: 77 1.37 // [1.05418719 1.05418719 1. 1. 0.10837438]\n",
- "Optimized: 92 1.37 // [1.05693069 1.05693069 1. 0.11386139 1.05693069]\n",
- "Optimized: 4 1.06 // [0.11940299 0.11940299 1. 0.11940299 1. ]\n",
- "Optimized: 10 1.06 // [0.12030075 0.12030075 1. 0.12030075 0.12030075]\n",
- "Optimized: 14 1.06 // [0.12121212 0.12121212 1. 1.06060606 0.12121212]\n",
- "Optimized: 15 1.06 // [0.1221374 1. 1. 0.1221374 0.1221374]\n",
- "Optimized: 23 1.06 // [0.12307692 0.12307692 1. 0.12307692 0.12307692]\n",
- "Optimized: 42 1.06 // [1. 1. 1. 0.12403101 0.12403101]\n",
- "Optimized: 58 1.06 // [0.125 1. 1. 0.125 1. ]\n",
- "Optimized: 63 1.06 // [0.12598425 0.12598425 1. 0.12598425 1. ]\n",
- "Optimized: 70 1.06 // [0.12698413 0.12698413 1. 0.12698413 0.12698413]\n",
- "Optimized: 75 1.06 // [0.128 1. 1. 1.064 1. ]\n",
- "Optimized: 76 1.06 // [1. 1. 1. 1. 1.]\n",
- "Optimized: 82 1.07 // [0.1300813 1. 1. 0.1300813 0.1300813]\n",
- "Optimized: 85 1.07 // [0.13114754 0.13114754 1. 0.13114754 1.06557377]\n",
- "Optimized: 87 1.07 // [1. 0.1322314 1. 0.1322314 0.1322314]\n",
- "Optimized: 90 1.07 // [0.13333333 0.13333333 1. 1.06666667 1. ]\n",
- "Optimized: 91 1.07 // [0.13445378 1. 1. 1. 0.13445378]\n",
- "Optimized: 94 1.07 // [1. 0.13559322 1. 0.13559322 0.13559322]\n",
- "Optimized: 99 1.07 // [1. 1. 1.]\n",
- "All values optimized.\n"
- ]
- }
- ],
- "source": [
- "\"\"\"\n",
- "Perform theoretical optimization to compute optimal hit probabilities.\n",
- "\n",
- "Parameters:\n",
- "- lambda_vals (numpy array): Request rates for each item.\n",
- "- B (float): Total cache size.\n",
- "- c_f (float): Fetching linear cost (cache miss cost).\n",
- "- c_delta (float): Age linear cost.\n",
- "\n",
- "Returns:\n",
- "- h_opt (numpy array): Optimal hit probabilities for each item.\n",
- "\"\"\"\n",
- "optimized_hitrates = np.zeros(DATABASE_OBJECT_COUNT)\n",
- "current_db_object_count = DATABASE_OBJECT_COUNT\n",
- "current_cache_size = CACHE_SIZE\n",
- "\n",
- "differenc_set = np.arange(DATABASE_OBJECT_COUNT)\n",
- "fix_i = []\n",
- "\n",
- "while True:\n",
- " if current_db_object_count == 0:\n",
- " print(\"No objects left to optimize.\")\n",
- " if current_cache_size > 0:\n",
- " print(\"Add obj with optimized hitrate 0 and add them to optimization pool for re-optimization.\")\n",
- " # Redistribute unused cache size among items with zero hit probability\n",
- " differenc_set = np.where(optimized_hitrates == 0)[0]\n",
- " fix_i = np.setdiff1d(np.arange(DATABASE_OBJECT_COUNT), differenc_set).tolist()\n",
- " current_db_object_count = len(differenc_set)\n",
- " continue\n",
- " else:\n",
- " \"Reset\"\n",
- " optimized_hitrates[differenc_set] = 0\n",
- " break\n",
- " # Compute Lagrangian multiplier and optimal hit probabilities\n",
- " eta = eta_star(current_db_object_count, c_f, current_cache_size, c_delta, lambda_vals[differenc_set])\n",
- " optimized_hitrates[differenc_set] = (c_f - eta / lambda_vals[differenc_set]) / c_delta\n",
- " if eta < 0:\n",
- " print(\"eta was negative.\")\n",
- " current_cache_size = current_db_object_count * c_f / c_delta # Adjust cache size for next iteration\n",
- " continue\n",
- " \n",
- " if len((optimized_hitrates[differenc_set])[((optimized_hitrates[differenc_set]) < 0) | ((optimized_hitrates[differenc_set])> 1)]) == 0:\n",
- " print(\"All values optimized.\")\n",
- " break\n",
- " \n",
- " max_outbound_index = get_index_of_furthest_hitrate_from_boundary(optimized_hitrates)\n",
- " fix_i.append(max_outbound_index)\n",
- " differenc_set = np.setdiff1d(np.arange(DATABASE_OBJECT_COUNT), fix_i)\n",
- "\n",
- " old_hitrate = optimized_hitrates[max_outbound_index]\n",
- " optimized_hitrates[max_outbound_index] = (1 if optimized_hitrates[max_outbound_index] > 1 else 0)\n",
- " \n",
- " print(f\"Optimized: {max_outbound_index} {old_hitrate:.2f} // {optimized_hitrates[max_outbound_index-2:max_outbound_index+3]}\")\n",
- " \n",
- " current_db_object_count -= 1\n",
- " current_cache_size -= optimized_hitrates[max_outbound_index]"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 13,
- "id": "f559ee7a-be2f-4076-b01c-f08950ad5a88",
- "metadata": {},
- "outputs": [
- {
- "data": {
- "text/plain": [
- "array([0.13793103, 1. , 0.13793103, 0.13793103, 1. ,\n",
- " 0.13793103, 1. , 0.13793103, 0.13793103, 0.13793103,\n",
- " 1. , 0.13793103, 0.13793103, 0.13793103, 1. ,\n",
- " 1. , 0.13793103, 0.13793103, 1. , 0.13793103,\n",
- " 0.13793103, 0.13793103, 0.13793103, 1. , 0.13793103,\n",
- " 0.13793103, 0.13793103, 1. , 0.13793103, 0.13793103,\n",
- " 0.13793103, 1. , 0.13793103, 1. , 0.13793103,\n",
- " 0.13793103, 0.13793103, 1. , 1. , 0.13793103,\n",
- " 1. , 1. , 1. , 0.13793103, 0.13793103,\n",
- " 0.13793103, 1. , 0.13793103, 0.13793103, 0.13793103,\n",
- " 1. , 1. , 0.13793103, 0.13793103, 0.13793103,\n",
- " 0.13793103, 0.13793103, 1. , 1. , 0.13793103,\n",
- " 1. , 0.13793103, 0.13793103, 1. , 0.13793103,\n",
- " 1. , 0.13793103, 1. , 0.13793103, 0.13793103,\n",
- " 1. , 0.13793103, 0.13793103, 0.13793103, 1. ,\n",
- " 1. , 1. , 1. , 1. , 0.13793103,\n",
- " 0.13793103, 1. , 1. , 0.13793103, 0.13793103,\n",
- " 1. , 0.13793103, 1. , 0.13793103, 0.13793103,\n",
- " 1. , 1. , 1. , 0.13793103, 1. ,\n",
- " 0.13793103, 0.13793103, 1. , 1. , 1. ])"
- ]
- },
- "execution_count": 13,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "optimized_hitrates"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 14,
- "id": "8b2d3cea-1cc0-476e-92bf-2ac4344a9b1b",
- "metadata": {},
- "outputs": [
- {
- "data": {
- "text/html": [
- "\n",
- "\n",
- "
\n",
- " \n",
- " \n",
- " | \n",
- " 0 | \n",
- "
\n",
- " \n",
- " \n",
- " \n",
- " | count | \n",
- " 100.000000 | \n",
- "
\n",
- " \n",
- " | mean | \n",
- " 0.500000 | \n",
- "
\n",
- " \n",
- " | std | \n",
- " 0.427625 | \n",
- "
\n",
- " \n",
- " | min | \n",
- " 0.137931 | \n",
- "
\n",
- " \n",
- " | 25% | \n",
- " 0.137931 | \n",
- "
\n",
- " \n",
- " | 50% | \n",
- " 0.137931 | \n",
- "
\n",
- " \n",
- " | 75% | \n",
- " 1.000000 | \n",
- "
\n",
- " \n",
- " | max | \n",
- " 1.000000 | \n",
- "
\n",
- " \n",
- "
\n",
- "
"
- ],
- "text/plain": [
- " 0\n",
- "count 100.000000\n",
- "mean 0.500000\n",
- "std 0.427625\n",
- "min 0.137931\n",
- "25% 0.137931\n",
- "50% 0.137931\n",
- "75% 1.000000\n",
- "max 1.000000"
- ]
- },
- "execution_count": 14,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "pd.DataFrame(optimized_hitrates).describe()"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "id": "7a998837-72b8-4039-95a5-ca8d9c8e65ab",
- "metadata": {},
- "outputs": [],
- "source": []
- }
- ],
- "metadata": {
- "kernelspec": {
- "display_name": "graphs",
- "language": "python",
- "name": "graphs"
- },
- "language_info": {
- "codemirror_mode": {
- "name": "ipython",
- "version": 3
- },
- "file_extension": ".py",
- "mimetype": "text/x-python",
- "name": "python",
- "nbconvert_exporter": "python",
- "pygments_lexer": "ipython3",
- "version": "3.12.7"
- }
- },
- "nbformat": 4,
- "nbformat_minor": 5
-}