diff --git a/00_aoi_caching_simulation/06-multi_aoi_simulation.ipynb b/00_aoi_caching_simulation/06-multi_aoi_simulation.ipynb
index 9732abb..d4c0aae 100644
--- a/00_aoi_caching_simulation/06-multi_aoi_simulation.ipynb
+++ b/00_aoi_caching_simulation/06-multi_aoi_simulation.ipynb
@@ -25,8 +25,6 @@
"ACCESS_COUNT_LIMIT = 1000 # Total time to run the simulation\n",
"EXPERIMENT_BASE_DIR = \"./experiments/\"\n",
"TEMP_BASE_DIR = \"./.aoi_cache/\"\n",
- "BASE_FILE = pd.read_csv(\"../calculated.csv\")\n",
- "BASE_FILE.index += 1\n",
"\n",
"ZIPF_CONSTANT = 2 # Shape parameter for the Zipf distribution (controls skewness) Needs to be: 1< \n",
"\n",
@@ -88,6 +86,24 @@
{
"cell_type": "code",
"execution_count": 5,
+ "id": "ad6c68a4-2ebe-40fc-a391-5a4724e07bdf",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "EvictionStrategy.LRU\n"
+ ]
+ }
+ ],
+ "source": [
+ "print(EvictionStrategy.LRU)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
"id": "00a944e4-842b-49ba-bb36-587d9c12fdf4",
"metadata": {},
"outputs": [],
@@ -102,7 +118,11 @@
" def __post_init__(self):\n",
" if not hasattr(self, 'eviction_strategy') or self.eviction_strategy is None:\n",
" raise ValueError(\"Eviction strategy must be defined in subclasses.\")\n",
- " \n",
+ "\n",
+ " def __repr__(self):\n",
+ " db_object_count = self.db_objects if isinstance(self.db_objects, int) else len(self.db_objects)\n",
+ " return f\"[{self.__class__.__name__}] Database Object Count: {db_object_count}, Cache Size: {self.cache_size}, Eviction Strategy: {self.eviction_strategy}\"\n",
+ " \n",
" def generate_objects(self):\n",
" if isinstance(self.db_objects, int):\n",
" self.db_objects = [\n",
@@ -123,14 +143,18 @@
"@dataclass\n",
"class TTLSimulation(SimulationConfig):\n",
" eviction_strategy: EvictionStrategy = field(default=EvictionStrategy.TTL, init=False)\n",
- " \n",
+ "\n",
+ " def __repr__(self):\n",
+ " return super().__repr__().replace(super().__class__.__name__, self.__class__.__name__)\n",
+ " \n",
" def generate_objects(self, fixed_ttl):\n",
" if isinstance(self.db_objects, int):\n",
" self.db_objects = [\n",
" DatabaseObject(id=i, data=f\"Generated Object {i}\", lambda_value=np.random.zipf(ZIPF_CONSTANT), mu_value=None, ttl=fixed_ttl) \n",
" for i in range(self.db_objects)\n",
" ]\n",
- " \n",
+ "\n",
+ " \n",
" def from_file(self, path: str, lambda_column_name: str, ttl_column_name: str):\n",
" df = pd.read_csv(path)\n",
" lambdas = df[lambda_column_name]\n",
@@ -144,14 +168,26 @@
"@dataclass\n",
"class LRUSimulation(SimulationConfig):\n",
" eviction_strategy: EvictionStrategy = field(default=EvictionStrategy.LRU, init=False)\n",
+ " \n",
+ " def __repr__(self):\n",
+ " return super().__repr__().replace(super().__class__.__name__, self.__class__.__name__)\n",
+ " \n",
"\n",
"@dataclass\n",
"class RandomEvictionSimulation(SimulationConfig):\n",
" eviction_strategy: EvictionStrategy = field(default=EvictionStrategy.RANDOM_EVICTION, init=False)\n",
"\n",
+ " \n",
+ " def __repr__(self):\n",
+ " return super().__repr__().replace(super().__class__.__name__, self.__class__.__name__)\n",
+ "\n",
"@dataclass\n",
"class RefreshSimulation(TTLSimulation):\n",
+ "\n",
" \n",
+ " def __repr__(self):\n",
+ " return super().__repr__().replace(super().__class__.__name__, self.__class__.__name__)\n",
+ " \n",
" def generate_objects(self, fixed_ttl, max_refresh_rate):\n",
" if isinstance(self.db_objects, int):\n",
" self.db_objects = [\n",
@@ -173,7 +209,7 @@
},
{
"cell_type": "code",
- "execution_count": 6,
+ "execution_count": 7,
"id": "5cea042f-e9fc-4a1e-9750-de212ca70601",
"metadata": {},
"outputs": [],
@@ -191,7 +227,7 @@
},
{
"cell_type": "code",
- "execution_count": 7,
+ "execution_count": 8,
"id": "499bf543-b2c6-4e4d-afcc-0a6665ce3ae1",
"metadata": {},
"outputs": [],
@@ -336,7 +372,7 @@
},
{
"cell_type": "code",
- "execution_count": 8,
+ "execution_count": 9,
"id": "687f5634-8edf-4337-b42f-bbb292d47f0f",
"metadata": {},
"outputs": [],
@@ -405,7 +441,7 @@
},
{
"cell_type": "code",
- "execution_count": 9,
+ "execution_count": 10,
"id": "c8516830-9880-4d9e-a91b-000338baf9d6",
"metadata": {
"scrolled": true
@@ -434,7 +470,7 @@
},
{
"cell_type": "code",
- "execution_count": 10,
+ "execution_count": 11,
"id": "e269b607-16b9-46d0-8a97-7324f2002c72",
"metadata": {},
"outputs": [],
@@ -447,33 +483,33 @@
},
{
"cell_type": "code",
- "execution_count": 11,
+ "execution_count": 12,
"id": "33fdc5fd-1f39-4b51-b2c7-6ea6acf2b753",
"metadata": {},
"outputs": [],
"source": [
"# Simulate with a Cache that does lru, We'll have 100 Database Objects and a Cache Size of 10\n",
"# We'll generate lambdas from a zipf distribution\n",
- "# config = LRUSimulation(100, 10)\n",
- "# config.from_file('./input/2024-12-13/input.csv', 'Lambda')"
+ "config = LRUSimulation(100, 10)\n",
+ "config.from_file('./input/2024-12-13/input.csv', 'Lambda')"
]
},
{
"cell_type": "code",
- "execution_count": 12,
+ "execution_count": 13,
"id": "6c391bfd-b294-4ff7-8b22-51777368a6b9",
"metadata": {},
"outputs": [],
"source": [
"# Simulate with a Cache that does Refreshes with TTL based eviction, We'll have 100 Database Objects and a Cache Size of 10\n",
"# We'll generate lambdas from a zipf distribution. Each object will have a fixed ttl of 1 when its pulled into the cache. Mu for the refresh rate is 10\n",
- "config = RefreshSimulation(100, 10)\n",
- "config.from_file(path='./input/2024-12-13/output.csv', lambda_column_name='Lambda', ttl_column_name='TTL_2', mu_column_name='u_opt_2')"
+ "# config = RefreshSimulation(100, 10)\n",
+ "# config.from_file(path='./input/2024-12-13/output.csv', lambda_column_name='Lambda', ttl_column_name='TTL_2', mu_column_name='u_opt_2')"
]
},
{
"cell_type": "code",
- "execution_count": 13,
+ "execution_count": 14,
"id": "0a444c9d-53dd-4cab-b8f1-100ad3ab213a",
"metadata": {},
"outputs": [],
@@ -486,7 +522,18 @@
},
{
"cell_type": "code",
- "execution_count": 14,
+ "execution_count": 15,
+ "id": "6ac338bd-2094-41d2-8e92-565d03422b87",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "with open(f\"{TEMP_BASE_DIR}/simulation_config.txt\", 'w') as f:\n",
+ " f.write(str(config))"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 16,
"id": "66f65699-a3c9-48c4-8f1f-b9d7834c026a",
"metadata": {
"scrolled": true
@@ -496,16 +543,146 @@
"name": "stderr",
"output_type": "stream",
"text": [
- "Progress: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████▊| 999/1000 [00:53<00:00, 18.64it/s]"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Simulation ended after 41546.30037303802 seconds.\n",
- "CPU times: user 50.4 s, sys: 8.37 s, total: 58.7 s\n",
- "Wall time: 53.6 s\n"
+ "IOPub message rate exceeded.██████████▉ | 149/1000 [00:07<00:44, 19.08it/s]\n",
+ "The Jupyter server will temporarily stop sending output\n",
+ "to the client in order to avoid crashing it.\n",
+ "To change this limit, set the config variable\n",
+ "`--ServerApp.iopub_msg_rate_limit`.\n",
+ "\n",
+ "Current values:\n",
+ "ServerApp.iopub_msg_rate_limit=1000.0 (msgs/sec)\n",
+ "ServerApp.rate_limit_window=3.0 (secs)\n",
+ "\n",
+ "IOPub message rate exceeded.██████████████████████▍ | 220/1000 [00:09<00:35, 22.26it/s]\n",
+ "The Jupyter server will temporarily stop sending output\n",
+ "to the client in order to avoid crashing it.\n",
+ "To change this limit, set the config variable\n",
+ "`--ServerApp.iopub_msg_rate_limit`.\n",
+ "\n",
+ "Current values:\n",
+ "ServerApp.iopub_msg_rate_limit=1000.0 (msgs/sec)\n",
+ "ServerApp.rate_limit_window=3.0 (secs)\n",
+ "\n",
+ "IOPub message rate exceeded.████████████████████████████▊ | 260/1000 [00:11<00:32, 23.10it/s]\n",
+ "The Jupyter server will temporarily stop sending output\n",
+ "to the client in order to avoid crashing it.\n",
+ "To change this limit, set the config variable\n",
+ "`--ServerApp.iopub_msg_rate_limit`.\n",
+ "\n",
+ "Current values:\n",
+ "ServerApp.iopub_msg_rate_limit=1000.0 (msgs/sec)\n",
+ "ServerApp.rate_limit_window=3.0 (secs)\n",
+ "\n",
+ "IOPub message rate exceeded.███████████████████████████████████████████▏ | 349/1000 [00:13<00:24, 26.18it/s]\n",
+ "The Jupyter server will temporarily stop sending output\n",
+ "to the client in order to avoid crashing it.\n",
+ "To change this limit, set the config variable\n",
+ "`--ServerApp.iopub_msg_rate_limit`.\n",
+ "\n",
+ "Current values:\n",
+ "ServerApp.iopub_msg_rate_limit=1000.0 (msgs/sec)\n",
+ "ServerApp.rate_limit_window=3.0 (secs)\n",
+ "\n",
+ "IOPub message rate exceeded.███████████████████████████████████████████████████▌ | 401/1000 [00:15<00:22, 26.67it/s]\n",
+ "The Jupyter server will temporarily stop sending output\n",
+ "to the client in order to avoid crashing it.\n",
+ "To change this limit, set the config variable\n",
+ "`--ServerApp.iopub_msg_rate_limit`.\n",
+ "\n",
+ "Current values:\n",
+ "ServerApp.iopub_msg_rate_limit=1000.0 (msgs/sec)\n",
+ "ServerApp.rate_limit_window=3.0 (secs)\n",
+ "\n",
+ "IOPub message rate exceeded.████████████████████████████████████████████████████████████████▎ | 480/1000 [00:17<00:19, 27.16it/s]\n",
+ "The Jupyter server will temporarily stop sending output\n",
+ "to the client in order to avoid crashing it.\n",
+ "To change this limit, set the config variable\n",
+ "`--ServerApp.iopub_msg_rate_limit`.\n",
+ "\n",
+ "Current values:\n",
+ "ServerApp.iopub_msg_rate_limit=1000.0 (msgs/sec)\n",
+ "ServerApp.rate_limit_window=3.0 (secs)\n",
+ "\n",
+ "IOPub message rate exceeded.██████████████████████████████████████████████████████████████████████▉ | 521/1000 [00:18<00:17, 27.82it/s]\n",
+ "The Jupyter server will temporarily stop sending output\n",
+ "to the client in order to avoid crashing it.\n",
+ "To change this limit, set the config variable\n",
+ "`--ServerApp.iopub_msg_rate_limit`.\n",
+ "\n",
+ "Current values:\n",
+ "ServerApp.iopub_msg_rate_limit=1000.0 (msgs/sec)\n",
+ "ServerApp.rate_limit_window=3.0 (secs)\n",
+ "\n",
+ "IOPub message rate exceeded.███████████████████████████████████████████████████████████████████████████████████████▍ | 624/1000 [00:22<00:13, 27.69it/s]\n",
+ "The Jupyter server will temporarily stop sending output\n",
+ "to the client in order to avoid crashing it.\n",
+ "To change this limit, set the config variable\n",
+ "`--ServerApp.iopub_msg_rate_limit`.\n",
+ "\n",
+ "Current values:\n",
+ "ServerApp.iopub_msg_rate_limit=1000.0 (msgs/sec)\n",
+ "ServerApp.rate_limit_window=3.0 (secs)\n",
+ "\n",
+ "IOPub message rate exceeded.██████████████████████████████████████████████████████████████████████████████████████████████████▌ | 693/1000 [00:24<00:10, 27.97it/s]\n",
+ "The Jupyter server will temporarily stop sending output\n",
+ "to the client in order to avoid crashing it.\n",
+ "To change this limit, set the config variable\n",
+ "`--ServerApp.iopub_msg_rate_limit`.\n",
+ "\n",
+ "Current values:\n",
+ "ServerApp.iopub_msg_rate_limit=1000.0 (msgs/sec)\n",
+ "ServerApp.rate_limit_window=3.0 (secs)\n",
+ "\n",
+ "IOPub message rate exceeded.█████████████████████████████████████████████████████████████████████████████████████████████████████████ | 733/1000 [00:26<00:09, 28.08it/s]\n",
+ "The Jupyter server will temporarily stop sending output\n",
+ "to the client in order to avoid crashing it.\n",
+ "To change this limit, set the config variable\n",
+ "`--ServerApp.iopub_msg_rate_limit`.\n",
+ "\n",
+ "Current values:\n",
+ "ServerApp.iopub_msg_rate_limit=1000.0 (msgs/sec)\n",
+ "ServerApp.rate_limit_window=3.0 (secs)\n",
+ "\n",
+ "IOPub message rate exceeded.███████████████████████████████████████████████████████████████████████████████████████████████████████████████████▏ | 796/1000 [00:28<00:07, 28.31it/s]\n",
+ "The Jupyter server will temporarily stop sending output\n",
+ "to the client in order to avoid crashing it.\n",
+ "To change this limit, set the config variable\n",
+ "`--ServerApp.iopub_msg_rate_limit`.\n",
+ "\n",
+ "Current values:\n",
+ "ServerApp.iopub_msg_rate_limit=1000.0 (msgs/sec)\n",
+ "ServerApp.rate_limit_window=3.0 (secs)\n",
+ "\n",
+ "IOPub message rate exceeded.████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████▍ | 854/1000 [00:30<00:05, 28.39it/s]\n",
+ "The Jupyter server will temporarily stop sending output\n",
+ "to the client in order to avoid crashing it.\n",
+ "To change this limit, set the config variable\n",
+ "`--ServerApp.iopub_msg_rate_limit`.\n",
+ "\n",
+ "Current values:\n",
+ "ServerApp.iopub_msg_rate_limit=1000.0 (msgs/sec)\n",
+ "ServerApp.rate_limit_window=3.0 (secs)\n",
+ "\n",
+ "IOPub message rate exceeded.███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████ | 920/1000 [00:31<00:02, 29.13it/s]\n",
+ "The Jupyter server will temporarily stop sending output\n",
+ "to the client in order to avoid crashing it.\n",
+ "To change this limit, set the config variable\n",
+ "`--ServerApp.iopub_msg_rate_limit`.\n",
+ "\n",
+ "Current values:\n",
+ "ServerApp.iopub_msg_rate_limit=1000.0 (msgs/sec)\n",
+ "ServerApp.rate_limit_window=3.0 (secs)\n",
+ "\n",
+ "IOPub message rate exceeded.████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████▍ | 978/1000 [00:33<00:00, 29.28it/s]\n",
+ "The Jupyter server will temporarily stop sending output\n",
+ "to the client in order to avoid crashing it.\n",
+ "To change this limit, set the config variable\n",
+ "`--ServerApp.iopub_msg_rate_limit`.\n",
+ "\n",
+ "Current values:\n",
+ "ServerApp.iopub_msg_rate_limit=1000.0 (msgs/sec)\n",
+ "ServerApp.rate_limit_window=3.0 (secs)\n",
+ "\n"
]
}
],
@@ -518,7 +695,7 @@
},
{
"cell_type": "code",
- "execution_count": 15,
+ "execution_count": 17,
"id": "6f900c68-1f34-48d1-b346-ef6ea6911fa5",
"metadata": {},
"outputs": [],
@@ -531,7 +708,7 @@
},
{
"cell_type": "code",
- "execution_count": 16,
+ "execution_count": 18,
"id": "3b6f7c1f-ea54-4496-bb9a-370cee2d2751",
"metadata": {
"scrolled": true
@@ -541,106 +718,106 @@
"name": "stdout",
"output_type": "stream",
"text": [
- "Object 0: Hit Rate = 0.00, Expected Hit Rate = 0.00, Average Time spend in Cache: 0.00, Average Age = 0.00, Expected Age = 0.00\n",
- "Object 1: Hit Rate = 0.00, Expected Hit Rate = 0.00, Average Time spend in Cache: 0.00, Average Age = 0.00, Expected Age = 0.00\n",
- "Object 2: Hit Rate = 0.00, Expected Hit Rate = 0.00, Average Time spend in Cache: 0.00, Average Age = 0.00, Expected Age = 0.00\n",
- "Object 3: Hit Rate = 0.00, Expected Hit Rate = 0.00, Average Time spend in Cache: 0.00, Average Age = 0.00, Expected Age = 0.00\n",
- "Object 4: Hit Rate = 0.00, Expected Hit Rate = 0.00, Average Time spend in Cache: 0.00, Average Age = 0.00, Expected Age = 0.00\n",
- "Object 5: Hit Rate = 0.00, Expected Hit Rate = 0.00, Average Time spend in Cache: 0.00, Average Age = 0.00, Expected Age = 0.00\n",
- "Object 6: Hit Rate = 0.00, Expected Hit Rate = 0.00, Average Time spend in Cache: 0.00, Average Age = 0.00, Expected Age = 0.00\n",
- "Object 7: Hit Rate = 0.00, Expected Hit Rate = 0.00, Average Time spend in Cache: 0.00, Average Age = 0.00, Expected Age = 0.00\n",
- "Object 8: Hit Rate = 0.00, Expected Hit Rate = 0.00, Average Time spend in Cache: 0.00, Average Age = 0.00, Expected Age = 0.00\n",
- "Object 9: Hit Rate = 0.00, Expected Hit Rate = 0.00, Average Time spend in Cache: 0.00, Average Age = 0.00, Expected Age = 0.00\n",
- "Object 10: Hit Rate = 0.00, Expected Hit Rate = 0.00, Average Time spend in Cache: 0.00, Average Age = 0.00, Expected Age = 0.00\n",
- "Object 11: Hit Rate = 0.00, Expected Hit Rate = 0.00, Average Time spend in Cache: 0.00, Average Age = 0.00, Expected Age = 0.00\n",
- "Object 12: Hit Rate = 0.00, Expected Hit Rate = 0.00, Average Time spend in Cache: 0.00, Average Age = 0.00, Expected Age = 0.00\n",
- "Object 13: Hit Rate = 0.00, Expected Hit Rate = 0.00, Average Time spend in Cache: 0.00, Average Age = 0.00, Expected Age = 0.00\n",
- "Object 14: Hit Rate = 0.00, Expected Hit Rate = 0.00, Average Time spend in Cache: 0.00, Average Age = 0.00, Expected Age = 0.00\n",
- "Object 15: Hit Rate = 0.00, Expected Hit Rate = 0.00, Average Time spend in Cache: 0.00, Average Age = 0.00, Expected Age = 0.00\n",
- "Object 16: Hit Rate = 0.00, Expected Hit Rate = 0.00, Average Time spend in Cache: 0.00, Average Age = 0.00, Expected Age = 0.00\n",
- "Object 17: Hit Rate = 0.00, Expected Hit Rate = 0.00, Average Time spend in Cache: 0.00, Average Age = 0.00, Expected Age = 0.00\n",
- "Object 18: Hit Rate = 0.00, Expected Hit Rate = 0.00, Average Time spend in Cache: 0.00, Average Age = 0.00, Expected Age = 0.00\n",
- "Object 19: Hit Rate = 0.00, Expected Hit Rate = 0.00, Average Time spend in Cache: 0.00, Average Age = 0.00, Expected Age = 0.00\n",
- "Object 20: Hit Rate = 0.00, Expected Hit Rate = 0.00, Average Time spend in Cache: 0.00, Average Age = 0.00, Expected Age = 0.00\n",
- "Object 21: Hit Rate = 0.00, Expected Hit Rate = 0.00, Average Time spend in Cache: 0.00, Average Age = 0.00, Expected Age = 0.00\n",
- "Object 22: Hit Rate = 0.00, Expected Hit Rate = 0.00, Average Time spend in Cache: 0.00, Average Age = 0.00, Expected Age = 0.00\n",
- "Object 23: Hit Rate = 0.00, Expected Hit Rate = 0.00, Average Time spend in Cache: 0.00, Average Age = 0.00, Expected Age = 0.00\n",
- "Object 24: Hit Rate = 0.00, Expected Hit Rate = 0.00, Average Time spend in Cache: 0.00, Average Age = 0.00, Expected Age = 0.00\n",
- "Object 25: Hit Rate = 0.00, Expected Hit Rate = 0.00, Average Time spend in Cache: 0.00, Average Age = 0.00, Expected Age = 0.00\n",
- "Object 26: Hit Rate = 0.00, Expected Hit Rate = 0.00, Average Time spend in Cache: 0.00, Average Age = 0.00, Expected Age = 0.00\n",
- "Object 27: Hit Rate = 0.00, Expected Hit Rate = 0.00, Average Time spend in Cache: 0.00, Average Age = 0.00, Expected Age = 0.00\n",
- "Object 28: Hit Rate = 0.00, Expected Hit Rate = 0.00, Average Time spend in Cache: 0.00, Average Age = 0.00, Expected Age = 0.00\n",
- "Object 29: Hit Rate = 0.00, Expected Hit Rate = 0.00, Average Time spend in Cache: 0.00, Average Age = 0.00, Expected Age = 0.00\n",
- "Object 30: Hit Rate = 0.00, Expected Hit Rate = 0.00, Average Time spend in Cache: 0.00, Average Age = 0.00, Expected Age = 0.00\n",
- "Object 31: Hit Rate = 0.00, Expected Hit Rate = 0.00, Average Time spend in Cache: 0.00, Average Age = 0.00, Expected Age = 0.00\n",
- "Object 32: Hit Rate = 0.00, Expected Hit Rate = 0.00, Average Time spend in Cache: 0.00, Average Age = 0.00, Expected Age = 0.00\n",
- "Object 33: Hit Rate = 0.00, Expected Hit Rate = 0.00, Average Time spend in Cache: 0.00, Average Age = 0.00, Expected Age = 0.00\n",
- "Object 34: Hit Rate = 0.00, Expected Hit Rate = 0.00, Average Time spend in Cache: 0.00, Average Age = 0.00, Expected Age = 0.00\n",
- "Object 35: Hit Rate = 0.00, Expected Hit Rate = 0.00, Average Time spend in Cache: 0.00, Average Age = 0.00, Expected Age = 0.00\n",
- "Object 36: Hit Rate = 0.00, Expected Hit Rate = 0.00, Average Time spend in Cache: 0.00, Average Age = 0.00, Expected Age = 0.00\n",
- "Object 37: Hit Rate = 0.00, Expected Hit Rate = 0.00, Average Time spend in Cache: 0.00, Average Age = 0.00, Expected Age = 0.00\n",
- "Object 38: Hit Rate = 0.00, Expected Hit Rate = 0.00, Average Time spend in Cache: 0.00, Average Age = 0.00, Expected Age = 0.00\n",
- "Object 39: Hit Rate = 0.00, Expected Hit Rate = 0.00, Average Time spend in Cache: 0.00, Average Age = 0.00, Expected Age = 0.00\n",
- "Object 40: Hit Rate = 0.00, Expected Hit Rate = 0.00, Average Time spend in Cache: 0.00, Average Age = 0.00, Expected Age = 0.00\n",
- "Object 41: Hit Rate = 0.00, Expected Hit Rate = 0.00, Average Time spend in Cache: 0.00, Average Age = 0.00, Expected Age = 0.00\n",
- "Object 42: Hit Rate = 0.00, Expected Hit Rate = 0.00, Average Time spend in Cache: 0.00, Average Age = 0.00, Expected Age = 0.00\n",
- "Object 43: Hit Rate = 0.00, Expected Hit Rate = 0.00, Average Time spend in Cache: 0.00, Average Age = 0.00, Expected Age = 0.00\n",
- "Object 44: Hit Rate = 0.00, Expected Hit Rate = 0.00, Average Time spend in Cache: 0.00, Average Age = 0.00, Expected Age = 0.00\n",
- "Object 45: Hit Rate = 0.00, Expected Hit Rate = 0.00, Average Time spend in Cache: 0.00, Average Age = 0.00, Expected Age = 0.00\n",
- "Object 46: Hit Rate = 0.00, Expected Hit Rate = 0.00, Average Time spend in Cache: 0.00, Average Age = 0.00, Expected Age = 0.00\n",
- "Object 47: Hit Rate = 0.00, Expected Hit Rate = 0.00, Average Time spend in Cache: 0.00, Average Age = 0.00, Expected Age = 0.00\n",
- "Object 48: Hit Rate = 0.00, Expected Hit Rate = 0.00, Average Time spend in Cache: 0.00, Average Age = 0.00, Expected Age = 0.00\n",
- "Object 49: Hit Rate = 0.00, Expected Hit Rate = 0.00, Average Time spend in Cache: 0.00, Average Age = 0.00, Expected Age = 0.00\n",
- "Object 50: Hit Rate = 0.00, Expected Hit Rate = 0.00, Average Time spend in Cache: 0.00, Average Age = 0.00, Expected Age = 0.00\n",
- "Object 51: Hit Rate = 0.00, Expected Hit Rate = 0.00, Average Time spend in Cache: 0.00, Average Age = 0.00, Expected Age = 0.00\n",
- "Object 52: Hit Rate = 0.00, Expected Hit Rate = 0.00, Average Time spend in Cache: 0.00, Average Age = 0.00, Expected Age = 0.00\n",
- "Object 53: Hit Rate = 0.00, Expected Hit Rate = 0.00, Average Time spend in Cache: 0.00, Average Age = 0.00, Expected Age = 0.00\n",
- "Object 54: Hit Rate = 0.00, Expected Hit Rate = 0.00, Average Time spend in Cache: 0.00, Average Age = 0.00, Expected Age = 0.00\n",
- "Object 55: Hit Rate = 0.00, Expected Hit Rate = 0.00, Average Time spend in Cache: 0.00, Average Age = 0.00, Expected Age = 0.00\n",
- "Object 56: Hit Rate = 0.00, Expected Hit Rate = 0.00, Average Time spend in Cache: 0.00, Average Age = 0.00, Expected Age = 0.00\n",
- "Object 57: Hit Rate = 0.00, Expected Hit Rate = 0.00, Average Time spend in Cache: 0.00, Average Age = 0.00, Expected Age = 0.00\n",
- "Object 58: Hit Rate = 0.00, Expected Hit Rate = 0.00, Average Time spend in Cache: 0.00, Average Age = 0.00, Expected Age = 0.00\n",
- "Object 59: Hit Rate = 0.00, Expected Hit Rate = 0.00, Average Time spend in Cache: 0.00, Average Age = 0.00, Expected Age = 0.00\n",
- "Object 60: Hit Rate = 0.00, Expected Hit Rate = 0.00, Average Time spend in Cache: 0.00, Average Age = 0.00, Expected Age = 0.00\n",
- "Object 61: Hit Rate = 0.00, Expected Hit Rate = 0.00, Average Time spend in Cache: 0.00, Average Age = 0.00, Expected Age = 0.00\n",
- "Object 62: Hit Rate = 0.00, Expected Hit Rate = 0.00, Average Time spend in Cache: 0.00, Average Age = 0.00, Expected Age = 0.00\n",
- "Object 63: Hit Rate = 0.00, Expected Hit Rate = 0.00, Average Time spend in Cache: 0.00, Average Age = 0.00, Expected Age = 0.00\n",
- "Object 64: Hit Rate = 0.00, Expected Hit Rate = 0.00, Average Time spend in Cache: 0.00, Average Age = 0.00, Expected Age = 0.00\n",
- "Object 65: Hit Rate = 0.00, Expected Hit Rate = 0.00, Average Time spend in Cache: 0.00, Average Age = 0.00, Expected Age = 0.00\n",
- "Object 66: Hit Rate = 0.00, Expected Hit Rate = 0.00, Average Time spend in Cache: 0.00, Average Age = 0.00, Expected Age = 0.00\n",
- "Object 67: Hit Rate = 0.00, Expected Hit Rate = 0.00, Average Time spend in Cache: 0.00, Average Age = 0.00, Expected Age = 0.00\n",
- "Object 68: Hit Rate = 0.00, Expected Hit Rate = 0.00, Average Time spend in Cache: 0.00, Average Age = 0.00, Expected Age = 0.00\n",
- "Object 69: Hit Rate = 0.00, Expected Hit Rate = 0.00, Average Time spend in Cache: 0.00, Average Age = 0.00, Expected Age = 0.00\n",
- "Object 70: Hit Rate = 0.00, Expected Hit Rate = 0.00, Average Time spend in Cache: 0.00, Average Age = 0.00, Expected Age = 0.00\n",
- "Object 71: Hit Rate = 0.00, Expected Hit Rate = 0.00, Average Time spend in Cache: 0.00, Average Age = 0.00, Expected Age = 0.00\n",
- "Object 72: Hit Rate = 0.00, Expected Hit Rate = 0.00, Average Time spend in Cache: 0.00, Average Age = 0.00, Expected Age = 0.00\n",
- "Object 73: Hit Rate = 0.00, Expected Hit Rate = 0.00, Average Time spend in Cache: 0.00, Average Age = 0.00, Expected Age = 0.00\n",
- "Object 74: Hit Rate = 0.00, Expected Hit Rate = 0.00, Average Time spend in Cache: 0.00, Average Age = 0.00, Expected Age = 0.00\n",
- "Object 75: Hit Rate = 0.00, Expected Hit Rate = 0.00, Average Time spend in Cache: 0.00, Average Age = 0.00, Expected Age = 0.00\n",
- "Object 76: Hit Rate = 0.00, Expected Hit Rate = 0.00, Average Time spend in Cache: 0.00, Average Age = 0.00, Expected Age = 0.00\n",
- "Object 77: Hit Rate = 0.00, Expected Hit Rate = 0.00, Average Time spend in Cache: 0.00, Average Age = 0.00, Expected Age = 0.00\n",
- "Object 78: Hit Rate = 0.00, Expected Hit Rate = 0.00, Average Time spend in Cache: 0.00, Average Age = 0.00, Expected Age = 0.00\n",
- "Object 79: Hit Rate = 0.00, Expected Hit Rate = 0.00, Average Time spend in Cache: 0.00, Average Age = 0.00, Expected Age = 0.00\n",
- "Object 80: Hit Rate = 0.00, Expected Hit Rate = 0.00, Average Time spend in Cache: 0.00, Average Age = 0.00, Expected Age = 0.00\n",
- "Object 81: Hit Rate = 0.00, Expected Hit Rate = 0.00, Average Time spend in Cache: 0.00, Average Age = 0.00, Expected Age = 0.00\n",
- "Object 82: Hit Rate = 0.00, Expected Hit Rate = 0.00, Average Time spend in Cache: 0.00, Average Age = 0.00, Expected Age = 0.00\n",
- "Object 83: Hit Rate = 0.00, Expected Hit Rate = 0.00, Average Time spend in Cache: 0.00, Average Age = 0.00, Expected Age = 0.00\n",
- "Object 84: Hit Rate = 0.00, Expected Hit Rate = 0.00, Average Time spend in Cache: 0.00, Average Age = 0.00, Expected Age = 0.00\n",
- "Object 85: Hit Rate = 0.00, Expected Hit Rate = 0.00, Average Time spend in Cache: 0.00, Average Age = 0.00, Expected Age = 0.00\n",
- "Object 86: Hit Rate = 0.00, Expected Hit Rate = 0.00, Average Time spend in Cache: 0.00, Average Age = 0.00, Expected Age = 0.00\n",
- "Object 87: Hit Rate = 0.00, Expected Hit Rate = 0.00, Average Time spend in Cache: 0.00, Average Age = 0.00, Expected Age = 0.00\n",
- "Object 88: Hit Rate = 0.00, Expected Hit Rate = 0.00, Average Time spend in Cache: 0.00, Average Age = 0.00, Expected Age = 0.00\n",
- "Object 89: Hit Rate = 0.00, Expected Hit Rate = 0.00, Average Time spend in Cache: 0.00, Average Age = 0.00, Expected Age = 0.00\n",
- "Object 90: Hit Rate = 1.00, Expected Hit Rate = 1.00, Average Time spend in Cache: 1.00, Average Age = 0.55, Expected Age = 20367.51\n",
- "Object 91: Hit Rate = 1.00, Expected Hit Rate = 1.00, Average Time spend in Cache: 1.00, Average Age = 0.54, Expected Age = 20926.62\n",
- "Object 92: Hit Rate = 1.00, Expected Hit Rate = 1.00, Average Time spend in Cache: 1.00, Average Age = 0.51, Expected Age = 20502.64\n",
- "Object 93: Hit Rate = 1.00, Expected Hit Rate = 1.00, Average Time spend in Cache: 1.00, Average Age = 0.49, Expected Age = 20425.76\n",
- "Object 94: Hit Rate = 1.00, Expected Hit Rate = 1.00, Average Time spend in Cache: 1.00, Average Age = 0.46, Expected Age = 20902.52\n",
- "Object 95: Hit Rate = 1.00, Expected Hit Rate = 1.00, Average Time spend in Cache: 1.00, Average Age = 0.43, Expected Age = 20666.00\n",
- "Object 96: Hit Rate = 1.00, Expected Hit Rate = 1.00, Average Time spend in Cache: 1.00, Average Age = 0.39, Expected Age = 20772.20\n",
- "Object 97: Hit Rate = 1.00, Expected Hit Rate = 1.00, Average Time spend in Cache: 1.00, Average Age = 0.35, Expected Age = 20708.69\n",
- "Object 98: Hit Rate = 1.00, Expected Hit Rate = 1.00, Average Time spend in Cache: 1.00, Average Age = 0.30, Expected Age = 20858.00\n",
- "Object 99: Hit Rate = 1.00, Expected Hit Rate = 1.00, Average Time spend in Cache: 1.00, Average Age = 0.22, Expected Age = 20546.25\n"
+ "Object 0: Hit Rate = 0.03, Average Time spend in Cache: 0.03, Average Age = 0.02, Expected Age = 1.12\n",
+ "Object 1: Hit Rate = 0.04, Average Time spend in Cache: 0.04, Average Age = 0.04, Expected Age = 1.78\n",
+ "Object 2: Hit Rate = 0.03, Average Time spend in Cache: 0.04, Average Age = 0.02, Expected Age = 1.03\n",
+ "Object 3: Hit Rate = 0.05, Average Time spend in Cache: 0.04, Average Age = 0.04, Expected Age = 1.80\n",
+ "Object 4: Hit Rate = 0.04, Average Time spend in Cache: 0.04, Average Age = 0.04, Expected Age = 1.70\n",
+ "Object 5: Hit Rate = 0.04, Average Time spend in Cache: 0.04, Average Age = 0.03, Expected Age = 1.52\n",
+ "Object 6: Hit Rate = 0.04, Average Time spend in Cache: 0.04, Average Age = 0.03, Expected Age = 1.40\n",
+ "Object 7: Hit Rate = 0.02, Average Time spend in Cache: 0.04, Average Age = 0.02, Expected Age = 0.90\n",
+ "Object 8: Hit Rate = 0.04, Average Time spend in Cache: 0.04, Average Age = 0.03, Expected Age = 1.31\n",
+ "Object 9: Hit Rate = 0.03, Average Time spend in Cache: 0.04, Average Age = 0.03, Expected Age = 1.26\n",
+ "Object 10: Hit Rate = 0.04, Average Time spend in Cache: 0.04, Average Age = 0.04, Expected Age = 1.56\n",
+ "Object 11: Hit Rate = 0.04, Average Time spend in Cache: 0.04, Average Age = 0.03, Expected Age = 1.54\n",
+ "Object 12: Hit Rate = 0.04, Average Time spend in Cache: 0.04, Average Age = 0.03, Expected Age = 1.39\n",
+ "Object 13: Hit Rate = 0.04, Average Time spend in Cache: 0.04, Average Age = 0.04, Expected Age = 1.31\n",
+ "Object 14: Hit Rate = 0.05, Average Time spend in Cache: 0.04, Average Age = 0.04, Expected Age = 1.68\n",
+ "Object 15: Hit Rate = 0.03, Average Time spend in Cache: 0.04, Average Age = 0.03, Expected Age = 1.15\n",
+ "Object 16: Hit Rate = 0.05, Average Time spend in Cache: 0.04, Average Age = 0.04, Expected Age = 1.70\n",
+ "Object 17: Hit Rate = 0.03, Average Time spend in Cache: 0.04, Average Age = 0.02, Expected Age = 1.10\n",
+ "Object 18: Hit Rate = 0.04, Average Time spend in Cache: 0.04, Average Age = 0.04, Expected Age = 1.52\n",
+ "Object 19: Hit Rate = 0.04, Average Time spend in Cache: 0.04, Average Age = 0.03, Expected Age = 1.24\n",
+ "Object 20: Hit Rate = 0.04, Average Time spend in Cache: 0.04, Average Age = 0.03, Expected Age = 1.40\n",
+ "Object 21: Hit Rate = 0.04, Average Time spend in Cache: 0.04, Average Age = 0.03, Expected Age = 1.40\n",
+ "Object 22: Hit Rate = 0.04, Average Time spend in Cache: 0.04, Average Age = 0.03, Expected Age = 1.34\n",
+ "Object 23: Hit Rate = 0.05, Average Time spend in Cache: 0.04, Average Age = 0.04, Expected Age = 1.67\n",
+ "Object 24: Hit Rate = 0.05, Average Time spend in Cache: 0.04, Average Age = 0.04, Expected Age = 1.48\n",
+ "Object 25: Hit Rate = 0.04, Average Time spend in Cache: 0.05, Average Age = 0.04, Expected Age = 1.40\n",
+ "Object 26: Hit Rate = 0.04, Average Time spend in Cache: 0.05, Average Age = 0.03, Expected Age = 1.39\n",
+ "Object 27: Hit Rate = 0.04, Average Time spend in Cache: 0.05, Average Age = 0.03, Expected Age = 1.29\n",
+ "Object 28: Hit Rate = 0.04, Average Time spend in Cache: 0.05, Average Age = 0.04, Expected Age = 1.28\n",
+ "Object 29: Hit Rate = 0.06, Average Time spend in Cache: 0.04, Average Age = 0.05, Expected Age = 1.69\n",
+ "Object 30: Hit Rate = 0.06, Average Time spend in Cache: 0.05, Average Age = 0.04, Expected Age = 1.70\n",
+ "Object 31: Hit Rate = 0.05, Average Time spend in Cache: 0.05, Average Age = 0.05, Expected Age = 1.58\n",
+ "Object 32: Hit Rate = 0.04, Average Time spend in Cache: 0.05, Average Age = 0.03, Expected Age = 1.26\n",
+ "Object 33: Hit Rate = 0.04, Average Time spend in Cache: 0.05, Average Age = 0.03, Expected Age = 1.28\n",
+ "Object 34: Hit Rate = 0.05, Average Time spend in Cache: 0.05, Average Age = 0.04, Expected Age = 1.53\n",
+ "Object 35: Hit Rate = 0.06, Average Time spend in Cache: 0.05, Average Age = 0.05, Expected Age = 1.58\n",
+ "Object 36: Hit Rate = 0.05, Average Time spend in Cache: 0.05, Average Age = 0.04, Expected Age = 1.40\n",
+ "Object 37: Hit Rate = 0.04, Average Time spend in Cache: 0.05, Average Age = 0.04, Expected Age = 1.24\n",
+ "Object 38: Hit Rate = 0.05, Average Time spend in Cache: 0.05, Average Age = 0.04, Expected Age = 1.28\n",
+ "Object 39: Hit Rate = 0.06, Average Time spend in Cache: 0.05, Average Age = 0.05, Expected Age = 1.53\n",
+ "Object 40: Hit Rate = 0.05, Average Time spend in Cache: 0.05, Average Age = 0.04, Expected Age = 1.34\n",
+ "Object 41: Hit Rate = 0.05, Average Time spend in Cache: 0.05, Average Age = 0.04, Expected Age = 1.28\n",
+ "Object 42: Hit Rate = 0.07, Average Time spend in Cache: 0.05, Average Age = 0.06, Expected Age = 1.72\n",
+ "Object 43: Hit Rate = 0.06, Average Time spend in Cache: 0.06, Average Age = 0.05, Expected Age = 1.45\n",
+ "Object 44: Hit Rate = 0.06, Average Time spend in Cache: 0.05, Average Age = 0.04, Expected Age = 1.45\n",
+ "Object 45: Hit Rate = 0.06, Average Time spend in Cache: 0.06, Average Age = 0.05, Expected Age = 1.42\n",
+ "Object 46: Hit Rate = 0.06, Average Time spend in Cache: 0.06, Average Age = 0.05, Expected Age = 1.40\n",
+ "Object 47: Hit Rate = 0.05, Average Time spend in Cache: 0.06, Average Age = 0.05, Expected Age = 1.21\n",
+ "Object 48: Hit Rate = 0.06, Average Time spend in Cache: 0.06, Average Age = 0.05, Expected Age = 1.53\n",
+ "Object 49: Hit Rate = 0.05, Average Time spend in Cache: 0.06, Average Age = 0.04, Expected Age = 1.10\n",
+ "Object 50: Hit Rate = 0.06, Average Time spend in Cache: 0.06, Average Age = 0.05, Expected Age = 1.32\n",
+ "Object 51: Hit Rate = 0.06, Average Time spend in Cache: 0.06, Average Age = 0.04, Expected Age = 1.32\n",
+ "Object 52: Hit Rate = 0.06, Average Time spend in Cache: 0.06, Average Age = 0.05, Expected Age = 1.41\n",
+ "Object 53: Hit Rate = 0.06, Average Time spend in Cache: 0.06, Average Age = 0.05, Expected Age = 1.23\n",
+ "Object 54: Hit Rate = 0.06, Average Time spend in Cache: 0.07, Average Age = 0.05, Expected Age = 1.26\n",
+ "Object 55: Hit Rate = 0.06, Average Time spend in Cache: 0.07, Average Age = 0.05, Expected Age = 1.35\n",
+ "Object 56: Hit Rate = 0.06, Average Time spend in Cache: 0.07, Average Age = 0.06, Expected Age = 1.28\n",
+ "Object 57: Hit Rate = 0.07, Average Time spend in Cache: 0.07, Average Age = 0.06, Expected Age = 1.49\n",
+ "Object 58: Hit Rate = 0.06, Average Time spend in Cache: 0.07, Average Age = 0.05, Expected Age = 1.15\n",
+ "Object 59: Hit Rate = 0.07, Average Time spend in Cache: 0.07, Average Age = 0.07, Expected Age = 1.40\n",
+ "Object 60: Hit Rate = 0.07, Average Time spend in Cache: 0.07, Average Age = 0.06, Expected Age = 1.35\n",
+ "Object 61: Hit Rate = 0.07, Average Time spend in Cache: 0.07, Average Age = 0.06, Expected Age = 1.23\n",
+ "Object 62: Hit Rate = 0.07, Average Time spend in Cache: 0.07, Average Age = 0.06, Expected Age = 1.37\n",
+ "Object 63: Hit Rate = 0.08, Average Time spend in Cache: 0.07, Average Age = 0.07, Expected Age = 1.39\n",
+ "Object 64: Hit Rate = 0.08, Average Time spend in Cache: 0.08, Average Age = 0.07, Expected Age = 1.44\n",
+ "Object 65: Hit Rate = 0.09, Average Time spend in Cache: 0.08, Average Age = 0.07, Expected Age = 1.47\n",
+ "Object 66: Hit Rate = 0.09, Average Time spend in Cache: 0.08, Average Age = 0.07, Expected Age = 1.48\n",
+ "Object 67: Hit Rate = 0.08, Average Time spend in Cache: 0.08, Average Age = 0.07, Expected Age = 1.37\n",
+ "Object 68: Hit Rate = 0.09, Average Time spend in Cache: 0.09, Average Age = 0.08, Expected Age = 1.43\n",
+ "Object 69: Hit Rate = 0.09, Average Time spend in Cache: 0.09, Average Age = 0.08, Expected Age = 1.44\n",
+ "Object 70: Hit Rate = 0.09, Average Time spend in Cache: 0.09, Average Age = 0.08, Expected Age = 1.42\n",
+ "Object 71: Hit Rate = 0.09, Average Time spend in Cache: 0.09, Average Age = 0.07, Expected Age = 1.34\n",
+ "Object 72: Hit Rate = 0.10, Average Time spend in Cache: 0.10, Average Age = 0.08, Expected Age = 1.44\n",
+ "Object 73: Hit Rate = 0.09, Average Time spend in Cache: 0.10, Average Age = 0.07, Expected Age = 1.29\n",
+ "Object 74: Hit Rate = 0.10, Average Time spend in Cache: 0.10, Average Age = 0.08, Expected Age = 1.34\n",
+ "Object 75: Hit Rate = 0.10, Average Time spend in Cache: 0.11, Average Age = 0.09, Expected Age = 1.34\n",
+ "Object 76: Hit Rate = 0.10, Average Time spend in Cache: 0.11, Average Age = 0.09, Expected Age = 1.28\n",
+ "Object 77: Hit Rate = 0.11, Average Time spend in Cache: 0.11, Average Age = 0.09, Expected Age = 1.39\n",
+ "Object 78: Hit Rate = 0.12, Average Time spend in Cache: 0.11, Average Age = 0.11, Expected Age = 1.49\n",
+ "Object 79: Hit Rate = 0.12, Average Time spend in Cache: 0.12, Average Age = 0.11, Expected Age = 1.45\n",
+ "Object 80: Hit Rate = 0.12, Average Time spend in Cache: 0.12, Average Age = 0.10, Expected Age = 1.28\n",
+ "Object 81: Hit Rate = 0.13, Average Time spend in Cache: 0.13, Average Age = 0.12, Expected Age = 1.44\n",
+ "Object 82: Hit Rate = 0.12, Average Time spend in Cache: 0.13, Average Age = 0.11, Expected Age = 1.20\n",
+ "Object 83: Hit Rate = 0.15, Average Time spend in Cache: 0.14, Average Age = 0.13, Expected Age = 1.47\n",
+ "Object 84: Hit Rate = 0.16, Average Time spend in Cache: 0.15, Average Age = 0.14, Expected Age = 1.46\n",
+ "Object 85: Hit Rate = 0.16, Average Time spend in Cache: 0.15, Average Age = 0.14, Expected Age = 1.42\n",
+ "Object 86: Hit Rate = 0.16, Average Time spend in Cache: 0.16, Average Age = 0.15, Expected Age = 1.39\n",
+ "Object 87: Hit Rate = 0.17, Average Time spend in Cache: 0.17, Average Age = 0.16, Expected Age = 1.39\n",
+ "Object 88: Hit Rate = 0.17, Average Time spend in Cache: 0.18, Average Age = 0.16, Expected Age = 1.29\n",
+ "Object 89: Hit Rate = 0.19, Average Time spend in Cache: 0.19, Average Age = 0.18, Expected Age = 1.37\n",
+ "Object 90: Hit Rate = 0.21, Average Time spend in Cache: 0.21, Average Age = 0.21, Expected Age = 1.42\n",
+ "Object 91: Hit Rate = 0.22, Average Time spend in Cache: 0.22, Average Age = 0.22, Expected Age = 1.33\n",
+ "Object 92: Hit Rate = 0.24, Average Time spend in Cache: 0.25, Average Age = 0.25, Expected Age = 1.36\n",
+ "Object 93: Hit Rate = 0.27, Average Time spend in Cache: 0.27, Average Age = 0.28, Expected Age = 1.38\n",
+ "Object 94: Hit Rate = 0.28, Average Time spend in Cache: 0.29, Average Age = 0.30, Expected Age = 1.30\n",
+ "Object 95: Hit Rate = 0.33, Average Time spend in Cache: 0.33, Average Age = 0.37, Expected Age = 1.35\n",
+ "Object 96: Hit Rate = 0.38, Average Time spend in Cache: 0.38, Average Age = 0.44, Expected Age = 1.35\n",
+ "Object 97: Hit Rate = 0.45, Average Time spend in Cache: 0.45, Average Age = 0.58, Expected Age = 1.35\n",
+ "Object 98: Hit Rate = 0.57, Average Time spend in Cache: 0.57, Average Age = 0.92, Expected Age = 1.48\n",
+ "Object 99: Hit Rate = 0.77, Average Time spend in Cache: 0.77, Average Age = 1.97, Expected Age = 1.87\n"
]
}
],
@@ -684,7 +861,7 @@
},
{
"cell_type": "code",
- "execution_count": 17,
+ "execution_count": 19,
"id": "b2d18372-cdba-4151-ae32-5bf45466bf94",
"metadata": {},
"outputs": [],
@@ -696,7 +873,7 @@
},
{
"cell_type": "code",
- "execution_count": 18,
+ "execution_count": 20,
"id": "be7e67e7-4533-438a-ab65-ca813f48052a",
"metadata": {},
"outputs": [],
@@ -707,7 +884,7 @@
},
{
"cell_type": "code",
- "execution_count": 19,
+ "execution_count": 21,
"id": "80971714-44f1-47db-9e89-85be7c885bde",
"metadata": {},
"outputs": [
@@ -738,8 +915,6 @@
"
mu \n",
" lambda \n",
" hit_rate \n",
- " expected_hit_rate \n",
- " expected_hit_rate_delta \n",
" avg_cache_time \n",
" cache_time_delta \n",
" avg_age \n",
@@ -749,77 +924,67 @@
" \n",
" \n",
" 0 \n",
- " 1062 \n",
- " 0 \n",
- " 1062 \n",
- " 1.000000 \n",
+ " 1000 \n",
+ " 28 \n",
+ " 972 \n",
+ " None \n",
" 0.0251 \n",
- " 0.000000 \n",
- " 0.0 \n",
- " 0.000000 \n",
- " 0.000000 \n",
- " 0.000000 \n",
- " 0.000000 \n",
+ " 0.028000 \n",
+ " 0.033253 \n",
+ " -0.005253 \n",
+ " 0.023204 \n",
" [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ... \n",
" \n",
" \n",
" 1 \n",
- " 1088 \n",
- " 0 \n",
- " 1088 \n",
- " 1.000000 \n",
+ " 1067 \n",
+ " 48 \n",
+ " 1019 \n",
+ " None \n",
" 0.0253 \n",
- " 0.000000 \n",
- " 0.0 \n",
- " 0.000000 \n",
- " 0.000000 \n",
- " 0.000000 \n",
- " 0.000000 \n",
+ " 0.044986 \n",
+ " 0.035666 \n",
+ " 0.009320 \n",
+ " 0.043221 \n",
" [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ... \n",
" \n",
" \n",
" 2 \n",
- " 1000 \n",
- " 0 \n",
- " 1000 \n",
- " 1.000000 \n",
+ " 1100 \n",
+ " 29 \n",
+ " 1071 \n",
+ " None \n",
" 0.0255 \n",
- " 0.000000 \n",
- " 0.0 \n",
- " 0.000000 \n",
- " 0.000000 \n",
- " 0.000000 \n",
- " 0.000000 \n",
+ " 0.026364 \n",
+ " 0.036409 \n",
+ " -0.010046 \n",
+ " 0.020289 \n",
" [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ... \n",
" \n",
" \n",
" 3 \n",
- " 1044 \n",
- " 0 \n",
- " 1044 \n",
- " 1.000000 \n",
+ " 1107 \n",
+ " 51 \n",
+ " 1056 \n",
+ " None \n",
" 0.0257 \n",
- " 0.000000 \n",
- " 0.0 \n",
- " 0.000000 \n",
- " 0.000000 \n",
- " 0.000000 \n",
- " 0.000000 \n",
+ " 0.046070 \n",
+ " 0.036398 \n",
+ " 0.009673 \n",
+ " 0.038728 \n",
" [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ... \n",
" \n",
" \n",
" 4 \n",
- " 1129 \n",
- " 0 \n",
- " 1129 \n",
- " 1.000000 \n",
+ " 1086 \n",
+ " 48 \n",
+ " 1038 \n",
+ " None \n",
" 0.0260 \n",
- " 0.000000 \n",
- " 0.0 \n",
- " 0.000000 \n",
- " 0.000000 \n",
- " 0.000000 \n",
- " 0.000000 \n",
+ " 0.044199 \n",
+ " 0.036152 \n",
+ " 0.008047 \n",
+ " 0.036428 \n",
" [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ... \n",
" \n",
" \n",
@@ -834,128 +999,103 @@
" ... \n",
" ... \n",
" ... \n",
- " ... \n",
- " ... \n",
" \n",
" \n",
" 95 \n",
- " 11404 \n",
- " 11403 \n",
- " 1 \n",
- " 2.344666 \n",
+ " 11724 \n",
+ " 3884 \n",
+ " 7840 \n",
+ " None \n",
" 0.2759 \n",
- " 0.999912 \n",
- " 1.0 \n",
- " -0.000088 \n",
- " 0.999941 \n",
- " -0.000028 \n",
- " 0.428322 \n",
- " [0, 0.0891512597998787, 0.06415110059353868, 0... \n",
+ " 0.331286 \n",
+ " 0.329118 \n",
+ " 0.002168 \n",
+ " 0.369984 \n",
+ " [0, 0, 0, 0, 0, 0.689766350641932, 0, 0, 0, 0,... \n",
" \n",
" \n",
" 96 \n",
- " 13706 \n",
- " 13705 \n",
- " 1 \n",
- " 2.563445 \n",
+ " 14086 \n",
+ " 5349 \n",
+ " 8737 \n",
+ " None \n",
" 0.3299 \n",
- " 0.999927 \n",
- " 1.0 \n",
- " -0.000073 \n",
- " 0.999946 \n",
- " -0.000019 \n",
- " 0.386432 \n",
- " [0, 0.31426861097273395, 0.07673416342145734, ... \n",
+ " 0.379739 \n",
+ " 0.382476 \n",
+ " -0.002737 \n",
+ " 0.440054 \n",
+ " [0, 0, 0.6257414568279982, 0, 0.29622958616229... \n",
" \n",
" \n",
" 97 \n",
- " 17197 \n",
- " 17196 \n",
- " 1 \n",
- " 2.876043 \n",
+ " 17519 \n",
+ " 7857 \n",
+ " 9662 \n",
+ " None \n",
" 0.4152 \n",
- " 0.999942 \n",
- " 1.0 \n",
- " -0.000058 \n",
- " 0.999968 \n",
- " -0.000026 \n",
- " 0.349340 \n",
- " [0, 0.9920726875299433, 0.11549947514999914, 0... \n",
+ " 0.448485 \n",
+ " 0.452053 \n",
+ " -0.003568 \n",
+ " 0.576042 \n",
+ " [0, 0, 0, 0, 2.1522941477509043, 0, 0.29715894... \n",
" \n",
" \n",
" 98 \n",
- " 23958 \n",
- " 23957 \n",
- " 1 \n",
- " 3.381806 \n",
+ " 24674 \n",
+ " 14117 \n",
+ " 10557 \n",
+ " None \n",
" 0.5743 \n",
- " 0.999958 \n",
- " 1.0 \n",
- " -0.000042 \n",
- " 0.999999 \n",
- " -0.000041 \n",
- " 0.297864 \n",
- " [0, 0.055604529502096156, 0.05810636385222967,... \n",
+ " 0.572141 \n",
+ " 0.571998 \n",
+ " 0.000143 \n",
+ " 0.919750 \n",
+ " [0, 0.055604529502096156, 0.7127466308343264, ... \n",
" \n",
" \n",
" 99 \n",
- " 41093 \n",
- " 41092 \n",
- " 1 \n",
- " 4.462294 \n",
+ " 43025 \n",
+ " 33051 \n",
+ " 9974 \n",
+ " None \n",
" 1.0000 \n",
- " 0.999976 \n",
- " 1.0 \n",
- " -0.000024 \n",
- " 0.999997 \n",
- " -0.000022 \n",
- " 0.223745 \n",
- " [0, 0.1683508324120914, 0.24845511096226777, 0... \n",
+ " 0.768181 \n",
+ " 0.768395 \n",
+ " -0.000213 \n",
+ " 1.966054 \n",
+ " [0, 0.7104371771341902, 0.9702423340515842, 0,... \n",
" \n",
" \n",
"\n",
- "100 rows × 12 columns
\n",
+ "100 rows × 10 columns
\n",
""
],
"text/plain": [
- " access_count hits misses mu lambda hit_rate \\\n",
- "0 1062 0 1062 1.000000 0.0251 0.000000 \n",
- "1 1088 0 1088 1.000000 0.0253 0.000000 \n",
- "2 1000 0 1000 1.000000 0.0255 0.000000 \n",
- "3 1044 0 1044 1.000000 0.0257 0.000000 \n",
- "4 1129 0 1129 1.000000 0.0260 0.000000 \n",
- ".. ... ... ... ... ... ... \n",
- "95 11404 11403 1 2.344666 0.2759 0.999912 \n",
- "96 13706 13705 1 2.563445 0.3299 0.999927 \n",
- "97 17197 17196 1 2.876043 0.4152 0.999942 \n",
- "98 23958 23957 1 3.381806 0.5743 0.999958 \n",
- "99 41093 41092 1 4.462294 1.0000 0.999976 \n",
- "\n",
- " expected_hit_rate expected_hit_rate_delta avg_cache_time \\\n",
- "0 0.0 0.000000 0.000000 \n",
- "1 0.0 0.000000 0.000000 \n",
- "2 0.0 0.000000 0.000000 \n",
- "3 0.0 0.000000 0.000000 \n",
- "4 0.0 0.000000 0.000000 \n",
- ".. ... ... ... \n",
- "95 1.0 -0.000088 0.999941 \n",
- "96 1.0 -0.000073 0.999946 \n",
- "97 1.0 -0.000058 0.999968 \n",
- "98 1.0 -0.000042 0.999999 \n",
- "99 1.0 -0.000024 0.999997 \n",
+ " access_count hits misses mu lambda hit_rate avg_cache_time \\\n",
+ "0 1000 28 972 None 0.0251 0.028000 0.033253 \n",
+ "1 1067 48 1019 None 0.0253 0.044986 0.035666 \n",
+ "2 1100 29 1071 None 0.0255 0.026364 0.036409 \n",
+ "3 1107 51 1056 None 0.0257 0.046070 0.036398 \n",
+ "4 1086 48 1038 None 0.0260 0.044199 0.036152 \n",
+ ".. ... ... ... ... ... ... ... \n",
+ "95 11724 3884 7840 None 0.2759 0.331286 0.329118 \n",
+ "96 14086 5349 8737 None 0.3299 0.379739 0.382476 \n",
+ "97 17519 7857 9662 None 0.4152 0.448485 0.452053 \n",
+ "98 24674 14117 10557 None 0.5743 0.572141 0.571998 \n",
+ "99 43025 33051 9974 None 1.0000 0.768181 0.768395 \n",
"\n",
" cache_time_delta avg_age \\\n",
- "0 0.000000 0.000000 \n",
- "1 0.000000 0.000000 \n",
- "2 0.000000 0.000000 \n",
- "3 0.000000 0.000000 \n",
- "4 0.000000 0.000000 \n",
+ "0 -0.005253 0.023204 \n",
+ "1 0.009320 0.043221 \n",
+ "2 -0.010046 0.020289 \n",
+ "3 0.009673 0.038728 \n",
+ "4 0.008047 0.036428 \n",
".. ... ... \n",
- "95 -0.000028 0.428322 \n",
- "96 -0.000019 0.386432 \n",
- "97 -0.000026 0.349340 \n",
- "98 -0.000041 0.297864 \n",
- "99 -0.000022 0.223745 \n",
+ "95 0.002168 0.369984 \n",
+ "96 -0.002737 0.440054 \n",
+ "97 -0.003568 0.576042 \n",
+ "98 0.000143 0.919750 \n",
+ "99 -0.000213 1.966054 \n",
"\n",
" ages \n",
"0 [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ... \n",
@@ -964,16 +1104,16 @@
"3 [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ... \n",
"4 [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ... \n",
".. ... \n",
- "95 [0, 0.0891512597998787, 0.06415110059353868, 0... \n",
- "96 [0, 0.31426861097273395, 0.07673416342145734, ... \n",
- "97 [0, 0.9920726875299433, 0.11549947514999914, 0... \n",
- "98 [0, 0.055604529502096156, 0.05810636385222967,... \n",
- "99 [0, 0.1683508324120914, 0.24845511096226777, 0... \n",
+ "95 [0, 0, 0, 0, 0, 0.689766350641932, 0, 0, 0, 0,... \n",
+ "96 [0, 0, 0.6257414568279982, 0, 0.29622958616229... \n",
+ "97 [0, 0, 0, 0, 2.1522941477509043, 0, 0.29715894... \n",
+ "98 [0, 0.055604529502096156, 0.7127466308343264, ... \n",
+ "99 [0, 0.7104371771341902, 0.9702423340515842, 0,... \n",
"\n",
- "[100 rows x 12 columns]"
+ "[100 rows x 10 columns]"
]
},
- "execution_count": 19,
+ "execution_count": 21,
"metadata": {},
"output_type": "execute_result"
}
@@ -1016,13 +1156,13 @@
},
{
"cell_type": "code",
- "execution_count": 20,
+ "execution_count": 22,
"id": "01f8f9ee-c278-4a22-8562-ba02e77f5ddd",
"metadata": {},
"outputs": [
{
"data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAACVcAAAHWCAYAAAB5HisgAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy80BEi2AAAACXBIWXMAAA9hAAAPYQGoP6dpAABkzklEQVR4nOzdeZid48E/8O/Jvm/IgoiQ2EKqKI19CaFqaSlRilhLlNCqoJZYatfgtVZraala69UiYk3tYldBEKraSEkiJMQk8/z+8Mu8pjNhJmZyppnP57pyXXOe536e8z1nTuaOub7uu1QURREAAAAAAAAAAACqaVHuAAAAAAAAAAAAAE2RchUAAAAAAAAAAEAtlKsAAAAAAAAAAABqoVwFAAAAAAAAAABQC+UqAAAAAAAAAACAWihXAQAAAAAAAAAA1EK5CgAAAAAAAAAAoBbKVQAAAAAAAAAAALVQrgIAAAAAAAAAAKiFchUAAABAkgcffDClUik333xzuaPUyXvvvZddd901Sy21VEqlUsaOHdtg937rrbdSKpVy7rnnfuXYk08+OaVSqcGee3EolUo5+eSTyx2jQZRKpRx22GHljvFfbcUVV8y+++5b7hgAAABAE6VcBQAAACw2V199dUqlUtq1a5d33323xvnNN988a665ZhmS/fc58sgjM27cuBx77LH53e9+l2233fZLx8+ePTunnnpqBg8enA4dOqRr167ZZJNNcu2116YoisWUuv7uvPPO/5oi1IMPPpjvf//76d27d9q0aZOePXtmhx12yK233lruaA2ioqIiF154Yb71rW+lc+fO6dSpU771rW/lwgsvTEVFRbnjVVlQlKzLHwAAAICv0qrcAQAAAIDmZ+7cuTnzzDNz0UUXlTvKf637778/O+20U372s5995dj33nsvW221VSZNmpThw4fnsMMOy6effppbbrkl++yzT+68885cd911admyZb1z/OIXv8jo0aMX5SXUyZ133pmLL764QQtWn3zySVq1athfi5100kk55ZRTMnDgwBx88MHp169fPvjgg9x5553ZZZddct111+WHP/xhgz7n4jR79uxsv/32eeihh/Ld7343++67b1q0aJG77747RxxxRG699db85S9/SceOHcsdNauvvnp+97vfVTt27LHHplOnTjn++ONrjH/11VfTooX/BxUAAAConXIVAAAAsNitvfba+fWvf51jjz02yy67bLnjLFazZ89ukALKtGnT0q1btzqN3WeffTJp0qTcdttt2XHHHauOH3744Tn66KNz7rnn5pvf/GaOOeaYeudo1apVgxeVGlu7du0a9H4333xzTjnllOy66665/vrr07p166pzRx99dMaNG9ekVnZaFEcddVQeeuihXHTRRdW2ITzkkENy8cUX57DDDsvPfvazXHrppYstU1EU+fTTT9O+fftqx3v16pW99tqr2rEzzzwzSy+9dI3jSdK2bdtGzQkAAAD8d/O/ZAEAAACL3XHHHZf58+fnzDPP/NJxb731VkqlUq6++uoa50qlUrXVjE4++eSUSqW89tpr2WuvvdK1a9css8wyOeGEE1IURd55553stNNO6dKlS3r37p3zzjuv1uecP39+jjvuuPTu3TsdO3bMjjvumHfeeafGuCeeeCLbbrttunbtmg4dOmSzzTbLI488Um3Mgkwvv/xyfvjDH6Z79+7ZeOONv/Q1v/nmm/nBD36QHj16pEOHDvn2t7+dv/zlL1XnF2ytWBRFLr744q/c3uzxxx/PuHHjsu+++1YrVi1wxhlnZODAgTnrrLPyySef1Dj/q1/9Kv369Uv79u2z2Wab5aWXXqr1Nf6n3//+91l33XXTvn379OjRI8OHD1/o+/id73wn3bt3T8eOHTN48OBccMEFSZJ99903F198cZLUupXbDTfckHXXXTedO3dOly5dstZaa1Vd+2UW9tl5/fXXs++++6Zbt27p2rVrRowYkTlz5nzl/U444YT06NEjv/3tb6sVqxYYNmxYvvvd7yZJPvvss5x44olZd91107Vr13Ts2DGbbLJJHnjggRrXVVZW5oILLshaa62Vdu3aZZlllsm2226biRMn1hj7pz/9KWuuuWbatm2bQYMG5e67764x5t13381+++2XXr16VY377W9/+5Wv7x//+Ed+85vfZMstt6xWrFpg5MiR2WKLLXLllVfmH//4R5JkzTXXzBZbbFHra1puueWy6667Vjs2duzYDBo0KO3atUuvXr1y8MEHZ8aMGdWuXXHFFfPd734348aNy3rrrZf27dvn8ssv/8r8X2XFFVfMvvvuW/V4wd+xhx9+OIcffniWWWaZdOvWLQcffHA+++yzzJw5M3vvvXe6d++e7t275+c//3mNrTXr+poAAACApk+5CgAAAFjs+vfvn7333ju//vWv889//rNB77377runsrIyZ555ZjbYYIOcdtppGTt2bLbeeusst9xyOeusszJgwID87Gc/y4QJE2pcf/rpp+cvf/lLjjnmmBx++OEZP358hg4dWq14dP/992fTTTfNrFmzctJJJ+WXv/xlZs6cmS233DJPPvlkjXv+4Ac/yJw5c/LLX/4yBx544EKzv/fee9lwww0zbty4HHrooTn99NPz6aefZscdd8xtt92WJNl0002rtjzbeuut87vf/a7GFmhfdMcddyRJ9t5771rPt2rVKj/84Q8zY8aMGuWwa6+9NhdeeGFGjhyZY489Ni+99FK23HLLvPfeewt9vuTz93DvvffOwIEDc/7552fUqFG57777summm2bmzJlV48aPH59NN900L7/8co444oicd9552WKLLfLnP/85SXLwwQdn6623TpKq17ngtY4fPz577LFHunfvnrPOOitnnnlmNt988xqvoT522223fPTRRznjjDOy22675eqrr86YMWO+9JrJkyfnlVdeyc4775zOnTt/5XPMmjUrV155ZTbffPOcddZZOfnkk/Pvf/87w4YNy3PPPVdt7P77759Ro0alb9++OeusszJ69Oi0a9cujz/+eLVxDz/8cA499NAMHz48Z599dj799NPssssu+eCDD6rGvPfee/n2t7+de++9N4cddlguuOCCDBgwIPvvv3/Gjh37pZnvuuuuzJ8/f6GfoeTzz9e8efOqSl277757JkyYkKlTp9bI+s9//jPDhw+vOnbwwQfn6KOPzkYbbZQLLrggI0aMyHXXXZdhw4bVWPHr1VdfzR577JGtt946F1xwQdZee+0vzf51/OQnP8nkyZMzZsyY7LjjjrniiitywgknZIcddsj8+fPzy1/+MhtvvHHOOeecGn8H6/OaAAAAgCauAAAAAFhMrrrqqiJJ8dRTTxVvvPFG0apVq+Lwww+vOr/ZZpsVgwYNqno8ZcqUIklx1VVX1bhXkuKkk06qenzSSScVSYqDDjqo6ti8efOK5ZdfviiVSsWZZ55ZdXzGjBlF+/bti3322afq2AMPPFAkKZZbbrli1qxZVcdvvPHGIklxwQUXFEVRFJWVlcXAgQOLYcOGFZWVlVXj5syZU/Tv37/Yeuuta2TaY4896vT+jBo1qkhS/PWvf6069tFHHxX9+/cvVlxxxWL+/PnVXv/IkSO/8p4777xzkaSYMWPGQsfceuutRZLiwgsvLIri/9739u3bF//4xz+qxj3xxBNFkuLII4+s8RoXeOutt4qWLVsWp59+erXnePHFF4tWrVpVHZ83b17Rv3//ol+/fjWyffF9HTlyZFHbr7COOOKIokuXLsW8efO+8j34Twv77Oy3337Vxn3ve98rllpqqS+91+23314kKX71q1/V6bnnzZtXzJ07t9qxGTNmFL169ar2/Pfff3+RpNrfjwW++P4kKdq0aVO8/vrrVceef/75Iklx0UUXVR3bf//9iz59+hTvv/9+tXsNHz686Nq1azFnzpyFZl7wuXz22WcXOuaZZ54pkhRHHXVUURRF8eqrr9bIUBRFceihhxadOnWqer6//vWvRZLiuuuuqzbu7rvvrnG8X79+RZLi7rvvXmiOhRk0aFCx2Wab1XquX79+1X4WLPg59Z9/x4cMGVKUSqXixz/+cdWxBT9jvnjv+rwmAAAAoOmzchUAAABQFiuttFJ+9KMf5Yorrsi//vWvBrvvAQccUPV1y5Yts95666Uoiuy///5Vx7t165ZVV101b775Zo3r995772orEO26667p06dP7rzzziTJc889l8mTJ+eHP/xhPvjgg7z//vt5//33M3v27Gy11VaZMGFCKisrq93zxz/+cZ2y33nnnVl//fWrbR3YqVOnHHTQQXnrrbfy8ssv1+1N+IKPPvooSb50VaUF52bNmlXt+M4775zllluu6vH666+fDTbYoOq9qM2tt96aysrK7LbbblXvzfvvv5/evXtn4MCBVdvfPfvss5kyZUpGjRqVbt26VbvHl21zuEC3bt0ye/bsjB8//ivH1tV/fp822WSTfPDBBzXely9acK4uq1Yln38m27Rpk+TzreOmT5+eefPmZb311sszzzxTNe6WW25JqVTKSSedVOMe//n+DB06NCuvvHLV48GDB6dLly5Vn++iKHLLLbdkhx12SFEU1b4vw4YNy4cffljtuf/TonyGVllllay99tr54x//WDVm/vz5ufnmm7PDDjukffv2SZKbbropXbt2zdZbb10t17rrrptOnTrV2C6xf//+GTZs2EJzNKT999+/2nu9wQYb1PhZsuBnzBd/ltT3NQEAAABNW6tyBwAAAACar1/84hf53e9+lzPPPDMXXHBBg9xzhRVWqPa4a9euadeuXZZeeukax7+4bdoCAwcOrPa4VCplwIABeeutt5J8vg1ckuyzzz4LzfDhhx+me/fuVY/79+9fp+xvv/12NthggxrHV1999arza665Zp3utcCC0stHH31Uo8S0wMLKM//5XiSfl2ZuvPHGhT7f5MmTUxRFrdcmSevWrZMkb7zxRpLU+/UscOihh+bGG2/Mdtttl+WWWy7bbLNNdtttt2y77baLdL+k5mdnwfdwxowZ6dKlS63XLDi+4D2si2uuuSbnnXdeXnnllWpbxH3xc/LGG29k2WWXTY8ePeqde0H2GTNmJEn+/e9/Z+bMmbniiityxRVX1HqPadOmLfT+X/wMLUxtn6Hdd989xx13XN59990st9xyefDBBzNt2rTsvvvuVWMmT56cDz/8MD179qxTrrr+XWoItf0sSZK+ffvWOL7gvU7q/5oAAACApk25CgAAACiblVZaKXvttVeuuOKKjB49usb5ha1gNH/+/IXes2XLlnU6lny+ok99LViV6pxzzsnaa69d65hOnTpVe7xglZ5yWH311fOnP/0pL7zwQjbddNNax7zwwgtJkjXWWONrP19lZWVKpVLuuuuuWt/3/3xvFlXPnj3z3HPPZdy4cbnrrrty11135aqrrsree++da665ZpHuuSifk9VWWy1J8uKLL9bpOX7/+99n3333zc4775yjjz46PXv2TMuWLXPGGWdUFc7q66tyL/jM7rXXXgstBQ4ePHih919Q7nvhhRcW+pmv7TO0++6759hjj81NN92UUaNG5cYbb0zXrl2rFeAqKyvTs2fPXHfddbXed5lllqn2eHH+XVrY+1rb8S9+Rur7mgAAAICmTbkKAAAAKKtf/OIX+f3vf5+zzjqrxrkFKwfNnDmz2vG333670fIsWJlqgaIo8vrrr1eVTxZsv9alS5cMHTq0QZ+7X79+efXVV2scf+WVV6rO19d3v/vdnHHGGbn22mtrLVfNnz8/119/fbp3756NNtqo2rn/fC+S5LXXXsuKK6640OdbeeWVUxRF+vfvn1VWWeVLxyXJSy+99KXv45dtEdimTZvssMMO2WGHHVJZWZlDDz00l19+eU444YQMGDBgodc1pFVWWSWrrrpqbr/99lxwwQVfWR67+eabs9JKK+XWW2+t9tr+c/u/lVdeOePGjcv06dPrtHrVl1lmmWXSuXPnzJ8/f5E+s9ttt11atmyZ3/3ud9l7771rHXPttdemVatW1YpT/fv3z/rrr58//vGPOeyww3Lrrbdm5513Ttu2bavGrLzyyrn33nuz0UYblbWE2JCWxNcEAAAAzVmLcgcAAAAAmreVV145e+21Vy6//PJMnTq12rkuXbpk6aWXzoQJE6odv+SSSxotz7XXXltt+7Obb745//rXv7LddtslSdZdd92svPLKOffcc/Pxxx/XuP7f//73Ij/3d77znTz55JN57LHHqo7Nnj07V1xxRVZcccVFWllqww03zNChQ3PVVVflz3/+c43zxx9/fF577bX8/Oc/r1EE+dOf/pR333236vGTTz6ZJ554ouq9qM33v//9tGzZMmPGjKmx4lNRFFVbMa6zzjrp379/xo4dW6M898XrOnbsmKRmwe4/t3Rs0aJFVQFu7ty5C83XGMaMGZMPPvggBxxwQObNm1fj/D333FP13i9Y9eiLr/GJJ56o9j1Pkl122SVFUWTMmDE17lffFddatmyZXXbZJbfcckteeumlGue/6jPbt2/fjBgxIvfee28uvfTSGucvu+yy3H///dl///2z/PLLVzu3++675/HHH89vf/vbvP/++9W2BEyS3XbbLfPnz8+pp55a477z5s2r8X3/b7AkviYAAABozqxcBQAAAJTd8ccfn9/97nd59dVXM2jQoGrnDjjggJx55pk54IADst5662XChAl57bXXGi1Ljx49svHGG2fEiBF57733Mnbs2AwYMCAHHnhgks9LPFdeeWW22267DBo0KCNGjMhyyy2Xd999Nw888EC6dOmSO+64Y5Gee/To0fnDH/6Q7bbbLocffnh69OiRa665JlOmTMktt9ySFi0W7f+Tu/baa7PVVltlp512yg9/+MNssskmmTt3bm699dY8+OCD2X333XP00UfXuG7AgAHZeOONc8ghh2Tu3LkZO3Zsllpqqfz85z9f6HOtvPLKOe2003Lsscfmrbfeys4775zOnTtnypQpue2223LQQQflZz/7WVq0aJFLL700O+ywQ9Zee+2MGDEiffr0ySuvvJK//e1vGTduXJLPy2xJcvjhh2fYsGFp2bJlhg8fngMOOCDTp0/PlltumeWXXz5vv/12Lrrooqy99tpV29gtLrvvvntefPHFnH766Xn22Wezxx57pF+/fvnggw9y991357777sv111+f5POVxG699dZ873vfy/bbb58pU6bksssuyxprrFGtrLfFFlvkRz/6US688MJMnjw52267bSorK/PXv/41W2yxRQ477LB6ZTzzzDPzwAMPZIMNNsiBBx6YNdZYI9OnT88zzzyTe++9N9OnT//S63/1q1/llVdeyaGHHpq77767aoWqcePG5fbbb89mm22W8847r8Z1u+22W372s5/lZz/7WXr06FFj5azNNtssBx98cM4444w899xz2WabbdK6detMnjw5N910Uy644ILsuuuu9Xqt5bYkviYAAABozpSrAAAAgLIbMGBA9tprr1xzzTU1zp144on597//nZtvvjk33nhjtttuu9x1113p2bNno2Q57rjj8sILL+SMM87IRx99lK222iqXXHJJOnToUDVm8803z2OPPZZTTz01//M//5OPP/44vXv3zgYbbJCDDz54kZ+7V69eefTRR3PMMcfkoosuyqeffprBgwfnjjvuyPbbb7/I9+3Tp0+efPLJnHfeebnppptyyy23pFWrVhk8eHCuvvrq7L333rVuv7f33nunRYsWGTt2bKZNm5b1118///M//5M+ffp86fONHj06q6yySn71q19VrbzUt2/fbLPNNtlxxx2rxg0bNiwPPPBAxowZk/POOy+VlZVZeeWVq4psyecrYf3kJz/JDTfckN///vcpiiLDhw/PXnvtlSuuuCKXXHJJZs6cmd69e2f33XfPySefvMgltK/jtNNOy5ZbbpkLL7wwl156aaZPn57u3bvn29/+dm6//faq173vvvtm6tSpufzyyzNu3LisscYa+f3vf5+bbropDz74YLV7XnXVVRk8eHB+85vf5Oijj07Xrl2z3nrrZcMNN6x3vl69euXJJ5/MKaeckltvvTWXXHJJllpqqQwaNKjWLTn/U6dOnXLfffflkksuye9///scffTRKYoiq622WsaOHZtDDz00rVu3rnHd8ssvnw033DCPPPJIDjjggFrHXHbZZVl33XVz+eWX57jjjkurVq2y4oorZq+99qqxVeV/iyXxNQEAAEBzVSrqu444AAAAAPx/J5xwQs4444xat8MDAAAAgP92i/9/4wMAAABgifGvf/0rSy+9dLljAAAAAECjsC0gAAAAAPX25ptv5rbbbstNN92U7373u+WOAwAAAACNwspVAAAAANTbhAkTMmbMmGy22WY5//zzyx0HAAAAABpFqSiKotwhAAAAAAAAAAAAmhorVwEAAAAAAAAAANRCuQoAAAAAAAAAAKAWrcodoLFVVlbmn//8Zzp37pxSqVTuOAAAAAAAAAAAQJkVRZGPPvooyy67bFq0WPj6VEt8ueqf//xn+vbtW+4YAAAAAAAAAABAE/POO+9k+eWXX+j5Jb5c1blz5ySfvxFdunQpcxoWpqKiIvfcc0+22WabtG7dutxxAIBGYL4HgObBnA8AzYM5HwCaB3M+S7JZs2alb9++Vd2ihVniy1ULtgLs0qWLclUTVlFRkQ4dOqRLly5+IAPAEsp8DwDNgzkfAJoHcz4ANA/mfJqDBd2ihVn4hoEAAAAAAAAAAADNmHIVAAAAAAAAAABALZSrAAAAAAAAAAAAaqFcBQAAAAAAAAAAUAvlKgAAAAAAAAAAgFooVwEAAAAAAAAAANRCuQoAAAAAAAAAAKAWylUAAAAAAAAAAAC1UK4CAAAAAAAAAACohXIVAAAAAAAAAABALcparpowYUJ22GGHLLvssimVSvnTn/5U7XxRFDnxxBPTp0+ftG/fPkOHDs3kyZPLExYAAAAAAAAAAGhWylqumj17dr7xjW/k4osvrvX82WefnQsvvDCXXXZZnnjiiXTs2DHDhg3Lp59+upiTAgAAAAAAAAAAzU2rcj75dtttl+22267Wc0VRZOzYsfnFL36RnXbaKUly7bXXplevXvnTn/6U4cOHL86oAAAAAAAAAABAM1PWctWXmTJlSqZOnZqhQ4dWHevatWs22GCDPPbYYwstV82dOzdz586tejxr1qwkSUVFRSoqKho3NIvs3HGv5n+fb5mL33gkpVKp3HEAgEZQFEU++th8DwBLOnM+ADQP5nwAaB7M+V/PaTutkbX7dit3DBairj2iJluumjp1apKkV69e1Y736tWr6lxtzjjjjIwZM6bG8XvuuScdOnRo2JA0mCsea5kipfxrzuxyRwEAGpX5HgCaB3M+ADQP5nwAaB7M+YvqgYcfyz+7FuWOwULMmTOnTuOabLlqUR177LE56qijqh7PmjUrffv2zTbbbJMuXbqUMRlf5ojH7kmS/GrXQeneqV2Z0wAAjWHevHl55ulnss6666RVqyXun6EAwP9nzgeA5sGcDwDNgzn/6xnUp0u6dWhd7hgsxILd8L5Kk/3k9+7dO0ny3nvvpU+fPlXH33vvvay99toLva5t27Zp27ZtjeOtW7dO69Y+sE3dkAHLpHe3juWOAQA0goqKisx+o8hmq/by7zIAWIKZ8wGgeTDnA0DzYM5nSVbXz3SLRs6xyPr375/evXvnvvvuqzo2a9asPPHEExkyZEgZk9HQisISeAAAAAAAAAAAND1lXbnq448/zuuvv171eMqUKXnuuefSo0ePrLDCChk1alROO+20DBw4MP37988JJ5yQZZddNjvvvHP5QgMAAAAAAAAAAM1CWctVEydOzBZbbFH1+KijjkqS7LPPPrn66qvz85//PLNnz85BBx2UmTNnZuONN87dd9+ddu3alSsyjeCLC1eVyhcDAAAAAAAAAACqKWu5avPNN//SLeFKpVJOOeWUnHLKKYsxFQAAAAAAAAAAQNKi3AHgi0qWrgIAAAAAAAAAoIlQrqLsFr52GQAAAAAAAAAAlI9yFQAAAAAAAAAAQC2Uq2hSSrEvIAAAAAAAAAAATYNyFWVXFDYGBAAAAAAAAACg6VGuAgAAAAAAAAAAqIVyFU1Kya6AAAAAAAAAAAA0EcpVlJ1NAQEAAAAAAAAAaIqUq2hSLFwFAAAAAAAAAEBToVxF2RWWrgIAAAAAAAAAoAlSrgIAAAAAAAAAAKiFchVNSsm+gAAAAAAAAAAANBHKVZRdEfsCAgAAAAAAAADQ9ChXAQAAAAAAAAAA1EK5iibGvoAAAAAAAAAAADQNylWUXWFXQAAAAAAAAAAAmiDlKgAAAAAAAAAAgFooV9GklOwKCAAAAAAAAABAE6FcBQAAAAAAAAAAUAvlKpoUC1cBAAAAAAAAANBUKFcBAAAAAAAAAADUQrmKsiuKcicAAAAAAAAAAICalKtoUkr2BQQAAAAAAAAAoIlQrqLsili6CgAAAAAAAACApke5CgAAAAAAAAAAoBbKVTQppdgXEAAAAAAAAACApkG5irIr7AoIAAAAAAAAAEATpFwFAAAAAAAAAABQC+UqmpSSXQEBAAAAAAAAAGgilKsoO7sCAgAAAAAAAADQFClX0aRYuAoAAAAAAAAAgKZCuYqym19p7SoAAAAAAAAAAJoe5SrKbuJb08sdAQAAAAAAAAAAalCuouwq5n9h5aqSjQEBAAAAAAAAAGgalKtoAmwLCAAAAAAAAABA06NcRdkVulUAAAAAAAAAADRBylU0KTYFBAAAAAAAAACgqVCuouwsXAUAAAAAAAAAQFOkXEXZ2RYQAAAAAAAAAICmSLmKJqVkX0AAAAAAAAAAAJoI5SoAAAAAAAAAAIBaKFfRpFi4CgAAAAAAAACApkK5irIrUpQ7AgAAAAAAAAAA1KBcRdkVulUAAAAAAAAAADRBylU0KaWSjQEBAAAAAAAAAGgalKsoOwtXAQAAAAAAAADQFClXUXaFfQEBAAAAAAAAAGiClKtoUmwKCAAAAAAAAABAU6FcBQAAAAAAAAAAUAvlKgAAAAAAAAAAgFooV9GklOwLCAAAAAAAAABAE6FcRdkVRbkTAAAAAAAAAABATcpVlF2R/2tXlSxdBQAAAAAAAABAE6FcBQAAAAAAAAAAUAvlKsrOtoAAAAAAAAAAADRFylUAAAAAAAAAAAC1UK4CAAAAAAAAAACohXIVZWdbQAAAAAAAAAAAmiLlKgAAAAAAAAAAgFooV1F2Fq4CAAAAAAAAAKApUq6i7Ar7AgIAAAAAAAAA0AQpVwEAAAAAAAAAANRCuYqys24VAAAAAAAAAABNkXIV5addBQAAAAAAAABAE6RcRfmVyh0AAAAAAAAAAABqUq6i/KxcBQAAAAAAAABAE6RcRdkV2lUAAAAAAAAAADRBTbpcNX/+/Jxwwgnp379/2rdvn5VXXjmnnnpqikIZBwAAAAAAAAAAaFytyh3gy5x11lm59NJLc80112TQoEGZOHFiRowYka5du+bwww8vdzwaiK4cAAAAAAAAAABNUZMuVz366KPZaaedsv322ydJVlxxxfzhD3/Ik08+WeZkNCTdKgAAAAAAAAAAmqImXa7acMMNc8UVV+S1117LKquskueffz4PP/xwzj///IVeM3fu3MydO7fq8axZs5IkFRUVqaioaPTM1N+M2Z9Wfe17BABLrgXzvPkeAJZs5nwAaB7M+QDQPJjzWZLV9XNdKoqmuylbZWVljjvuuJx99tlp2bJl5s+fn9NPPz3HHnvsQq85+eSTM2bMmBrHr7/++nTo0KEx47KIrnqtRZ77oEWS5IIh88qcBgAAAAAAAACAJd2cOXPywx/+MB9++GG6dOmy0HFNulx1ww035Oijj84555yTQYMG5bnnnsuoUaNy/vnnZ5999qn1mtpWrurbt2/ef//9L30jKJ9RN76Qv7w4NUny8olbpHXr1mVOBAA0hoqKiowfPz5bb721+R4AlmDmfABoHsz5ANA8mPNZks2aNStLL730V5armvS2gEcffXRGjx6d4cOHJ0nWWmutvP322znjjDMWWq5q27Zt2rZtW+N469at/UVvolq0aFH1te8TACz5zPcA0DyY8wGgeTDnA0DzYM5nSVTXz3SLrx5SPnPmzKlWvEmSli1bprKyskyJAAAAAAAAAACA5qJJr1y1ww475PTTT88KK6yQQYMG5dlnn83555+f/fbbr9zRaEBNeGdKAAAAAAAAAACasa9drpo1a1buv//+rLrqqll99dUbIlOViy66KCeccEIOPfTQTJs2Lcsuu2wOPvjgnHjiiQ36PJSXahUAAAAAAAAAAE1RvctVu+22WzbddNMcdthh+eSTT7LeeuvlrbfeSlEUueGGG7LLLrs0WLjOnTtn7NixGTt2bIPdEwAAAAAAAAAAoC5a1PeCCRMmZJNNNkmS3HbbbSmKIjNnzsyFF16Y0047rcEDAgAAAAAAAAAAlEO9y1UffvhhevTokSS5++67s8suu6RDhw7ZfvvtM3ny5AYPSDNgX0AAAAAAAAAAAJqgeper+vbtm8ceeyyzZ8/O3XffnW222SZJMmPGjLRr167BA7LkK7SrAAAAAAAAAABoglrV94JRo0Zlzz33TKdOndKvX79svvnmST7fLnCttdZq6HwAAAAAAAAAAABlUe9y1aGHHpoNNtggf//737P11lunRYvPF79aaaWVcvrppzd4QJZ8hYWrAAAAAAAAAABoguq9LeApp5yS1VdfPd/73vfSqVOnquNbbrll7r333gYNBwAAAAAAAAAAUC71LleNGTMmH3/8cY3jc+bMyZgxYxokFM2LlasAAAAAAAAAAGiK6l2uKooipVKpxvHnn38+PXr0aJBQAAAAAAAAAAAA5daqrgO7d++eUqmUUqmUVVZZpVrBav78+fn444/z4x//uFFCsmQrYukqAAAAAAAAAACanjqXq8aOHZuiKLLffvtlzJgx6dq1a9W5Nm3aZMUVV8yQIUMaJSQAAAAAAAAAAMDiVudy1T777JMk6d+/fzbaaKO0alXnSwEAAAAAAAAAAP7rtKjvBbNnz859991X4/i4ceNy1113NUgompfCroAAAAAAAAAAADRB9S5XjR49OvPnz69xvCiKjB49ukFC0bzoVgEAAAAAAAAA0BTVu1w1efLkrLHGGjWOr7baann99dcbJBQAAAAAAAAAAEC51btc1bVr17z55ps1jr/++uvp2LFjg4SiebEtIAAAAAAAAAAATVG9y1U77bRTRo0alTfeeKPq2Ouvv56f/vSn2XHHHRs0HAAAAAAAAAAAQLnUu1x19tlnp2PHjllttdXSv3//9O/fP6uvvnqWWmqpnHvuuY2RkSWepasAAAAAAAAAAGh6WtX3gq5du+bRRx/N+PHj8/zzz6d9+/YZPHhwNt1008bIBwAAAAAAAAAAUBb1LlclSalUyjbbbJNNN900bdu2TalUauhcNCOFhasAAAAAAAAAAGiC6r0tYGVlZU499dQst9xy6dSpU6ZMmZIkOeGEE/Kb3/ymwQMCAAAAAAAAAACUQ73LVaeddlquvvrqnH322WnTpk3V8TXXXDNXXnllg4ajebBwFQAAAAAAAAAATVG9y1XXXnttrrjiiuy5555p2bJl1fFvfOMbeeWVVxo0HM1DYV9AAAAAAAAAAACaoHqXq959990MGDCgxvHKyspUVFQ0SCgAAAAAAAAAAIByq3e5ao011shf//rXGsdvvvnmfPOb32yQUAAAAAAAAAAAAOXWqr4XnHjiidlnn33y7rvvprKyMrfeemteffXVXHvttfnzn//cGBkBAAAAAAAAAAAWu3qvXLXTTjvljjvuyL333puOHTvmxBNPzKRJk3LHHXdk6623boyMLOGKcgcAAAAAAAAAAIBa1HvlqiTZZJNNMn78+IbOQjNVaFcBAAAAAAAAANAE1XvlKgAAAAAAAAAAgOagTitX9ejRI6+99lqWXnrpdO/ePaVSaaFjO3XqlEGDBuWss87K4MGDGywoSy4LVwEAAAAAAAAA0BTVqVz1q1/9Kp07d06SjB079kvHzp07N3feeWdGjBiRp59++msHBAAAAAAAAAAAKIc6lav22WefWr9emO222y7rrrvuoqeiWSkKa1cBAAAAAAAAAND01KlcVZuJEydm0qRJSZLVV1896623XtW5vn37Ztq0aV8/Hc1Cp7aL/DEEAAAAAAAAAIBGU+9Wyz/+8Y/sscceeeSRR9KtW7ckycyZM7PhhhvmhhtuyPLLL9/QGVnC7fzN5XLXS1PLHQMAAAAAAAAAAKppUd8LDjjggFRUVGTSpEmZPn16pk+fnkmTJqWysjIHHHBAY2RkCdehTcskyXIdbA8IAAAAAAAAAEDTUe+Vqx566KE8+uijWXXVVauOrbrqqrnooouyySabNGg4modCpwoAAAAAAAAAgCao3itX9e3bNxUVFTWOz58/P8suu2yDhAIAAAAAAAAAACi3eperzjnnnPzkJz/JxIkTq45NnDgxRxxxRM4999wGDQcAAAAAAAAAAFAuddoWsHv37imVSlWPZ8+enQ022CCtWn1++bx589KqVavst99+2XnnnRslKAAAAAAAAAAAwOJUp3LV2LFjGzkGAAAAAAAAAABA01KnctU+++zT2DloxopyBwAAAAAAAAAAgFrUqVz1Re+++25uueWWvPbaa0mSVVddNd///vez3HLLNXg4mpcv7DwJAAAAAAAAAABlV69y1SWXXJKjjjoqn332Wbp06ZIkmTVrVo4++uicf/75OfTQQxslJAAAAAAAAAAAwOLWoq4D//KXv+Twww/PYYcdlnfffTczZ87MzJkz8+677+bQQw/NEUcckTvvvLMxswIAAAAAAAAAACw2dV656pxzzsno0aNz2mmnVTvep0+fnH/++enQoUPOPvvsfOc732nwkAAAAAAAAAAAAItbnVeueuaZZ/KjH/1ooed/9KMf5ZlnnmmQUDQvRVGUOwIAAAAAAAAAANRQ53LV/Pnz07p164Web926debPn98goQAAAAAAAAAAAMqtzuWqQYMG5fbbb1/o+T/96U8ZNGhQg4QCAAAAAAAAAAAot1Z1HThy5Mgccsghadu2bQ466KC0avX5pfPmzcvll1+eX/ziF7nkkksaLSgAAAAAAAAAAMDiVOdy1T777JMXX3wxhx12WI499tisvPLKKYoib775Zj7++OMcfvjh2XfffRsxKkuqotwBAAAAAAAAAACgFnUuVyXJueeem1133TV/+MMfMnny5CTJZpttluHDh+fb3/52owQEAAAAAAAAAAAoh3qVq5Lk29/+tiIVjaJU7gAAAAAAAAAAAPAFLcodAAAAAAAAAAAAoClSrgIAAAAAAAAAAKiFchXlV5Q7AAAAAAAAAAAA1KRcBQAAAAAAAAAAUAvlKgAAAAAAAAAAgFq0qsugb37zmymVSnW64TPPPPO1AgEAAAAAAAAAADQFdSpX7bzzzlVff/rpp7nkkkuyxhprZMiQIUmSxx9/PH/7299y6KGHNkpIAAAAAAAAAACAxa1O5aqTTjqp6usDDjgghx9+eE499dQaY955552GTUezUKQodwQAAAAAAAAAAKihRX0vuOmmm7L33nvXOL7XXnvllltuaZBQNE9123gSAAAAAAAAAAAWj3qXq9q3b59HHnmkxvFHHnkk7dq1a5BQAAAAAAAAAAAA5VanbQG/aNSoUTnkkEPyzDPPZP3110+SPPHEE/ntb3+bE044ocEDAgAAAAAAAAAAlEO9y1WjR4/OSiutlAsuuCC///3vkySrr756rrrqquy2224NHpAlX1GUOwEAAAAAAAAAANRU73JVkuy2226KVAAAAAAAAAAAwBKtxaJcNHPmzFx55ZU57rjjMn369CTJM888k3fffbdBw9G8lErlTgAAAAAAAAAAAP+n3itXvfDCCxk6dGi6du2at956KwcccEB69OiRW2+9NX//+99z7bXXNkZOAAAAAAAAAACAxareK1cdddRR2XfffTN58uS0a9eu6vh3vvOdTJgwoUHDAQAAAAAAAAAAlEu9y1VPPfVUDj744BrHl1tuuUydOrVBQn3Ru+++m7322itLLbVU2rdvn7XWWisTJ05s8OehfIqi3AkAAAAAAAAAAKCmem8L2LZt28yaNavG8ddeey3LLLNMg4RaYMaMGdloo42yxRZb5K677soyyyyTyZMnp3v37g36PAAAAAAAAAAAAP+p3uWqHXfcMaecckpuvPHGJEmpVMrf//73HHPMMdlll10aNNxZZ52Vvn375qqrrqo61r9//wZ9DpqO+VawAgAAAAAAAACgCal3ueq8887Lrrvump49e+aTTz7JZpttlqlTp2bIkCE5/fTTGzTc//7v/2bYsGH5wQ9+kIceeijLLbdcDj300Bx44IELvWbu3LmZO3du1eMFq2xVVFSkoqKiQfPRMMa//Pl2kv+YXfI9AoAl2IJ53nwPAEs2cz4ANA/mfABoHsz5LMnq+rkuFUWxSOsFPfzww3nhhRfy8ccfZ5111snQoUMX5TZfql27dkmSo446Kj/4wQ/y1FNP5Ygjjshll12WffbZp9ZrTj755IwZM6bG8euvvz4dOnRo8Ix8faMea5kipSTJBUPmlTkNAAAAAAAAAABLujlz5uSHP/xhPvzww3Tp0mWh4xa5XLU4tGnTJuutt14effTRqmOHH354nnrqqTz22GO1XlPbylV9+/bN+++//6VvBOUz8IR7qr5++cQt0rp16zKmAQAaS0VFRcaPH5+tt97afA8ASzBzPgA0D+Z8AGgezPksyWbNmpWll176K8tV9d4WMEnuu+++3HfffZk2bVoqKyurnfvtb3+7KLesVZ8+fbLGGmtUO7b66qvnlltuWeg1bdu2Tdu2bWscb926tb/o/wV8nwBgyWe+B4DmwZwPAM2DOR8AmgdzPkuiun6m612uGjNmTE455ZSst9566dOnT0qlUr3D1dVGG22UV199tdqx1157Lf369Wu05wQAAAAAAAAAAEgWoVx12WWX5eqrr86PfvSjxshTzZFHHpkNN9wwv/zlL7PbbrvlySefzBVXXJErrrii0Z8bAAAAAAAAAABo3lrU94LPPvssG264YWNkqeFb3/pWbrvttvzhD3/ImmuumVNPPTVjx47NnnvuuVieHwAAAAAAAAAAaL7qXa464IADcv311zdGllp997vfzYsvvphPP/00kyZNyoEHHrjYnhsAAAAAAAAAAGi+6rQt4FFHHVX1dWVlZa644orce++9GTx4cFq3bl1t7Pnnn9+wCQEAAAAAAAAAAMqgTuWqZ599ttrjtddeO0ny0ksvVTteKpUaJhUAAAAAAAAAAECZ1alc9cADDzR2DgAAAAAAAAAAgCalRX0v+PDDDzN9+vQax6dPn55Zs2Y1SCgAAAAAAAAAAIByq3e5avjw4bnhhhtqHL/xxhszfPjwBgkFAAAAAAAAAABQbvUuVz3xxBPZYostahzffPPN88QTTzRIKAAAAAAAAAAAgHKrd7lq7ty5mTdvXo3jFRUV+eSTTxokFAAAAAAAAAAAQLnVu1y1/vrr54orrqhx/LLLLsu6667bIKEAAAAAAAAAAADKrVV9LzjttNMydOjQPP/889lqq62SJPfdd1+eeuqp3HPPPQ0eEAAAAAAAAAAAoBzqvXLVRhttlMceeyx9+/bNjTfemDvuuCMDBgzICy+8kE022aQxMgIAAAAAAAAAACx29V65KknWXnvtXHfddQ2dBQAAAAAAAAAAoMlYpHLVAp9++mk+++yzase6dOnytQIBAAAAAAAAAAA0BfXeFnDOnDk57LDD0rNnz3Ts2DHdu3ev9gcAAAAAAAAAAGBJUO9y1dFHH537778/l156adq2bZsrr7wyY8aMybLLLptrr722MTICAAAAAAAAAAAsdvXeFvCOO+7Itddem8033zwjRozIJptskgEDBqRfv3657rrrsueeezZGTgAAAAAAAAAAgMWq3itXTZ8+PSuttFKSpEuXLpk+fXqSZOONN86ECRMaNh0AAAAAAAAAAECZ1LtctdJKK2XKlClJktVWWy033nhjks9XtOrWrVuDhgMAAAAAAAAAACiXeperRowYkeeffz5JMnr06Fx88cVp165djjzyyBx99NENHhAAAAAAAAAAAKAcWtX3giOPPLLq66FDh+aVV17J008/nQEDBmTw4MENGg4AAAAAAAAAAKBc6l2u+k/9+vVLv379GiILAAAAAAAAAABAk1HnbQHvv//+rLHGGpk1a1aNcx9++GEGDRqUv/71rw0aDgAAAAAAAAAAoFzqXK4aO3ZsDjzwwHTp0qXGua5du+bggw/O+eef36DhAAAAAAAAAAAAyqXO5arnn38+22677ULPb7PNNnn66acbJBQAAAAAAAAAAEC51blc9d5776V169YLPd+qVav8+9//bpBQAAAAAAAAAAAA5VbnctVyyy2Xl156aaHnX3jhhfTp06dBQgEAAAAAAAAAAJRbnctV3/nOd3LCCSfk008/rXHuk08+yUknnZTvfve7DRoOAAAAAAAAAACgXFrVdeAvfvGL3HrrrVlllVVy2GGHZdVVV02SvPLKK7n44oszf/78HH/88Y0WFAAAAAAAAAAAYHGqc7mqV69eefTRR3PIIYfk2GOPTVEUSZJSqZRhw4bl4osvTq9evRotKAAAAAAAAAAAwOJU53JVkvTr1y933nlnZsyYkddffz1FUWTgwIHp3r17Y+UDAAAAAAAAAAAoi3qVqxbo3r17vvWtbzV0FgAAAAAAAAAAgCajRbkDAAAAAAAAAAAANEXKVZRd/6U7ljsCAAAAAAAAAADUoFxF2Y3YaMUkSatSUd4gAAAAAAAAAADwBXUqV62zzjqZMWNGkuSUU07JnDlzGjUUzUuHNq2SJAO7KlcBAAAAAAAAANB01KlcNWnSpMyePTtJMmbMmHz88ceNGgoAAAAAAAAAAKDcWtVl0Nprr50RI0Zk4403TlEUOffcc9OpU6dax5544okNGhAAAAAAAAAAAKAc6lSuuvrqq3PSSSflz3/+c0qlUu666660alXz0lKppFwFAAAAAAAAAAAsEepUrlp11VVzww03JElatGiR++67Lz179mzUYAAAAAAAAAAAAOVUp3LVF1VWVjZGDgAAAAAAAAAAgCal3uWqJHnjjTcyduzYTJo0KUmyxhpr5IgjjsjKK6/coOFoHoqiKHcEAAAAAAAAAACooUV9Lxg3blzWWGONPPnkkxk8eHAGDx6cJ554IoMGDcr48eMbIyPNRKncAQAAAAAAAAAA4AvqvXLV6NGjc+SRR+bMM8+scfyYY47J1ltv3WDhAAAAAAAAAAAAyqXeK1dNmjQp+++/f43j++23X15++eUGCQUAAAAAAAAAAFBu9S5XLbPMMnnuuedqHH/uuefSs2fPhsgEAAAAAAAAAABQdvXeFvDAAw/MQQcdlDfffDMbbrhhkuSRRx7JWWedlaOOOqrBAwIAAAAAAAAAAJRDvctVJ5xwQjp37pzzzjsvxx57bJJk2WWXzcknn5zDDz+8wQMCAAAAAAAAAACUQ73LVaVSKUceeWSOPPLIfPTRR0mSzp07N3gwmo+i3AEAAAAAAAAAAKAW9S5XfZFSFQAAAAAAAAAAsKRqUe4AAAAAAAAAAAAATZFyFQAAAAAAAAAAQC2UqwAAAAAAAAAAAGpRr3JVRUVFttpqq0yePLmx8gAAAAAAAAAAADQJ9SpXtW7dOi+88EJjZQEAAAAAAAAAAGgy6r0t4F577ZXf/OY3jZGF5qoodwAAAAAAAAAAAKipVX0vmDdvXn7729/m3nvvzbrrrpuOHTtWO3/++ec3WDial1Kp3AkAAAAAAAAAAOD/1Ltc9dJLL2WdddZJkrz22mvVzpW0YwAAAAAAAAAAgCVEvctVDzzwQGPkAAAAAAAAAAAAaFJaLOqFr7/+esaNG5dPPvkkSVIURYOFAgAAAAAAAAAAKLd6l6s++OCDbLXVVllllVXyne98J//617+SJPvvv39++tOfNnhAAAAAAAAAAACAcqh3uerII49M69at8/e//z0dOnSoOr777rvn7rvvbtBwAAAAAAAAAAAA5dKqvhfcc889GTduXJZffvlqxwcOHJi33367wYLRfBSxpSQAAAAAAAAAAE1PvVeumj17drUVqxaYPn162rZt2yChaJ5K5Q4AAAAAAAAAAABfUO9y1SabbJJrr7226nGpVEplZWXOPvvsbLHFFg0aDgAAAAAAAAAAoFzqvS3g2Wefna222ioTJ07MZ599lp///Of529/+lunTp+eRRx5pjIwAAAAAAAAAAACLXb1XrlpzzTXz2muvZeONN85OO+2U2bNn5/vf/36effbZrLzyyo2REQAAAAAAAAAAYLGr98pVSdK1a9ccf/zxDZ0FAAAAAAAAAACgyVikctWMGTPym9/8JpMmTUqSrLHGGhkxYkR69OjRoOFoHoqi3AkAAAAAAAAAAKCmem8LOGHChKy44oq58MILM2PGjMyYMSMXXnhh+vfvnwkTJjRGxipnnnlmSqVSRo0a1ajPAwAAAAAAAAAAUO+Vq0aOHJndd989l156aVq2bJkkmT9/fg499NCMHDkyL774YoOHTJKnnnoql19+eQYPHtwo9wcAAAAAAAAAAPiieq9c9frrr+enP/1pVbEqSVq2bJmjjjoqr7/+eoOGW+Djjz/OnnvumV//+tfp3r17ozwHAAAAAAAAAADAF9V75ap11lknkyZNyqqrrlrt+KRJk/KNb3yjwYJ90ciRI7P99ttn6NChOe2007507Ny5czN37tyqx7NmzUqSVFRUpKKiolHy8fXMnz+/6mvfIwBYci2Y5833ALBkM+cDQPNgzgeA5sGcz5Ksrp/rOpWrXnjhhaqvDz/88BxxxBF5/fXX8+1vfztJ8vjjj+fiiy/OmWeeuQhRv9wNN9yQZ555Jk899VSdxp9xxhkZM2ZMjeP33HNPOnTo0NDxaAAvvldK8vlKaOPHjy9vGACg0ZnvAaB5MOcDQPNgzgeA5sGcz5Jozpw5dRpXKoqi+KpBLVq0SKlUylcNLZVK1VYh+rreeeedrLfeehk/fnwGDx6cJNl8882z9tprZ+zYsbVeU9vKVX379s3777+fLl26NFg2Gs6NE/+R429/OWt2r8yNP9kqrVu3LnckAKARVFRUZPz48dl6663N9wCwBDPnA0DzYM4HgObBnM+SbNasWVl66aXz4YcffmmnqE4rV02ZMqXBgtXH008/nWnTpmWdddapOjZ//vxMmDAh//M//5O5c+emZcuW1a5p27Zt2rZtW+NerVu39he9iWrxhe+h7xMALPnM9wDQPJjzAaB5MOcDQPNgzmdJVNfPdJ3KVf369ftaYRbVVlttlRdffLHasREjRmS11VbLMcccU6NYxX+3UrkDAAAAAAAAAADAF9SpXPWf/vnPf+bhhx/OtGnTUllZWe3c4Ycf3iDBkqRz585Zc801qx3r2LFjllpqqRrHAQAAAAAAAAAAGlK9y1VXX311Dj744LRp0yZLLbVUSqX/W2+oVCo1aLkKAAAAAAAAAACgXOpdrjrhhBNy4okn5thjj02LFi0aI9OXevDBBxf7cwIAAAAAAAAAAM1PvdtRc+bMyfDhw8tSrAIAAAAAAAAAAFhc6t2Q2n///XPTTTc1RhYAAAAAAAAAAIAmo97bAp5xxhn57ne/m7vvvjtrrbVWWrduXe38+eef32DhaB6KotwJAAAAAAAAAACgpkUqV40bNy6rrrpqkqRUKlWd++LXAAAAAAAAAAAA/83qXa4677zz8tvf/jb77rtvI8QBAAAAAAAAAABoGlrU94K2bdtmo402aowsAAAAAAAAAAAATUa9y1VHHHFELrroosbIAgAAAAAAAAAA0GTUe1vAJ598Mvfff3/+/Oc/Z9CgQWndunW187feemuDhQMAAAAAAAAAACiXeperunXrlu9///uNkQUAAAAAAAAAAKDJqHe56qqrrmqMHDRjRYpyRwAAAAAAAAAAgBpalDsALFAqlTsBAAAAAAAAAAD8n3qvXNW/f/+UvqQF8+abb36tQAAAAAAAAAAAAE1BvctVo0aNqva4oqIizz77bO6+++4cffTRDZULAAAAAAAAAACgrOpdrjriiCNqPX7xxRdn4sSJXzsQAAAAAAAAAABAU9CioW603Xbb5ZZbbmmo2wEAAAAAAAAAAJRVg5Wrbr755vTo0aOhbkczUhTlTgAAAAAAAAAAADXVe1vAb37zmymVSlWPi6LI1KlT8+9//zuXXHJJg4YDAAAAAAAAAAAol3qXq3beeedqj1u0aJFlllkmm2++eVZbbbWGygUAAAAAAAAAAFBW9S5XnXTSSY2RAwAAAAAAAAAAoElpUe4AAAAAAAAAAAAATVGdV65q0aJFSqXSl44plUqZN2/e1w4FAAAAAAAAAABQbnUuV912220LPffYY4/lwgsvTGVlZYOEAgAAAAAAAAAAKLc6l6t22mmnGsdeffXVjB49OnfccUf23HPPnHLKKQ0ajuahKHcAAAAAAAAAAACoRYtFueif//xnDjzwwKy11lqZN29ennvuuVxzzTXp169fQ+ejGfnyTScBAAAAAAAAAGDxqle56sMPP8wxxxyTAQMG5G9/+1vuu+++3HHHHVlzzTUbKx8AAAAAAAAAAEBZ1HlbwLPPPjtnnXVWevfunT/84Q+1bhMIAAAAAAAAAACwpKhzuWr06NFp3759BgwYkGuuuSbXXHNNreNuvfXWBgsHAAAAAAAAAABQLnUuV+29994plUqNmQUAAAAAAAAAAKDJqHO56uqrr27EGAAAAAAAAAAAAE1Li3IHgBRFuRMAAAAAAAAAAEANylU0GTadBAAAAAAAAACgKVGuAgAAAAAAAAAAqIVyFQAAAAAAAAAAQC2UqwAAAAAAAAAAAGqhXAUAAAAAAAAAAFAL5SoAAAAAAAAAAIBaKFdRdkW5AwAAAAAAAAAAQC2Uq2g6SuUOAAAAAAAAAAAA/0e5CgAAAAAAAAAAoBbKVQAAAAAAAAAAALVQrgIAAAAAAAAAAKiFchUAAAAAAAAAAEAtlKsou6IodwIAAAAAAAAAAKhJuYomo1TuAAAAAAAAAAAA8AXKVQAAAAAAAAAAALVQrgIAAAAAAAAAAKiFchUAAAAAAAAAAEAtlKsAAAAAAAAAAABqoVwFAAAAAAAAAABQC+Uqyq4oinJHAAAAAAAAAACAGpSrAAAAAAAAAAAAaqFcBQAAAAAAAAAAUAvlKgAAAAAAAAAAgFooVwEAAAAAAAAAANRCuQoAAAAAAAAAAKAWylUAAAAAAAAAAAC1UK6i7IpyBwAAAAAAAAAAgFooV9FklModAAAAAAAAAAAAvkC5CgAAAAAAAAAAoBbKVQAAAAAAAAAAALVQrgIAAAAAAAAAAKiFchUAAAAAAAAAAEAtlKsAAAAAAAAAAABqoVxF2RVFuRMAAAAAAAAAAEBNylUAAAAAAAAAAAC1UK4CAAAAAAAAAACoRZMuV51xxhn51re+lc6dO6dnz57Zeeed8+qrr5Y7FgAAAAAAAAAA0Aw06XLVQw89lJEjR+bxxx/P+PHjU1FRkW222SazZ88udzQAAAAAAAAAAGAJ16rcAb7M3XffXe3x1VdfnZ49e+bpp5/OpptuWqZUAAAAAAAAAABAc9Cky1X/6cMPP0yS9OjRY6Fj5s6dm7lz51Y9njVrVpKkoqIiFRUVjRuQRTJv/vyqr32PAGDJtWCeN98DwJLNnA8AzYM5HwCaB3M+S7K6fq5LRVEUjZylQVRWVmbHHXfMzJkz8/DDDy903Mknn5wxY8bUOH799denQ4cOjRmRRfTgv0q57a2WWXfpyuw9sLLccQAAAAAAAAAAWMLNmTMnP/zhD/Phhx+mS5cuCx33X1OuOuSQQ3LXXXfl4YcfzvLLL7/QcbWtXNW3b9+8//77X/pGUD5XPfp2fnnXq1l36cr87tCt0rp163JHAgAaQUVFRcaPH5+tt97afA8ASzBzPgA0D+Z8AGgezPksyWbNmpWll176K8tV/xXbAh522GH585//nAkTJnxpsSpJ2rZtm7Zt29Y43rp1a3/Rm6iWLVtWfe37BABLPvM9ADQP5nwAaB7M+QDQPJjzWRLV9TPdpMtVRVHkJz/5SW677bY8+OCD6d+/f7kjAQAAAAAAAAAAzUSTLleNHDky119/fW6//fZ07tw5U6dOTZJ07do17du3L3M6AAAAAAAAAABgSdai3AG+zKWXXpoPP/wwm2++efr06VP1549//GO5owEAAAAAAAAAAEu4Jr1yVVEU5Y7AYuD7DAAAAAAAAABAU9SkV64CAAAAAAAAAAAoF+UqAAAAAAAAAACAWihXAQAAAAAAAAAA1EK5CgAAAAAAAAAAoBbKVQAAAAAAAAAAALVQrgIAAAAAAAAAAKiFchUAAAAAAAAAAEAtlKtoMkrlDgAAAAAAAAAAAF+gXAUAAAAAAAAAAFAL5SoAAAAAAAAAAIBaKFcBAAAAAAAAAADUQrkKAAAAAAAAAACgFspVAAAAAAAAAAAAtVCuouyKotwJAAAAAAAAAACgJuUqmoxSuQMAAAAAAAAAAMAXKFcBAAAAAAAAAADUQrkKAAAAAAAAAACgFq3KHQAAAAAAAAAAgP9+RVFk3rx5mT9/frmjQFq2bJlWrVqlVCp9rfsoVwEAAAAAAAAA8LV89tln+de//pU5c+aUOwpU6dChQ/r06ZM2bdos8j2Uqyi7IkW5IwAAAAAAAAAAi6iysjJTpkxJy5Yts+yyy6ZNmzZfe7Ug+DqKoshnn32Wf//735kyZUoGDhyYFi1aLNK9lKtoOvxcBQAAAAAAAID/Op999lkqKyvTt2/fdOjQodxxIEnSvn37tG7dOm+//XY+++yztGvXbpHus2iVLAAAAAAAAAAA+IJFXRkIGktDfCZ9qgEAAAAAAAAAAGqhXAUAAAAAAAAAAFAL5SoAAAAAAAAAAPgSK664YsaOHfu1xyxuTTHTwjTVrMpVAAAAAAAAAAA0S++8807222+/LLvssmnTpk369euXI444Ih988EG97/XUU0/loIMOarBsDVE2aqhMr7/+ekaMGJHll18+bdu2Tf/+/bPHHntk4sSJX/veTZ1yFWVXFOVOAAAAAAAAAAA0N2+++WbWW2+9TJ48OX/4wx/y+uuv57LLLst9992XIUOGZPr06fW63zLLLJMOHTo0UtpF0xCZJk6cmHXXXTevvfZaLr/88rz88su57bbbstpqq+WnP/1pAyVtupSraDJK5Q4AAAAAAAAAAHxtRVFkzmfzyvKnqMcKLyNHjkybNm1yzz33ZLPNNssKK6yQ7bbbLvfee2/efffdHH/88dXGf/TRR9ljjz3SsWPHLLfccrn44ournf/PlaZmzpyZAw44IMsss0y6dOmSLbfcMs8//3y1a+64445861vfSrt27bL00kvne9/7XpJk8803z9tvv50jjzwypVIppdLnrYq33347O+ywQ7p3756OHTtm0KBBufPOOxf6Gv8zU6lUypVXXpnvfe976dChQwYOHJj//d//Xej1RVFk3333zcCBA/PXv/4122+/fVZeeeWsvfbaOemkk3L77bdXjT3mmGOyyiqrpEOHDllppZVywgknpKKiok6vd4E5c+Zkv/32S+fOnbPCCivkiiuuqHb+nXfeyW677ZZu3bqlR48e2WmnnfLWW28tNH9DaNWodwcAAAAAAAAAoFn5pGJ+1jhxXFme++VThqVDm6+uw0yfPj3jxo3L6aefnvbt21c717t37+y555754x//mEsuuaSq2HTOOefkuOOOy5gxYzJu3LgcccQRWWWVVbL11lvX+hw/+MEP0r59+9x1113p2rVrLr/88my11VZ57bXX0qNHj/zlL3/J9773vRx//PG59tpr89lnn1UVpW699dZ84xvfyEEHHZQDDzyw6p4jR47MZ599lgkTJqRjx455+eWX06lTp3q9R2PGjMnZZ5+dc845JxdddFH23HPPvP322+nRo0eNsc8991z+9re/5frrr0+LFjXXcOrWrVvV1507d87VV1+dZZddNi+++GIOPPDAdO7cOT//+c+T5Etf7wLnnXdeTj311Bx33HG5+eabc8ghh2SzzTbLqquumoqKigwbNixDhgzJX//617Rq1SqnnXZatt1227zwwgtp06ZNvd6HulKuAgAAAAAAAACgWZk8eXKKosjqq69e6/nVV189M2bMyL///e/07NkzSbLRRhtl9OjRSZJVVlkljzzySH71q1/VWq56+OGH8+STT2batGlp27ZtkuTcc8/Nn/70p9x888056KCDcvrpp2f48OEZM2ZM1XXf+MY3kiQ9evRIy5Yt07lz5/Tu3bvq/N///vfssssuWWuttZIkK620Ur1f+7777ps99tgjSfLLX/4yF154YZ588slsu+22tb5PSbLaaqt95X1/8YtfVH294oor5mc/+1luuOGGqnLVl73eBb7zne/k0EMPTfL5Sli/+tWv8sADD2TVVVfNH//4x1RWVubKK6+sKrxdddVV6datWx588MFss8029Xkb6ky5CgAAAAAAAACABtO+dcu8fMqwsj13fdRnG8EhQ4bUePzFLfe+6Pnnn8/HH3+cpZZaqtrxTz75JG+88UaSz1eF+uKqVHVx+OGH55BDDsk999yToUOHZpdddsngwYPrdY8vju/YsWO6dOmSadOm1Tq2Pu/PH//4x1x44YV544038vHHH2fevHnp0qVL1fm6vN4vZiuVSundu3dVtueffz6vv/56OnfuXO2aTz/9tOo9bQzKVQAAAAAAAAAANJhSqVSnrfnKacCAASmVSpk0aVK+973v1Tg/adKkdO/ePcsss8wi3f/jjz9Onz598uCDD9Y4t2Arvf/cjrAuDjjggAwbNix/+ctfcs899+SMM87Ieeedl5/85Cd1vkfr1q2rPS6VSqmsrKx17CqrrJIkeeWVV/LNb35zofd87LHHsueee2bMmDEZNmxYunbtmhtuuCHnnXde1Zi6vN4vy/bxxx9n3XXXzXXXXVfjukX9PtVFzc0QAQAAAAAAAABgCbbUUktl6623ziWXXJJPPvmk2rmpU6fmuuuuy+677161/VySPP7449XGPf744wvdVnCdddbJ1KlT06pVqwwYMKDan6WXXjrJ56s03XfffQvN2KZNm8yfP7/G8b59++bHP/5xbr311vz0pz/Nr3/96zq/7vpae+21s8Yaa+S8886rtYA1c+bMJMmjjz6afv365fjjj896662XgQMH5u2336429qte71dZZ511Mnny5PTs2bPGe9q1a9dFvu9XUa6i7LYf3CfX7Ltutly29hYkAAAAAAAAAEBD+5//+Z/MnTs3w4YNy4QJE/LOO+/k7rvvztZbb53lllsup59+erXxjzzySM4+++y89tprufjii3PTTTfliCOOqPXeQ4cOzZAhQ7LzzjvnnnvuyVtvvZVHH300xx9/fCZOnJgkOemkk/KHP/whJ510UiZNmpQXX3wxZ511VtU9VlxxxUyYMCHvvvtu3n///STJqFGjMm7cuEyZMiXPPPNMHnjggYUWvBpCqVTKVVddlddeey2bbLJJ7rzzzrz55pt54YUXcvrpp2ennXZKkgwcODB///vfc8MNN+SNN97IhRdemNtuu63avb7q9X6VPffcM0svvXR22mmn/PWvf82UKVPy4IMP5vDDD88//vGPBn3dX6RcRdkt371DNlx5qfTpUO4kAAAAAAAAAEBzMXDgwEycODErrbRSdtttt6y88so56KCDssUWW+Sxxx5Ljx49qo3/6U9/mokTJ+ab3/xmTjvttJx//vkZNmxYrfculUq58847s+mmm2bEiBFZZZVVMnz48Lz99tvp1atXkmTzzTfPTTfdlP/93//N2muvnS233DJPPvlk1T1OOeWUvPXWW1l55ZWrtr2bP39+Ro4cmdVXXz3bbrttVllllVxyySWN9A59bv3118/EiRMzYMCAHHjggVl99dWz44475m9/+1vGjh2bJNlxxx1z5JFH5rDDDsvaa6+dRx99NCeccEK1+3zV6/0qHTp0yIQJE7LCCivk+9//flZfffXsv//++fTTT9OlS5eGfMnVlIqiKBrt7k3ArFmz0rVr13z44YeN+kby9VRUVOTOO+/Md77znRr7ZwIASwbzPQA0D+Z8AGgezPkA0DzUdc7/9NNPM2XKlPTv3z/t2rVbjAmblj59+uTUU0/NAQccUO4o/H9f9tmsa6eoVWOHBAAAAAAAAACAJdWcOXPyyCOP5L333sugQYPKHYcGZltAAAAAAAAAAABYRFdccUWGDx+eUaNGZciQIeWOQwOzchUAAAAAAAAAACyiUaNGZdSoUeWOQSOxchUAAAAAAAAAAEAtlKsAAAAAAAAAAPjaiqIodwSopiE+k8pVAAAAAAAAAAAsstatWydJ5syZU+YkUN2Cz+SCz+iiaNVQYQAAAAAAAAAAaH5atmyZbt26Zdq0aUmSDh06pFQqlTkVzVlRFJkzZ06mTZuWbt26pWXLlot8L+UqAAAAAAAAAAC+lt69eydJVcEKmoJu3bpVfTYXlXIVAAAAAAAAAABfS6lUSp8+fdKzZ89UVFSUOw6kdevWX2vFqgWUqwAAAAAAAAAAaBAtW7ZskEILNBUtyh0AAAAAAAAAAACgKVKuAgAAAAAAAAAAqIVyFQAAAAAAAAAAQC1alTtAYyuKIkkya9asMifhy1RUVGTOnDmZNWtWWrduXe44AEAjMN8DQPNgzgeA5sGcDwDNgzmfJdmCLtGCbtHCLPHlqo8++ihJ0rdv3zInAQAAAAAAAAAAmpKPPvooXbt2Xej5UvFV9av/cpWVlfnnP/+Zzp07p1QqlTsOCzFr1qz07ds377zzTrp06VLuOABAIzDfA0DzYM4HgObBnA8AzYM5nyVZURT56KOPsuyyy6ZFixYLHbfEr1zVokWLLL/88uWOQR116dLFD2QAWMKZ7wGgeTDnA0DzYM4HgObBnM+S6stWrFpg4bUrAAAAAAAAAACAZky5CgAAAAAAAAAAoBbKVTQJbdu2zUknnZS2bduWOwoA0EjM9wDQPJjzAaB5MOcDQPNgzoekVBRFUe4QAAAAAAAAAAAATY2VqwAAAAAAAAAAAGqhXAUAAAAAAAAAAFAL5SoAAAAAAAAAAIBaKFcBAAAAAAAAAADUQrmKsrv44ouz4oorpl27dtlggw3y5JNPljsSAPD/TZgwITvssEOWXXbZlEql/OlPf6p2viiKnHjiienTp0/at2+foUOHZvLkydXGTJ8+PXvuuWe6dOmSbt26Zf/998/HH39cbcwLL7yQTTbZJO3atUvfvn1z9tln18hy0003ZbXVVku7du2y1lpr5c4772zw1wsAzdEZZ5yRb33rW+ncuXN69uyZnXfeOa+++mq1MZ9++mlGjhyZpZZaKp06dcouu+yS9957r9qYv//979l+++3ToUOH9OzZM0cffXTmzZtXbcyDDz6YddZZJ23bts2AAQNy9dVX18jj9wQA0DguvfTSDB48OF26dEmXLl0yZMiQ3HXXXVXnzfcAsOQ588wzUyqVMmrUqKpj5nyoP+UqyuqPf/xjjjrqqJx00kl55pln8o1vfCPDhg3LtGnTyh0NAEgye/bsfOMb38jFF19c6/mzzz47F154YS677LI88cQT6dixY4YNG5ZPP/20asyee+6Zv/3tbxk/fnz+/Oc/Z8KECTnooIOqzs+aNSvbbLNN+vXrl6effjrnnHNOTj755FxxxRVVYx599NHsscce2X///fPss89m5513zs4775yXXnqp8V48ADQTDz30UEaOHJnHH38848ePT0VFRbbZZpvMnj27asyRRx6ZO+64IzfddFMeeuih/POf/8z3v//9qvPz58/P9ttvn88++yyPPvporrnmmlx99dU58cQTq8ZMmTIl22+/fbbYYos899xzGTVqVA444ICMGzeuaozfEwBA41l++eVz5pln5umnn87EiROz5ZZbZqeddsrf/va3JOZ7AFjSPPXUU7n88sszePDgasfN+bAICiij9ddfvxg5cmTV4/nz5xfLLrtsccYZZ5QxFQBQmyTFbbfdVvW4srKy6N27d3HOOedUHZs5c2bRtm3b4g9/+ENRFEXx8ssvF0mKp556qmrMXXfdVZRKpeLdd98tiqIoLrnkkqJ79+7F3Llzq8Ycc8wxxaqrrlr1eLfddiu23377ank22GCD4uCDD27Q1wgAFMW0adOKJMVDDz1UFMXn83vr1q2Lm266qWrMpEmTiiTFY489VhRFUdx5551FixYtiqlTp1aNufTSS4suXbpUzfE///nPi0GDBlV7rt13370YNmxY1WO/JwCAxat79+7FlVdeab4HgCXMRx99VAwcOLAYP358sdlmmxVHHHFEURT+Gx8WlZWrKJvPPvssTz/9dIYOHVp1rEWLFhk6dGgee+yxMiYDAOpiypQpmTp1arW5vGvXrtlggw2q5vLHHnss3bp1y3rrrVc1ZujQoWnRokWeeOKJqjGbbrpp2rRpUzVm2LBhefXVVzNjxoyqMV98ngVj/JsBABrehx9+mCTp0aNHkuTpp59ORUVFtbl4tdVWyworrFBtzl9rrbXSq1evqjHDhg3LrFmzqlbD+Kr53O8JAGDxmT9/fm644YbMnj07Q4YMMd8DwBJm5MiR2X777WvMy+Z8WDStyh2A5uv999/P/Pnzq/1QTpJevXrllVdeKVMqAKCupk6dmiS1zuULzk2dOjU9e/asdr5Vq1bp0aNHtTH9+/evcY8F57p3756pU6d+6fMAAA2jsrIyo0aNykYbbZQ111wzyefzcZs2bdKtW7dqY/9zzq9trl5w7svGzJo1K5988klmzJjh9wQA0MhefPHFDBkyJJ9++mk6deqU2267LWussUaee+458z0ALCFuuOGGPPPMM3nqqadqnPPf+LBolKsAAAAASPL5/9n60ksv5eGHHy53FACgEay66qp57rnn8uGHH+bmm2/OPvvsk4ceeqjcsQCABvLOO+/kiCOOyPjx49OuXbtyx4Elhm0BKZull146LVu2zHvvvVft+HvvvZfevXuXKRUAUFcL5usvm8t79+6dadOmVTs/b968TJ8+vdqY2u7xxedY2Bj/ZgCAhnPYYYflz3/+cx544IEsv/zyVcd79+6dzz77LDNnzqw2/j/n/EWdz7t06ZL27dv7PQEALAZt2rTJgAEDsu666+aMM87IN77xjVxwwQXmewBYQjz99NOZNm1a1llnnbRq1SqtWrXKQw89lAsvvDCtWrVKr169zPmwCJSrKJs2bdpk3XXXzX333Vd1rLKyMvfdd1+GDBlSxmQAQF30798/vXv3rjaXz5o1K0888UTVXD5kyJDMnDkzTz/9dNWY+++/P5WVldlggw2qxkyYMCEVFRVVY8aPH59VV1013bt3rxrzxedZMMa/GQDg6yuKIocddlhuu+223H///TW261133XXTunXranPxq6++mr///e/V5vwXX3yxWql6/Pjx6dKlS9ZYY42qMV82n/s9AQAsfpWVlZk7d675HgCWEFtttVVefPHFPPfcc1V/1ltvvey5555VX5vzYREUUEY33HBD0bZt2+Lqq68uXn755eKggw4qunXrVkydOrXc0QCAoig++uij4tlnny2effbZIklx/vnnF88++2zx9ttvF0VRFGeeeWbRrVu34vbbby9eeOGFYqeddir69+9ffPLJJ1X32HbbbYtvfvObxRNPPFE8/PDDxcCBA4s99tij6vzMmTOLXr16FT/60Y+Kl156qbjhhhuKDh06FJdffnnVmEceeaRo1apVce655xaTJk0qTjrppKJ169bFiy++uPjeDABYQh1yyCFF165diwcffLD417/+VfVnzpw5VWN+/OMfFyussEJx//33FxMnTiyGDBlSDBkypOr8vHnzijXXXLPYZpttiueee664++67i2WWWaY49thjq8a8+eabRYcOHYqjjz66mDRpUnHxxRcXLVu2LO6+++6qMX5PAACNZ/To0cVDDz1UTJkypXjhhReK0aNHF6VSqbjnnnuKojDfA8CSarPNNiuOOOKIqsfmfKg/5SrK7qKLLipWWGGFok2bNsX6669fPP744+WOBAD8fw888ECRpMafffbZpyiKoqisrCxOOOGEolevXkXbtm2Lrbbaqnj11Ver3eODDz4o9thjj6JTp05Fly5dihEjRhQfffRRtTHPP/98sfHGGxdt27YtlltuueLMM8+skeXGG28sVllllaJNmzbFoEGDir/85S+N9roBoDmpba5PUlx11VVVYz755JPi0EMPLbp371506NCh+N73vlf861//qnaft956q9huu+2K9u3bF0svvXTx05/+tKioqKg25oEHHijWXnvtok2bNsVKK61U7TkW8HsCAGgc++23X9GvX7+iTZs2xTLLLFNstdVWVcWqojDfA8CS6j/LVeZ8qL9SURRFedbMAgAAAAAAAAAAaLpalDsAAAAAAAAAAABAU6RcBQAAAAAAAAAAUAvlKgAAAAAAAAAAgFooVwEAAAAAAAAAANRCuQoAAAAAAAAAAKAWylUAAAAAAAAAAAC1UK4CAAAAAAAAAACohXIVAAAAAAAAAABALZSrAAAAAGjS9t133+y8885le/4f/ehH+eUvf1mnscOHD895553XyIkAAAAAWFxKRVEU5Q4BAAAAQPNUKpW+9PxJJ52UI488MkVRpFu3bosn1Bc8//zz2XLLLfP222+nU6dOXzn+pZdeyqabbpopU6aka9euiyEhAAAAAI1JuQoAAACAspk6dWrV13/84x9z4okn5tVXX6061qlTpzqVmhrLAQcckFatWuWyyy6r8zXf+ta3su+++2bkyJGNmAwAAACAxcG2gAAAAACUTe/evav+dO3aNaVSqdqxTp061dgWcPPNN89PfvKTjBo1Kt27d0+vXr3y61//OrNnz86IESPSuXPnDBgwIHfddVe153rppZey3XbbpVOnTunVq1d+9KMf5f33319otvnz5+fmm2/ODjvsUO34JZdckoEDB6Zdu3bp1atXdt1112rnd9hhh9xwww1f/80BAAAAoOyUqwAAAAD4r3PNNddk6aWXzpNPPpmf/OQnOeSQQ/KDH/wgG264YZ555pn8v/buGKTKLowD+N9MSiwQuhZJYESiEWZXImhpkLpTrUGDQ5BTIK1BODQ0NFZQU4Mg0lINDdaQQ7WUhF0qqBCyrSgxCC1B/aYuXLrxfcN3LeP3gwP3fe45nPOsL3/OWyqVMjAwkPn5+STJ3Nxc+vv7UywWMzk5mfHx8Xz48CEnTpz45R7lcjlfvnzJgQMHKrXJyckMDQ3lwoULef36dcbHx3P48OGqdQcPHsyTJ0/y/fv3+jQPAAAAwKoRrgIAAABgzent7c358+fT2dmZc+fOZePGjSkUChkcHExnZ2eGh4fz+fPnlMvlJMnVq1dTLBZz8eLFdHd3p1gs5saNG5mYmMibN29q7jEzM5PGxsZs3bq1Unv//n1aWlpy7NixdHR0pFgsZmhoqGpde3t7FhcXqz55CAAAAMDaJFwFAAAAwJqzb9++yu/GxsZs2bIlPT09ldq2bduSJB8/fkySPH/+PBMTE9m0aVNldHd3J0mmp6dr7rGwsJANGzakoaGhUjt69Gg6Ojqya9euDAwMZHR0tHI71g/Nzc1J8lMdAAAAgLVHuAoAAACANaepqanquaGhoar2IxC1vLycJPn69WuOHz+eqampqvH27dufPuv3Q6FQyPz8fBYXFyu1zZs359mzZxkbG8v27dszPDyc3t7ezM3NVebMzs4mSdra2v6XXgEAAAD4fYSrAAAAAPjr9fX15eXLl9m5c2d2795dNVpaWmqu2b9/f5Lk1atXVfX169fnyJEjuXTpUsrlct69e5cHDx5U/n/x4kV27NiRQqFQt34AAAAAWB3CVQAAAAD89c6cOZPZ2dmcPHkyT58+zfT0dO7du5dTp05laWmp5pq2trb09fXl0aNHldrdu3dz+fLlTE1NZWZmJiMjI1leXk5XV1dlzsOHD1MqlereEwAAAAD1J1wFAAAAwF+vvb09jx8/ztLSUkqlUnp6enL27Nm0trZm3bpfvyI7ffp0RkdHK8+tra25detW+vv7s2fPnly/fj1jY2PZu3dvkuTbt2+5c+dOBgcH694TAAAAAPXXsLKysvK7DwEAAAAAf6KFhYV0dXXl5s2bOXTo0L/Ov3btWm7fvp379++vwukAAAAAqDc3VwEAAADALzQ3N2dkZCSfPn36T/Obmppy5cqVOp8KAAAAgNXi5ioAAAAAAAAAAIAa3FwFAAAAAAAAAABQg3AVAAAAAAAAAABADcJVAAAAAAAAAAAANQhXAQAAAAAAAAAA1CBcBQAAAAAAAAAAUINwFQAAAAAAAAAAQA3CVQAAAAAAAAAAADUIVwEAAAAAAAAAANQgXAUAAAAAAAAAAFDDP0PRkfGX3Gu/AAAAAElFTkSuQmCC",
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAACVcAAAHWCAYAAAB5HisgAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy80BEi2AAAACXBIWXMAAA9hAAAPYQGoP6dpAABjaklEQVR4nOzdeZhe48E/8O+TPZEdWRAREltIU5TGvoeqpdUSte8lSmhVVC2xNCgavNZqLS1Va/tqScSa2sWugiBUaSgRISEmmfP7o7/MazpPYiYmeWbk87muXNc897nPOd/zzDNzX+P6OqdUFEURAAAAAAAAAAAAamlR6QAAAAAAAAAAAABNkXIVAAAAAAAAAABAGcpVAAAAAAAAAAAAZShXAQAAAAAAAAAAlKFcBQAAAAAAAAAAUIZyFQAAAAAAAAAAQBnKVQAAAAAAAAAAAGUoVwEAAAAAAAAAAJShXAUAAAAAAAAAAFCGchUAAABAkvvuuy+lUik33XRTpaPUyzvvvJPvfe97WXrppVMqlTJmzJhGO/brr7+eUqmUc8455wvnnnLKKSmVSo127sWhVCrllFNOqXSMRlEqlXLEEUdUOkazttJKK2W//fardAwAAACgiVKuAgAAABabq666KqVSKe3atctbb71VZ/vmm2+etdZaqwLJmp+jjz4648aNy/HHH5/f/e532W677RY4f+bMmTnttNMyaNCgdOjQIV26dMkmm2ySa665JkVRLKbUDXf77bc3myLUfffdl+9+97vp1atX2rRpkx49emTHHXfMLbfcUulojaKqqioXXHBBvvGNb6RTp07p2LFjvvGNb+SCCy5IVVVVpePVmFeUrM8/AAAAgC/SqtIBAAAAgCXP7Nmzc+aZZ+bCCy+sdJRm65577snOO++cn/zkJ18495133slWW22VSZMmZdiwYTniiCPy6aef5uabb86+++6b22+/Pddee21atmzZ4Bw///nPM3LkyIW5hHq5/fbbc9FFFzVqweqTTz5Jq1aN+5/FTj755Jx66qkZMGBADj300PTt2zfvv/9+br/99uy666659tpr84Mf/KBRz7k4zZw5MzvssEPuv//+fPvb385+++2XFi1aZOzYsTnqqKNyyy235K9//WuWWmqpSkfNGmuskd/97ne1xo4//vh07NgxJ5xwQp35L730Ulq08P+gAgAAAOUpVwEAAACL3eDBg/PrX/86xx9/fJZbbrlKx1msZs6c2SgFlHfffTddu3at19x99903kyZNyq233pqddtqpZvzII4/Msccem3POOSdf//rXc9xxxzU4R6tWrRq9qLSotWvXrlGPd9NNN+XUU0/N9773vVx33XVp3bp1zbZjjz0248aNa1J3dloYxxxzTO6///5ceOGFtR5DeNhhh+Wiiy7KEUcckZ/85Ce55JJLFlumoijy6aefpn379rXGe/bsmb322qvW2JlnnpllllmmzniStG3bdpHmBAAAAJo3/0sWAAAAsNj97Gc/y9y5c3PmmWcucN7rr7+eUqmUq666qs62UqlU625Gp5xySkqlUl5++eXstdde6dKlS5ZddtmceOKJKYoib775Znbeeed07tw5vXr1yrnnnlv2nHPnzs3Pfvaz9OrVK0sttVR22mmnvPnmm3XmPfroo9luu+3SpUuXdOjQIZtttlkefPDBWnPmZXrhhRfygx/8IN26dcvGG2+8wGt+7bXX8v3vfz/du3dPhw4d8s1vfjN//etfa7bPe7RiURS56KKLvvDxZo888kjGjRuX/fbbr1axap7Ro0dnwIABOeuss/LJJ5/U2f6rX/0qffv2Tfv27bPZZpvl+eefL3uN/+33v/991l133bRv3z7du3fPsGHD5vs+futb30q3bt2y1FJLZdCgQTn//POTJPvtt18uuuiiJCn7KLfrr78+6667bjp16pTOnTtn7bXXrtl3Qeb32XnllVey3377pWvXrunSpUv233//zJo16wuPd+KJJ6Z79+757W9/W6tYNc/QoUPz7W9/O0ny2Wef5aSTTsq6666bLl26ZKmllsomm2ySe++9t85+1dXVOf/887P22munXbt2WXbZZbPddttl4sSJdeb+6U9/ylprrZW2bdtm4MCBGTt2bJ05b731Vg444ID07NmzZt5vf/vbL7y+f/7zn/nNb36TLbfcslaxap7hw4dniy22yBVXXJF//vOfSZK11lorW2yxRdlrWn755fO9732v1tiYMWMycODAtGvXLj179syhhx6aDz74oNa+K620Ur797W9n3LhxWW+99dK+fftcdtllX5j/i6y00krZb7/9al7P+xl74IEHcuSRR2bZZZdN165dc+ihh+azzz7L9OnTs88++6Rbt27p1q1bfvrTn9Z5tGZ9rwkAAABo+pSrAAAAgMWuX79+2WefffLrX/86b7/9dqMee/fdd091dXXOPPPMbLDBBjn99NMzZsyYbLPNNll++eVz1llnpX///vnJT36SCRMm1Nn/jDPOyF//+tccd9xxOfLIIzN+/PhsvfXWtYpH99xzTzbddNPMmDEjJ598cn7xi19k+vTp2XLLLfPYY4/VOeb3v//9zJo1K7/4xS9y8MEHzzf7O++8kw033DDjxo3L4YcfnjPOOCOffvppdtppp9x6661Jkk033bTmkWfbbLNNfve739V5BNrn3XbbbUmSffbZp+z2Vq1a5Qc/+EE++OCDOuWwa665JhdccEGGDx+e448/Ps8//3y23HLLvPPOO/M9X/Kf93CfffbJgAEDct5552XEiBG5++67s+mmm2b69Ok188aPH59NN900L7zwQo466qice+652WKLLfKXv/wlSXLooYdmm222SZKa65x3rePHj88ee+yRbt265ayzzsqZZ56ZzTffvM41NMRuu+2Wjz76KKNHj85uu+2Wq666KqNGjVrgPpMnT86LL76YXXbZJZ06dfrCc8yYMSNXXHFFNt9885x11lk55ZRT8u9//ztDhw7N008/XWvugQcemBEjRqRPnz4566yzMnLkyLRr1y6PPPJIrXkPPPBADj/88AwbNixnn312Pv300+y66655//33a+a88847+eY3v5m77rorRxxxRM4///z0798/Bx54YMaMGbPAzHfccUfmzp07389Q8p/P15w5c2pKXbvvvnsmTJiQqVOn1sn69ttvZ9iwYTVjhx56aI499thstNFGOf/887P//vvn2muvzdChQ+vc8eull17KHnvskW222Sbnn39+Bg8evMDsX8aPfvSjTJ48OaNGjcpOO+2Uyy+/PCeeeGJ23HHHzJ07N7/4xS+y8cYb55e//GWdn8GGXBMAAADQxBUAAAAAi8mVV15ZJCkef/zx4tVXXy1atWpVHHnkkTXbN9tss2LgwIE1r6dMmVIkKa688so6x0pSnHzyyTWvTz755CJJccghh9SMzZkzp1hhhRWKUqlUnHnmmTXjH3zwQdG+ffti3333rRm79957iyTF8ssvX8yYMaNm/IYbbiiSFOeff35RFEVRXV1dDBgwoBg6dGhRXV1dM2/WrFlFv379im222aZOpj322KNe78+IESOKJMXf/va3mrGPPvqo6NevX7HSSisVc+fOrXX9w4cP/8Jj7rLLLkWS4oMPPpjvnFtuuaVIUlxwwQVFUfzf+96+ffvin//8Z828Rx99tEhSHH300XWucZ7XX3+9aNmyZXHGGWfUOsdzzz1XtGrVqmZ8zpw5Rb9+/Yq+ffvWyfb593X48OFFuf+EddRRRxWdO3cu5syZ84XvwX+b32fngAMOqDXvO9/5TrH00ksv8Fh//vOfiyTFr371q3qde86cOcXs2bNrjX3wwQdFz549a53/nnvuKZLU+vmY5/PvT5KiTZs2xSuvvFIz9swzzxRJigsvvLBm7MADDyx69+5dvPfee7WONWzYsKJLly7FrFmz5pt53ufyqaeemu+cJ598skhSHHPMMUVRFMVLL71UJ0NRFMXhhx9edOzYseZ8f/vb34okxbXXXltr3tixY+uM9+3bt0hSjB07dr455mfgwIHFZpttVnZb3759a/0umPd76r9/xocMGVKUSqXihz/8Yc3YvN8xnz92Q64JAAAAaPrcuQoAAACoiJVXXjl77713Lr/88vzrX/9qtOMedNBBNV+3bNky6623XoqiyIEHHlgz3rVr16y22mp57bXX6uy/zz771LoD0fe+97307t07t99+e5Lk6aefzuTJk/ODH/wg77//ft5777289957mTlzZrbaaqtMmDAh1dXVtY75wx/+sF7Zb7/99qy//vq1Hh3YsWPHHHLIIXn99dfzwgsv1O9N+JyPPvooSRZ4V6V522bMmFFrfJdddsnyyy9f83r99dfPBhtsUPNelHPLLbekuro6u+22W817895776VXr14ZMGBAzePvnnrqqUyZMiUjRoxI165dax1jQY85nKdr166ZOXNmxo8f/4Vz6+u/v0+bbLJJ3n///Trvy+fN21afu1Yl//lMtmnTJsl/Hh03bdq0zJkzJ+utt16efPLJmnk333xzSqVSTj755DrH+O/3Z+utt84qq6xS83rQoEHp3Llzzee7KIrcfPPN2XHHHVMURa3vy9ChQ/Phhx/WOvd/W5jP0KqrrprBgwfnj3/8Y82cuXPn5qabbsqOO+6Y9u3bJ0luvPHGdOnSJdtss02tXOuuu246duxY53GJ/fr1y9ChQ+ebozEdeOCBtd7rDTbYoM7vknm/Yz7/u6Sh1wQAAAA0ba0qHQAAAABYcv385z/P7373u5x55pk5//zzG+WYK664Yq3XXbp0Sbt27bLMMsvUGf/8Y9PmGTBgQK3XpVIp/fv3z+uvv57kP4+BS5J99913vhk+/PDDdOvWreZ1v3796pX9jTfeyAYbbFBnfI011qjZvtZaa9XrWPPMK7189NFHdUpM88yvPPPf70Xyn9LMDTfcMN/zTZ48OUVRlN03SVq3bp0kefXVV5Okwdczz+GHH54bbrgh22+/fZZffvlsu+222W233bLddtst1PGSup+ded/DDz74IJ07dy67z7zxee9hfVx99dU599xz8+KLL9Z6RNznPyevvvpqlltuuXTv3r3Buedl/+CDD5Ik//73vzN9+vRcfvnlufzyy8se4913353v8T//GZqfcp+h3XffPT/72c/y1ltvZfnll899992Xd999N7vvvnvNnMmTJ+fDDz9Mjx496pWrvj9LjaHc75Ik6dOnT53xee910vBrAgAAAJo25SoAAACgYlZeeeXstddeufzyyzNy5Mg62+d3B6O5c+fO95gtW7as11jynzv6NNS8u1L98pe/zODBg8vO6dixY63X8+7SUwlrrLFG/vSnP+XZZ5/NpptuWnbOs88+myRZc801v/T5qqurUyqVcscdd5R93//7vVlYPXr0yNNPP51x48bljjvuyB133JErr7wy++yzT66++uqFOubCfE5WX331JMlzzz1Xr3P8/ve/z3777Zdddtklxx57bHr06JGWLVtm9OjRNYWzhvqi3PM+s3vttdd8S4GDBg2a7/HnlfueffbZ+X7my32Gdt999xx//PG58cYbM2LEiNxwww3p0qVLrQJcdXV1evTokWuvvbbscZdddtlarxfnz9L83tdy45//jDT0mgAAAICmTbkKAAAAqKif//zn+f3vf5+zzjqrzrZ5dw6aPn16rfE33nhjkeWZd2eqeYqiyCuvvFJTPpn3+LXOnTtn6623btRz9+3bNy+99FKd8RdffLFme0N9+9vfzujRo3PNNdeULVfNnTs31113Xbp165aNNtqo1rb/fi+S5OWXX85KK6003/OtssoqKYoi/fr1y6qrrrrAeUny/PPPL/B9XNAjAtu0aZMdd9wxO+64Y6qrq3P44Yfnsssuy4knnpj+/fvPd7/GtOqqq2a11VbLn//855x//vlfWB676aabsvLKK+eWW26pdW3//fi/VVZZJePGjcu0adPqdfeqBVl22WXTqVOnzJ07d6E+s9tvv31atmyZ3/3ud9lnn33KzrnmmmvSqlWrWsWpfv36Zf31188f//jHHHHEEbnllluyyy67pG3btjVzVlllldx1113ZaKONKlpCbExfxWsCAACAJVmLSgcAAAAAlmyrrLJK9tprr1x22WWZOnVqrW2dO3fOMssskwkTJtQav/jiixdZnmuuuabW489uuumm/Otf/8r222+fJFl33XWzyiqr5JxzzsnHH39cZ/9///vfC33ub33rW3nsscfy8MMP14zNnDkzl19+eVZaaaWFurPUhhtumK233jpXXnll/vKXv9TZfsIJJ+Tll1/OT3/60zpFkD/96U956623al4/9thjefTRR2vei3K++93vpmXLlhk1alSdOz4VRVHzKMZ11lkn/fr1y5gxY+qU5z6/31JLLZWkbsHuvx/p2KJFi5oC3OzZs+ebb1EYNWpU3n///Rx00EGZM2dOne133nlnzXs/765Hn7/GRx99tNb3PEl23XXXFEWRUaNG1TleQ++41rJly+y66665+eab8/zzz9fZ/kWf2T59+mT//ffPXXfdlUsuuaTO9ksvvTT33HNPDjzwwKywwgq1tu2+++555JFH8tvf/jbvvfderUcCJsluu+2WuXPn5rTTTqtz3Dlz5tT5vjcHX8VrAgAAgCWZO1cBAAAAFXfCCSfkd7/7XV566aUMHDiw1raDDjooZ555Zg466KCst956mTBhQl5++eVFlqV79+7ZeOONs//+++edd97JmDFj0r9//xx88MFJ/lPiueKKK7L99ttn4MCB2X///bP88svnrbfeyr333pvOnTvntttuW6hzjxw5Mn/4wx+y/fbb58gjj0z37t1z9dVXZ8qUKbn55pvTosXC/X9y11xzTbbaaqvsvPPO+cEPfpBNNtkks2fPzi233JL77rsvu+++e4499tg6+/Xv3z8bb7xxDjvssMyePTtjxozJ0ksvnZ/+9KfzPdcqq6yS008/Pccff3xef/317LLLLunUqVOmTJmSW2+9NYccckh+8pOfpEWLFrnkkkuy4447ZvDgwdl///3Tu3fvvPjii/n73/+ecePGJflPmS1JjjzyyAwdOjQtW7bMsGHDctBBB2XatGnZcssts8IKK+SNN97IhRdemMGDB9c8xm5x2X333fPcc8/ljDPOyFNPPZU99tgjffv2zfvvv5+xY8fm7rvvznXXXZfkP3cSu+WWW/Kd73wnO+ywQ6ZMmZJLL700a665Zq2y3hZbbJG99947F1xwQSZPnpztttsu1dXV+dvf/pYtttgiRxxxRIMynnnmmbn33nuzwQYb5OCDD86aa66ZadOm5cknn8xdd92VadOmLXD/X/3qV3nxxRdz+OGHZ+zYsTV3qBo3blz+/Oc/Z7PNNsu5555bZ7/ddtstP/nJT/KTn/wk3bt3r3PnrM022yyHHnpoRo8enaeffjrbbrttWrduncmTJ+fGG2/M+eefn+9973sNutZK+ypeEwAAACzJlKsAAACAiuvfv3/22muvXH311XW2nXTSSfn3v/+dm266KTfccEO233773HHHHenRo8ciyfKzn/0szz77bEaPHp2PPvooW221VS6++OJ06NChZs7mm2+ehx9+OKeddlr+53/+Jx9//HF69eqVDTbYIIceeuhCn7tnz5556KGHctxxx+XCCy/Mp59+mkGDBuW2227LDjvssNDH7d27dx577LGce+65ufHGG3PzzTenVatWGTRoUK666qrss88+ZR+/t88++6RFixYZM2ZM3n333ay//vr5n//5n/Tu3XuB5xs5cmRWXXXV/OpXv6q581KfPn2y7bbbZqeddqqZN3To0Nx7770ZNWpUzj333FRXV2eVVVapKbIl/7kT1o9+9KNcf/31+f3vf5+iKDJs2LDstddeufzyy3PxxRdn+vTp6dWrV3bfffeccsopC11C+zJOP/30bLnllrngggtyySWXZNq0aenWrVu++c1v5s9//nPNde+3336ZOnVqLrvssowbNy5rrrlmfv/73+fGG2/MfffdV+uYV155ZQYNGpTf/OY3OfbYY9OlS5est9562XDDDRucr2fPnnnsscdy6qmn5pZbbsnFF1+cpZdeOgMHDiz7SM7/1rFjx9x99925+OKL8/vf/z7HHntsiqLI6quvnjFjxuTwww9P69at6+y3wgorZMMNN8yDDz6Ygw46qOycSy+9NOuuu24uu+yy/OxnP0urVq2y0korZa+99qrzqMrm4qt4TQAAALCkKhUNvY84AAAAAPx/J554YkaPHl32cXgAAAAA0Nwt/v+NDwAAAICvjH/9619ZZpllKh0DAAAAABYJjwUEAAAAoMFee+213Hrrrbnxxhvz7W9/u9JxAAAAAGCRcOcqAAAAABpswoQJGTVqVDbbbLOcd955lY4DAAAAAItEqSiKotIhAAAAAAAAAAAAmhp3rgIAAAAAAAAAAChDuQoAAAAAAAAAAKCMVpUOsKhVV1fn7bffTqdOnVIqlSodBwAAAAAAAAAAqLCiKPLRRx9lueWWS4sW878/1Ve+XPX222+nT58+lY4BAAAAAAAAAAA0MW+++WZWWGGF+W7/yperOnXqlOQ/b0Tnzp0rnIb5qaqqyp133pltt902rVu3rnQcAGABrNsA0LxYuwGgebF2A0DzYu2G5mvGjBnp06dPTbdofr7y5ap5jwLs3LmzclUTVlVVlQ4dOqRz584WHABo4qzbANC8WLsBoHmxdgNA82LthuZvXrdofub/wEAAAAAAAAAAAIAlmHIVAAAAAAAAAABAGcpVAAAAAAAAAAAAZShXAQAAAAAAAAAAlKFcBQAAAAAAAAAAUIZyFQAAAAAAAAAAQBnKVQAAAAAAAAAAAGUoVwEAAAAAAAAAAJShXAUAAAAAAAAAAFCGchUAAAAAAAAAAEAZFS1XTZgwITvuuGOWW265lEql/OlPf6q1vSiKnHTSSendu3fat2+frbfeOpMnT65MWAAAAAAAAAAAYIlS0XLVzJkz87WvfS0XXXRR2e1nn312Lrjgglx66aV59NFHs9RSS2Xo0KH59NNPF3NSAAAAAAAAAABgSdOqkifffvvts/3225fdVhRFxowZk5///OfZeeedkyTXXHNNevbsmT/96U8ZNmzY4owKAAAAAAAAAAAsYSparlqQKVOmZOrUqdl6661rxrp06ZINNtggDz/88HzLVbNnz87s2bNrXs+YMSNJUlVVlaqqqkUbmoUyfVZVjr7hmbz6r5a56NUHUyqVKh0JAFiAoijy0cfWbQBoLqzdANC8WLsBoHmxdrMgp++8Zgb36VrpGMxHfXtETbZcNXXq1CRJz549a4337NmzZls5o0ePzqhRo+qM33nnnenQoUPjhqRRPP1+KQ+82jJJKf+aNbPScQCAerFuA0DzYu0GgObF2g0AzYu1m/LufeDhvN2lqHQM5mPWrFn1mtdky1UL6/jjj88xxxxT83rGjBnp06dPtt1223Tu3LmCyZiv56YmLz+b5ToUOfW7g9Oq1VfuYwkAXylz5szJk088mXXWXce6DQDNgLUbAJoXazcANC/WbhZkYO/O6dqhdaVjMB/znob3RZrsT3avXr2SJO+880569+5dM/7OO+9k8ODB892vbdu2adu2bZ3x1q1bp3VrH9imqGWrlkmSDq2KbLZaT98nAGjiqqqqMvNV6zYANBfWbgBoXqzdANC8WLuh+arvz2yLRZxjofXr1y+9evXK3XffXTM2Y8aMPProoxkyZEgFkwEAAAAAAAAAAEuCit656uOPP84rr7xS83rKlCl5+umn071796y44ooZMWJETj/99AwYMCD9+vXLiSeemOWWWy677LJL5UIDAAAAAAAAAABLhIqWqyZOnJgtttii5vUxxxyTJNl3331z1VVX5ac//WlmzpyZQw45JNOnT8/GG2+csWPHpl27dpWKDAAAAAAAAAAALCEqWq7afPPNUxTFfLeXSqWceuqpOfXUUxdjKgAAAAAAAAAAgKRFpQMAAAAAAAAAAAA0RcpVAAAAAAAAAAAAZShXAQAAAAAAAAAAlKFcBQAAAAAAAAAAUIZyFRVXFJVOAAAAAAAAAAAAdSlXAQAAAAAAAAAAlKFcRZNRqnQAAAAAAAAAAAD4HOUqAAAAAAAAAACAMpSrAAAAAAAAAAAAylCuAgAAAAAAAAAAKEO5CgAAAAAAAAAAoAzlKgAAAAAAAAAAgDKUqwAAAAAAAAAAAMpQrgIAAAAAAAAAAChDuQoAAAAAAAAAAKAM5Soqrqh0AAAAAAAAAAAAKEO5CgAAAAAAAAAAoAzlKgAAAAAAAAAAgDKUqwAAAAAAAAAAAMpQrgIAAAAAAAAAAChDuQoAAAAAAAAAAKAM5SoAAAAAAAAAAIAylKsAAAAAAAAAAADKUK4CAAAAAAAAAAAoQ7kKAAAAAAAAAACgDOUqAAAAAAAAAACAMpSrqLiiKCodAQAAAAAAAAAA6lCuAgAAAAAAAAAAKEO5iiajVKp0AgAAAAAAAAAA+D/KVQAAAAAAAAAAAGUoVwEAAAAAAAAAAJShXAUAAAAAAAAAAFCGchUAAAAAAAAAAEAZylUAAAAAAAAAAABlKFcBAAAAAAAAAACUoVwFAAAAAAAAAABQhnIVAAAAAAAAAABAGcpVAAAAAAAAAAAAZShXAQAAAAAAAAAAlKFcBQAAAAAAAAAAUIZyFQAAAAAAAAAAQBnKVQAAAAAAAAAAAGUoVwEAAAAAAAAAAJShXAUAAAAAAAAAAFCGchUAAAAAAAAAAEAZylUAAAAAAAAAAABlKFcBAAAAAAAAAACUoVwFAAAAAAAAAABQhnIVFVcUlU4AAAAAAAAAAAB1KVfRZJQqHQAAAAAAAAAAAD5HuQoAAAAAAAAAAKAM5SoAAAAAAAAAAIAylKsAAAAAAAAAAADKUK4CAAAAAAAAAAAoQ7kKAAAAAAAAAACgDOUqAAAAAAAAAACAMpSrAAAAAAAAAAAAylCuAgAAAAAAAAAAKEO5CgAAAAAAAAAAoAzlKiquSFHpCAAAAAAAAAAAUIdyFU1GqdIBAAAAAAAAAADgc5SrAAAAAAAAAAAAylCuAgAAAAAAAAAAKEO5CgAAAAAAAAAAoAzlKgAAAAAAAAAAgDKUqwAAAAAAAAAAAMpQrgIAAAAAAAAAACijSZer5s6dmxNPPDH9+vVL+/bts8oqq+S0005LURSVjgYAAAAAAAAAAHzFtap0gAU566yzcskll+Tqq6/OwIEDM3HixOy///7p0qVLjjzyyErHAwAAAAAAAAAAvsKadLnqoYceys4775wddtghSbLSSivlD3/4Qx577LEKJwMAAAAAAAAAAL7qmnS5asMNN8zll1+el19+OauuumqeeeaZPPDAAznvvPPmu8/s2bMze/bsmtczZsxIklRVVaWqqmqRZ6bh5syZW/O17xEANH3z1mvrNgA0D9ZuAGherN0A0LxYu6H5qu/PbZMuV40cOTIzZszI6quvnpYtW2bu3Lk544wzsueee853n9GjR2fUqFF1xu+888506NBhUcZlIT3z71KSlkmS8ePHVzYMAFBv1m0AaF6s3QDQvFi7AaB5sXZD8zNr1qx6zWvS5aobbrgh1157ba677roMHDgwTz/9dEaMGJHlllsu++67b9l9jj/++BxzzDE1r2fMmJE+ffpk2223TefOnRdXdBrgs6ffzu9feT5Jss0226R169YVTgQALEhVVVXGjx9v3QaAZsLaDQDNi7UbAJoXazc0X/OehvdFmnS56thjj83IkSMzbNiwJMnaa6+dN954I6NHj55vuapt27Zp27ZtnfHWrVv7RdZEtWzZsuZr3ycAaD6s2wDQvFi7AaB5sXYDQPNi7Ybmp74/sy0WcY4vZdasWWnRonbEli1bprq6ukKJAAAAAAAAAACAJUWTvnPVjjvumDPOOCMrrrhiBg4cmKeeeirnnXdeDjjggEpHAwAAAAAAAAAAvuK+dLlqxowZueeee7LaaqtljTXWaIxMNS688MKceOKJOfzww/Puu+9mueWWy6GHHpqTTjqpUc8DAAAAAAAAAADw3xpcrtptt92y6aab5ogjjsgnn3yS9dZbL6+//nqKosj111+fXXfdtdHCderUKWPGjMmYMWMa7ZgAAAAAAAAAAAD10aKhO0yYMCGbbLJJkuTWW29NURSZPn16Lrjggpx++umNHhAAAAAAAAAAAKASGlyu+vDDD9O9e/ckydixY7PrrrumQ4cO2WGHHTJ58uRGDwgAAAAAAAAAAFAJDS5X9enTJw8//HBmzpyZsWPHZtttt02SfPDBB2nXrl2jB+SrrygqnQAAAAAAAAAAAOpq1dAdRowYkT333DMdO3ZM3759s/nmmyf5z+MC11577cbOBwAAAAAAAAAAUBENLlcdfvjh2WCDDfKPf/wj22yzTVq0+M/Nr1ZeeeWcccYZjR6QJUepVOkEAAAAAAAAAADwfxr8WMBTTz01a6yxRr7zne+kY8eONeNbbrll7rrrrkYNBwAAAAAAAAAAUCkNLleNGjUqH3/8cZ3xWbNmZdSoUY0SCgAAAAAAAAAAoNIaXK4qiiKlMs9ve+aZZ9K9e/dGCQUAAAAAAAAAAFBpreo7sVu3bimVSimVSll11VVrFazmzp2bjz/+OD/84Q8XSUgAAAAAAAAAAIDFrd7lqjFjxqQoihxwwAEZNWpUunTpUrOtTZs2WWmllTJkyJBFEhIAAAAAAAAAAGBxq3e5at99902S9OvXLxtttFFatar3rgAAAAAAAAAAAM1Oi4buMHPmzNx99911xseNG5c77rijUUIBAAAAAAAAAABUWoPLVSNHjszcuXPrjBdFkZEjRzZKKAAAAAAAAAAAgEprcLlq8uTJWXPNNeuMr7766nnllVcaJRRLlqLSAQAAAAAAAAAAoIwGl6u6dOmS1157rc74K6+8kqWWWqpRQgEAAAAAAAAAAFRag8tVO++8c0aMGJFXX321ZuyVV17Jj3/84+y0006NGg4AAAAAAAAAAKBSGlyuOvvss7PUUktl9dVXT79+/dKvX7+sscYaWXrppXPOOecsiowAAAAAAAAAAACLXauG7tClS5c89NBDGT9+fJ555pm0b98+gwYNyqabbroo8gEAAAAAAAAAAFREg8tVSVIqlbLttttm0003Tdu2bVMqlRo7FwAAAAAAAAAAQEU1+LGA1dXVOe2007L88sunY8eOmTJlSpLkxBNPzG9+85tGDwgAAAAAAAAAAFAJDS5XnX766bnqqqty9tlnp02bNjXja621Vq644opGDQcAAAAAAAAAAFApDS5XXXPNNbn88suz5557pmXLljXjX/va1/Liiy82ajgAAAAAAAAAAIBKaXC56q233kr//v3rjFdXV6eqqqpRQgEAAAAAAAAAAFRag8tVa665Zv72t7/VGb/pppvy9a9/vVFCAQAAAAAAAAAAVFqrhu5w0kknZd99981bb72V6urq3HLLLXnppZdyzTXX5C9/+cuiyMhXXFEUlY4AAAAAAAAAAAB1NPjOVTvvvHNuu+223HXXXVlqqaVy0kknZdKkSbntttuyzTbbLIqMAAAAAAAAAAAAi12D71yVJJtssknGjx/f2FlYwpUqHQAAAAAAAAAAAD6nwXeuAgAAAAAAAAAAWBLU685V3bt3z8svv5xlllkm3bp1S6k0/3sMdezYMQMHDsxZZ52VQYMGNVpQAAAAAAAAAACAxale5apf/epX6dSpU5JkzJgxC5w7e/bs3H777dl///3zxBNPfOmAAAAAAAAAAAAAlVCvctW+++5b9uv52X777bPuuusufCoAAAAAAAAAAIAKq1e5qpyJEydm0qRJSZI11lgj6623Xs22Pn365N133/3y6QAAAAAAAAAAACqkweWqf/7zn9ljjz3y4IMPpmvXrkmS6dOnZ8MNN8z111+fFVZYobEzAgAAAAAAAAAALHYtGrrDQQcdlKqqqkyaNCnTpk3LtGnTMmnSpFRXV+eggw5aFBkBAAAAAAAAAAAWuwbfuer+++/PQw89lNVWW61mbLXVVsuFF16YTTbZpFHDAQAAAAAAAAAAVEqD71zVp0+fVFVV1RmfO3dulltuuUYJxZKlqHQAAAAAAAAAAAAoo8Hlql/+8pf50Y9+lIkTJ9aMTZw4MUcddVTOOeecRg0HAAAAAAAAAABQKfV6LGC3bt1SKpVqXs+cOTMbbLBBWrX6z+5z5sxJq1atcsABB2SXXXZZJEEBAAAAAAAAAAAWp3qVq8aMGbOIYwAAAAAAAAAAADQt9SpX7bvvvos6BwAAAAAAAAAAQJNSr3LV57311lu5+eab8/LLLydJVltttXz3u9/N8ssv3+jhAAAAAAAAAAAAKqVB5aqLL744xxxzTD777LN07tw5STJjxowce+yxOe+883L44YcvkpAAAAAAAAAAAACLW4v6TvzrX/+aI488MkcccUTeeuutTJ8+PdOnT89bb72Vww8/PEcddVRuv/32RZkVAAAAAAAAAABgsan3nat++ctfZuTIkTn99NNrjffu3TvnnXdeOnTokLPPPjvf+ta3Gj0kAAAAAAAAAADA4lbvO1c9+eST2Xvvvee7fe+9986TTz7ZKKEAAAAAAAAAAAAqrd7lqrlz56Z169bz3d66devMnTu3UUIBAAAAAAAAAABUWr3LVQMHDsyf//zn+W7/05/+lIEDBzZKKJYwRaUDAAAAAAAAAABAXa3qO3H48OE57LDD0rZt2xxyyCFp1eo/u86ZMyeXXXZZfv7zn+fiiy9eZEEBAAAAAAAAAAAWp3qXq/bdd98899xzOeKII3L88cdnlVVWSVEUee211/Lxxx/nyCOPzH777bcIo/JVVypVOgEAAAAAAAAAAPyfeperkuScc87J9773vfzhD3/I5MmTkySbbbZZhg0blm9+85uLJCAAAAAAAAAAAEAlNKhclSTf/OY3FakAAAAAAAAAAICvvBaVDgAAAAAAAAAAANAUKVcBAAAAAAAAAACUoVwFAAAAAAAAAABQhnIVAAAAAAAAAABAGcpVAAAAAAAAAAAAZbSqz6Svf/3rKZVK9Trgk08++aUCAQAAAAAAAAAANAX1KlftsssuNV9/+umnufjii7PmmmtmyJAhSZJHHnkkf//733P44YcvkpB8tRUpKh0BAAAAAAAAAADqqFe56uSTT675+qCDDsqRRx6Z0047rc6cN998s3HTAQAAAAAAAAAAVEiLhu5w4403Zp999qkzvtdee+Xmm29ulFAsmer34EkAAAAAAAAAAFg8Glyuat++fR588ME64w8++GDatWvXKKEAAAAAAAAAAAAqrV6PBfy8ESNG5LDDDsuTTz6Z9ddfP0ny6KOP5re//W1OPPHERg8IAAAAAAAAAABQCQ0uV40cOTIrr7xyzj///Pz+979Pkqyxxhq58sors9tuuzV6QAAAAAAAAAAAgEpocLkqSXbbbTdFKgAAAAAAAAAA4CutxcLsNH369FxxxRX52c9+lmnTpiVJnnzyybz11luNGg4AAAAAAAAAAKBSGnznqmeffTZbb711unTpktdffz0HHXRQunfvnltuuSX/+Mc/cs011yyKnAAAAAAAAAAAAItVg+9cdcwxx2S//fbL5MmT065du5rxb33rW5kwYUKjhgMAAAAAAAAAAKiUBperHn/88Rx66KF1xpdffvlMnTq1UUJ93ltvvZW99torSy+9dNq3b5+11147EydObPTzAAAAAAAAAAAAfF6DHwvYtm3bzJgxo874yy+/nGWXXbZRQs3zwQcfZKONNsoWW2yRO+64I8suu2wmT56cbt26Nep5qKyiqHQCAAAAAAAAAACoq8Hlqp122imnnnpqbrjhhiRJqVTKP/7xjxx33HHZddddGzXcWWedlT59+uTKK6+sGevXr1+jngMAAAAAAAAAAKCcBperzj333Hzve99Ljx498sknn2SzzTbL1KlTM2TIkJxxxhmNGu5///d/M3To0Hz/+9/P/fffn+WXXz6HH354Dj744PnuM3v27MyePbvm9by7bFVVVaWqqqpR89E45s6dW/O17xEANH3z1mvrNgA0D9ZuAGherN0A0LxYu6H5qu/PbakoFu6hbA888ECeffbZfPzxx1lnnXWy9dZbL8xhFqhdu3ZJkmOOOSbf//738/jjj+eoo47KpZdemn333bfsPqecckpGjRpVZ/y6665Lhw4dGj0jX97D75Ry/Wsts1a36hy8enWl4wAAAAAAAAAA8BU3a9as/OAHP8iHH36Yzp07z3feQperFoc2bdpkvfXWy0MPPVQzduSRR+bxxx/Pww8/XHafcneu6tOnT957770FvhFUzg0T/5kT/vxC1upWnRt+tFVat25d6UgAwAJUVVVl/Pjx2WabbazbANAMWLsBoHmxdgNA82LthuZrxowZWWaZZb6wXNXgxwImyd13352777477777bqqra99p6Le//e3CHLKs3r17Z80116w1tsYaa+Tmm2+e7z5t27ZN27Zt64y3bt3aL7ImqmXLljVf+z4BQPNh3QaA5sXaDQDNi7UbAJoXazc0P/X9mW1wuWrUqFE59dRTs95666V3794plUoNDldfG220UV566aVaYy+//HL69u27yM4JAAAAAAAAAACQLES56tJLL81VV12Vvffee1HkqeXoo4/OhhtumF/84hfZbbfd8thjj+Xyyy/P5ZdfvsjPDQAAAAAAAAAALNlaNHSHzz77LBtuuOGiyFLHN77xjdx66635wx/+kLXWWiunnXZaxowZkz333HOxnB8AAAAAAAAAAFhyNbhcddBBB+W6665bFFnK+va3v53nnnsun376aSZNmpSDDz54sZ0bAAAAAAAAAABYctXrsYDHHHNMzdfV1dW5/PLLc9ddd2XQoEFp3bp1rbnnnXde4yYEAAAAAAAAAACogHqVq5566qlarwcPHpwkef7552uNl0qlxknFEqWodAAAAAAAAAAAACijXuWqe++9d1HnAAAAAAAAAAAAaFJaNHSHDz/8MNOmTaszPm3atMyYMaNRQrFkct8zAAAAAAAAAACakgaXq4YNG5brr7++zvgNN9yQYcOGNUooAAAAAAAAAACASmtwuerRRx/NFltsUWd88803z6OPPtoooQAAAAAAAAAAACqtweWq2bNnZ86cOXXGq6qq8sknnzRKKAAAAAAAAAAAgEprcLlq/fXXz+WXX15n/NJLL826667bKKEAAAAAAAAAAAAqrVVDdzj99NOz9dZb55lnnslWW22VJLn77rvz+OOP584772z0gAAAAAAAAAAAAJXQ4DtXbbTRRnn44YfTp0+f3HDDDbntttvSv3//PPvss9lkk00WRUYAAAAAAAAAAIDFrsF3rkqSwYMH59prr23sLAAAAAAAAAAAAE3GQpWr5vn000/z2Wef1Rrr3LnzlwoEAAAAAAAAAADQFDT4sYCzZs3KEUcckR49emSppZZKt27dav2DhiqKSicAAAAAAAAAAIC6GlyuOvbYY3PPPffkkksuSdu2bXPFFVdk1KhRWW655XLNNdcsiowAAAAAAAAAAACLXYMfC3jbbbflmmuuyeabb579998/m2yySfr375++ffvm2muvzZ577rkocgIAAAAAAAAAACxWDb5z1bRp07LyyisnSTp37pxp06YlSTbeeONMmDChcdMBAAAAAAAAAABUSIPLVSuvvHKmTJmSJFl99dVzww03JPnPHa26du3aqOEAAAAAAAAAAAAqpcHlqv333z/PPPNMkmTkyJG56KKL0q5duxx99NE59thjGz0gAAAAAAAAAABAJbRq6A5HH310zddbb711XnzxxTzxxBPp379/Bg0a1KjhAAAAAAAAAAAAKqXB5ar/1rdv3/Tt27cxsgAAAAAAAAAAADQZ9X4s4D333JM111wzM2bMqLPtww8/zMCBA/O3v/2tUcMBAAAAAAAAAABUSr3LVWPGjMnBBx+czp0719nWpUuXHHrooTnvvPMaNRwAAAAAAAAAAECl1Ltc9cwzz2S77bab7/Ztt902TzzxRKOEAgAAAAAAAAAAqLR6l6veeeedtG7der7bW7VqlX//+9+NEoolS5Gi0hEAAAAAAAAAAKCOeperll9++Tz//PPz3f7ss8+md+/ejRIKAAAAAAAAAACg0updrvrWt76VE088MZ9++mmdbZ988klOPvnkfPvb327UcCxZSqVKJwAAAAAAAAAAgP/Tqr4Tf/7zn+eWW27JqquumiOOOCKrrbZakuTFF1/MRRddlLlz5+aEE05YZEEBAAAAAAAAAAAWp3qXq3r27JmHHnoohx12WI4//vgURZEkKZVKGTp0aC666KL07NlzkQUFAAAAAAAAAABYnOpdrkqSvn375vbbb88HH3yQV155JUVRZMCAAenWrduiygcAAAAAAAAAAFARDSpXzdOtW7d84xvfaOwsAAAAAAAAAAAATUaLSgcAAAAAAAAAAABoipSrAAAAAAAAAAAAylCuAgAAAAAAAAAAKKNe5ap11lknH3zwQZLk1FNPzaxZsxZpKAAAAAAAAAAAgEqrV7lq0qRJmTlzZpJk1KhR+fjjjxdpKJYsRVHpBAAAAAAAAAAAUFer+kwaPHhw9t9//2y88cYpiiLnnHNOOnbsWHbuSSed1KgBAQAAAAAAAAAAKqFe5aqrrroqJ598cv7yl7+kVCrljjvuSKtWdXctlUrKVQAAAAAAAAAAwFdCvcpVq622Wq6//vokSYsWLXL33XenR48eizQYAAAAAAAAAABAJdWrXPV51dXViyIHAAAAAAAAAABAk9LgclWSvPrqqxkzZkwmTZqUJFlzzTVz1FFHZZVVVmnUcAAAAAAAAAAAAJXSoqE7jBs3LmuuuWYee+yxDBo0KIMGDcqjjz6agQMHZvz48YsiIwAAAAAAAAAAwGLX4DtXjRw5MkcffXTOPPPMOuPHHXdcttlmm0YLBwAAAAAAAAAAUCkNvnPVpEmTcuCBB9YZP+CAA/LCCy80SigAAAAAAAAAAIBKa3C5atlll83TTz9dZ/zpp59Ojx49GiMTAAAAAAAAAABAxTX4sYAHH3xwDjnkkLz22mvZcMMNkyQPPvhgzjrrrBxzzDGNHhAAAAAAAAAAAKASGlyuOvHEE9OpU6ece+65Of7445Mkyy23XE455ZQceeSRjR6Qr76i0gEAAAAAAAAAAKCMBperSqVSjj766Bx99NH56KOPkiSdOnVq9GAAAAAAAAAAAACV1OBy1ecpVdGYSpUOAAAAAAAAAAAAn9Oi0gEAAAAAAAAAAACaIuUqAAAAAAAAAACAMpSrAAAAAAAAAAAAymhQuaqqqipbbbVVJk+evKjyAAAAAAAAAAAANAkNKle1bt06zz777KLKAgAAAAAAAAAA0GQ0+LGAe+21V37zm98siiwAAAAAAAAAAABNRquG7jBnzpz89re/zV133ZV11103Sy21VK3t5513XqOFAwAAAAAAAAAAqJQGl6uef/75rLPOOkmSl19+uda2UqnUOKkAAAAAAAAAAAAqrMHlqnvvvXdR5GBJVhSVTgAAAAAAAAAAAHW0WNgdX3nllYwbNy6ffPJJkqRQkAEAAAAAAAAAAL5CGlyuev/997PVVltl1VVXzbe+9a3861//SpIceOCB+fGPf9zoAVlyeKgkAAAAAAAAAABNSYPLVUcffXRat26df/zjH+nQoUPN+O67756xY8c2ajgAAAAAAAAAAIBKadXQHe68886MGzcuK6ywQq3xAQMG5I033mi0YAAAAAAAAAAAAJXU4DtXzZw5s9Ydq+aZNm1a2rZt2yihAAAAAAAAAAAAKq3B5apNNtkk11xzTc3rUqmU6urqnH322dliiy0aNRwAAAAAAAAAAEClNPixgGeffXa22mqrTJw4MZ999ll++tOf5u9//3umTZuWBx98cFFkBAAAAAAAAAAAWOwafOeqtdZaKy+//HI23njj7Lzzzpk5c2a++93v5qmnnsoqq6yyKDICAAAAAAAAAAAsdg2+c1WSdOnSJSeccEJjZwEAAAAAAAAAAGgyFqpc9cEHH+Q3v/lNJk2alCRZc801s//++6d79+6NGg4AAAAAAAAAAKBSGvxYwAkTJmSllVbKBRdckA8++CAffPBBLrjggvTr1y8TJkxYFBlrnHnmmSmVShkxYsQiPQ+LV1HpAAAAAAAAAAAAUEaD71w1fPjw7L777rnkkkvSsmXLJMncuXNz+OGHZ/jw4XnuuecaPWSSPP7447nssssyaNCgRXJ8moBSpQMAAAAAAAAAAMD/afCdq1555ZX8+Mc/rilWJUnLli1zzDHH5JVXXmnUcPN8/PHH2XPPPfPrX/863bp1WyTnAAAAAAAAAAAA+LwG37lqnXXWyaRJk7LaaqvVGp80aVK+9rWvNVqwzxs+fHh22GGHbL311jn99NMXOHf27NmZPXt2zesZM2YkSaqqqlJVVbVI8vHlzJ07t+Zr3yMAaPrmrdfWbQBoHqzdANC8WLsBoHmxdkPzVd+f23qVq5599tmar4888sgcddRReeWVV/LNb34zSfLII4/koosuyplnnrkQURfs+uuvz5NPPpnHH3+8XvNHjx6dUaNG1Rm/884706FDh8aORyP4+9RSkv/cCW38+PGVDQMA1Jt1GwCaF2s3ADQv1m4AaF6s3dD8zJo1q17zSkVRFF80qUWLFimVSvmiqaVSqdZdiL6sN998M+utt17Gjx+fQYMGJUk233zzDB48OGPGjCm7T7k7V/Xp0yfvvfdeOnfu3GjZaDy/f/QfGfWXFzN46epcN3yrtG7dutKRAIAFqKqqyvjx47PNNttYtwGgGbB2A0DzYu0GgObF2g3N14wZM7LMMsvkww8/XGCnqF53rpoyZUqjBWuIJ554Iu+++27WWWedmrG5c+dmwoQJ+Z//+Z/Mnj07LVu2rLVP27Zt07Zt2zrHat26tV9kTdTnv4e+TwDQfFi3AaB5sXYDQPNi7QaA5sXaDc1PfX9m61Wu6tu375cKs7C22mqrPPfcc7XG9t9//6y++uo57rjj6hSrAAAAAAAAAAAAGku9ylX/7e23384DDzyQd999N9XV1bW2HXnkkY0SLEk6deqUtdZaq9bYUkstlaWXXrrOOAAAAAAAAAAAQGNqcLnqqquuyqGHHpo2bdpk6aWXTqlUqtlWKpUatVwFAAAAAAAAAABQKQ0uV5144ok56aSTcvzxx6dFixaLItMC3XfffYv9nAAAAAAAAAAAwJKnwe2oWbNmZdiwYRUpVvHVVBSVTgAAAAAAAAAAAHU1uCF14IEH5sYbb1wUWVjClb54CgAAAAAAAAAALDYNfizg6NGj8+1vfztjx47N2muvndatW9faft555zVaOAAAAAAAAAAAgEpZqHLVuHHjstpqqyVJSqX/u9/Q578GAAAAAAAAAABozhpcrjr33HPz29/+Nvvtt98iiAMAAAAAAAAAANA0tGjoDm3bts1GG220KLIAAAAAAAAAAAA0GQ0uVx111FG58MILF0UWAAAAAAAAAACAJqPBjwV87LHHcs899+Qvf/lLBg4cmNatW9fafssttzRaOAAAAAAAAAAAgEppcLmqa9eu+e53v7sosgAAAAAAAAAAADQZDS5XXXnllYsiBwAAAAAAAAAAQJPSotIBAAAAAAAAAAAAmqIG37mqX79+KZVK893+2muvfalALHmKoqh0BAAAAAAAAAAAqKPB5aoRI0bUel1VVZWnnnoqY8eOzbHHHttYuQAAAAAAAAAAACqqweWqo446quz4RRddlIkTJ37pQAAAAAAAAAAAAE1Bi8Y60Pbbb5+bb765sQ4HAAAAAAAAAABQUY1WrrrpppvSvXv3xjocAAAAAAAAAABARTX4sYBf//rXUyqVal4XRZGpU6fm3//+dy6++OJGDQcAAAAAAAAAAFApDS5X7bLLLrVet2jRIssuu2w233zzrL766o2VCwAAAAAAAAAAoKIaXK46+eSTF0UOAAAAAAAAAACAJqVFpQMAAAAAAAAAAAA0RfW+c1WLFi1SKpUWOKdUKmXOnDlfOhQAAAAAAAAAAECl1btcdeutt85328MPP5wLLrgg1dXVjRIKAAAAAAAAAACg0updrtp5553rjL300ksZOXJkbrvttuy555459dRTGzUcS4ai0gEAAAAAAAAAAKCMFguz09tvv52DDz44a6+9dubMmZOnn346V199dfr27dvY+ViCLPihkwAAAAAAAAAAsHg1qFz14Ycf5rjjjkv//v3z97//PXfffXduu+22rLXWWosqHwAAAAAAAAAAQEXU+7GAZ599ds4666z06tUrf/jDH8o+JhAAAAAAAAAAAOCrot7lqpEjR6Z9+/bp379/rr766lx99dVl591yyy2NFg4AAAAAAAAAAKBS6l2u2meffVIqlRZlFgAAAAAAAAAAgCaj3uWqq666ahHGAAAAAAAAAAAAaFpaVDoAAAAAAAAAAABAU6RcBQAAAAAAAAAAUIZyFQAAAAAAAAAAQBnKVQAAAAAAAAAAAGUoV1FxRVHpBAAAAAAAAAAAUJdyFQAAAAAAAAAAQBnKVQAAAAAAAAAAAGUoVwEAAAAAAAAAAJShXAUAAAAAAAAAAFCGchUAAAAAAAAAAEAZylUAAAAAAAAAAABlKFcBAAAAAAAAAACUoVwFAAAAAAAAAABQhnIVAAAAAAAAAABAGcpVAAAAAAAAAAAAZShXUXFFpQMAAAAAAAAAAEAZylU0GaVSpRMAAAAAAAAAAMD/Ua4CAAAAAAAAAAAoQ7kKAAAAAAAAAACgDOUqAAAAAAAAAACAMpSrAAAAAAAAAAAAylCuAgAAAAAAAAAAKEO5CgAAAAAAAAAAoAzlKgAAAAAAAAAAgDKUqwAAAAAAAAAAAMpQrgIAAAAAAAAAAChDuYqKK4qi0hEAAAAAAAAAAKAO5SoAAAAAAAAAAIAylKsAAAAAAAAAAADKUK4CAAAAAAAAAAAoQ7kKAAAAAAAAAACgDOUqAAAAAAAAAACAMpSrAAAAAAAAAAAAylCuAgAAAAAAAAAAKEO5CgAAAAAAAAAAoAzlKgAAAAAAAAAAgDKUqwAAAAAAAAAAAMpo0uWq0aNH5xvf+EY6deqUHj16ZJdddslLL71U6VgAAAAAAAAAAMASoEmXq+6///4MHz48jzzySMaPH5+qqqpsu+22mTlzZqWjsQiUKh0AAAAAAAAAAAA+p1WlAyzI2LFja72+6qqr0qNHjzzxxBPZdNNNK5QKAAAAAAAAAABYEjTpctV/+/DDD5Mk3bt3n++c2bNnZ/bs2TWvZ8yYkSSpqqpKVVXVog3IQpk7d27N175HAND0zVuvrdsA0DxYuwGgebF2A0DzYu2G5qu+P7eloiiKRZylUVRXV2ennXbK9OnT88ADD8x33imnnJJRo0bVGb/uuuvSoUOHRRmRhXTv26X86Y2WWW+Z6uw9oLrScQAAAAAAAAAA+IqbNWtWfvCDH+TDDz9M586d5zuv2ZSrDjvssNxxxx154IEHssIKK8x3Xrk7V/Xp0yfvvffeAt8IKue3D76e0WNfznrLVOeaw7dK69atKx0JAFiAqqqqjB8/Pttss411GwCaAWs3ADQv1m4AaF6s3dB8zZgxI8sss8wXlquaxWMBjzjiiPzlL3/JhAkTFlisSpK2bdumbdu2dcZbt27tF1kT1bJly5qvfZ8AoPmwbgNA82LtBoDmxdoNAM2LtRuan/r+zDbpclVRFPnRj36UW2+9Nffdd1/69etX6UgAAAAAAAAAAMASokmXq4YPH57rrrsuf/7zn9OpU6dMnTo1SdKlS5e0b9++wukAAAAAAAAAAICvshaVDrAgl1xyST788MNsvvnm6d27d82/P/7xj5WOBgAAAAAAAAAAfMU16TtXFUVR6QgAAAAAAAAAAMASqknfuYolgw4dAAAAAAAAAABNkXIVTUap0gEAAAAAAAAAAOBzlKsAAAAAAAAAAADKUK4CAAAAAAAAAAAoQ7kKAAAAAAAAAACgDOUqAAAAAAAAAACAMpSrAAAAAAAAAAAAylCuAgAAAAAAAAAAKEO5CgAAAAAAAAAAoAzlKgAAAAAAAAAAgDKUqwAAAAAAAAAAAMpQrqLiihSVjgAAAAAAAAAAAHUoV9F0lCodAAAAAAAAAAAA/o9yFQAAAAAAAAAAQBnKVQAAAAAAAAAAAGUoVwEAAAAAAAAAAJShXAUAAAAAAAAAAFBGq0oHAAAAAAAAAACg+SuKInPmzMncuXMrHQXSsmXLtGrVKqVS6UsdR7kKAAAAAAAAAIAv5bPPPsu//vWvzJo1q9JRoEaHDh3Su3fvtGnTZqGPoVwFAAAAAAAAAMBCq66uzpQpU9KyZcsst9xyadOmzZe+WxB8GUVR5LPPPsu///3vTJkyJQMGDEiLFi0W6ljKVQAAAAAAAAAALLTPPvss1dXV6dOnTzp06FDpOJAkad++fVq3bp033ngjn332Wdq1a7dQx1m4ShYAAAAAAAAAAHzOwt4ZCBaVxvhM+lRTcUVR6QQAAAAAAAAAAFCXchVNhqetAgAAAAAAAADQlChXAQAAAAAAAADAAqy00koZM2bMl56zuDXFTPPTVLMqVwEAAAAAAAAAsER68803c8ABB2S55ZZLmzZt0rdv3xx11FF5//33G3ysxx9/PIccckijZWuMslFjZXrllVey//77Z4UVVkjbtm3Tr1+/7LHHHpk4ceKXPnZTp1wFAAAAAAAAAMAS57XXXst6662XyZMn5w9/+ENeeeWVXHrppbn77rszZMiQTJs2rUHHW3bZZdOhQ4dFlHbhNEamiRMnZt11183LL7+cyy67LC+88EJuvfXWrL766vnxj3/cSEmbLuUqAAAAAAAAAAAaTVEUmfXZnIr8K4qi3jmHDx+eNm3a5M4778xmm22WFVdcMdtvv33uuuuuvPXWWznhhBNqzf/oo4+yxx57ZKmllsryyy+fiy66qNb2/77T1PTp03PQQQdl2WWXTefOnbPlllvmmWeeqbXPbbfdlm984xtp165dlllmmXznO99Jkmy++eZ54403cvTRR6dUKqVUKiVJ3njjjey4447p1q1bllpqqQwcODC33377fK/xvzOVSqVcccUV+c53vpMOHTpkwIAB+d///d/57l8URfbbb78MGDAgf/vb37LDDjtklVVWyeDBg3PyySfnz3/+c83c4447Lquuumo6dOiQlVdeOSeeeGKqqqrqdb3zzJo1KwcccEA6deqUFVdcMZdffnmt7W+++WZ22223dO3aNd27d8/OO++c119/fb75G0OrRXp0AAAAAAAAAACWKJ9Uzc2aJ42ryLlfOHVoOrT54jrMtGnTMm7cuJxxxhlp3759rW29evXKnnvumT/+8Y+5+OKLa4pNv/zlL/Ozn/0so0aNyrhx43LUUUdl1VVXzTbbbFP2HN///vfTvn373HHHHenSpUsuu+yybLXVVnn55ZfTvXv3/PWvf813vvOdnHDCCbnmmmvy2Wef1RSlbrnllnzta1/LIYcckoMPPrjmmMOHD89nn32WCRMmZKmllsoLL7yQjh07Nug9GjVqVM4+++z88pe/zIUXXpg999wzb7zxRrp3715n7tNPP52///3vue6669KiRd17OHXt2rXm606dOuWqq67Kcsstl+eeey4HH3xwOnXqlJ/+9KdJssDrnefcc8/Naaedlp/97Ge56aabcthhh2WzzTbLaqutlqqqqgwdOjRDhgzJ3/72t7Rq1Sqnn356tttuuzz77LNp06ZNg96H+lKuAgAAAAAAAABgiTJ58uQURZE11lij7PY11lgjH3zwQf7973+nR48eSZKNNtooI0eOTJKsuuqqefDBB/OrX/2qbLnqgQceyGOPPZZ33303bdu2TZKcc845+dOf/pSbbrophxxySM4444wMGzYso0aNqtnva1/7WpKke/fuadmyZTp16pRevXrVbP/HP/6RXXfdNWuvvXaSZOWVV27wte+3337ZY489kiS/+MUvcsEFF+Sxxx7LdtttV/Z9SpLVV1/9C4/785//vObrlVZaKT/5yU9y/fXX15SrFnS983zrW9/K4YcfnuQ/d8L61a9+lXvvvTerrbZa/vjHP6a6ujpXXHFFTeHtyiuvTNeuXXPfffdl2223bcjbUG/KVQAAAAAAAAAANJr2rVvmhVOHVuzcDdGQxwgOGTKkzuvPP3Lv85555pl8/PHHWXrppWuNf/LJJ3n11VeT/OeuUJ+/K1V9HHnkkTnssMNy5513Zuutt86uu+6aQYMGNegYn5+/1FJLpXPnznn33XfLzm3I+/PHP/4xF1xwQV599dV8/PHHmTNnTjp37lyzvT7X+/lspVIpvXr1qsn2zDPP5JVXXkmnTp1q7fPpp5/WvKeLgnIVAAAAAAAAAACNplQq1evRfJXUv3//lEqlTJo0Kd/5znfqbJ80aVK6deuWZZdddqGO//HHH6d3796577776myb9yi9/34cYX0cdNBBGTp0aP7617/mzjvvzOjRo3PuuefmRz/6Ub2P0bp161qvS6VSqqury85dddVVkyQvvvhivv71r8/3mA8//HD23HPPjBo1KkOHDk2XLl1y/fXX59xzz62ZU5/rXVC2jz/+OOuuu26uvfbaOvst7PepPuo+DBEAAAAAAAAAAL7Cll566WyzzTa5+OKL88knn9TaNnXq1Fx77bXZfffdax4/lySPPPJIrXmPPPLIfB8ruM4662Tq1Klp1apV+vfvX+vfMsssk+Q/d2m6++6755uxTZs2mTt3bp3xPn365Ic//GFuueWW/PjHP86vf/3rel93Qw0ePDhrrrlmzj333LIFrOnTpydJHnroofTt2zcnnHBC1ltvvQwYMCBvvPFGrblfdL1fZJ111snkyZPTo0ePOu9ply5dFvq4X0S5iorbYVDvXL3futlyufItSAAAAAAAAACAxvY///M/mT17doYOHZoJEybkzTffzNixY7PNNttk+eWXzxlnnFFr/oMPPpizzz47L7/8ci666KLceOONOeqoo8oee+utt86QIUOyyy675M4778zrr7+ehx56KCeccEImTpyYJDn55JPzhz/8ISeffHImTZqU5557LmeddVbNMVZaaaVMmDAhb731Vt57770kyYgRIzJu3LhMmTIlTz75ZO699975FrwaQ6lUypVXXpmXX345m2yySW6//fa89tprefbZZ3PGGWdk5513TpIMGDAg//jHP3L99dfn1VdfzQUXXJBbb7211rG+6Hq/yJ577pllllkmO++8c/72t79lypQpue+++3LkkUfmn//8Z6Ne9+cpV1FxK3TrkA1XWTq9O1Q6CQAAAAAAAACwpBgwYEAmTpyYlVdeObvttltWWWWVHHLIIdliiy3y8MMPp3v37rXm//jHP87EiRPz9a9/PaeffnrOO++8DB06tOyxS6VSbr/99my66abZf//9s+qqq2bYsGF544030rNnzyTJ5ptvnhtvvDH/+7//m8GDB2fLLbfMY489VnOMU089Na+//npWWWWVmsfezZ07N8OHD88aa6yR7bbbLquuumouvvjiRfQO/cf666+fiRMnpn///jn44IOzxhprZKeddsrf//73jBkzJkmy00475eijj84RRxyRwYMH56GHHsqJJ55Y6zhfdL1fpEOHDpkwYUJWXHHFfPe7380aa6yRAw88MJ9++mk6d+7cmJdcS6koimKRHb0JmDFjRrp06ZIPP/xwkb6RfDlVVVW5/fbb861vfavO8zMBgKbFug0AzYu1GwCaF2s3ADQv1u7/+PTTTzNlypT069cv7dq1q3Sciundu3dOO+20HHTQQZWOwv+3oM9mfTtFrRZ1SAAAAAAAAAAA+KqaNWtWHnzwwbzzzjsZOHBgpePQyDwWEAAAAAAAAAAAFtLll1+eYcOGZcSIERkyZEil49DI3LkKAAAAAAAAAAAW0ogRIzJixIhKx2ARcecqAAAAAAAAAACAMpSrAAAAAAAAAAD40oqiqHQEqKUxPpPKVQAAAAAAAAAALLTWrVsnSWbNmlXhJFDbvM/kvM/owmjVWGEAAAAAAAAAAFjytGzZMl27ds27776bJOnQoUNKpVKFU7EkK4ois2bNyrvvvpuuXbumZcuWC30s5SoAAAAAAAAAAL6UXr16JUlNwQqagq5du9Z8NheWchUAAAAAAAAAAF9KqVRK796906NHj1RVVVU6DqR169Zf6o5V8yhXAQAAAAAAAADQKFq2bNkohRZoKlpUOgAAAAAAAAAAAEBTpFwFAAAAAAAAAABQhnIVAAAAAAAAAABAGa0qHWBRK4oiSTJjxowKJ2FBqqqqMmvWrMyYMSOtW7eudBwAYAGs2wDQvFi7AaB5sXYDQPNi7Ybma16XaF63aH6+8uWqjz76KEnSp0+fCicBAAAAAAAAAACako8++ihdunSZ7/ZS8UX1q2auuro6b7/9djp16pRSqVTpOMzHjBkz0qdPn7z55pvp3LlzpeMAAAtg3QaA5sXaDQDNi7UbAJoXazc0X0VR5KOPPspyyy2XFi1azHfeV/7OVS1atMgKK6xQ6RjUU+fOnS04ANBMWLcBoHmxdgNA82LtBoDmxdoNzdOC7lg1z/xrVwAAAAAAAAAAAEsw5SoAAAAAAAAAAIAylKtoEtq2bZuTTz45bdu2rXQUAOALWLcBoHmxdgNA82LtBoDmxdoNX32loiiKSocAAAAAAAAAAABoaty5CgAAAAAAAAAAoAzlKgAAAAAAAAAAgDKUqwAAAAAAAAAAAMpQrgIAAAAAAAAAAChDuYqKu+iii7LSSiulXbt22WCDDfLYY49VOhIAfOVMmDAhO+64Y5ZbbrmUSqX86U9/qrW9KIqcdNJJ6d27d9q3b5+tt946kydPrjVn2rRp2XPPPdO5c+d07do1Bx54YD7++ONac5599tlssskmadeuXfr06ZOzzz67TpYbb7wxq6++etq1a5e11147t99+e6NfLwA0Z6NHj843vvGNdOrUKT169Mguu+ySl156qdacTz/9NMOHD8/SSy+djh07Ztddd80777xTa84//vGP7LDDDunQoUN69OiRY489NnPmzKk157777ss666yTtm3bpn///rnqqqvq5PF3OwAs2CWXXJJBgwalc+fO6dy5c4YMGZI77rijZrt1GwCatjPPPDOlUikjRoyoGbN+A5+nXEVF/fGPf8wxxxyTk08+OU8++WS+9rWvZejQoXn33XcrHQ0AvlJmzpyZr33ta7nooovKbj/77LNzwQUX5NJLL82jjz6apZZaKkOHDs2nn35aM2fPPffM3//+94wfPz5/+ctfMmHChBxyyCE122fMmJFtt902ffv2zRNPPJFf/vKXOeWUU3L55ZfXzHnooYeyxx575MADD8xTTz2VXXbZJbvsskuef/75RXfxANDM3H///Rk+fHgeeeSRjB8/PlVVVdl2220zc+bMmjlHH310brvtttx44425//778/bbb+e73/1uzfa5c+dmhx12yGeffZaHHnooV199da666qqcdNJJNXOmTJmSHXbYIVtssUWefvrpjBgxIgcddFDGjRtXM8ff7QDwxVZYYYWceeaZeeKJJzJx4sRsueWW2XnnnfP3v/89iXUbAJqyxx9/PJdddlkGDRpUa9z6DdRSQAWtv/76xfDhw2tez507t1huueWK0aNHVzAVAHy1JSluvfXWmtfV1dVFr169il/+8pc1Y9OnTy/atm1b/OEPfyiKoiheeOGFIknx+OOP18y54447ilKpVLz11ltFURTFxRdfXHTr1q2YPXt2zZzjjjuuWG211Wpe77bbbsUOO+xQK88GG2xQHHrooY16jQDwVfLuu+8WSYr777+/KIr/rNOtW7cubrzxxpo5kyZNKpIUDz/8cFEURXH77bcXLVq0KKZOnVoz55JLLik6d+5cs1b/9Kc/LQYOHFjrXLvvvnsxdOjQmtf+bgeAhdOtW7fiiiuusG4DQBP20UcfFQMGDCjGjx9fbLbZZsVRRx1VFIW/u4G63LmKivnss8/yxBNPZOutt64Za9GiRbbeeus8/PDDFUwGAEuWKVOmZOrUqbXW5C5dumSDDTaoWZMffvjhdO3aNeutt17NnK233jotWrTIo48+WjNn0003TZs2bWrmDB06NC+99FI++OCDmjmfP8+8OdZ+AJi/Dz/8MEnSvXv3JMkTTzyRqqqqWmvq6quvnhVXXLHW2r322munZ8+eNXOGDh2aGTNm1NxF44vWZX+3A0DDzZ07N9dff31mzpyZIUOGWLcBoAkbPnx4dthhhzprrPUb+G+tKh2AJdd7772XuXPn1lpwkqRnz5558cUXK5QKAJY8U6dOTZKya/K8bVOnTk2PHj1qbW/VqlW6d+9ea06/fv3qHGPetm7dumXq1KkLPA8AUFt1dXVGjBiRjTbaKGuttVaS/6yrbdq0SdeuXWvN/e+1u9yaO2/bgubMmDEjn3zyST744AN/twNAPT333HMZMmRIPv3003Ts2DG33npr1lxzzTz99NPWbQBogq6//vo8+eSTefzxx+ts83c38N+UqwAAAACaqOHDh+f555/PAw88UOkoAMACrLbaann66afz4Ycf5qabbsq+++6b+++/v9KxAIAy3nzzzRx11FEZP3582rVrV+k4QDPgsYBUzDLLLJOWLVvmnXfeqTX+zjvvpFevXhVKBQBLnnnr7oLW5F69euXdd9+ttX3OnDmZNm1arTnljvH5c8xvjrUfAOo64ogj8pe//CX33ntvVlhhhZrxXr165bPPPsv06dNrzf/vtXth1+XOnTunffv2/m4HgAZo06ZN+vfvn3XXXTejR4/O1772tZx//vnWbQBogp544om8++67WWedddKqVau0atUq999/fy644IK0atUqPXv2tH4DtShXUTFt2rTJuuuum7vvvrtmrLq6OnfffXeGDBlSwWQAsGTp169fevXqVWtNnjFjRh599NGaNXnIkCGZPn16nnjiiZo599xzT6qrq7PBBhvUzJkwYUKqqqpq5owfPz6rrbZaunXrVjPn8+eZN8faDwD/pyiKHHHEEbn11ltzzz331Hns7rrrrpvWrVvXWlNfeuml/OMf/6i1dj/33HO1ytHjx49P586ds+aaa9bMWdC67O92AFh41dXVmT17tnUbAJqgrbbaKs8991yefvrpmn/rrbde9txzz5qvrd9ALQVU0PXXX1+0bdu2uOqqq4oXXnihOOSQQ4quXbsWU6dOrXQ0APhK+eijj4qnnnqqeOqpp4okxXnnnVc89dRTxRtvvFEURVGceeaZRdeuXYs///nPxbPPPlvsvPPORb9+/YpPPvmk5hjbbbdd8fWvf7149NFHiwceeKAYMGBAsccee9Rsnz59etGzZ89i7733Lp5//vni+uuvLzp06FBcdtllNXMefPDBolWrVsU555xTTJo0qTj55JOL1q1bF88999ziezMAoIk77LDDii5duhT33Xdf8a9//avm36xZs2rm/PCHPyxWXHHF4p577ikmTpxYDBkypBgyZEjN9jlz5hRrrbVWse222xZPP/10MXbs2GLZZZctjj/++Jo5r732WtGhQ4fi2GOPLSZNmlRcdNFFRcuWLYuxY8fWzPF3OwB8sZEjRxb3339/MWXKlOLZZ58tRo4cWZRKpeLOO+8sisK6DQDNwWabbVYcddRRNa+t38DnKVdRcRdeeGGx4oorFm3atCnWX3/94pFHHql0JAD4yrn33nuLJHX+7bvvvkVRFEV1dXVx4oknFj179izatm1bbLXVVsVLL71U6xjvv/9+scceexQdO3YsOnfuXOy///7FRx99VGvOM888U2y88cZF27Zti+WXX74488wz62S54YYbilVXXbVo06ZNMXDgwOKvf/3rIrtuAGiOyq3ZSYorr7yyZs4nn3xSHH744UW3bt2KDh06FN/5zneKf/3rX7WO8/rrrxfbb7990b59+2KZZZYpfvzjHxdVVVW15tx7773F4MGDizZt2hQrr7xyrXPM4+92AFiwAw44oOjbt2/Rpk2bYtllly222mqrmmJVUVi3AaA5+O9ylfUb+LxSURRFZe6ZBQAAAAAAAAAA0HS1qHQAAAAAAAAAAACApki5CgAAAAAAAAAAoAzlKgAAAAAAAAAAgDKUqwAAAAAAAAAAAMpQrgIAAAAAAAAAAChDuQoAAAAAAAAAAKAM5SoAAAAAAAAAAIAylKsAAAAAAAAAAADKUK4CAAAAoEnbb7/9sssuu1Ts/HvvvXd+8Ytf1GvusGHDcu655y7iRAAAAAAsLqWiKIpKhwAAAABgyVQqlRa4/eSTT87RRx+doijStWvXxRPqc5555plsueWWeeONN9KxY8cvnP/8889n0003zZQpU9KlS5fFkBAAAACARUm5CgAAAICKmTp1as3Xf/zjH3PSSSflpZdeqhnr2LFjvUpNi8pBBx2UVq1a5dJLL633Pt/4xjey3377Zfjw4YswGQAAAACLg8cCAgAAAFAxvXr1qvnXpUuXlEqlWmMdO3as81jAzTffPD/60Y8yYsSIdOvWLT179syvf/3rzJw5M/vvv386deqU/v3754477qh1rueffz7bb799OnbsmJ49e2bvvffOe++9N99sc+fOzU033ZQdd9yx1vjFF1+cAQMGpF27dunZs2e+973v1dq+44475vrrr//ybw4AAAAAFadcBQAAAECzc/XVV2eZZZbJY489lh/96Ec57LDD8v3vfz8bbrhhnnzyyWy77bbZe++9M2vWrCTJ9OnTs+WWW+brX/96Jk6cmLFjx+add97JbrvtNt9zPPvss/nwww+z3nrr1YxNnDgxRx55ZE499dS89NJLGTt2bDbddNNa+63//9q7Y5eq2jgO4N+bSYkFQtckCQxJVMLsOgStkU71BzQ0CDoF0RqEY4NjBTU1CCIt1dBSQw7WUhAm1qAI2RgqDaElqE1duHTifYf32mt8PvDAOb/zPJzntx6+POfs2bx+/Trfv3+vT/MAAAAA7BrhKgAAAAD2nP7+/ty8eTNdXV25ceNGDh48mHK5nNHR0XR1dWVsbCyrq6uZm5tLkty9ezeVSiW3bt1KT09PKpVKHjx4kOnp6SwsLBS+Y3l5OQ0NDTl69Gi19unTpzQ3N+fixYvp6OhIpVLJtWvXata1t7dnc3Oz5peHAAAAAOxNwlUAAAAA7DmnT5+uXjc0NOTIkSPp6+ur1tra2pIknz9/TpK8e/cu09PTOXToUHX09PQkSZaWlgrfsbGxkQMHDqRUKlVrg4OD6ejoSGdnZ65cuZLJycnq6Vg/NTU1JckvdQAAAAD2HuEqAAAAAPacxsbGmvtSqVRT+xmI2t7eTpJ8/fo1ly5dyuzsbM1YXFz85bd+P5XL5ayvr2dzc7NaO3z4cN6+fZupqakcO3YsY2Nj6e/vz5cvX6pz1tbWkiStra3/Sa8AAAAA/DnCVQAAAAD89QYGBvL+/fucOHEiJ0+erBnNzc2Fa86cOZMk+fDhQ019//79uXDhQsbHxzM3N5ePHz/mxYsX1efz8/M5fvx4yuVy3foBAAAAYHcIVwEAAADw17t69WrW1tZy+fLlvHnzJktLS3n27FmGh4eztbVVuKa1tTUDAwN5+fJltfb06dPcvn07s7OzWV5ezsTERLa3t9Pd3V2dMzMzk6Ghobr3BAAAAED9CVcBAAAA8Ndrb2/Pq1evsrW1laGhofT19eX69etpaWnJvn2//0Q2MjKSycnJ6n1LS0sePXqU8+fPp7e3N/fv38/U1FROnTqVJPn27VuePHmS0dHRuvcEAAAAQP2VdnZ2dv70JgAAAADg/2hjYyPd3d15+PBhzp0794/z7927l8ePH+f58+e7sDsAAAAA6s3JVQAAAADwG01NTZmYmMjKysq/mt/Y2Jg7d+7UeVcAAAAA7BYnVwEAAAAAAAAAABRwchUAAAAAAAAAAEAB4SoAAAAAAAAAAIACwlUAAAAAAAAAAAAFhKsAAAAAAAAAAAAKCFcBAAAAAAAAAAAUEK4CAAAAAAAAAAAoIFwFAAAAAAAAAABQQLgKAAAAAAAAAACggHAVAAAAAAAAAABAgR86JiW4TSvSbgAAAABJRU5ErkJggg==",
"text/plain": [
""
]
@@ -1050,7 +1190,7 @@
},
{
"cell_type": "code",
- "execution_count": 21,
+ "execution_count": 23,
"id": "f30a0497-9b2e-4ea9-8ebf-6687de19aaa9",
"metadata": {},
"outputs": [
@@ -1090,13 +1230,13 @@
},
{
"cell_type": "code",
- "execution_count": 22,
+ "execution_count": 24,
"id": "c192564b-d3c6-40e1-a614-f7a5ee787c4e",
"metadata": {},
"outputs": [
{
"data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAs0AAAIoCAYAAACSxtawAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy80BEi2AAAACXBIWXMAAA9hAAAPYQGoP6dpAAB4SElEQVR4nO3deVxU5f4H8M+ZgZlhcdhkVQTS3BBXFDBzSRKNLM1ubhmp5YaaUpre3K2r2WppmZlLpWl60xLLDUMzcNdUTErFLR1ABQaQdc7z+8Mfcx1BBxAZGD/v14vXdc555sz3zBduHw7PPEcSQggQEREREdFdKSxdABERERFRTcfQTERERERkBkMzEREREZEZDM1ERERERGYwNBMRERERmcHQTERERERkBkMzEREREZEZDM1ERERERGYwNBMRERERmcHQTEQPpZdffhmSJOH8+fP3fazz589DkiS8/PLL930sIiKqmRiaiahKlQTInj17WroUqgJ79uyBJEmQJAnr16+3dDk1TkZGBt5++22EhYXBzc0Ntra2cHd3R3h4OD799FPk5ORYusR76tq1KyRJsnQZRLUCQzMREd3VV199BQCQJAnLly+3cDU1S1xcHBo1aoTp06cjKysL//rXvzB58mT069cPV65cwfjx49GqVStLl0lEVcTG0gUQEVHNpNfrsWHDBrRs2RKenp7Yvn07Ll26BF9fX0uXZnF//PEHevfuDQD49ttvMXjw4FJj4uPjMXXq1OoujYgeEF5pJiKLycrKwrvvvosuXbrAx8cHKpUKPj4+eOmll3D27NlS42fNmgVJkhAfH48VK1YgKCgIdnZ2CAgIwCeffAIAEELggw8+QJMmTaDRaPDoo4/i66+/vmsNsixjwYIFePTRR6HRaBAQEIA5c+agqKio1FiDwYB3330XjRo1gkajQaNGjTBv3jzIslzmsX/99VcMGzYMTZo0gaOjIxwdHREcHIylS5eW+z3q3r07FAoFLly4UOb+8ePHQ5Ik7Nixw7jtv//9L7p06QIPDw9oNBr4+PggPDwc//3vf8v9ugDw3Xff4ebNm3jppZfw0ksvQZZlrFy58q7j09LS8Prrr6NJkyaws7ODq6srQkJC8P7775ca+8cff2Dw4MGoX78+1Go1vL290bNnT2zevLnU2B9//BHdu3eHi4sLNBoNWrRogffffx8Gg8FknCzLWLZsGTp06ABXV1fY2dmhfv366N27N+Lj403G3u97NH78eOTl5eHTTz8tMzADt6Y+3Pm6ALBixQqEhIQYvydCQkLKfF9XrlwJSZLK3BcfHw9JkjBr1iyT7ZIkoWvXrkhNTUVUVBTq1q0LOzs7hIaGlqpFkiTs3r3b+O+SL87NJ7oLQURUhVJSUgQAERERYXZsYmKiUKlUIiIiQowZM0ZMmjRJ9O7dWyiVSuHq6irOnz9vMn7mzJkCgHj22WeFk5OTeOmll8T48eNFvXr1BADx5ZdfijFjxghPT08xfPhwMXr0aOHi4iIAiN27d5scKyoqSgAQvXv3Fq6urmLUqFHijTfeEE2aNBEARL9+/UrVO2zYMAFABAQEiJiYGDFmzBhRt25d8fTTTwsAIioqymR8RESEaNiwoRg8eLB48803xciRI4Wfn58AIGJiYsr1fq5YsUIAEO+8806pfUVFRcLd3V34+PgIg8EghBDis88+EwCEt7e3GDFihJg6daoYOnSoCAwMFIMHDy7Xa5Zo3769UCqV4urVqyI3N1c4OjqKgIAAIctyqbGnT58W3t7eAoDo1KmTmDx5soiOjhZdu3YVLi4uJmM3bNggVCqVsLW1Fc8995yYOnWqGD58uGjRooV49tlnTcZOmTJFABD16tUTw4YNExMnThTBwcECgHj++edNxk6ePFkAEA0bNhTR0dFiypQpYsiQISIgIEC89dZbxnH3+x79/fffAoDw9fU1vu/lNW7cOOP5jB8/3uT7d/z48SZjS3q/YsWKUsf59ddfBQAxc+ZMk+0ARKtWrUSjRo1Eu3btxIQJE8SgQYOEUqkUKpVKnDhxwjh25syZxu/HmTNnGr82btxYoXMielgwNBNRlapIaM7MzBTXr18vtX3Xrl1CoVCIV155xWR7SWh2dXUVZ8+eNW6/ePGiUKlUwsnJSTRu3FikpaUZ9+3bt88Yjm9XEprd3d3FpUuXjNsLCgpE586dBQCxYcMG4/aSkNKqVSuRk5Nj3H758mVRt27dMkPzuXPnSp1bUVGRePLJJ4VSqRQXLlww8w4JodfrhZ2dnWjevHmpfZs3bxYAxBtvvGHc1rZtW6FSqURqamqp8deuXTP7eiWOHz9eqo8vvfSSACB27txZanxJkF26dGmpfbe/vzqdTjg4OAgHBwdx5MiRe47dvn27sYbb33NZlsWoUaNK9cjV1VX4+PiI3NzcUse9/fvsft+jlStXCgDixRdfNDv2drt37xYARLNmzURmZqZx+40bN0Tjxo0FALFnzx7j9sqGZgBizJgxJoF+2bJlAoAYOXKkyfguXboIXj8jKh9OzyAii3FycoKrq2up7d26dUNgYCB27txZ5vNee+01PPLII8bHvr6+6NSpE7KysvDWW2/B3d3duC8kJASPPPII/vjjj7seq379+sbHKpUK77zzDgCY/Fm8ZIrHjBkz4ODgYNxer149vPbaa2UeOyAgoNQ2GxsbjBo1CgaDAb/++muZz7tdnTp10KdPH5w6dQpHjhwx2ffNN98AAF588UWT7ba2trC1tS11LDc3N7OvV6LkA4AvvfSScVvJv0v2lThw4AAOHTqEzp0749VXXy11rNvf31WrViE3Nxevv/462rRpc8+xixYtAgAsXbrU5D2XJAnz58+HJEn47rvvTJ6vUqmgVCpLHffO77P7eY90Ol2pWstj1apVAG5NM3JycjJud3FxwcyZMwHgntNfysvBwQHvvvsuFIr//Sc+KioKNjY2OHjw4H0fn+hhxQ8CEpFFxcfH4+OPP8b+/ftx7do1FBcXG/epVKoyn9O6detS27y9ve+5b//+/WUe6/HHHy+1LSwsDDY2Njh69KhxW0noLmt8WdsAIDs7G++//z42bdqEs2fPIjc312T/lStXynzenYYMGYLvvvsO33zzDdq2bQvg1of0Nm/ejKCgIJMVGgYMGIDJkyejRYsWGDRoELp164ZOnTpBq9WW67UAoKCgAN9++y3q1KmDvn37Grd369YNvr6+2LhxIzIyMuDi4gLgVmgGgB49epg9dkXG7tu3Dw4ODnddtcPOzg6nT582Ph4wYAA+++wztGjRAgMGDEC3bt0QFhYGOzs7k+dVxXtUGSXfT127di21r1u3bgCAY8eO3ffrNG7cGI6OjibbbGxs4OnpiczMzPs+PtHDiqGZiCxm/fr16N+/PxwdHREREQF/f3/Y29sbP/x0tw+/lRVubGxs7rnv9jB+O09Pz1LblEol3NzckJWVZdyWlZUFhUKBunXrlusYhYWF6Nq1K44cOYI2bdpgyJAhcHNzg42NDc6fP49Vq1ahoKCgzJru1KNHD3h6emLt2rV4//33oVQqsWHDBuTl5WHIkCEmY9944w24ubnh888/xwcffID3338fNjY2iIyMxEcffVTm1e87bdq0CdevX8fQoUNNAqdCocDgwYMxf/58rFmzBtHR0cb3Brh11d2cioy9ceMGiouLMXv27LuOuf0XkYULFyIgIAArVqzA22+/jbfffhsajQYvvPACPvjgA2Pv7vc98vLyAgD8888/Zs/hdnq9HgqFwuQvISU8PT0hSRL0en2FjlmWu4V/GxubUh+eJKLyY2gmIouZNWsWNBoNDh8+jEcffdRk39q1a6ulhtTUVDRp0sRkm8FgwPXr103CsJOTE2RZxrVr10qFntTU1FLH/fHHH3HkyBEMHz4cy5YtM9m3du1a45/qy0OpVGLgwIH4+OOPsXPnTkREROCbb76BQqHAoEGDTMZKkoRhw4Zh2LBhuH79On777Td89913+P777/H333/j+PHjZU5fuF3J9IsVK1ZgxYoVdx1TEpqdnZ0BlC9E3j7W39//nmO1Wi0kScK1a9fMHhe4FQrfeOMNvPHGG7hy5Qp2796NFStW4Ouvv4ZOp8O2bdsA3P979NhjjwG49VcSWZZNpkGYOx9ZlpGeng4PDw+TfWlpaRBCmATekuOW9Qvf7b/QEVH14JxmIrKYs2fPolmzZqUC89WrV3Hu3LlqqeG3334rtS0xMRHFxcUmc25LpkCUNb6sbSVL5j377LPlGm9OyRXlb7/9FpcuXcLu3bvRrVu3e16xdXNzQ58+fbBu3To88cQTOHXqFM6cOXPP17lw4QLi4uLg6emJ4cOHl/kVEBCAo0ePGqcbdOjQAQCwfft2s+dRkbEhISG4fv06/v77b7Nj7+Tj44OBAwdi69ataNSoEXbu3Im8vLxS4yrzHjVq1AidO3fGpUuXzP7yc/tfE0q+n8pahq5k2+3Ti0qmv5T1y8jtU4fuR8kvB7wCTWQeQzMRWYyfnx/OnDljcqU2Pz8fo0ePLnOd5Adh4cKFuHz5svFxYWEh3nrrLQAwWa+2JLTOmTPHZErAP//8g4ULF5Y6rp+fHwBg7969Jtt3796NL7/8ssJ1tm3bFs2bN8fGjRvxxRdfQAhRamoGcCt8CSFMthUVFeHGjRsAAI1Gc8/XWbFiBWRZxsiRI7Fs2bIyv6ZMmQLgf1ek27dvj/bt22PPnj1lntvtoS8qKgqOjo744IMPypy/e/vY8ePHA4DxivCddDod/vzzTwC3wmlCQkKpMbm5ucjJyYGtra3xyu39vkfAre8bOzs7jB07FuvWrStzzG+//YYnnnjC+DgqKgoAMHv2bJNpGFlZWcYpKCVjAKBdu3aQJAlr165Ffn6+cfvff/9d5vdcZZR8QPLSpUtVcjwia8bpGUT0QJw4ceKuN0lo2rQppkyZgnHjxmHcuHFo06YNnn/+eRQXF2PHjh0QQqBVq1Z3XfGiKoWGhqJVq1bo378/HBwcsHnzZiQnJ+O5555Dv379jOO6deuGoUOHGm+q0rdvXxQUFGDdunUIDQ1FbGysyXF79+4Nf39/LFiwACdPnkSLFi2QnJyM2NhY9O3bFxs2bKhwrUOGDMHUqVOxYMEC2Nvbm9RXok+fPtBqtQgNDYWfnx+KioqwY8cOnDp1Cs8//7wxzJdFlmWsWLHC7A0u+vfvjwkTJmD16tV4//33odFosHr1anTt2hUjRozAN998g7CwMOTn5yMpKQlHjx41hl4PDw98/fXXGDBgADp06IBnnnkGTZo0wbVr17B//374+/tj06ZNAICePXti+vTpmDt3Lho1aoSePXvCz88P169fx5kzZ/Dbb7/h7bffRrNmzZCXl4fHHnsMjRs3Rrt27dCgQQPk5OQgNjYWOp0Ob7zxBtRq9X2/RyVat26NzZs344UXXsCAAQMwZ84cdO7cGa6urrhx4wZ+//13nDhxAo0aNTI+p3Pnzhg3bhw+/fRTtGjRAv369YMQAv/9739x+fJljB8/Hp07dzaOL7lavmbNGrRr1w49e/ZEWloaNm7ciJ49e1b4ZjVleeKJJ7Bhwwb069cPvXr1gkajQatWrYx3OySi21hyvTsisj4l6zTf66tLly5CiFvr7S5ZskQEBgYKjUYjvLy8xPDhw0VaWlqZ68eWrNP866+/lnrdknWXU1JSSu0r61gl48+ePSvmz58vGjVqJFQqlfDz8xOzZs0SBQUFpY5TXFws5s2bJx555BGhUqnEI488Iv7zn/+IM2fO3HWd5n79+gl3d3dhb28v2rdvL9auXXvXNXbNuXjxolAoFAKAGDhwYJljPvvsM/HMM88IPz8/odFohJubm+jQoYP4/PPPRWFh4T2Pv23bNpP+3MvgwYMFALF69WrjNp1OJ1577TXj++Pq6ipCQkLEhx9+WOr5R48eFS+88ILw9PQUtra2wtvbW/Tq1UvExsaWGrtjxw7Ru3dv4e7uLmxtbYWXl5cICwsTc+fOFRcvXhRCCFFYWCjeffdd0aNHD1G/fn2hUqmEp6en6Ny5s1izZo3JDVnu5z260/Xr18XcuXNFaGiocHFxETY2NsLNzU107dpVfPLJJybrS5dYvny5aN++vbC3tzd+XyxfvrzM49+8eVOMHz9eeHp6CrVaLVq2bClWr159z3Wa79Y/Pz8/4efnZ7KtqKhITJ48WTRo0EDY2NiU+X1MRLdIQtzxNyoiIiIiIjLBOc1ERERERGYwNBMRERERmcHQTERERERkBkMzEREREZEZDM1ERERERGYwNBMRERERmcGbmzwgsizjypUrqFOnDiRJsnQ5RERERHQHIQSys7Ph4+NjvGvo3TA0PyBXrlyBr6+vpcsgIiIiIjMuXbqE+vXr33MMQ/MDUqdOHQC3mqDVasv9PFmWkZ6eDnd3d7O/8VDNxl5aF/bTurCf1oO9tC7V3U+9Xg9fX19jbrsXhuYHpGRKhlarrXBozs/Ph1ar5Q9/LcdeWhf207qwn9aDvbQulupneabS8ruLiIiIiMgMhmYiIiIiIjMYmomIiIiIzGBoJiIiIiIyg6GZiIiIiMgMhmYiIiIiIjMYmomIiIiIzGBoJiIiIiIyg6GZiIiIiMgMhmYiIiIiIjMYmomIiIiIzGBoJiIiIiIyg6GZiIiIiMgMhmYiIiIisjhZlnHy5EnjlyzLli7JhI2lCyAiIiKih1tCQgIWL1mKvy5cgX8DX5y/eAmN/XwQPWoEOnbsaOnyAPBKMxERERFZUEJCAiZPn4PTORr49xyBR8IHw7/nCCTnajB5+hwkJCRYukQADM1EREREZCGyLGPxkqXIc/JHq97D4OTdAEobWzh5N0DLp4ch39kfn33xZY2YqsHQTEREREQWkZSUhOTz/yCgfTgkSTLZJ0kS/IK743TKZSQlJVmowv9haCYiIiIii8jIyEBhsQEOdb3K3O/o5oXCYgMyMjKqubLSGJqJiIiIyCJcXFygslEi95quzP0513VQ2Sjh4uJSzZWVxtBMRERERBYRGBiIJv71cP7QTgghTPYJIXDhUByaBtRHYGCghSr8H4ZmIiIiIrIIhUKB6FEjoMk8j+Oxy5F59QIMRYXIvHoBx2OXQ5N5HmNGvgqFwvKR1fIVEBEREdFDq2PHjlgwdwaaOOTjwtYvcS5uDS5s/RJNHQuwYO6MGrNOM29uQkREREQW1bFjR4SGhuLkyZNIS0uDh4cHWrRoUSOuMJdgaCYiIiIii1MoFGjRooUxNNekwAzU4OkZ8+fPhyRJmDBhgnFbfn4+oqOj4ebmBkdHR/Tr1w+pqakmz7t48SIiIyNhb28PDw8PTJo0CcXFxSZj4uPj0bZtW6jVajRq1AgrV64s9fqLFy+Gv78/NBoNQkJCcODAgQdxmkRERERUC9TI0Hzw4EF88cUXaNmypcn2iRMnYvPmzVi/fj12796NK1eu4LnnnjPuNxgMiIyMRGFhIRISErBq1SqsXLkSM2bMMI5JSUlBZGQkunXrhmPHjmHChAl45ZVXsG3bNuOYdevWISYmBjNnzsSRI0fQqlUrREREIC0t7cGfPBERERHVODUuNOfk5GDw4MH48ssvTdbky8rKwldffYUPP/wQTzzxBNq1a4cVK1YgISEB+/btAwBs374dp06dwrfffovWrVujV69emDt3LhYvXozCwkIAwJIlSxAQEIAPPvgAzZo1w9ixY/H888/jo48+Mr7Whx9+iFdffRVDhw5F8+bNsWTJEtjb22P58uXV+2YQERERUY1Q4+Y0R0dHIzIyEuHh4Xj77beN2w8fPoyioiKEh4cbtzVt2hQNGjRAYmIiQkNDkZiYiKCgIHh6ehrHREREYPTo0UhKSkKbNm2QmJhocoySMSXTQAoLC3H48GFMnTrVuF+hUCA8PByJiYl3rbugoAAFBQXGx3q9HsCte6pX5H7psixDCFEj7rFO94e9tC7sp3VhP60He2ldqrufFXmdGhWa165diyNHjuDgwYOl9ul0OqhUKjg7O5ts9/T0hE6nM465PTCX7C/Zd68xer0eeXl5yMjIgMFgKHPM6dOn71r7vHnzMHv27FLb09PTkZ+ff9fn3UmWZWRlZUEIUeMmwFPFsJfWhf20Luyn9WAvrUt19zM7O7vcY2tMaL506RJee+017NixAxqNxtLlVNjUqVMRExNjfKzX6+Hr6wt3d3dotdpyH0eWZUiSBHd3d/7w13LspXVhP60L+2k92EvrUt39rEjmrDGh+fDhw0hLS0Pbtm2N2wwGA/bs2YNFixZh27ZtKCwsRGZmpsnV5tTUVHh5eQEAvLy8Sq1yUbK6xu1j7lxxIzU1FVqtFnZ2dlAqlVAqlWWOKTlGWdRqNdRqdantCoWiwk2XJKlSz6Oah720LuyndWE/rQd7aV2qs58VeY0a893VvXt3nDhxAseOHTN+BQcHY/DgwcZ/29raIi4uzvic5ORkXLx4EWFhYQCAsLAwnDhxwmSVix07dkCr1aJ58+bGMbcfo2RMyTFUKhXatWtnMkaWZcTFxRnHEBEREdHDpcZcaa5Tpw5atGhhss3BwQFubm7G7cOHD0dMTAxcXV2h1Woxbtw4hIWFITQ0FADQo0cPNG/eHEOGDMGCBQug0+kwbdo0REdHG68Cjxo1CosWLcLkyZMxbNgw7Nq1C99//z22bNlifN2YmBhERUUhODgYHTp0wMcff4zc3FwMHTq0mt4NIiIiIqpJakxoLo+PPvoICoUC/fr1Q0FBASIiIvDZZ58Z9yuVSsTGxmL06NEICwuDg4MDoqKiMGfOHOOYgIAAbNmyBRMnTsTChQtRv359LFu2DBEREcYx/fv3R3p6OmbMmAGdTofWrVtj69atpT4cSEREREQPB0kIISxdhDXS6/VwcnJCVlZWhT8IWFNvH0kVw15aF/bTurCf1oO9tC7V3c+K5DV+dxERERERmcHQTERERERkBkMzEREREZEZDM1ERERERGYwNBMRERERmcHQTERERERkBkMzEREREZEZDM1ERERERGYwNBMRERERmcHQTERERERkBkMzEREREZEZDM1ERERERGYwNBMRERERmcHQTERERERkBkMzEREREZEZDM1ERERERGYwNBMRERERmcHQTERERERkBkMzEREREZEZDM1ERERERGYwNBMRERERmcHQTERERERkBkMzEREREZEZDM1ERERERGYwNBMRERERmcHQTERERERkBkMzEREREZEZDM1ERERERGYwNBMRERERmcHQTERERERkBkMzEREREZEZDM1ERERERGYwNBMRERERmcHQTERERERkBkMzEREREZEZDM1ERERERGYwNBMRERERmcHQTERERERkBkMzEREREZEZDM1ERERERGYwNBMRERERmcHQTERERERkRo0KzZ9//jlatmwJrVYLrVaLsLAw/PLLL8b9Xbt2hSRJJl+jRo0yOcbFixcRGRkJe3t7eHh4YNKkSSguLjYZEx8fj7Zt20KtVqNRo0ZYuXJlqVoWL14Mf39/aDQahISE4MCBAw/knImIiIio5qtRobl+/fqYP38+Dh8+jEOHDuGJJ57As88+i6SkJOOYV199FVevXjV+LViwwLjPYDAgMjIShYWFSEhIwKpVq7By5UrMmDHDOCYlJQWRkZHo1q0bjh07hgkTJuCVV17Btm3bjGPWrVuHmJgYzJw5E0eOHEGrVq0QERGBtLS06nkjiIiIiKhGkYQQwtJF3Iurqyvee+89DB8+HF27dkXr1q3x8ccflzn2l19+wdNPP40rV67A09MTALBkyRK8+eabSE9Ph0qlwptvvoktW7bg5MmTxucNGDAAmZmZ2Lp1KwAgJCQE7du3x6JFiwAAsizD19cX48aNw5QpU8pVt16vh5OTE7KysqDVast9vrIsIy0tDR4eHlAoatTvNFRB7KV1YT+tC/tpPdhL61Ld/axIXrN54NVUksFgwPr165Gbm4uwsDDj9tWrV+Pbb7+Fl5cXevfujenTp8Pe3h4AkJiYiKCgIGNgBoCIiAiMHj0aSUlJaNOmDRITExEeHm7yWhEREZgwYQIAoLCwEIcPH8bUqVON+xUKBcLDw5GYmHjXegsKClBQUGB8rNfrAdxqvizL5T5vWZYhhKjQc6hmYi+tC/tpXdhP68FeWpfq7mdFXqfGheYTJ04gLCwM+fn5cHR0xMaNG9G8eXMAwKBBg+Dn5wcfHx8cP34cb775JpKTk/HDDz8AAHQ6nUlgBmB8rNPp7jlGr9cjLy8PGRkZMBgMZY45ffr0XeueN28eZs+eXWp7eno68vPzy33+siwjKysLQgj+xlzLsZfWhf20Luyn9WAvrUt19zM7O7vcY2tcaG7SpAmOHTuGrKwsbNiwAVFRUdi9ezeaN2+OESNGGMcFBQXB29sb3bt3x9mzZ9GwYUMLVg1MnToVMTExxsd6vR6+vr5wd3ev8PQMSZLg7u7OH/5ajr20LuyndWE/rQd7aV2qu58ajabcY2tcaFapVGjUqBEAoF27djh48CAWLlyIL774otTYkJAQAMCZM2fQsGFDeHl5lVrlIjU1FQDg5eVl/N+SbbeP0Wq1sLOzg1KphFKpLHNMyTHKolaroVarS21XKBQVbrokSZV6HtU87KV1YT+tC/tpPdhL61Kd/azIa9T47y5Zlk3mCt/u2LFjAABvb28AQFhYGE6cOGGyysWOHTug1WqNUzzCwsIQFxdncpwdO3YY502rVCq0a9fOZIwsy4iLizOZW01ERERED48adaV56tSp6NWrFxo0aIDs7GysWbMG8fHx2LZtG86ePYs1a9bgqaeegpubG44fP46JEyeic+fOaNmyJQCgR48eaN68OYYMGYIFCxZAp9Nh2rRpiI6ONl4FHjVqFBYtWoTJkydj2LBh2LVrF77//nts2bLFWEdMTAyioqIQHByMDh064OOPP0Zubi6GDh1qkfeFiIiIiCyrRoXmtLQ0vPTSS7h69SqcnJzQsmVLbNu2DU8++SQuXbqEnTt3GgOsr68v+vXrh2nTphmfr1QqERsbi9GjRyMsLAwODg6IiorCnDlzjGMCAgKwZcsWTJw4EQsXLkT9+vWxbNkyREREGMf0798f6enpmDFjBnQ6HVq3bo2tW7eW+nAgERERET0cavw6zbUV12km9tK6sJ/Whf20HuyldanJ6zTzu4uIiIiIyAyGZiIiIiIiMxiaiYiIiIjMYGgmIiIiIjKDoZmIiIiIyAyGZiIiIiIiMxiaiYiIiIjMYGgmIiIiIjKDoZmIiIiIyAyGZiIiIiIiMxiaiYiIiIjMYGgmIiIiIjKDoZmIiIiIyAyGZiIiIiIiMxiaiYiIiIjMYGgmIiIiIjKDoZmIiIiIyAyGZiIiIiIiMxiaiYiIiIjMYGgmIiIiIjKDoZmIiIiIyAyGZiIiIiIiMxiaiYiIiIjMYGgmIiIiIjKDoZmIiIiIyAyGZiIiIiIiMxiaiYiIiIjMYGgmIiIiIjKDoZmIiIiIyAyGZiIiIiIiMxiaiYiIiIjMYGgmIiIiIjKDoZmIiIiIyAyGZiIiIiIiMxiaiYiIiIjMYGgmIiIiIjKDoZmIiIiIyAyGZiIiIiIiMxiaiYiIiIjMYGgmIiIiIjKDoZmIiIiIyIwaFZo///xztGzZElqtFlqtFmFhYfjll1+M+/Pz8xEdHQ03Nzc4OjqiX79+SE1NNTnGxYsXERkZCXt7e3h4eGDSpEkoLi42GRMfH4+2bdtCrVajUaNGWLlyZalaFi9eDH9/f2g0GoSEhODAgQMP5JyJiIiIqOarUaG5fv36mD9/Pg4fPoxDhw7hiSeewLPPPoukpCQAwMSJE7F582asX78eu3fvxpUrV/Dcc88Zn28wGBAZGYnCwkIkJCRg1apVWLlyJWbMmGEck5KSgsjISHTr1g3Hjh3DhAkT8Morr2Dbtm3GMevWrUNMTAxmzpyJI0eOoFWrVoiIiEBaWlr1vRlEREREVHOIGs7FxUUsW7ZMZGZmCltbW7F+/Xrjvj///FMAEImJiUIIIX7++WehUCiETqczjvn888+FVqsVBQUFQgghJk+eLAIDA01eo3///iIiIsL4uEOHDiI6Otr42GAwCB8fHzFv3rxy152VlSUAiKysrAqdr8FgEFevXhUGg6FCz6Oah720LuyndWE/rQd7aV2qu58VyWs2Fs7sd2UwGLB+/Xrk5uYiLCwMhw8fRlFREcLDw41jmjZtigYNGiAxMRGhoaFITExEUFAQPD09jWMiIiIwevRoJCUloU2bNkhMTDQ5RsmYCRMmAAAKCwtx+PBhTJ061bhfoVAgPDwciYmJd623oKAABQUFxsd6vR4AIMsyZFku93nLsgwhRIWeQzUTe2ld2E/rwn5aD/bSulR3PyvyOjUuNJ84cQJhYWHIz8+Ho6MjNm7ciObNm+PYsWNQqVRwdnY2Ge/p6QmdTgcA0Ol0JoG5ZH/JvnuN0ev1yMvLQ0ZGBgwGQ5ljTp8+fde6582bh9mzZ5fanp6ejvz8/PKdPG41LysrC0IIKBQ1avYMVRB7aV3YT+vCfloP9tK6VHc/s7Ozyz22xoXmJk2a4NixY8jKysKGDRsQFRWF3bt3W7oss6ZOnYqYmBjjY71eD19fX7i7u0Or1Zb7OLIsQ5IkuLu784e/lmMvrQv7aV3YT+vBXlqX6u6nRqMp99gaF5pVKhUaNWoEAGjXrh0OHjyIhQsXon///igsLERmZqbJ1ebU1FR4eXkBALy8vEqtclGyusbtY+5ccSM1NRVarRZ2dnZQKpVQKpVljik5RlnUajXUanWp7QqFosJNlySpUs+jmoe9tC7sp3VhP60He2ldqrOfFXmNGv/dJcsyCgoK0K5dO9ja2iIuLs64Lzk5GRcvXkRYWBgAICwsDCdOnDBZ5WLHjh3QarVo3ry5ccztxygZU3IMlUqFdu3amYyRZRlxcXHGMURERET0cKlRV5qnTp2KXr16oUGDBsjOzsaaNWsQHx+Pbdu2wcnJCcOHD0dMTAxcXV2h1Woxbtw4hIWFITQ0FADQo0cPNG/eHEOGDMGCBQug0+kwbdo0REdHG68Cjxo1CosWLcLkyZMxbNgw7Nq1C99//z22bNlirCMmJgZRUVEIDg5Ghw4d8PHHHyM3NxdDhw61yPtCRERERJZVo0JzWloaXnrpJVy9ehVOTk5o2bIltm3bhieffBIA8NFHH0GhUKBfv34oKChAREQEPvvsM+PzlUolYmNjMXr0aISFhcHBwQFRUVGYM2eOcUxAQAC2bNmCiRMnYuHChahfvz6WLVuGiIgI45j+/fsjPT0dM2bMgE6nQ+vWrbF169ZSHw4kIiIiooeDJIQQli7CGun1ejg5OSErK6vCHwRMS0uDh4cH52bVcuyldWE/rQv7aT3YS+tS3f2sSF7jdxcRERERkRkMzUREREREZjA0ExERERGZwdBMRERERGQGQzMRERERkRkMzUREREREZjA0ExERERGZwdBMRERERGQGQzMRERERkRkMzUREREREZjA0ExERERGZwdBMRERERGQGQzMRERERkRkMzUREREREZjA0ExERERGZwdBMRERERGQGQzMRERERkRkMzUREREREZjA0ExERERGZwdBMRERERGQGQzMRERERkRkMzUREREREZjA0ExERERGZwdBMRERERGQGQzMRERERkRkMzUREREREZjA0ExERERGZwdBMRERERGQGQzMRERERkRkMzUREREREZjA0ExERERGZwdBMRERERGRGpULzxYsXkZeXd9f9eXl5uHjxYqWLIiIiIiKqSSoVmgMCArBx48a77v/pp58QEBBQ6aKIiIiIiGqSSoVmIcQ99xcVFUGh4MwPIiIiIrIONuUdqNfrkZmZaXx8/fr1MqdgZGZmYu3atfD29q6SAomIiIiILK3cofmjjz7CnDlzAACSJGHChAmYMGFCmWOFEHj77berpEAiIiIiIksrd2ju0aMHHB0dIYTA5MmTMXDgQLRt29ZkjCRJcHBwQLt27RAcHFzlxRIRERERWUK5Q3NYWBjCwsIAALm5uejXrx9atGjxwAojIiIiIqopyh2abzdz5syqroOIiIiIqMaqVGgGgIyMDHz33Xc4d+4cMjIySq2oIUkSvvrqq/sukIiIiIjI0iq1Lty2bdvQoEEDjB07FsuWLcOuXbvw66+/lvqqqHnz5qF9+/aoU6cOPDw80KdPHyQnJ5uM6dq1KyRJMvkaNWqUyZiLFy8iMjIS9vb28PDwwKRJk1BcXGwyJj4+Hm3btoVarUajRo2wcuXKUvUsXrwY/v7+0Gg0CAkJwYEDByp8TkRERERU+1XqSvPrr78OLy8v/PDDDwgKCqqyYnbv3o3o6Gi0b98excXF+Pe//40ePXrg1KlTcHBwMI579dVXjSt5AIC9vb3x3waDAZGRkfDy8kJCQgKuXr2Kl156Cba2tvjPf/4DAEhJSUFkZCRGjRqF1atXIy4uDq+88gq8vb0REREBAFi3bh1iYmKwZMkShISE4OOPP0ZERASSk5Ph4eFRZedMRERERDWfJMzdqaQMGo0G7733HsaNG/cgajJKT0+Hh4cHdu/ejc6dOwO4daW5devW+Pjjj8t8zi+//IKnn34aV65cgaenJwBgyZIlePPNN5Geng6VSoU333wTW7ZswcmTJ43PGzBgADIzM7F161YAQEhICNq3b49FixYBAGRZhq+vL8aNG4cpU6aYrV2v18PJyQlZWVnQarXlPmdZlpGWlgYPDw/eIKaWYy+tC/tpXdhP68FeWpfq7mdF8lqlrjQ/+uijyM7OrlRxFZGVlQUAcHV1Ndm+evVqfPvtt/Dy8kLv3r0xffp049XmxMREBAUFGQMzAERERGD06NFISkpCmzZtkJiYiPDwcJNjRkREGNedLiwsxOHDhzF16lTjfoVCgfDwcCQmJpZZa0FBAQoKCoyP9Xo9gFvNl2W53OcsyzKEEBV6DtVM7KV1YT+tC/tpPdhL61Ld/azI61QqNL/99tuIjo7GoEGD4O/vX5lDmCXLMiZMmIDHHnvMZGm7QYMGwc/PDz4+Pjh+/DjefPNNJCcn44cffgAA6HQ6k8AMwPhYp9Pdc4xer0deXh4yMjJgMBjKHHP69Oky6503bx5mz55dant6ejry8/MrdN5ZWVkQQvA35lqOvbQu7Kd1YT+tB3tpXaq7nxW5CFyp0BwXFwd3d3c0a9YMTz75JHx9faFUKk3GSJKEhQsXVubwAIDo6GicPHkSe/fuNdk+YsQI47+DgoLg7e2N7t274+zZs2jYsGGlX+9+TZ06FTExMcbHer0evr6+cHd3r/D0DEmS4O7uzh/+Wo69tC7sp3VhP60He2ldqrufGo2m3GMrFZpL5vkCQGxsbJlj7ic0jx07FrGxsdizZw/q169/z7EhISEAgDNnzqBhw4bw8vIqtcpFamoqAMDLy8v4vyXbbh+j1WphZ2cHpVIJpVJZ5piSY9xJrVZDrVaX2q5QKCrcdEmSKvU8qnnYS+vCfloX9tN6sJfWpTr7WZHXqFQ1JfN07/VlMBgqfFwhBMaOHYuNGzdi165dCAgIMPucY8eOAQC8vb0B3Lpz4YkTJ5CWlmYcs2PHDmi1WjRv3tw4Ji4uzuQ4O3bsMN7xUKVSoV27diZjZFlGXFyccQwRERERPTwqfXOTByE6Ohpr1qzBjz/+iDp16hjnIDs5OcHOzg5nz57FmjVr8NRTT8HNzQ3Hjx/HxIkT0blzZ7Rs2RIA0KNHDzRv3hxDhgzBggULoNPpMG3aNERHRxuvBI8aNQqLFi3C5MmTMWzYMOzatQvff/89tmzZYqwlJiYGUVFRCA4ORocOHfDxxx8jNzcXQ4cOrf43hoiIiIgsqkaF5s8//xzArWXlbrdixQq8/PLLUKlU2LlzpzHA+vr6ol+/fpg2bZpxrFKpRGxsLEaPHo2wsDA4ODggKirKZF3ngIAAbNmyBRMnTsTChQtRv359LFu2zLhGMwD0798f6enpmDFjBnQ6HVq3bo2tW7eW+nAgEREREVm/Sq3TrFAoIEmS2XGVmaJhLbhOM7GX1oX9rFlkWUZSUhIyMjLg4uKCwMDACvWF/bQe7KV1sbp1mmfMmFEqNBsMBpw/fx6bNm1CkyZN8PTTT1fm0ERERPeUkJCAxUuWIvn8PygsNkBlo0QT/3qIHjUCHTt2tHR5RGSlKhWaZ82addd9V69eRWhoKBo3blzZmoiIiMqUkJCAydPnIM/JHwG9RsKhrhdyr+mQfGgnJk+fgwVzZzA4E9EDUeXXvb29vTFq1CjMnTu3qg9NREQPMVmWsXjJUuQ5+aNV72Fw8vaDja0aTt5+aPn0MOQ7++OzL77kneGI6IF4IJNFHBwckJKS8iAOTURED6mkpCQkn/8HAe3DS00RlCQJfsHdcTrlMpKSkixUIRFZsyoPzSdPnsQnn3zC6RlERFSlMjIyUFhsgEPdsm8y5ejmhcJiAzIyMqq5MiJ6GFRqTnNAQECZq2dkZmYiKysL9vb22LRp0/3WRkREZOTi4gKVjRK513Rw8vYrtT/nug4qGyVcXFwsUB0RWbtKheYuXbqU+acxFxcXNGzYEAMGDICrq2uVFEhERAQAgYGBaOJfD8mHdqLl08NM/jskhMCFQ3FoGlAfgYGBFqySiKxVpULzypUrq7gMIiKie1MoFIgeNQKTp8/B8djl8AvuDkc3L+Rc1+HCoThoMs9jzOszuFYvET0QVXJHwLy8PACAnZ1dVRyOiIioTB07dsSCuTNurdP8y1LjOs1NA+pjzOtcbo6IHpxKh+aLFy9i5syZ+Pnnn3Ht2jUAQN26dREZGYmZM2fCz6/0fDMiIqL71bFjR4SGht7XHQGJiCqqUqH59OnT6NSpEzIzM/Hkk0+iWbNmxu1ff/01Nm/ejL1796JJkyZVWiwRERFwa6pGUFCQpcsgoodIpULzlClToFAocPTo0VL/p3Xy5El0794dU6ZMwcaNG6ukSCIiIiIiS6rU37J2796N8ePHl/lbfosWLTB27FjEx8ffb21ERERERDVCpUJzUVHRPT/0Z29vj6KiokoXRURERERUk1QqNLdp0wbLli1DVlZWqX16vR5fffUV2rZte9/FERERERHVBJWa0zx79mz07NkTTZs2xdChQ423zE5OTsaqVatw/fp1LF68uEoLJSIiIiKylEqF5ieeeAI///wzJk2ahPnz55vsa926Nb755ht069atSgokIiIiIrK0Sq/THB4ejqNHj0Kn0+HChQsAAD8/P3h5eVVZcURERERENcF93xHQy8uLQZmIiIiIrFq5Pwj4999/Q6PRYPLkyfccN2nSJNjZ2SElJeW+iyMiIiIiqgnKHZo/+eQTeHl54Z133rnnuHfeeQdeXl745JNP7rs4IiIiIqKaoNyhefv27RgwYABsbW3vOU6lUmHAgAH45Zdf7rs4IiIiIqKaoNyh+eLFi2jSpEm5xj766KPGDwcSEREREdV25Q7NarUaOTk55Rqbm5sLlUpV6aKIiIiIiGqScofmpk2bYufOneUaGxcXh2bNmlW6KCIiIiKimqTcobl///6IjY3Fpk2b7jnuxx9/RGxsLPr373+/tRERERER1QjlDs1jxoxBmzZt8K9//QujR4/G77//Dr1eDyEE9Ho9fv/9d4wePRrPP/88WrVqhTFjxjzIuomIiIiIqk25b26iVquxbds2REVF4YsvvsDSpUtLjRFCoGfPnvj666+hVqurtFAiIiIiIkup0B0B3dzcEBsbiwMHDuCnn37Cn3/+Cb1eD61Wi6ZNm6J3794IDQ19ULUSEREREVlEpW6j3aFDB3To0KGqayEiIiIiqpHKPaeZiIiIiOhhxdBMRERERGQGQzMRERERkRkMzUREREREZjA0ExERERGZUaWh+dy5c/jzzz+r8pBERERERBZXqdD8ySefYMCAASbbhg4dikcffRQtWrRAcHAw0tLSqqRAIiIiIiJLq1RoXrZsGTw9PY2Pt23bhlWrVmHEiBH49NNPce7cOcyePbvKiiQiIiIisqRK3dzkwoULaNasmfHx999/j4CAAHz++ecAAJ1Oh2+++aZqKiQiIiIisrBKXWkWQpg83r59O3r16mV87O/vD51Od3+VERERERHVEJUKzY0bN8bGjRsB3JqaceXKFZPQfPnyZTg7O1dJgUREREREllap6RlvvPEGBg0aBBcXF+Tm5qJZs2aIiIgw7t+1axdat25dVTUSEREREVlUpa40DxgwANu2bcPLL7+Mt956C7/++itsbG7l7xs3bsDV1RUjRoyo8HHnzZuH9u3bo06dOvDw8ECfPn2QnJxsMiY/Px/R0dFwc3ODo6Mj+vXrh9TUVJMxFy9eRGRkJOzt7eHh4YFJkyahuLjYZEx8fDzatm0LtVqNRo0aYeXKlaXqWbx4Mfz9/aHRaBASEoIDBw5U+JyIiIiIqPar9DrNTz75JD766CPMnDkT7u7uxu2urq744Ycf0Ldv3wofc/fu3YiOjsa+ffuwY8cOFBUVoUePHsjNzTWOmThxIjZv3oz169dj9+7duHLlCp577jnjfoPBgMjISBQWFiIhIQGrVq3CypUrMWPGDOOYlJQUREZGolu3bjh27BgmTJiAV155Bdu2bTOOWbduHWJiYjBz5kwcOXIErVq1QkREBJfSIyIiInoISeLOT/VV0s2bN7F27VoUFBTgqaeegp+f330fMz09HR4eHti9ezc6d+6MrKwsuLu7Y82aNXj++ecBAKdPn0azZs2QmJiI0NBQ/PLLL3j66adx5coV47J4S5YswZtvvon09HSoVCq8+eab2LJlC06ePGl8rQEDBiAzMxNbt24FAISEhKB9+/ZYtGgRAECWZfj6+mLcuHGYMmWK2dr1ej2cnJyQlZUFrVZb7nOWZRlpaWnw8PCAQsEbNtZm7KV1YT+tC/tpPdhL61Ld/axIXqvUnObhw4dj//79xtBZWFiI0NBQ42MnJyfs2rULbdq0qczhjbKysgDcunoNAIcPH0ZRURHCw8ONY5o2bYoGDRoYQ3NiYiKCgoJM1pGOiIjA6NGjkZSUhDZt2iAxMdHkGCVjJkyYYDyfw4cPY+rUqcb9CoUC4eHhSExMLLPWgoICFBQUGB/r9XoAt5ovy3K5z1mWZQghKvQcqpnYS+vCfloX9tN6sJfWpbr7WZHXqVRo/vXXX/Hiiy8aH69ZswYnT57E6tWr0apVK/Tr1w+zZ8/Gpk2bKnN4ALdOYsKECXjsscfQokULALfWf1apVKVW5vD09DQucafT6UwCc8n+kn33GqPX65GXl4eMjAwYDIYyx5w+fbrMeufNm1fmDV3S09ORn59fzrO+dd5ZWVkQQvA35lqOvbQu7Kd1YT+tB3tpXaq7n9nZ2eUeW6nQrNPp4O/vb3y8adMmBAcHY+DAgQCAV199Fe+9915lDm0UHR2NkydPYu/evfd1nOoydepUxMTEGB/r9Xr4+vrC3d29wtMzJEmCu7s7f/hrOfbSurCf1oX9tB7spXWp7n5qNJpyj61UaHZwcEBmZiYAoLi4GPHx8Rg3bpxxf506dYxTKypj7NixiI2NxZ49e1C/fn3jdi8vLxQWFiIzM9PkanNqaiq8vLyMY+5c5aJkdY3bx9y54kZqaiq0Wi3s7OygVCqhVCrLHFNyjDup1Wqo1epS2xUKRYWbLklSpZ5HNQ97aV3YT+vCfloP9tK6VGc/K/Ialaqmbdu2+PLLL3H06FG88847yM7ORu/evY37z549W2pqQ3kIITB27Fhs3LgRu3btQkBAgMn+du3awdbWFnFxccZtycnJuHjxIsLCwgAAYWFhOHHihMkqFzt27IBWq0Xz5s2NY24/RsmYkmOoVCq0a9fOZIwsy4iLizOOISIiIqKHR6WuNL/zzjuIiIhAcHAwhBB4/vnn0aFDB+P+jRs34rHHHqvwcaOjo7FmzRr8+OOPqFOnjnEOspOTE+zs7ODk5IThw4cjJiYGrq6u0Gq1GDduHMLCwhAaGgoA6NGjB5o3b44hQ4ZgwYIF0Ol0mDZtGqKjo41XgkeNGoVFixZh8uTJGDZsGHbt2oXvv/8eW7ZsMdYSExODqKgoBAcHo0OHDvj444+Rm5uLoUOHVuYtIyIiIqJarFKhOTg4GKdPn0ZCQgKcnZ3RpUsX477MzEyMGTPGZFt5ff755wCArl27mmxfsWIFXn75ZQDARx99BIVCgX79+qGgoAARERH47LPPjGOVSiViY2MxevRohIWFwcHBAVFRUZgzZ45xTEBAALZs2YKJEydi4cKFqF+/PpYtW2ZyV8P+/fsjPT0dM2bMgE6nQ+vWrbF169ZKXUEnIiIiotqtytZpJlNcp5nYS+vCfloX9tN6sJfWpSav01zpagwGA9auXYuRI0eib9++OHHiBIBbayv/8MMPpT5ER0RERERUW1UqNGdmZuKxxx7DoEGD8N133+Gnn35Ceno6AMDR0RHjx4/HwoULq7RQIiIiIiJLqVRonjJlCpKSkrBt2zacO3cOt8/wUCqVeP755/Hzzz9XWZFERERERJZUqdC8adMmjBs3Dk8++SQkSSq1v3Hjxjh//vz91kZEREREVCNUKjRnZWWVWkP5dkVFRSguLq50UURERERENUmlQnPDhg1x5MiRu+7fvn278UYiRERERES1XaVC8yuvvILly5dj3bp1xvnMkiShoKAAb731FrZu3YqRI0dWaaFERERERJZSqZubvPbaa0hKSsLAgQPh7OwMABg0aBCuX7+O4uJijBw5EsOHD6/KOomIiIiILKZSoVmSJHz55ZeIiorChg0b8Pfff0OWZTRs2BAvvPACOnfuXNV1EhERERFZTKVCc4lOnTqhU6dOVVULEREREVGNVKk5zSkpKdi8efNd92/evJlLzhERERGR1ajUleY33ngDer0evXv3LnP/4sWL4ezsjLVr195XcURERERENUGlrjQnJibiySefvOv+7t2747fffqt0UURERERENUmlQnNGRgbq1Klz1/2Ojo64fv16pYsiIiIiIqpJKhWaGzRogN9///2u+3/77TfUr1+/0kUREREREdUklQrNAwcOxHfffYdPPvkEsiwbtxsMBixcuBDr1q3DoEGDqqxIIiIiIiJLqtQHAadOnYq9e/diwoQJeOedd9CkSRMAQHJyMtLT09G1a1e89dZbVVooEREREZGlVCo0q9VqbN++HatWrcIPP/yAs2fPAgA6dOiAfv364aWXXoJCUamL2EREtZIsy0hKSkJGRgZcXFwQGBjI/x8kIrIilb65iUKhwNChQzF06NCqrIeIqNZJSEjA4iVLkXz+HxQWG6CyUaKJfz1EjxqBjh07Wro8IiKqApW6DHLjxg0cP378rvtPnDiBjIyMShdFRFRbJCQkYPL0OTido4F/r5FoM3QO/HuNRHKuBpOnz0FCQoKlSyQioipQqdA8ceJEjBgx4q77R44ciTfeeKPSRRER1QayLGPxkqXIc/JHq97D4OTtBxtbNZy8/dDy6WHId/bHZ198afKBaSIiqp0qFZp37dqFZ5555q77e/fujZ07d1a6KCKi2iApKQnJ5/9BQPtwSJJksk+SJPgFd8fplMtISkqyUIVERFRVKhWa09PTUbdu3bvud3NzQ1paWqWLIiKqDTIyMlBYbIBDXa8y9zu6eaGw2MDpakREVqBSodnb2xtHjx696/7Dhw/D3d290kUREdUGLi4uUNkokXtNV+b+nOs6qGyUcHFxqebKiIioqlUqNPfp0wdfffUVfvrpp1L7fvzxR6xYsQJ9+/a97+KIiGqywMBANPGvh/OHdkIIYbJPCIELh+LQNKA+AgMDLVQhERFVlUotOTdr1izs3LkTffv2RatWrdCiRQsAwMmTJ/HHH3+gWbNmmD17dpUWSkRU0ygUCkSPGoHJ0+fgeOxy+AV3h6ObF3Ku63DhUBw0mecx5vUZXK+ZiMgKVOr/yZ2cnLBv3z5MmzYNRUVF2LBhAzZs2ICioiJMnz4d+/fvh7OzcxWXSkRU83Ts2BEL5s5AE4d8XPhlKY6unIkLvyxFU8cCLJg7g+s0ExFZiUrf3MTBwQGzZ8++6xXlkrtiERFZu44dOyI0NJR3BCQismKVDs1lKSgowE8//YTVq1dj69atyM/Pr8rDExHVWAqFAkFBQZYug4iIHpD7Ds1CCMTFxWH16tXYuHEj9Ho93N3dMWjQoKqoj4iIiIjI4iodmg8fPozVq1dj7dq10Ol0kCQJAwYMwNixYxEaGlpqoX8iIiIiotqqQqH53LlzWL16NVavXo2///4b9erVw+DBg9GhQwf0798f/fr1Q1hY2IOqlYiIiIjIIsodmsPCwnDgwAHUrVsXzz//PJYtW4ZOnToBAM6ePfvACiQiIiIisrRyh+b9+/cjICAAH374ISIjI2FjU6WfISQiIiIiqrHKvR7SokWL4O3tjb59+8LLywsjR47Er7/+WuouWERERERE1qbcoXnMmDHYu3cvzp49iwkTJuC3335D9+7dUa9ePcyYMQOSJPHDf0RERERklSq88n5AQACmTZuGU6dO4eDBgxgwYADi4+MhhMCYMWMwYsQIxMbGco1mIiIiIrIa93W7qnbt2uHDDz/EpUuXsH37dkRERGDdunV45plnULdu3aqqkYiIiIjIoqrkHq8KhQLh4eFYuXIlUlNT8d1336F79+5VcWgiIiIiIourktB8O41Gg/79++PHH3+s6kMTEREREVlElYdmIiIiIiJrU6NC8549e9C7d2/4+PhAkiRs2rTJZP/LL79sXKWj5Ktnz54mY27cuIHBgwdDq9XC2dkZw4cPR05OjsmY48eP4/HHH4dGo4Gvry8WLFhQqpb169ejadOm0Gg0CAoKws8//1zl50tEREREtUONCs25ublo1aoVFi9efNcxPXv2xNWrV41f3333ncn+wYMHIykpCTt27EBsbCz27NmDESNGGPfr9Xr06NEDfn5+OHz4MN577z3MmjULS5cuNY5JSEjAwIEDMXz4cBw9ehR9+vRBnz59cPLkyao/aSIiIiKq8WrUbf169eqFXr163XOMWq2Gl5dXmfv+/PNPbN26FQcPHkRwcDAA4NNPP8VTTz2F999/Hz4+Pli9ejUKCwuxfPlyqFQqBAYG4tixY/jwww+N4XrhwoXo2bMnJk2aBACYO3cuduzYgUWLFmHJkiVVeMZEREREVBvUqNBcHvHx8fDw8ICLiwueeOIJvP3223BzcwMAJCYmwtnZ2RiYASA8PBwKhQL79+9H3759kZiYiM6dO0OlUhnHRERE4N1330VGRgZcXFyQmJiImJgYk9eNiIgoNV3kdgUFBSgoKDA+1uv1AABZliHLcrnPT5ZlCCEq9ByqmdhL68J+Whf203qwl9aluvtZkdepVaG5Z8+eeO655xAQEICzZ8/i3//+N3r16oXExEQolUrodDp4eHiYPMfGxgaurq7Q6XQAAJ1Oh4CAAJMxnp6exn0uLi7Q6XTGbbePKTlGWebNm4fZs2eX2p6enl6hG73IsoysrCwIIaBQ1KjZM1RB7KV1YT+tC/tpPdhL61Ld/czOzi732FoVmgcMGGD8d1BQEFq2bImGDRsiPj7e4utCT5061eTqtF6vh6+vL9zd3aHVast9HFmWIUkS3N3d+cNfy7GX1oX9tC7sp/VgL61LdfdTo9GUe2ytCs13euSRR1C3bl2cOXMG3bt3h5eXF9LS0kzGFBcX48aNG8Z50F5eXkhNTTUZU/LY3Ji7zaUGbs21VqvVpbYrFIoKN12SpEo9j2oe9tK6sJ/Whf20HuyldanOflbkNWr1d9fly5dx/fp1eHt7AwDCwsKQmZmJw4cPG8fs2rULsiwjJCTEOGbPnj0oKioyjtmxYweaNGkCFxcX45i4uDiT19qxYwfCwsIe9CkRERERUQ1Uo0JzTk4Ojh07hmPHjgEAUlJScOzYMVy8eBE5OTmYNGkS9u3bh/PnzyMuLg7PPvssGjVqhIiICABAs2bN0LNnT7z66qs4cOAAfv/9d4wdOxYDBgyAj48PAGDQoEFQqVQYPnw4kpKSsG7dOixcuNBkasVrr72GrVu34oMPPsDp06cxa9YsHDp0CGPHjq3294SIiIiILK9GheZDhw6hTZs2aNOmDQAgJiYGbdq0wYwZM6BUKnH8+HE888wzaNy4MYYPH4527drht99+M5kWsXr1ajRt2hTdu3fHU089hU6dOpmswezk5ITt27cjJSUF7dq1w+uvv44ZM2aYrOXcsWNHrFmzBkuXLkWrVq2wYcMGbNq0CS1atKi+N4OIiIiIagxJCCEsXYQ10uv1cHJyQlZWVoU/CJiWlgYPDw/Ozarl2Evrwn5aF/bTerCX1qW6+1mRvMbvLiIiIiIiMxiaiYiIiIjMqNVLzhGRdZBlGUlJSca7cgYGBvLPrEREVKMwNBORRSUkJGDxkqVIPv8PCosNUNko0cS/HqJHjUDHjh0tXR4REREATs8gIgtKSEjA5OlzcDpHA/9eI9Fm6Bz49xqJ5FwNJk+fg4SEBEuXSEREBIChmYgsRJZlLF6yFHlO/mjVexicvP1gY6uGk7cfWj49DPnO/vjsiy8hy7KlSyUiImJoJiLLSEpKQvL5fxDQPhySJJnskyQJfsHdcTrlMpKSkixUIRER0f8wNBORRWRkZKCw2ACHul5l7nd080JhsQEZGRnVXBkREVFpDM1EZBEuLi5Q2SiRe01X5v6c6zqobJRwcXGp5sqIiIhKY2gmIosIDAxEE/96OH9oJ+68MakQAhcOxaFpQH0EBgZaqEIiIqL/YWgmIotQKBSIHjUCmszzOB67HJlXz6O4MB+ZV2891mSex5iRr3K9ZiIiqhG4TjMRWUzHjh2xYO6MW+s0/7LUuE5z04D6GPP6DK7TTERENQZDMxFZVMeOHREaGso7AhIRUY3G0ExEFqdQKBAUFGTpMoiIiO6Kl3KIiIiIiMxgaCYiIiIiMoOhmYiIiIjIDIZmIiIiIiIzGJqJiIiIiMxgaCYiIiIiMoOhmYiIiIjIDIZmIiIiIiIzGJqJiIiIiMxgaCYiIiIiMoOhmYiIiIjIDIZmIiIiIiIzbCxdABFZnizLSEpKQkZGBlxcXBAYGAiFgr9TExERlWBoJnrIJSQkYPGSpUg+/w8Kiw1Q2SjRxL8eokeNQMeOHS1dHhERUY3AS0lED7GEhARMnj4Hp3M08O81Em2GzoF/r5FIztVg8vQ5SEhIsHSJRERENQJDM9FDSpZlLF6yFHlO/mjVexicvP1gY6uGk7cfWj49DPnO/vjsiy8hy7KlSyUiIrI4hmaih1RSUhKSz/+DgPbhkCTJZJ8kSfAL7o7TKZeRlJRkoQqJiIhqDoZmoodURkYGCosNcKjrVeZ+RzcvFBYbkJGRUc2VERER1TwMzUQPKRcXF6hslMi9pitzf851HVQ2Sri4uFRzZURERDUPQzPRQyowMBBN/Ovh/KGdEEKY7BNC4MKhODQNqI/AwEALVUhERFRzMDQTPaQUCgWiR42AJvM8jscuR+bV8yguzEfm1VuPNZnnMWbkq1yvmYiICFynmeih1rFjRyyYO+PWOs2/LDWu09w0oD7GvD6D6zQTERH9P4Zmoodcx44dERoayjsCEhER3QNDMxFBoVAgKCjI0mUQERHVWLyURERERERkBkMzEREREZEZDM1ERERERGZwTjNRLSPLMj+0R0REVM1q1H9p9+zZg969e8PHxweSJGHTpk0m+4UQmDFjBry9vWFnZ4fw8HD8/fffJmNu3LiBwYMHQ6vVwtnZGcOHD0dOTo7JmOPHj+Pxxx+HRqOBr68vFixYUKqW9evXo2nTptBoNAgKCsLPP/9c5edLVFEJCQkY8vIwDI2OwdgpszA0OgZDXh6GhIQES5dGRERk1WpUaM7NzUWrVq2wePHiMvcvWLAAn3zyCZYsWYL9+/fDwcEBERERyM/PN44ZPHgwkpKSsGPHDsTGxmLPnj0YMWKEcb9er0ePHj3g5+eHw4cP47333sOsWbOwdOlS45iEhAQMHDgQw4cPx9GjR9GnTx/06dMHJ0+efHAnT2RGQkICJk+fg9M5Gvj3Gok2Q+fAv9dIJOdqMHn6HAZnIiKiB0gSd94/t4aQJAkbN25Enz59ANy6yuzj44PXX38db7zxBgAgKysLnp6eWLlyJQYMGIA///wTzZs3x8GDBxEcHAwA2Lp1K5566ilcvnwZPj4++Pzzz/HWW29Bp9NBpVIBAKZMmYJNmzbh9OnTAID+/fsjNzcXsbGxxnpCQ0PRunVrLFmypMx6CwoKUFBQYHys1+vh6+uLjIwMaLXacp+3LMtIT0+Hu7s7/+Rey1VlL2VZxsvDX8XpHA1aPf0yJEky7hNC4PiWlWjqWIAVy5by++YB4c+mdWE/rQd7aV2qu596vR4uLi7Iysoym9dqzZzmlJQU6HQ6hIeHG7c5OTkhJCQEiYmJGDBgABITE+Hs7GwMzAAQHh4OhUKB/fv3o2/fvkhMTETnzp2NgRkAIiIi8O677xrniCYmJiImJsbk9SMiIkpNF7ndvHnzMHv27FLb09PTTa6EmyPLMrKysiCE4A9/LVeVvTx//jwMkg06dQ2Hvaqw1P6OXboj7fA2HDp0CP7+/vf1WlQ2/mxaF/bTerCX1qW6+5mdnV3usbUmNOt0OgCAp6enyXZPT0/jPp1OBw8PD5P9NjY2cHV1NRkTEBBQ6hgl+1xcXKDT6e75OmWZOnWqSdAuudLs7u5e4SvNkiTxN2YrUJW9TE5Oxp9/n4P6MQ/kFKlL7S9We+DPv8+hoKCg1M8AVQ3+bFoX9tN6sJfWpbr7qdFoyj221oTmmk6tVkOtLh1mFApFhZsuSVKlnkc1T1X10tXVFTZKBXKupcLJ26/U/uzrqbBRKuDq6srvmweIP5vWhf20HuyldanOflbkNWrNd5eXlxcAIDU11WR7amqqcZ+XlxfS0tJM9hcXF+PGjRsmY8o6xu2vcbcxJfuJqltgYCCa+NfD+UM7cefHEIQQuHAoDk0D6iMwMNBCFRIREVm3WhOaAwIC4OXlhbi4OOM2vV6P/fv3IywsDAAQFhaGzMxMHD582Dhm165dkGUZISEhxjF79uxBUVGRccyOHTvQpEkTuLi4GMfc/jolY0peh6i6KRQKRI8aAU3meRyPXY7Mq+dRXJiPzKu3Hmsyz2PMyFd5lYWIiOgBqVH/hc3JycGxY8dw7NgxALc+/Hfs2DFcvHgRkiRhwoQJePvtt/HTTz/hxIkTeOmll+Dj42NcYaNZs2bo2bMnXn31VRw4cAC///47xo4diwEDBsDHxwcAMGjQIKhUKgwfPhxJSUlYt24dFi5caDIf+bXXXsPWrVvxwQcf4PTp05g1axYOHTqEsWPHVvdbQmTUsWNHLJg7A00c8nHhl6U4unImLvyyFE0dC7Bg7gx07NjR0iUSERFZL1GD/PrrrwJAqa+oqCghhBCyLIvp06cLT09PoVarRffu3UVycrLJMa5fvy4GDhwoHB0dhVarFUOHDhXZ2dkmY/744w/RqVMnoVarRb169cT8+fNL1fL999+Lxo0bC5VKJQIDA8WWLVsqdC5ZWVkCgMjKyqrQ8wwGg7h69aowGAwVeh7VPA+qlwaDQRw/flzs3r1bHD9+nN8r1YQ/m9aF/bQe7KV1qe5+ViSv1dh1mms7vV4PJyencq37dztZlpGWlgYPDw/+qb2WYy+tC/tpXdhP68FeWpfq7mdF8hq/u4iIiIiIzGBoJiIiIiIyg+s0E1UzWZaRlJRkvANlYGAg/6RIRERUwzE0E1WjhIQELF6yFMnn/0FhsQEqGyWa+NdD9KgRXP2CiIioBuPlLaJqkpCQgMnT5+B0jgb+vUaizdA58O81Esm5GkyePgcJCQmWLpGIiIjugqGZqBrIsozFS5Yiz8kfrXoPg5O3H2xs1XDy9kPLp4ch39kfn33xJWRZtnSpREREVAaGZqJqkJSUhOTz/yCgfTgkSTLZJ0kS/IK743TKZSQlJVmoQiIiIroXhmaiapCRkYHCYgMc6nqVud/RzQuFxQZkZGRUc2VERERUHgzNRNXAxcUFKhslcq/pytyfc10HlY0SLi4u1VwZERERlQdDM1E1CAwMRBP/ejh/aCfuvAmnEAIXDsWhaUB9BAYGWqhCIiIiuheGZqJqoFAoED1qBDSZ53E8djkyr55HcWE+Mq/eeqzJPI8xI1/les1EREQ1FNdpJroPFblRSceOHbFg7oxb6zT/stS4TnPTgPoY8/oMrtNMRERUgzE0E1VSZW5U0rFjR4SGhvKOgERERLUMQzNRJZTcqCTPyR8BvUbCoa4Xcq/pkHxoJyZPn4MFc2cgNDS0zOcqFAoEBQVVc8VERER0P3h5i6iCeKMSIiKihw9DM1EFlfdGJadOnbJQhURERFTVGJqJKog3KiEiInr4cE4zURnutSrG7TcqcfL2K/Vc3qiEiIjI+jA0E93B3KoYJTcqST60Ey2fHmYyReP2G5U0b94c165ds+CZEBERUVXh9Ayi25SsinE6RwP/XiPRZugc+PcaieRcDSZPn4OEhATeqISIiOghxP+qE/2/iqyKUXKjkiYO+bjwy1IcXTkTF35ZiqaOBVgwlzcqISIisjacnkH0/4yrYvQaefdVMX5ZiqSkJAQFBfFGJURERA8Rhmai/1eZVTF4oxIiIqKHAy+JEf2/21fFKAtXxSAiInp4MTQT/b+SVTHOH9oJIYTJvttXxQgMDLRQhURERGQpDM30UJJlGSdOnMCePXtw4sQJyLLMVTGIiIjorjinmR465tZhXjB3xq39vyw17m8aUB9jXueqGERERA8rhmayanfe2S8rKwtTZr6NPCd/BPQaCYe6Xsi9pkPyoZ2YPH2Ocbk4ropBREREt2NoJqt15xVlW6UCN3SXYfdoCEJ7/+9OfiXrMB+PXY7PvvgSoaGhXBWDiIiITPDSGVmlsu7s59q2F67lA/naBsjIzDQZb1yHOeUykpKSLFM0ERER1Vi80kxW5847+5VcUVbZO0JdxxWScz2cv3ABLi7OkPC/m5iUtQ4zEREREcArzWSFjHf2ax9ucmc/lb0WCgVgI8nIuZmP7Oxsk+dxHWYiIiK6G4Zmsjp3u7OfS71HoHWui+zkfZBlGUVFRcZ9XIeZiIiI7oXTM8gq3L5KRnp6OlQ2CuRe08HJ2884RlIo0LTLs9j/3yUo0F9HnpcWxY4OyLmuw4VDcbfWYX59BlfJICIiolIYmqnWu9sqGTd/24zQf0WbTNHwaBQEN696KLhyGtf3rMbVYpnrMBMREZFZDM1Uq5WsknHnusu5277FlaPx2Aeg2eNPw9HNy3hFua4yH/OXL4OTkxPXYSYiIqJyYWimWutuq2Q4efuhY9S/kbDqP8g7sx8Xcv5BIa8oExER0X1gaKZay7hKRq+RJlMwgFvrLgdGDMb5n7/A1NdGw93dnVeUiYiIqNIYmqnWKfnQX3x8PLJzb8K+rmeZ4xzdvFBkkOHu7o7OnTtXc5VERERkTRiaqVa5/UN/+qwsXE1Lx8G98WjaOgSud6yvzHWXiYiIqKowNFONV3Jl+bfffsOyb9ZC8m6OgF4jYe/qgd1LZyHt9GHIGmc0b9rEGJy57jIRERFVpVo1uXPWrFmQJMnkq2nTpsb9+fn5iI6OhpubGxwdHdGvXz+kpqaaHOPixYuIjIyEvb09PDw8MGnSJBQXF5uMiY+PR9u2baFWq9GoUSOsXLmyOk6PypCQkIAhLw/Dy2Mm4q0583ChqA4Mvm1h0Ghhq7ZDUM/BUN28hmvH4nD66D4UFeYh8+p5HI9dfmvd5ZGvcg4zERER3bdalyYCAwNx9epV49fevXuN+yZOnIjNmzdj/fr12L17N65cuYLnnnvOuN9gMCAyMhKFhYVISEjAqlWrsHLlSsyYMcM4JiUlBZGRkejWrRuOHTuGCRMm4JVXXsG2bduq9Tzpf8vJnc7RwLVtL9i61Ufd9pHINSjxZ/JfuJGRAc9HW6LdM0PhUKzH5R0rsP+Lqbjwy1I0dSzAgrlcJYOIiIiqRq2bnmFjYwMvL69S27OysvDVV19hzZo1eOKJJwAAK1asQLNmzbBv3z6EhoZi+/btOHXqFHbu3AlPT0+0bt0ac+fOxZtvvolZs2ZBpVJhyZIlCAgIwAcffAAAaNasGfbu3YuPPvoIERER1XquDytZlnHixAnMnPM2Mu280b73UKT9dQxCSHBw94Nkq4I+9SLOX7gAFxdneD7aEl19G2Hf55Mw9uUB6Nq1K1fJICIioipV60Lz33//DR8fH2g0GoSFhWHevHlo0KABDh8+jKKiIoSHhxvHNm3aFA0aNEBiYiJCQ0ORmJiIoKAgeHr+b7WFiIgIjB49GklJSWjTpg0SExNNjlEyZsKECfesq6CgAAUFBcbHer0ewK0AKMtyuc9PlmUIISr0HGuSmJiIz5cuwx9JybhwRQe3x9vi+PHjcLYBlDYSivWpULvVh6NzXdxMv4icbD20dbS4mZEGJ2dndOnSxTiH2dLv4cPeS2vDfloX9tN6sJfWpbr7WZHXqVWhOSQkBCtXrkSTJk1w9epVzJ49G48//jhOnjwJnU4HlUoFZ2dnk+d4enpCp9MBAHQ6nUlgLtlfsu9eY/R6PfLy8mBnZ1dmbfPmzcPs2bNLbU9PT0d+fn65z1GWZWRlZUEI8VBdKZVlGbt378YPm3+GcK6P4J4t4XHqCFzatkFR3k1Ihny0CQqEyEmGi783RB1b3BQaeNoWwNEmH7m6E+ga2g5169ZFWlqapU8HwMPbS2vFfloX9tN6sJfWpbr7mZ2dXe6xtSo09+rVy/jvli1bIiQkBH5+fvj+++/vGmary9SpUxETE2N8rNfr4evrC3d3d2i12nIfR5ZlSJIEd3f3h+aHPzExEZ998SW279oN4dUcrm3bw+bCdaSf/hveDbKgcquP7OuXIBW7Ivvg71CcT4Xjox1QXJiHQskG10/HQpN5HmNnTytz6o6lPIy9tGbsp3VhP60He2ldqrufGo2m3GNrVWi+k7OzMxo3bowzZ87gySefRGFhITIzM02uNqemphqDlJeXFw4cOGByjJLVNW4fc+eKG6mpqdBqtfcM5mq1Gmq1utR2hUJR4aZLklSp59U2sixj9erVeO+Tz3HTzgOygxs8O/aFrdYDuRl2KBQKpP3xK+p1GwKNkztuFtxE4yf+hUsHd+By7CdQKSU4NaiHpgG+GBMzvUZ+6O9h6eXDgv20Luyn9WAvrUt19rMir1Grv7tycnJw9uxZeHt7o127drC1tUVcXJxxf3JyMi5evIiwsDAAQFhYGE6cOGHy5/sdO3ZAq9WiefPmxjG3H6NkTMkxqGokJCTgxaihmPDmNFyWnZGnbYCCYhkKx7qwVdvBycsfdZp3wc2LJ6HbvRpFWWkwFBVAobKDk4cPGvm4Ye7kcVix+CN8veKrGhmYiYiIyHrUqivNb7zxBnr37g0/Pz9cuXIFM2fOhFKpxMCBA+Hk5IThw4cjJiYGrq6u0Gq1GDduHMLCwhAaGgoA6NGjB5o3b44hQ4ZgwYIF0Ol0mDZtGqKjo41XiUeNGoVFixZh8uTJGDZsGHbt2oXvv/8eW7ZsseSpW407ry6jjju8HnsOxfk3kXlqLzKvXoCr76NQ2drCrVkYUJwPZepppG5fgsKcTNj7eKF180cx5qP3GJSJiIio2tSq0Hz58mUMHDgQ169fh7u7Ozp16oR9+/bB3d0dAPDRRx9BoVCgX79+KCgoQEREBD777DPj85VKJWJjYzF69GiEhYXBwcEBUVFRmDNnjnFMQEAAtmzZgokTJ2LhwoWoX78+li1bxuXmqkBCQgIWff4FtsXFQ3gHwk7bAAX/XITCsS7quNlB4+yB3L8SoXGrB1snJyhVamg8AtC8UzjOblsJH5scvP/ufAQFBfFPcERERFStJCGEsHQR1kiv18PJyQlZWVkV/iBgWloaPDw8rCoY7t27F+Mn/RsZSidkpv4D715jUJx/E//sXAmXLlFw9X0UhVf/wj/xa2DjHgCPtt2hcnCBPuUP1Ln5D5zzrta6m5VYay8fVuyndWE/rQd7aV2qu58VyWu16koz1U579+7FkKGvQO/UEGrXABT8cxkFSgfYe3qZXF12ahAI7y4DofttPdJ3foWim9nQSMXo1KUjokfVrsBMRERE1oWhmR6YkvnLc+e/j/Q8GfXCI6FQKKD/ax8KstIhFDZwbhWOtL3f43rCeijbdofarT6cW3aDKjUJdjkCkyeOw+DBg3n1gIiIiCyKoZkeiNvnLxc6ekO2VaBY4wJ7xzpQ13FF3tmDsAl+FrZ1A+DdZQB0v20wubr8eJeOiB41mVeXiYiIqEZgaKYqJcsyvvnmG7zz/kLk2XtCtneDe3BPpB382eTqcnrCBugPboLdI+2grevNq8tERERUozE0U5UomYqx8NPFOHHqNFSPtIdK2wD5qVcg120IWwdn06vLnQfg2uFfkBG/CpnF+bBXyry6TERERDUWQzPdl5Kw/Mmiz3Ay+QyKJRtIjnVRp00kFAoJN88eQkHWDWiadkLOkS3Gq8uu9QLg1r43UveugycEpk95g1eXiYiIqMZiaKZKS0hIwKw5byPx6AkUyApIGi3U7gGQ8/SwdasPKG1g6+iGvLMHoG3/LJyClcg7vQcZ8atwU61G8c0suNtJWL78S3Tq1MnSp0NERER0V7ysR5WSkJCAN96ahQN/noNNvUDY2NWBwk4L+0dDAACG7OuQJAUcWnZHUeoZ6A9shLC1g3u3l+DUpAOcXV3RyMcNXzMwExERUS3A0EwVJssyZs/9D/6+UYRCSQMbj0dhKC4GFDbQBLSFwt4JOad/AyQJap+mcAn9F4qzdMjYvQqX1s1F8el4dHzUE4s/eo+BmYiIiGoFhmYqN1mW8ccff+DVV1/Fb4eOAW7+kGxsofFuBElpAxiKYMhKh2PLHii8+heyEtah6Ppl2Lj7oU6rHrC1r4N6Tmp8+PZ0fLNyOT/wR0RERLUG5zRTuezduxeTp/wbf5xMQt7Nm7BxrQeFe0PI50/AoFDC1tkbhdcvIjf5NziFDYA2pB9yT+xERvwKQJYh8rLgpbXF8uXLeHWZiIiIah1eaSazvvjiCzzz/AAcPPkXChUaKOvUhULtAIWjM5QOzriZnACHoO6QFErc/GsfMn/7FgqVPZweGwD7hu1gq1bDt24dfMPATERERLUUrzTTPe3ZswdTZsxBrlBBYWcPW3c/GHIzobTTIu+vfXBs2QP6/RsAAHXaPIXcU/HITdqFm8l7oVAqYa+yQWir5pg57d+cjkFERES1FkMz3dXevXvR74UByCmSIKltoVDbw65RCHKPb4fdI+2Qe2o3AMC+aWfkpRxGwaUkyEV5AGT41XVE/389jxdeeAFBQUFcf5mIiIhqNYZmKtPevXsxOGoYMnILobBzgiQpAKUtNP6tkXfmAIoyrkAb2g85x3eg8OpfkGUDUJQH2+I8tGvZHHvif4WNDb+9iIiIyDow1ZAJWZaxatUqTHjjTeQWA5LGEZJaAxiKAUMx5OzrcGz5JPT7/n9KRnAfiIJcFKWdRfE/SXhEK+H9Be8yMBMREZFVYbIho4SEBLw2MQZHjicBtmoo7Z2hUDtAUjvCkJ0OufAmck//BqeO/aENfR45x7cjc/cKQDYAeXp4aW3x6fvLOHeZiIiIrA5D80NOlmUkJSUhPj4es/+zABlZ2ZDUjpCUNlDYO8PG3glQ2kC+mQHDzSzc/CsBwlAE+yaPwymsP/L+PoCiy3/A26EOli9ZxNUxiIiIyCoxND/EEhISsHjJUuz5PRGXL164dWXZrg4UansAEiTZALuAtsj9cw9s3XwhKZQounEFOX9sQ+6fv0FSKKFWSngsuCVXxyAiIiKrxtD8kEpISMCkabNx6uxFZKb+c2vdZbUdJKUNJE0dKO20KM74B0WZV1Hn/29UItlqoHT2gnwzCyjIQeMAX3z7zddo1aoVV8cgIiIiq8bQ/BAqLi7GiNHROKMHClIvQ2mrARRKSCp7QMKtK8yPtEP2UR1u/pUIYShCneBnIOdlo+BKMgqvnEZ9TSG+/GIR2rRpY+nTISIiInrgGJofIrIsY+XKlRg3bjzylXZQqOyhVNtBslFDFBfdusqsdoSccw3FmVfh3OVl6PdtQO6fe3Dzr0RICiVEcQHcHVVYvuJbTscgIiKihwZD80MiISEBAwcNwsXLVwEASkdHQC4GJCUkuzqQs29ALrgJlbMX5JsZxivMzl1eguFmJvL+3o+itLNo4K7F8i8W8wN/RERE9FBhaH4I7NmzBz2fikReQTGgtIHCVg3IMmCrAeR8SApb2Dh5wJBzHYW6M7D18EdxVhpyT+3GzeQEQJKAogK0DXwUH72/gFeYiYiI6KHDT29ZuUWLFqFL1yeQV1AEhUoDhdIWUKoghAwhKSEkBUR+NmxdvKG0d4IwFKHg4kkYcjMBKCDn6SGyr2FS9HAk7t3DwExEREQPJV5ptlKyLCMyMhJbt24HlDaQbNWApIBko7z1YT9751th2dkTxRlXUHglGbaej0AuyIMhNxMiPxvCUAi1rRIffDAfo0ePtvQpEREREVkMQ7OVkWUZX3/9NcaPfw3ZObmAQgEolZAUt8KyUNgCQoZCyLBx90dx5lUotR4oztDBkHIEkq0dIAREcT78fDzw9YrlnL9MREREDz1Oz7Aie/bsgW8DfwwdPgLZOTmA0gawUUFS2kJIEgQUQFE+bJ3cIednw5CVCpVnQ0g2aiidPQGVA+TCm1AWZuPN18bgTPJpBmYiIiIi8Eqz1Zg4cSI+XrwEkA23PrgnKSEpFICtBkJSAMUFUGocIAzFKM7UQensheKMqzCcPwbJVgMIARTnw8vNGd9/t5phmYiIiOg2DM1WIDg4GIePnQAMBkBtBxiKAKUtoFACShsohYDk6AL5ZiYkWzsI2YCi9AuAyg4QMuS8LMBQjJcGD8SKFSt4dz8iIiKiOzA013LBwcE4fPjYrakYCgkQBuPd/QQAqSgfSrcGMGSnQ2HvjGL9NWOYlgrzIeQiaB3tsHnjRnTu3NnSp0NERERUIzE012ILFy7E4cNHb33YT/7/q8tCAEpbSBCw0ThCCDsYsq5C6eQNQ851SBotROFNoOAmhKEY7YPbYt++fby6TERERHQPTEq1VHFxMd6aMeNWYJZwax6zjQqQBWAogijKh9LRDZLCBpLaAUXXLkCWDZDkQkgQgJDxwr/64cCBAwzMRERERGYwLdVSP/74I3Jzc3ErMSsAperWlWZJuvVhQCFQmHYOCgdnKOy0kBzrQjIUQxQWQBTlYcK4aKxbt87Sp0FERERUK3B6Ri115coVQEi35idLEmCjBgpvwsbZA8VZqYAQkIsKUPDPaSjUDpAk3LoLoFyEgS/8Cx999JGlT4GIiIio1uCV5lrKx8cHktIWgAQYioHiAijstJDzsmHj5AlhKAZkGZAUkAtyYLipBwrzsOjjD7FmzRpLl09ERERUq/BKcy317LPPwsO9LlJTU29Ny5CLgeJCwEZ1a4UMTR2guODWl6EYXl6euHTpEmxs2HIiIiKiiuKV5lrKxsYGM6dNhUICJKUSUNhAzsuGnKcHbDRAcf6tEC0b8Npr43H16lUGZiIiIqJKYoqqxUaPHo2UlBR8+MliGCAAtQNQkAcUZQAAHLR1EPvjj+jatatlCyUiIiKq5XiluZZbsGABdm3/BR1DO8C5jgPquDijnn8jDBj8Irb/8gsDMxEREVEV4JVmK9C5c2f8Fr8LSUlJyMjIgIuLCwIDA7n+MhEREVEVYaoyY/HixfD394dGo0FISAgOHDhg6ZLKpFAoEBQUhM6dOyMoKIiBmYiIiKgKMVndw7p16xATE4OZM2fiyJEjaNWqFSIiIpCWlmbp0oiIiIioGjE038OHH36IV199FUOHDkXz5s2xZMkS2NvbY/ny5ZYujYiIiIiqEec030VhYSEOHz6MqVOnGrcpFAqEh4cjMTGx1PiCggIUFBQYH+v1egCALMuQZbncryvLMoQQFXoO1UzspXVhP60L+2k92EvrUt39rMjrMDTfxbVr12AwGODp6Wmy3dPTE6dPny41ft68eZg9e3ap7enp6cjPzy/368qyjKysLAghOC+5lmMvrQv7aV3YT+vBXlqX6u5ndnZ2uccyNFeRqVOnIiYmxvhYr9fD19cX7u7u0Gq15T6OLMuQJAnu7u784a/l2Evrwn5aF/bTerCX1qW6+6nRaMo9lqH5LurWrQulUnnrNtW3SU1NhZeXV6nxarUaarW61HaFQlHhpkuSVKnnUc3DXloX9tO6sJ/Wg720LtXZz4q8Br+77kKlUqFdu3aIi4szbpNlGXFxcQgLC7NgZURERERU3Xil+R5iYmIQFRWF4OBgdOjQAR9//DFyc3MxdOhQS5dGRERERNWIofke+vfvj/T0dMyYMQM6nQ6tW7fG1q1bS304kIiIiIisG0OzGWPHjsXYsWMtXQYRERERWRDnNBMRERERmcHQTERERERkBkMzEREREZEZnNP8gAghAPzvdtrlJcsysrOzodFouN5kLcdeWhf207qwn9aDvbQu1d3PkpxWktvuhaH5ASm5LaOvr6+FKyEiIiKie8nOzoaTk9M9x0iiPNGaKkyWZVy5cgV16tSBJEnlfl7J7bcvXbpUodtvU83DXloX9tO6sJ/Wg720LtXdTyEEsrOz4ePjY/bKNq80PyAKhQL169ev9PO1Wi1/+K0Ee2ld2E/rwn5aD/bSulRnP81dYS7ByT9ERERERGYwNBMRERERmcHQXMOo1WrMnDkTarXa0qXQfWIvrQv7aV3YT+vBXlqXmtxPfhCQiIiIiMgMXmkmIiIiIjKDoZmIiIiIyAyGZiIiIiIiMxiaiYiIiIjMYGi2gMWLF8Pf3x8ajQYhISE4cODAPcevX78eTZs2hUajQVBQEH7++edqqpTMqUgvv/zySzz++ONwcXGBi4sLwsPDzfaeqldFfzZLrF27FpIkoU+fPg+2QKqQivYzMzMT0dHR8Pb2hlqtRuPGjfn/tzVERXv58ccfo0mTJrCzs4Ovry8mTpyI/Pz8aqqW7mXPnj3o3bs3fHx8IEkSNm3aZPY58fHxaNu2LdRqNRo1aoSVK1c+8DrLJKharV27VqhUKrF8+XKRlJQkXn31VeHs7CxSU1PLHP/7778LpVIpFixYIE6dOiWmTZsmbG1txYkTJ6q5crpTRXs5aNAgsXjxYnH06FHx559/ipdfflk4OTmJy5cvV3PlVJaK9rNESkqKqFevnnj88cfFs88+Wz3FklkV7WdBQYEIDg4WTz31lNi7d69ISUkR8fHx4tixY9VcOd2por1cvXq1UKvVYvXq1SIlJUVs27ZNeHt7i4kTJ1Zz5VSWn3/+Wbz11lvihx9+EADExo0b7zn+3Llzwt7eXsTExIhTp06JTz/9VCiVSrF169bqKfg2DM3VrEOHDiI6Otr42GAwCB8fHzFv3rwyx7/wwgsiMjLSZFtISIgYOXLkA62TzKtoL+9UXFws6tSpI1atWvWgSqQKqEw/i4uLRceOHcWyZctEVFQUQ3MNUtF+fv755+KRRx4RhYWF1VUilVNFexkdHS2eeOIJk20xMTHisccee6B1UsWVJzRPnjxZBAYGmmzr37+/iIiIeICVlY3TM6pRYWEhDh8+jPDwcOM2hUKB8PBwJCYmlvmcxMREk/EAEBERcdfxVD0q08s73bx5E0VFRXB1dX1QZVI5Vbafc+bMgYeHB4YPH14dZVI5VaafP/30E8LCwhAdHQ1PT0+0aNEC//nPf2AwGKqrbCpDZXrZsWNHHD582DiF49y5c/j555/x1FNPVUvNVLVqUg6yqfZXfIhdu3YNBoMBnp6eJts9PT1x+vTpMp+j0+nKHK/T6R5YnWReZXp5pzfffBM+Pj6l/s+Aql9l+rl371589dVXOHbsWDVUSBVRmX6eO3cOu3btwuDBg/Hzzz/jzJkzGDNmDIqKijBz5szqKJvKUJleDho0CNeuXUOnTp0ghEBxcTFGjRqFf//739VRMlWxu+UgvV6PvLw82NnZVVstvNJMZAHz58/H2rVrsXHjRmg0GkuXQxWUnZ2NIUOG4Msvv0TdunUtXQ5VAVmW4eHhgaVLl6Jdu3bo378/3nrrLSxZssTSpVEFxcfH4z//+Q8+++wzHDlyBD/88AO2bNmCuXPnWro0quV4pbka1a1bF0qlEqmpqSbbU1NT4eXlVeZzvLy8KjSeqkdlelni/fffx/z587Fz5060bNnyQZZJ5VTRfp49exbnz59H7969jdtkWQYA2NjYIDk5GQ0bNnywRdNdVebn09vbG7a2tlAqlcZtzZo1g06nQ2FhIVQq1QOtmcpWmV5Onz4dQ4YMwSuvvAIACAoKQm5uLkaMGIG33noLCgWvF9Ymd8tBWq22Wq8yA7zSXK1UKhXatWuHuLg44zZZlhEXF4ewsLAynxMWFmYyHgB27Nhx1/FUPSrTSwBYsGAB5s6di61btyI4OLg6SqVyqGg/mzZtihMnTuDYsWPGr2eeeQbdunXDsWPH4OvrW53l0x0q8/P52GOP4cyZM8ZffgDgr7/+gre3NwOzBVWmlzdv3iwVjEt+GRJCPLhi6YGoUTmo2j96+JBbu3atUKvVYuXKleLUqVNixIgRwtnZWeh0OiGEEEOGDBFTpkwxjv/999+FjY2NeP/998Wff/4pZs6cySXnaoiK9nL+/PlCpVKJDRs2iKtXrxq/srOzLXUKdJuK9vNOXD2jZqloPy9evCjq1Kkjxo4dK5KTk0VsbKzw8PAQb7/9tqVOgf5fRXs5c+ZMUadOHfHdd9+Jc+fOie3bt4uGDRuKF154wVKnQLfJzs4WR48eFUePHhUAxIcffiiOHj0qLly4IIQQYsqUKWLIkCHG8SVLzk2aNEn8+eefYvHixVxy7mHy6aefigYNGgiVSiU6dOgg9u3bZ9zXpUsXERUVZTL++++/F40bNxYqlUoEBgaKLVu2VHPFdDcV6aWfn58AUOpr5syZ1V84lamiP5u3Y2iueSraz4SEBBESEiLUarV45JFHxDvvvCOKi4uruWoqS0V6WVRUJGbNmiUaNmwoNBqN8PX1FWPGjBEZGRnVXziV8uuvv5b538KSHkZFRYkuXbqUek7r1q2FSqUSjzzyiFixYkW11y2EEJIQ/FsFEREREdG9cE4zEREREZEZDM1ERERERGYwNBMRERERmcHQTERERERkBkMzEREREZEZDM1ERERERGYwNBMRERERmcHQTERERERkBkMzERFVir+/P55++ulKP3/lypWQJAnnz5+vuqKIiB4QhmYiolqkJGgeOnTI0qUQET1UGJqJiIiIiMxgaCYiIiIiMoOhmYjIihQWFmLGjBlo164dnJyc4ODggMcffxy//vqrybjz589DkiS8//77WLx4MR555BHY29ujR48euHTpEoQQmDt3LurXrw87Ozs8++yzuHHjRpmvuX37drRu3RoajQbNmzfHDz/8UGpMUlISnnjiCdjZ2aF+/fp4++23IctyqXE//vgjIiMj4ePjA7VajYYNG2Lu3LkwGAxV8wYREVWSJIQQli6CiIjKZ+XKlRg6dCgOHjyI4ODgUvuvXbuGli1bYuDAgXj00UeRnZ2Nr776CufOncOBAwfQunVrALdCc0BAAFq3bo3CwkK88soruHHjBhYsWIC2bdviiSeeQHx8PAYMGIAzZ87g008/xcsvv4zly5cbX8vf3x9qtRppaWkYNWoUPDw8sGLFCiQlJWHr1q148sknAQA6nQ4tW7ZEcXExXnvtNTg4OGDp0qWws7PD8ePHkZKSAn9/fwBA3759oVKp0L59ezg6OmLXrl1Yv3493njjDbz33nsP/P0lIrorQUREtcaKFSsEAHHw4MEy9xcXF4uCggKTbRkZGcLT01MMGzbMuC0lJUUAEO7u7iIzM9O4ferUqQKAaNWqlSgqKjJuHzhwoFCpVCI/P9+4zc/PTwAQ//3vf43bsrKyhLe3t2jTpo1x24QJEwQAsX//fuO2tLQ04eTkJACIlJQU4/abN2+WOqeRI0cKe3t7k9cmIqpunJ5BRGRFlEolVCoVAECWZdy4cQPFxcUIDg7GkSNHSo3/17/+BScnJ+PjkJAQAMCLL74IGxsbk+2FhYX4559/TJ7v4+ODvn37Gh9rtVq89NJLOHr0KHQ6HQDg559/RmhoKDp06GAc5+7ujsGDB5eqx87Ozvjv7OxsXLt2DY8//jhu3ryJ06dPV+i9ICKqSgzNRERWZtWqVWjZsiU0Gg3c3Nzg7u6OLVu2ICsrq9TYBg0amDwuCdC+vr5lbs/IyDDZ3qhRI0iSZLKtcePGAGBcf/nChQt49NFHS712kyZNSm1LSkpC37594eTkBK1WC3d3d7z44osAUGb9RETVxcb8ECIiqi2+/fZbvPzyy+jTpw8mTZoEDw8PKJVKzJs3D2fPni01XqlUlnmcu20XD/BjMJmZmejSpQu0Wi3mzJmDhg0bQqPR4MiRI3jzzTfL/OAgEVF1YWgmIrIiGzZswCOPPIIffvjB5ArwzJkzH8jrnTlzBkIIk9f666+/AMD44T4/Pz/8/fffpZ6bnJxs8jg+Ph7Xr1/HDz/8gM6dOxu3p6SkPIDKiYgqhtMziIisSMkV4tuvCO/fvx+JiYkP5PWuXLmCjRs3Gh/r9Xp8/fXXaN26Nby8vAAATz31FPbt24cDBw4Yx6Wnp2P16tVmay8sLMRnn332QGonIqoIXmkmIqqFli9fjq1bt5ba3rVrV/zwww/o27cvIiMjkZKSgiVLlqB58+bIycmp8joaN26M4cOH4+DBg/D09MTy5cuRmpqKFStWGMdMnjwZ33zzDXr27Gmy5Jyfnx+OHz9uHNexY0e4uLggKioK48ePhyRJ+Oabbx7olBAiovJiaCYiqoU+//zzMrdfvHgROTk5+OKLL7Bt2zY0b94c3377LdavX4/4+Pgqr+PRRx/Fp59+ikmTJiE5ORkBAQFYt24dIiIijGO8vb3x66+/Yty4cZg/fz7c3NwwatQo+Pj4YPjw4cZxbm5uiI2Nxeuvv45p06bBxcUFL774Irp3725yPCIiS+DNTYiIiIiIzOCcZiIiIiIiMxiaiYiIiIjMYGgmIiIiIjKDoZmIiIiIyAyGZiIiIiIiMxiaiYiIiIjMYGgmIiIiIjKDoZmIiIiIyAyGZiIiIiIiMxiaiYiIiIjMYGgmIiIiIjKDoZmIiIiIyIz/A0wytBjtYbbrAAAAAElFTkSuQmCC",
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAs0AAAIoCAYAAACSxtawAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy80BEi2AAAACXBIWXMAAA9hAAAPYQGoP6dpAABla0lEQVR4nO3de1yUZf7/8ffMwDAIgogInsE841lTsNIsi1zXLdc2LddMLTXpYGZu/iotrbV1O5dmVmpnTcva7GBqHjLIykMqqVspaikeOShynLl+f7jMVwIdQGRwfD0fDx7r3Pc193xmPtC+ubnu67YYY4wAAAAAnJHV2wUAAAAA1R2hGQAAAPCA0AwAAAB4QGgGAAAAPCA0AwAAAB4QmgEAAAAPCM0AAACAB4RmAAAAwANCMwAAAOABoRnARem2226TxWJRamrqOR8rNTVVFotFt9122zkfCwBQPRGaAVSqogB53XXXebsUVIK1a9fKYrHIYrFo0aJF3i6n2klPT9fjjz+u+Ph4hYeHy9/fXxEREerTp49efPFFnThxwtslntWVV14pi8Xi7TKACwKhGQBwRq+//rokyWKxaO7cuV6upnpZuXKlmjVrpkceeUSZmZn629/+pokTJ2rgwIHav3+/7rnnHnXo0MHbZQKoJH7eLgAAUD1lZWVp8eLFat++vSIjI/Xll19q3759atSokbdL87off/xR/fv3lyS9/fbbGjJkSIkxq1ev1qRJk6q6NADnCWeaAXhNZmam/vWvf6lXr16qX7++7Ha76tevr1tvvVW//vprifGPPvqoLBaLVq9erXnz5qldu3YKDAxUTEyMXnjhBUmSMUZPP/20WrZsKYfDoebNm+vNN988Yw0ul0szZsxQ8+bN5XA4FBMTo6lTp6qgoKDEWKfTqX/9619q1qyZHA6HmjVrpunTp8vlcpV67FWrVmnEiBFq2bKlgoODFRwcrK5du2rOnDll/oyuvvpqWa1W7dmzp9T999xzjywWi5YvX+7e9sEHH6hXr16qW7euHA6H6tevrz59+uiDDz4o8+tK0nvvvaeTJ0/q1ltv1a233iqXy6X58+efcfyhQ4d0//33q2XLlgoMDFTt2rXVvXt3PfXUUyXG/vjjjxoyZIgaNmyogIAA1atXT9ddd50++eSTEmM//vhjXX311QoLC5PD4VDbtm311FNPyel0Fhvncrn02muvqVu3bqpdu7YCAwPVsGFD9e/fX6tXry429lw/o3vuuUc5OTl68cUXSw3M0qmpD398XUmaN2+eunfv7v6e6N69e6mf6/z582WxWErdt3r1alksFj366KPFtlssFl155ZU6ePCghg0bpjp16igwMFBxcXElarFYLFqzZo3730VfzM0HzsAAQCXavXu3kWQSEhI8jk1OTjZ2u90kJCSYsWPHmgceeMD079/f2Gw2U7t2bZOamlps/JQpU4wkc/3115vQ0FBz6623mnvuucc0aNDASDKvvvqqGTt2rImMjDQjR440d955pwkLCzOSzJo1a4oda9iwYUaS6d+/v6ldu7YZM2aMmTBhgmnZsqWRZAYOHFii3hEjRhhJJiYmxowfP96MHTvW1KlTx/z5z382ksywYcOKjU9ISDCXXHKJGTJkiPnHP/5hRo8ebZo0aWIkmfHjx5fp85w3b56RZJ544okS+woKCkxERISpX7++cTqdxhhjZs2aZSSZevXqmVGjRplJkyaZ4cOHm9jYWDNkyJAyvWaRSy+91NhsNnPgwAGTnZ1tgoODTUxMjHG5XCXG7tixw9SrV89IMpdffrmZOHGiSUxMNFdeeaUJCwsrNnbx4sXGbrcbf39/89e//tVMmjTJjBw50rRt29Zcf/31xcY++OCDRpJp0KCBGTFihLnvvvtM165djSRz4403Fhs7ceJEI8lccsklJjEx0Tz44INm6NChJiYmxjz00EPucef6Gf38889GkmnUqJH7cy+ru+++2/1+7rnnnmLfv/fcc0+xsUW9nzdvXonjrFq1ykgyU6ZMKbZdkunQoYNp1qyZ6dKlixk3bpy55ZZbjM1mM3a73WzdutU9dsqUKe7vxylTpri/lixZUq73BFwsCM0AKlV5QnNGRoY5evRoie1fffWVsVqt5vbbby+2vSg0165d2/z666/u7Xv37jV2u92EhoaaFi1amEOHDrn3ffvtt+5wfLqi0BwREWH27dvn3p6Xl2d69uxpJJnFixe7txeFlA4dOpgTJ064t//222+mTp06pYbmXbt2lXhvBQUF5pprrjE2m83s2bPHwydkTFZWlgkMDDRt2rQpse+TTz4xksyECRPc2zp37mzsdrs5ePBgifFHjhzx+HpFtmzZUqKPt956q5FkVqxYUWJ8UZCdM2dOiX2nf75paWkmKCjIBAUFmY0bN5517Jdffumu4fTP3OVymTFjxpToUe3atU39+vVNdnZ2ieOe/n12rp/R/PnzjSTz97//3ePY061Zs8ZIMq1btzYZGRnu7ceOHTMtWrQwkszatWvd2ysamiWZsWPHFgv0r732mpFkRo8eXWx8r169DOfPgLJhegYArwkNDVXt2rVLbO/du7diY2O1YsWKUp937733qmnTpu7HjRo10uWXX67MzEw99NBDioiIcO/r3r27mjZtqh9//PGMx2rYsKH7sd1u1xNPPCFJxf4sXjTFY/LkyQoKCnJvb9Cgge69995Sjx0TE1Nim5+fn8aMGSOn06lVq1aV+rzT1axZUzfccIN++uknbdy4sdi+t956S5L097//vdh2f39/+fv7lzhWeHi4x9crUnQB4K233ureVvTvon1FvvvuO/3www/q2bOn7rjjjhLHOv3zfeONN5Sdna37779fnTp1OuvYl156SZI0Z86cYp+5xWLRk08+KYvFovfee6/Y8+12u2w2W4nj/vH77Fw+o7S0tBK1lsUbb7wh6dQ0o9DQUPf2sLAwTZkyRZLOOv2lrIKCgvSvf/1LVuv//V/8sGHD5Ofnp++///6cjw9crLgQEIBXrV69Ws8995zWr1+vI0eOqLCw0L3PbreX+pyOHTuW2FavXr2z7lu/fn2px7riiitKbIuPj5efn582bdrk3lYUuksbX9o2STp+/LieeuopffTRR/r111+VnZ1dbP/+/ftLfd4fDR06VO+9957eeustde7cWdKpi/Q++eQTtWvXrtgKDYMHD9bEiRPVtm1b3XLLLerdu7cuv/xyhYSElOm1JCkvL09vv/22atasqQEDBri39+7dW40aNdKSJUuUnp6usLAwSadCsyRde+21Ho9dnrHffvutgoKCzrhqR2BgoHbs2OF+PHjwYM2aNUtt27bV4MGD1bt3b8XHxyswMLDY8yrjM6qIou+nK6+8ssS+3r17S5I2b958zq/TokULBQcHF9vm5+enyMhIZWRknPPxgYsVoRmA1yxatEiDBg1ScHCwEhISFB0drRo1argvfjrTxW+lhRs/P7+z7js9jJ8uMjKyxDabzabw8HBlZma6t2VmZspqtapOnTplOkZ+fr6uvPJKbdy4UZ06ddLQoUMVHh4uPz8/paam6o033lBeXl6pNf3Rtddeq8jISC1YsEBPPfWUbDabFi9erJycHA0dOrTY2AkTJig8PFwvv/yynn76aT311FPy8/NTv3799Oyzz5Z69vuPPvroIx09elTDhw8vFjitVquGDBmiJ598Uu+++64SExPdn4106qy7J+UZe+zYMRUWFuqxxx4745jTfxF5/vnnFRMTo3nz5unxxx/X448/LofDoZtuuklPP/20u3fn+hlFRUVJkn7//XeP7+F0WVlZslqtxf4SUiQyMlIWi0VZWVnlOmZpzhT+/fz8Slw8CaDsCM0AvObRRx+Vw+HQhg0b1Lx582L7FixYUCU1HDx4UC1btiy2zel06ujRo8XCcGhoqFwul44cOVIi9Bw8eLDEcT/++GNt3LhRI0eO1GuvvVZs34IFC9x/qi8Lm82mm2++Wc8995xWrFihhIQEvfXWW7JarbrllluKjbVYLBoxYoRGjBiho0eP6uuvv9Z7772n999/Xz///LO2bNlS6vSF0xVNv5g3b57mzZt3xjFFoblWrVqSyhYiTx8bHR191rEhISGyWCw6cuSIx+NKp0LhhAkTNGHCBO3fv19r1qzRvHnz9OabbyotLU3Lli2TdO6f0WWXXSbp1F9JXC5XsWkQnt6Py+XS4cOHVbdu3WL7Dh06JGNMscBbdNzSfuE7/Rc6AFWDOc0AvObXX39V69atSwTmAwcOaNeuXVVSw9dff11iW3JysgoLC4vNuS2aAlHa+NK2FS2Zd/3115dpvCdFZ5Tffvtt7du3T2vWrFHv3r3PesY2PDxcN9xwgxYuXKirrrpKP/30k3755Zezvs6ePXu0cuVKRUZGauTIkaV+xcTEaNOmTe7pBt26dZMkffnllx7fR3nGdu/eXUePHtXPP//scewf1a9fXzfffLO++OILNWvWTCtWrFBOTk6JcRX5jJo1a6aePXtq3759Hn/5Of2vCUXfT6UtQ1e07fTpRUXTX0r7ZeT0qUPnouiXA85AA54RmgF4TZMmTfTLL78UO1Obm5urO++8s9R1ks+H559/Xr/99pv7cX5+vh566CFJKrZebVFonTp1arEpAb///ruef/75Esdt0qSJJGndunXFtq9Zs0avvvpquevs3Lmz2rRpoyVLluiVV16RMabE1AzpVPgyxhTbVlBQoGPHjkmSHA7HWV9n3rx5crlcGj16tF577bVSvx588EFJ/3dG+tJLL9Wll16qtWvXlvreTg99w4YNU3BwsJ5++ulS5++ePvaee+6RJPcZ4T9KS0vT9u3bJZ0Kp0lJSSXGZGdn68SJE/L393efuT3Xz0g69X0TGBiou+66SwsXLix1zNdff62rrrrK/XjYsGGSpMcee6zYNIzMzEz3FJSiMZLUpUsXWSwWLViwQLm5ue7tP//8c6nfcxVRdIHkvn37KuV4gC9jegaA82Lr1q1nvElCq1at9OCDD+ruu+/W3XffrU6dOunGG29UYWGhli9fLmOMOnTocMYVLypTXFycOnTooEGDBikoKEiffPKJdu7cqb/+9a8aOHCge1zv3r01fPhw901VBgwYoLy8PC1cuFBxcXFaunRpseP2799f0dHRmjFjhrZt26a2bdtq586dWrp0qQYMGKDFixeXu9ahQ4dq0qRJmjFjhmrUqFGsviI33HCDQkJCFBcXpyZNmqigoEDLly/XTz/9pBtvvNEd5kvjcrk0b948jze4GDRokMaNG6d33nlHTz31lBwOh9555x1deeWVGjVqlN566y3Fx8crNzdXKSkp2rRpkzv01q1bV2+++aYGDx6sbt266S9/+YtatmypI0eOaP369YqOjtZHH30kSbruuuv0yCOPaNq0aWrWrJmuu+46NWnSREePHtUvv/yir7/+Wo8//rhat26tnJwcXXbZZWrRooW6dOmixo0b68SJE1q6dKnS0tI0YcIEBQQEnPNnVKRjx4765JNPdNNNN2nw4MGaOnWqevbsqdq1a+vYsWP65ptvtHXrVjVr1sz9nJ49e+ruu+/Wiy++qLZt22rgwIEyxuiDDz7Qb7/9pnvuuUc9e/Z0jy86W/7uu++qS5cuuu6663To0CEtWbJE1113XblvVlOaq666SosXL9bAgQPVt29fORwOdejQwX23QwCn8eZ6dwB8T9E6zWf76tWrlzHm1Hq7s2fPNrGxscbhcJioqCgzcuRIc+jQoVLXjy1ap3nVqlUlXrdo3eXdu3eX2FfasYrG//rrr+bJJ580zZo1M3a73TRp0sQ8+uijJi8vr8RxCgsLzfTp003Tpk2N3W43TZs2Nf/85z/NL7/8csZ1mgcOHGgiIiJMjRo1zKWXXmoWLFhwxjV2Pdm7d6+xWq1Gkrn55ptLHTNr1izzl7/8xTRp0sQ4HA4THh5uunXrZl5++WWTn59/1uMvW7asWH/OZsiQIUaSeeedd9zb0tLSzL333uv+fGrXrm26d+9unnnmmRLP37Rpk7nppptMZGSk8ff3N/Xq1TN9+/Y1S5cuLTF2+fLlpn///iYiIsL4+/ubqKgoEx8fb6ZNm2b27t1rjDEmPz/f/Otf/zLXXnutadiwobHb7SYyMtL07NnTvPvuu8VuyHIun9EfHT161EybNs3ExcWZsLAw4+fnZ8LDw82VV15pXnjhhWLrSxeZO3euufTSS02NGjXc3xdz584t9fgnT54099xzj4mMjDQBAQGmffv25p133jnrOs1n6l+TJk1MkyZNim0rKCgwEydONI0bNzZ+fn6lfh8DOMVizB/+RgUAAACgGOY0AwAAAB4QmgEAAAAPCM0AAACAB4RmAAAAwANCMwAAAOABoRkAAADwgJubnCcul0v79+9XzZo1ZbFYvF0OAAAA/sAYo+PHj6t+/fruu4aeCaH5PNm/f78aNWrk7TIAAADgwb59+9SwYcOzjiE0nyc1a9aUdKoJISEhZX6ey+XS4cOHFRER4fE3HlRv9NK30E/fQj99B730LVXdz6ysLDVq1Mid286G0HyeFE3JCAkJKXdozs3NVUhICD/8Fzh66Vvop2+hn76DXvoWb/WzLFNp+e4CAAAAPCA0AwAAAB4QmgEAAAAPCM0AAACAB4RmAAAAwANCMwAAAOABoRkAAADwgNAMAAAAeEBoBgAAADwgNAMAAAAeEJoBAAAADwjNAAAAgAeEZgAAAMADQjMAAAC8zuVyadu2be4vl8vl7ZKK8fN2AQAAALi4JSUlaebsOfrvnv2KbtxIqXv3qUWT+kocM0o9evTwdnmSONMMAAAAL0pKStLER6ZqxwmHoq8bpaZ9hij6ulHame3QxEemKikpydslSiI0AwAAwEtcLpdmzp6jnNBodeg/QqH1Gsvm56/Qeo3V/s8jlFsrWrNeebVaTNUgNAMAAMArUlJStDP1d8Vc2kcWi6XYPovFoiZdr9aO3b8pJSXFSxX+H0IzAAAAvCI9PV35hU4F1YkqdX9weJTyC51KT0+v4spKIjQDAADAK8LCwmT3syn7SFqp+08cTZPdz6awsLAqrqwkQjMAAAC8IjY2Vi2jGyj1hxUyxhTbZ4zRnh9WqlVMQ8XGxnqpwv9DaAYAAIBXWK1WJY4ZJUdGqrYsnauMA3vkLMhXxoE92rJ0rhwZqRo7+g5Zrd6PrN6vAAAAABetHj16aMa0yWoZlKs9X7yqXSvf1Z4vXlWr4DzNmDa52qzTzM1NAAAA4FU9evRQXFyctm3bpkOHDqlu3bpq27ZttTjDXITQDAAAAK+zWq1q27atOzRXp8AsMT0DAAAA8IjQDAAAAHhAaAYAAAA8IDQDAAAAHhCaAQAAAA8IzQAAAIAHhGYAAADAA0IzAAAA4AGhGQAAAPCA0AwAAAB4QGgGAAAAPCA0AwAAAB4QmgEAAAAPCM0AAACAB4RmAAAAwANCMwAAAOABoRkAAADwgNAMAAAAeEBoBgAAADyotqH5ySeflMVi0bhx49zbcnNzlZiYqPDwcAUHB2vgwIE6ePBgseft3btX/fr1U40aNVS3bl098MADKiwsLDZm9erV6ty5swICAtSsWTPNnz+/xOvPnDlT0dHRcjgc6t69u7777rvz8TYBAABwAaiWofn777/XK6+8ovbt2xfbft999+mTTz7RokWLtGbNGu3fv19//etf3fudTqf69eun/Px8JSUl6Y033tD8+fM1efJk95jdu3erX79+6t27tzZv3qxx48bp9ttv17Jly9xjFi5cqPHjx2vKlCnauHGjOnTooISEBB06dOj8v3kAAABUO9UuNJ84cUJDhgzRq6++qrCwMPf2zMxMvf7663rmmWd01VVXqUuXLpo3b56SkpL07bffSpK+/PJL/fTTT3r77bfVsWNH9e3bV9OmTdPMmTOVn58vSZo9e7ZiYmL09NNPq3Xr1rrrrrt044036tlnn3W/1jPPPKM77rhDw4cPV5s2bTR79mzVqFFDc+fOrdoPAwAAANWCn7cL+KPExET169dPffr00eOPP+7evmHDBhUUFKhPnz7uba1atVLjxo2VnJysuLg4JScnq127doqMjHSPSUhI0J133qmUlBR16tRJycnJxY5RNKZoGkh+fr42bNigSZMmufdbrVb16dNHycnJZ6w7Ly9PeXl57sdZWVmSJJfLJZfLVeb373K5ZIwp13NQPdFL30I/fQv99B300rdUdT/L8zrVKjQvWLBAGzdu1Pfff19iX1pamux2u2rVqlVse2RkpNLS0txjTg/MRfuL9p1tTFZWlnJycpSeni6n01nqmB07dpyx9unTp+uxxx4rsf3w4cPKzc094/P+yOVyKTMzU8YYWa3V7g8BKAd66Vvop2+hn76DXvqWqu7n8ePHyzy22oTmffv26d5779Xy5cvlcDi8XU65TZo0SePHj3c/zsrKUqNGjRQREaGQkJAyH8flcslisSgiIoIf/gscvfQt9NO30E/fQS99S1X3szyZs9qE5g0bNujQoUPq3Lmze5vT6dTatWv10ksvadmyZcrPz1dGRkaxs80HDx5UVFSUJCkqKqrEKhdFq2ucPuaPK24cPHhQISEhCgwMlM1mk81mK3VM0TFKExAQoICAgBLbrVZruZtusVgq9DxUP/TSt9BP30I/fQe99C1V2c/yvEa1+e66+uqrtXXrVm3evNn91bVrVw0ZMsT9b39/f61cudL9nJ07d2rv3r2Kj4+XJMXHx2vr1q3FVrlYvny5QkJC1KZNG/eY049RNKboGHa7XV26dCk2xuVyaeXKle4xAAAAuLhUmzPNNWvWVNu2bYttCwoKUnh4uHv7yJEjNX78eNWuXVshISG6++67FR8fr7i4OEnStddeqzZt2mjo0KGaMWOG0tLS9PDDDysxMdF9FnjMmDF66aWXNHHiRI0YMUJfffWV3n//fX366afu1x0/fryGDRumrl27qlu3bnruueeUnZ2t4cOHV9GnAQAAgOqk2oTmsnj22WdltVo1cOBA5eXlKSEhQbNmzXLvt9lsWrp0qe68807Fx8crKChIw4YN09SpU91jYmJi9Omnn+q+++7T888/r4YNG+q1115TQkKCe8ygQYN0+PBhTZ48WWlpaerYsaO++OKLEhcHAgAA4OJgMcYYbxfhi7KyshQaGqrMzMxyXwh46NAh1a1bl7lZFzh66Vvop2+hn76DXvqWqu5nefIa310AAACAB4RmAAAAwANCMwAAAOABoRkAAADwgNAMAAAAeEBoBgAAADwgNAMAAAAeEJoBAAAADwjNAAAAgAeEZgAAAMADQjMAAADgAaEZAAAA8IDQDAAAAHhAaAYAAAA8IDQDAAAAHhCaAQAAAA8IzQAAAIAHhGYAAADAA0IzAAAA4AGhGQAAAPCA0AwAAAB4QGgGAAAAPCA0AwAAAB4QmgEAAAAPCM0AAACAB4RmAAAAwANCMwAAAOABoRkAAADwgNAMAAAAeEBoBgAAADwgNAMAAAAeEJoBAAAADwjNAAAAgAeEZgAAAMADQjMAAADgAaEZAAAA8IDQDAAAAHhAaAYAAAA8IDQDAAAAHhCaAQAAAA8IzQAAAIAHhGYAAADAA0IzAAAA4AGhGQAAAPCA0AwAAAB4QGgGAAAAPCA0AwAAAB4QmgEAAAAPCM0AAACAB4RmAAAAwANCMwAAAOABoRkAAADwgNAMAAAAeEBoBgAAADwgNAMAAAAeEJoBAAAADwjNAAAAgAeEZgAAAMADQjMAAADgAaEZAAAA8IDQDAAAAHhAaAYAAAA8IDQDAAAAHhCaAQAAAA8IzQAAAIAHhGYAAADAA0IzAAAA4AGhGQAAAPCA0AwAAAB4QGgGAAAAPCA0AwAAAB4QmgEAAAAPCM0AAACAB4RmAAAAwANCMwAAAOABoRkAAADwgNAMAAAAeEBoBgAAADwgNAMAAAAeEJoBAAAADwjNAAAAgAeEZgAAAMADQjMAAADgAaEZAAAA8IDQDAAAAHhAaAYAAAA8IDQDAAAAHhCaAQAAAA8IzQAAAIAH1So0v/zyy2rfvr1CQkIUEhKi+Ph4ff755+79ubm5SkxMVHh4uIKDgzVw4EAdPHiw2DH27t2rfv36qUaNGqpbt64eeOABFRYWFhuzevVqde7cWQEBAWrWrJnmz59fopaZM2cqOjpaDodD3bt313fffXde3jMAAACqv2oVmhs2bKgnn3xSGzZs0A8//KCrrrpK119/vVJSUiRJ9913nz755BMtWrRIa9as0f79+/XXv/7V/Xyn06l+/fopPz9fSUlJeuONNzR//nxNnjzZPWb37t3q16+fevfurc2bN2vcuHG6/fbbtWzZMveYhQsXavz48ZoyZYo2btyoDh06KCEhQYcOHaq6DwMAAADVh6nmwsLCzGuvvWYyMjKMv7+/WbRokXvf9u3bjSSTnJxsjDHms88+M1ar1aSlpbnHvPzyyyYkJMTk5eUZY4yZOHGiiY2NLfYagwYNMgkJCe7H3bp1M4mJie7HTqfT1K9f30yfPr3MdWdmZhpJJjMzs1zv1+l0mgMHDhin01mu56H6oZe+hX76FvrpO+ilb6nqfpYnr/l5ObOfkdPp1KJFi5Sdna34+Hht2LBBBQUF6tOnj3tMq1at1LhxYyUnJysuLk7Jyclq166dIiMj3WMSEhJ05513KiUlRZ06dVJycnKxYxSNGTdunCQpPz9fGzZs0KRJk9z7rVar+vTpo+Tk5DPWm5eXp7y8PPfjrKwsSZLL5ZLL5Srz+3a5XDLGlOs5qJ7opW+hn76FfvoOeulbqrqf5Xmdaheat27dqvj4eOXm5io4OFhLlixRmzZttHnzZtntdtWqVavY+MjISKWlpUmS0tLSigXmov1F+842JisrSzk5OUpPT5fT6Sx1zI4dO85Y9/Tp0/XYY4+V2H748GHl5uaW7c3rVPMyMzNljJHVWq1mz6Cc6KVvoZ++hX76DnrpW6q6n8ePHy/z2GoXmlu2bKnNmzcrMzNTixcv1rBhw7RmzRpvl+XRpEmTNH78ePfjrKwsNWrUSBEREQoJCSnzcVwulywWiyIiIvjhv8DRS99CP30L/fQd9NK3VHU/HQ5HmcdWu9Bst9vVrFkzSVKXLl30/fff6/nnn9egQYOUn5+vjIyMYmebDx48qKioKElSVFRUiVUuilbXOH3MH1fcOHjwoEJCQhQYGCibzSabzVbqmKJjlCYgIEABAQEltlut1nI33WKxVOh5qH7opW+hn76FfvoOeulbqrKf5XmNav/d5XK5lJeXpy5dusjf318rV65079u5c6f27t2r+Ph4SVJ8fLy2bt1abJWL5cuXKyQkRG3atHGPOf0YRWOKjmG329WlS5diY1wul1auXOkeAwAAgItLtTrTPGnSJPXt21eNGzfW8ePH9e6772r16tVatmyZQkNDNXLkSI0fP161a9dWSEiI7r77bsXHxysuLk6SdO2116pNmzYaOnSoZsyYobS0ND388MNKTEx0nwUeM2aMXnrpJU2cOFEjRozQV199pffff1+ffvqpu47x48dr2LBh6tq1q7p166bnnntO2dnZGj58uFc+FwAAAHhXtQrNhw4d0q233qoDBw4oNDRU7du317Jly3TNNddIkp599llZrVYNHDhQeXl5SkhI0KxZs9zPt9lsWrp0qe68807Fx8crKChIw4YN09SpU91jYmJi9Omnn+q+++7T888/r4YNG+q1115TQkKCe8ygQYN0+PBhTZ48WWlpaerYsaO++OKLEhcHAgAA4OJgMcYYbxfhi7KyshQaGqrMzMxyXwh46NAh1a1bl7lZFzh66Vvop2+hn76DXvqWqu5nefIa310AAACAB4RmAAAAwANCMwAAAOABoRkAAADwgNAMAAAAeEBoBgAAADwgNAMAAAAeEJoBAAAADwjNAAAAgAeEZgAAAMADQjMAAADgAaEZAAAA8IDQDAAAAHhAaAYAAAA8IDQDAAAAHhCaAQAAAA8IzQAAAIAHhGYAAADAgwqF5r179yonJ+eM+3NycrR3794KFwUAAABUJxUKzTExMVqyZMkZ9//nP/9RTExMhYsCAAAAqpMKhWZjzFn3FxQUyGpl5gcAAAB8g19ZB2ZlZSkjI8P9+OjRo6VOwcjIyNCCBQtUr169SikQAAAA8LYyh+Znn31WU6dOlSRZLBaNGzdO48aNK3WsMUaPP/54pRQIAAAAeFuZQ/O1116r4OBgGWM0ceJE3XzzzercuXOxMRaLRUFBQerSpYu6du1a6cUCAAAA3lDm0BwfH6/4+HhJUnZ2tgYOHKi2bduet8IAAACA6qLMofl0U6ZMqew6AAAAgGqrQqFZktLT0/Xee+9p165dSk9PL7GihsVi0euvv37OBQIAAADeVqHQvGzZMt14443Kzs5WSEiIwsLCSoyxWCznXBwAAABQHVQoNN9///2KiorShx9+qHbt2lV2TQAAAEC1UqE7kPzyyy+65557CMwAAAC4KFQoNDdv3lzHjx+v7FoAAACAaqlCofnxxx/XrFmzlJqaWsnlAAAAANVPheY0r1y5UhEREWrdurWuueYaNWrUSDabrdgYi8Wi559/vlKKBAAAALypQqH5pZdecv976dKlpY4hNAMAAMBXVCg0u1yuyq4DAAAAqLYqNKcZAAAAuJgQmgEAAAAPKjQ9w2q1lumOf06nsyKHBwAAAKqVCoXmyZMnlwjNTqdTqamp+uijj9SyZUv9+c9/rpQCAQAAAG+rUGh+9NFHz7jvwIEDiouLU4sWLSpaEwAAAFCtVPqc5nr16mnMmDGaNm1aZR8aAAAA8IoKnWn2JCgoSLt37z4fhwYAQC6XSykpKUpPT1dYWJhiY2NltXJtO4Dzp9JD87Zt2/TCCy8wPQMAcF4kJSVp5uw52pn6u/ILnbL72dQyuoESx4xSjx49vF0eAB9VodAcExNT6uoZGRkZyszMVI0aNfTRRx+da20AABSTlJSkiY9MVU5otGL6jlZQnShlH0nTzh9WaOIjUzVj2mSCM4DzokKhuVevXiVCs8ViUVhYmC655BINHjxYtWvXrpQCAQCQTk3JmDl7jnJCo9Wh/wj3/w+F1mui9n8eoS1L52rWK68qLi6OqRoAKl2FQvP8+fMruQwAAM4uJSVFO1N/V0zf0aWeuGnS9Wrt+HyOUlJS1K5dOy9VCcBXVcqv4jk5OcrJyamMQwEAUKr09HTlFzoVVCeq1P3B4VHKL3QqPT29iisDcDGocGjeu3evhg8frsjISAUHBys4OFiRkZEaMWKE9uzZU5k1AgCgsLAw2f1syj6SVur+E0fTZPezKSwsrIorA3AxqND0jB07dujyyy9XRkaGrrnmGrVu3dq9/c0339Qnn3yidevWqWXLlpVaLADg4hUbG6uW0Q2084cVav/nEcWmaBhjtOeHlWoV01CxsbFerBKAr6pQaH7wwQdltVq1adOmEvPGtm3bpquvvloPPviglixZUilFAgBgtVqVOGaUJj4yVVuWzlWTrlcrODxKJ46mac8PK+XISNXY+ydzESCA86JCoXnNmjW6//77S73Qom3btrrrrrv0zDPPnHNxAACcrkePHpoxbfKpdZo/n+Nep7lVTEONvZ/l5gCcPxUKzQUFBQoMDDzj/ho1aqigoKDCRQEAcCY9evRQXFwcdwQEUKUqFJo7deqk1157TbfffrtCQ0OL7cvKytLrr7+uzp07V0qBAAD8kdVqZVk5AFWqQqH5scce03XXXadWrVpp+PDh7ltm79y5U2+88YaOHj2qmTNnVmqhAAAAgLdUKDRfddVV+uyzz/TAAw/oySefLLavY8eOeuutt9S7d+9KKRAAAADwtgqFZknq06ePNm3apLS0NPe6zE2aNFFUVOmLzgMAAAAXqgqH5iJRUVEEZQAAAPi0Ml9q/PPPP8vhcGjixIlnHffAAw8oMDBQu3fvPufiAAAAgOqgzKH5hRdeUFRUlJ544omzjnviiScUFRWlF1544ZyLAwAAAKqDMofmL7/8UoMHD5a/v/9Zx9ntdg0ePFiff/75ORcHAAAAVAdlDs179+5Vy5YtyzS2efPm7osDAQAAgAtdmUNzQECATpw4Uaax2dnZstvtFS4KAAAAqE7KHJpbtWqlFStWlGnsypUr1bp16woXBQAAAFQnZQ7NgwYN0tKlS/XRRx+dddzHH3+spUuXatCgQedaGwAAAFAtlDk0jx07Vp06ddLf/vY33Xnnnfrmm2+UlZUlY4yysrL0zTff6M4779SNN96oDh06aOzYseezbgAAAKDKlPnmJgEBAVq2bJmGDRumV155RXPmzCkxxhij6667Tm+++aYCAgIqtVAAAADAW8p1R8Dw8HAtXbpU3333nf7zn/9o+/btysrKUkhIiFq1aqX+/fsrLi7ufNUKAAAAeEWFbqPdrVs3devWrbJrAQAAAKqlMs9pBgAAAC5WhGYAAADAA0IzAAAA4AGhGQAAAPCA0AwAAAB4UKmhedeuXdq+fXtlHhIAAADwugqF5hdeeEGDBw8utm348OFq3ry52rZtq65du+rQoUOVUiAAAADgbRUKza+99poiIyPdj5ctW6Y33nhDo0aN0osvvqhdu3bpscceq7QiAQAAAG+q0M1N9uzZo9atW7sfv//++4qJidHLL78sSUpLS9Nbb71VORUCAAAAXlahM83GmGKPv/zyS/Xt29f9ODo6WmlpaedWGQAAAFBNVCg0t2jRQkuWLJF0amrG/v37i4Xm3377TbVq1aqUAgEAAABvq9D0jAkTJuiWW25RWFiYsrOz1bp1ayUkJLj3f/XVV+rYsWNl1QgAAAB4VYVC8+DBgxUeHq7PPvtMtWrV0tixY+Xnd+pQx44dU+3atTV06NBKLRQAAADwlgqFZkm65pprdM0115TYXrt2bX344YfnVBQAAABQnVQ4NP/RyZMntWDBAuXl5elPf/qTmjRpUlmHBgAAALyqQqF55MiRWr9+vbZt2yZJys/PV1xcnPtxaGiovvrqK3Xq1KnyKgUAAAC8pEKrZ6xatUp//etf3Y/fffddbdu2Te+88462bdumqKgobm4CAAAAn1Gh0JyWlqbo6Gj3448++khdu3bVzTffrDZt2uiOO+7Q+vXrK6tGAAAAwKsqFJqDgoKUkZEhSSosLNTq1auLLTlXs2ZNZWZmVkqBAAAAgLdVaE5z586d9eqrr6p37976z3/+o+PHj6t///7u/b/++qsiIyMrrUgAAADAmyoUmp944gklJCSoa9euMsboxhtvVLdu3dz7lyxZossuu6zSigQAAAC8qULTM7p27aodO3boww8/1KpVq/T++++792VkZGjs2LGaMGFCuY87ffp0XXrppapZs6bq1q2rG264QTt37iw2Jjc3V4mJiQoPD1dwcLAGDhyogwcPFhuzd+9e9evXTzVq1FDdunX1wAMPqLCwsNiY1atXq3PnzgoICFCzZs00f/78EvXMnDlT0dHRcjgc6t69u7777rtyvycAAABc+CoUmiUpIiJC119/vXr16lVse61atXTvvfdW6Dbaa9asUWJior799lstX75cBQUFuvbaa5Wdne0ec9999+mTTz7RokWLtGbNGu3fv7/YSh5Op1P9+vVTfn6+kpKS9MYbb2j+/PmaPHmye8zu3bvVr18/9e7dW5s3b9a4ceN0++23a9myZe4xCxcu1Pjx4zVlyhRt3LhRHTp0UEJCgg4dOlTu9wUAAIALnKmgwsJC895775lRo0aZG264wWzZssUYY0xGRob54IMPTFpaWkUP7Xbo0CEjyaxZs8Z9bH9/f7No0SL3mO3btxtJJjk52RhjzGeffWasVmux13/55ZdNSEiIycvLM8YYM3HiRBMbG1vstQYNGmQSEhLcj7t162YSExPdj51Op6lfv76ZPn16mWrPzMw0kkxmZma53rPT6TQHDhwwTqezXM9D9UMvfQv99C3003fQS99S1f0sT16r0JzmjIwMXXfddfruu+8UHBys7Oxs3X333ZKk4OBg3XPPPbr11lv1z3/+85wCfdEKHLVr15YkbdiwQQUFBerTp497TKtWrdS4cWMlJycrLi5OycnJateuXbELERMSEnTnnXcqJSVFnTp1UnJycrFjFI0ZN26cpFM3a9mwYYMmTZrk3m+1WtWnTx8lJyeXWmteXp7y8vLcj7OysiRJLpdLLperzO/Z5XLJGFOu56B6ope+hX76FvrpO+ilb6nqfpbndSoUmh988EGlpKRo2bJl6tSpk+rWreveZ7PZdOONN+qzzz47p9Dscrk0btw4XXbZZWrbtq2kU+tD2+121apVq9jYyMhIpaWlucf8ceWOoseexmRlZSknJ0fp6elyOp2ljtmxY0ep9U6fPr3UG7ocPnxYubm5ZXzXp953ZmamjDGyWis8ewbVAL30LfTTt9BP30EvfUtV9/P48eNlHluh0PzRRx/p7rvv1jXXXKOjR4+W2N+iRYtSL6wrj8TERG3btk3r1q07p+NUlUmTJmn8+PHux1lZWWrUqJEiIiIUEhJS5uO4XC5ZLBZFRETww3+Bo5e+hX76FvrpO+ilb6nqfjocjjKPrVBozszMVExMzBn3FxQUlFitojzuuusuLV26VGvXrlXDhg3d26OiopSfn6+MjIxiZ5sPHjyoqKgo95g/rnJRtLrG6WP+uOLGwYMHFRISosDAQNlsNtlstlLHFB3jjwICAhQQEFBiu9VqLXfTLRZLhZ6H6ode+hb66Vvop++gl76lKvtZnteoUDWXXHKJNm7ceMb9X375pdq0aVPu4xpjdNddd2nJkiX66quvSgTzLl26yN/fXytXrnRv27lzp/bu3av4+HhJUnx8vLZu3VpslYvly5crJCTEXVN8fHyxYxSNKTqG3W5Xly5dio1xuVxauXKlewwAAAAuHhUKzbfffrvmzp2rhQsXyhgj6dRvBXl5eXrooYf0xRdfaPTo0eU+bmJiot5++229++67qlmzptLS0pSWlqacnBxJUmhoqEaOHKnx48dr1apV2rBhg4YPH674+HjFxcVJkq699lq1adNGQ4cO1Y8//qhly5bp4YcfVmJiovtM8JgxY7Rr1y5NnDhRO3bs0KxZs/T+++/rvvvuc9cyfvx4vfrqq3rjjTe0fft23XnnncrOztbw4cMr8pEBAADgQlaR5TlcLpe5/fbbjcViMWFhYcZisZioqCjj7+9vLBaLGTNmTEUOaySV+jVv3jz3mJycHDN27FgTFhZmatSoYQYMGGAOHDhQ7Dipqammb9++JjAw0NSpU8fcf//9pqCgoNiYVatWmY4dOxq73W6aNm1a7DWKvPjii6Zx48bGbrebbt26mW+//bbM74Ul50AvfQv99C3003fQS99SnZecsxjzv1PFFbBu3TotXrxYP//8s1wuly655BLddNNN6tmzZ2Xk+QtaVlaWQkNDlZmZWe4LAQ8dOqS6desyN+sCRy99C/30LfTTd9BL31LV/SxPXqvQhYBFLr/8cl1++eXncggAAACg2qtQhN+9e7c++eSTM+7/5JNPlJqaWtGaAAAAgGqlQmeaJ0yYoKysLPXv37/U/TNnzlStWrW0YMGCcyoOAAAAqA4qdKY5OTlZ11xzzRn3X3311fr6668rXBQAAABQnVQoNKenp6tmzZpn3B8cHFzqnQIBAACAC1GFQnPjxo31zTffnHH/119/XexOfgAAAMCFrEKh+eabb9Z7772nF154QS6Xy73d6XTq+eef18KFC3XLLbdUWpEAAACAN1XoQsBJkyZp3bp1GjdunJ544gm1bNlS0qlbWh8+fFhXXnmlHnrooUotFAAAAPCWCp1pDggI0JdffqnXX39d3bp105EjR3TkyBF169ZNc+fO1YoVK9y3rAYAAAAudBW+uYnVatXw4cM1fPjwyqwHAAAAqHYqdKb52LFj2rJlyxn3b926Venp6RUuCgAAAKhOKhSa77vvPo0aNeqM+0ePHq0JEyZUuCgAAACgOqlQaP7qq6/0l7/85Yz7+/fvrxUrVlS4KAAAAKA6qdCc5sOHD6tOnTpn3B8eHq5Dhw5VuCgAuNC4XC6lpKQoPT1dYWFhio2NldVaofMSAIBqqEKhuV69etq0adMZ92/YsEEREREVLgoALiRJSUmaOXuOdqb+rvxCp+x+NrWMbqDEMaPUo0cPb5cHAKgEFToNcsMNN+j111/Xf/7znxL7Pv74Y82bN08DBgw45+IAoLpLSkrSxEemascJh6L7jlan4VMV3Xe0dmY7NPGRqUpKSvJ2iQCASlChM82PPvqoVqxYoQEDBqhDhw5q27atJGnbtm368ccf1bp1az322GOVWigAVDcul0szZ89RTmi0OvQfIYvFIkkKrddE7f88QluWztWsV15VXFwcUzUA4AJXof+Kh4aG6ttvv9XDDz+sgoICLV68WIsXL1ZBQYEeeeQRrV+/XrVq1arkUgGgeklJSdHO1N8Vc2kfd2AuYrFY1KTr1dqx+zelpKR4qUIAQGWp8M1NgoKC9Nhjj53xjHLRxTAA4KvS09OVX+hUUJ2oUvcHh0cpv9DJuvUA4AMq9e+FeXl5WrRokW644QbVq1evMg8NANVOWFiY7H42ZR9JK3X/iaNpsvvZOIEAAD7gnEOzMUYrVqzQ8OHDFRkZqUGDBik5OVm33HJLZdQHANVWbGysWkY3UOoPK2SMKbbPGKM9P6xUq5iGio2N9VKFAIDKUuHQvGHDBo0fP14NGjTQtddeqzfffFP9+vXTN998o7S0NM2dO7cy6wSAasdqtSpxzCg5MlK1ZelcZRxIVWF+rjIOnHrsyEjV2NF3cBEgAPiAcs1p3rVrl9555x298847+vnnn9WgQQMNGTJE3bp106BBgzRw4EDFx8efr1oBoNrp0aOHZkybfGqd5s/nuNdpbhXTUGPvn8w6zQDgI8ocmuPj4/Xdd9+pTp06uvHGG/Xaa6/p8ssvlyT9+uuv561AAKjuevToobi4OO4ICAA+rMyhef369YqJidEzzzyjfv36yc+vwgtvAIDPsVqtateunbfLAACcJ2U+DfLSSy+pXr16GjBggKKiojR69GitWrWqxMUvAAAAgK8pc2geO3as1q1bp19//VXjxo3T119/rauvvloNGjTQ5MmTZbFYSizuDwAAAPiCck+4i4mJ0cMPP6yffvpJ33//vQYPHqzVq1fLGKOxY8dq1KhRWrp0qXJzc89HvQAAAECVO6erVLp06aJnnnlG+/bt05dffqmEhAQtXLhQf/nLX1SnTp3KqhEAAADwqkq5tNtqtapPnz6aP3++Dh48qPfee09XX311ZRwaAAAA8LpKXw/J4XBo0KBB+vjjjyv70AAAAIBXsIgoAAAA4AGhGQAAAPCA0AwAAAB4QGgGAAAAPCA0AwAAAB4QmgEAAAAPCM0AAACAB4RmAAAAwANCMwAAAOABoRkAAADwgNAMAAAAeEBoBgAAADwgNAMAAAAeEJoBAAAADwjNAAAAgAeEZgAAAMADP28XAAAul0spKSlKT09XWFiYYmNjZbXyOz0AoPogNAPwqqSkJM2cPUc7U39XfqFTdj+bWkY3UOKYUerRo4e3ywMAQBLTMwB4UVJSkiY+MlU7TjgU3Xe0Og2fqui+o7Uz26GJj0xVUlKSt0sEAEASoRmAl7hcLs2cPUc5odHq0H+EQus1kZ9/gELrNVH7P49Qbq1ozXrlVblcLm+XCgAAoRmAd6SkpGhn6u+KubSPLBZLsX0Wi0VNul6tHbt/U0pKipcqBADg/xCaAXhFenq68gudCqoTVer+4PAo5Rc6lZ6eXsWVAQBQEqEZgFeEhYXJ7mdT9pG0UvefOJomu59NYWFhVVwZAAAlEZoBeEVsbKxaRjdQ6g8rZIwpts8Yoz0/rFSrmIaKjY31UoUAAPwfQjMAr7BarUocM0qOjFRtWTpXGQdSVZifq4wDpx47MlI1dvQdrNcMAKgWWKcZgNf06NFDM6ZNPrVO8+dz3Os0t4ppqLH3T2adZgBAtUFoBuBVPXr0UFxcHHcEBABUa4RmAF5ntVrVrl07b5cBAMAZcSoHAAAA8IDQDAAAAHhAaAYAAAA8IDQDAAAAHhCaAQAAAA8IzQAAAIAHhGYAAADAA0IzAAAA4AGhGQAAAPCA0AwAAAB4QGgGAAAAPCA0AwAAAB74ebsAAN7ncrmUkpKi9PR0hYWFKTY2VlYrv1MDAFCE0Axc5JKSkjRz9hztTP1d+YVO2f1sahndQIljRqlHjx7eLg8AgGqBU0nARSwpKUkTH5mqHScciu47Wp2GT1V039Hame3QxEemKikpydslAgBQLRCagYuUy+XSzNlzlBMarQ79Ryi0XhP5+QcotF4Ttf/zCOXWitasV16Vy+XydqkAAHgdoRm4SKWkpGhn6u+KubSPLBZLsX0Wi0VNul6tHbt/U0pKipcqBACg+iA0Axep9PR05Rc6FVQnqtT9weFRyi90Kj09vYorAwCg+iE0AxepsLAw2f1syj6SVur+E0fTZPezKSwsrIorAwCg+iE0Axep2NhYtYxuoNQfVsgYU2yfMUZ7flipVjENFRsb66UKAQCoPgjNwEXKarUqccwoOTJStWXpXGUcSFVhfq4yDpx67MhI1djRd7BeMwAAYp1m4KLWo0cPzZg2+dQ6zZ/Pca/T3CqmocbeP5l1mgEA+B9CM3CR69Gjh+Li4rgjIAAAZ0FoBiCr1ap27dp5uwwAAKotTiUBAAAAHhCaAQAAAA8IzQAAAIAHhGYAAADAAy4EBC4wLpeLlS4AAKhihGbgApKUlHRqTeXU391rKreMbqDEMaNYUxkAgPOoWp2eWrt2rfr376/69evLYrHoo48+KrbfGKPJkyerXr16CgwMVJ8+ffTzzz8XG3Ps2DENGTJEISEhqlWrlkaOHKkTJ04UG7NlyxZdccUVcjgcatSokWbMmFGilkWLFqlVq1ZyOBxq166dPvvss0p/v0B5JCUlaeIjU7XjhEPRfUer0/Cpiu47WjuzHZr4yFQlJSV5u0QAAHxWtQrN2dnZ6tChg2bOnFnq/hkzZuiFF17Q7NmztX79egUFBSkhIUG5ubnuMUOGDFFKSoqWL1+upUuXau3atRo1apR7f1ZWlq699lo1adJEGzZs0L///W89+uijmjNnjntMUlKSbr75Zo0cOVKbNm3SDTfcoBtuuEHbtm07f28eOAuXy6WZs+coJzRaHfqPUGi9JvLzD1BovSZq/+cRyq0VrVmvvCqXy+XtUgEA8EkWY4zxdhGlsVgsWrJkiW644QZJp84y169fX/fff78mTJggScrMzFRkZKTmz5+vwYMHa/v27WrTpo2+//57de3aVZL0xRdf6E9/+pN+++031a9fXy+//LIeeughpaWlyW63S5IefPBBffTRR9qxY4ckadCgQcrOztbSpUvd9cTFxaljx46aPXt2merPyspSaGioMjMzFRISUub37XK5dOjQIdWtW5d5qhe4yuzl1q1bNTxxvKL7jlZovSYl9mccSNWez+do3sxnuEnJecLPpm+hn76DXvqWqu5nefLaBTOneffu3UpLS1OfPn3c20JDQ9W9e3clJydr8ODBSk5OVq1atdyBWZL69Okjq9Wq9evXa8CAAUpOTlbPnj3dgVmSEhIS9K9//ct9YVVycrLGjx9f7PUTEhJKTBc5XV5envLy8tyPs7KyJJ1qfnnO/rlcLhljOGPoAyqzl8eOHVOh06XgOpGyqOTvuTXDI1XodOnYsWN875wn/Gz6FvrpO+ilb6nqfpbndS6Y0JyWliZJioyMLLY9MjLSvS8tLU1169Yttt/Pz0+1a9cuNiYmJqbEMYr2hYWFKS0t7ayvU5rp06frscceK7H98OHDxaaPeOJyuZSZmSljDL8xX+Aqs5cBAQFq3bypauUeUo0adUvszz5+SK2bN1VAQIAOHTp0Tq+F0vGz6Vvop++gl76lqvt5/PjxMo+9YEJzdTdp0qRiZ6ezsrLUqFEjRURElHt6hsViUUREBD/8F7jK7GWdOnVkM6/omzUr1L7fbbJYLO59xhhtWbNSrYKd6tq1K9835wk/m76FfvoOeulbqrqfDoejzGMvmNAcFRUlSTp48KDq1avn3n7w4EF17NjRPeaPZ9kKCwt17Ngx9/OjoqJ08ODBYmOKHnsaU7S/NAEBAQoICCix3Wq1lrvpFoulQs9D9VNZvbRarRo7+g5NfGSqflw6T026Xq3g8CidOJqmPT+slCMjVXeOnyw/vwvmR/qCxM+mb6GfvoNe+paq7Gd5XuOC+e6KiYlRVFSUVq5c6d6WlZWl9evXKz4+XpIUHx+vjIwMbdiwwT3mq6++ksvlUvfu3d1j1q5dq4KCAveY5cuXq2XLlgoLC3OPOf11isYUvQ5wLlwul7Zu3aq1a9dq69atZZ5P1aNHD82YNlktg3K15/M52jR/ivZ8PketgvM0Y9pk1mkGAOA8qlanpU6cOKFffvnF/Xj37t3avHmzateurcaNG2vcuHF6/PHH1bx5c8XExOiRRx5R/fr13StstG7dWtddd53uuOMOzZ49WwUFBbrrrrs0ePBg1a9fX5J0yy236LHHHtPIkSP1j3/8Q9u2bdPzzz+vZ5991v269957r3r16qWnn35a/fr104IFC/TDDz8UW5YOqIhzvTlJjx49FBcXxx0BAQCoaqYaWbVqlZFU4mvYsGHGGGNcLpd55JFHTGRkpAkICDBXX3212blzZ7FjHD161Nx8880mODjYhISEmOHDh5vjx48XG/Pjjz+ayy+/3AQEBJgGDRqYJ598skQt77//vmnRooWx2+0mNjbWfPrpp+V6L5mZmUaSyczMLNfznE6nOXDggHE6neV6HqqfP/bym2++MZddlWA6DxhtBv5zkbl1ztdm4D8XmS5/HW0uuyrBfPPNN16uGGfDz6ZvoZ++g176lqruZ3nyWrVdp/lCxzrNOL2XkjT0thHaccKhDv1HlLyQb+lctQrO05vzXqfv1RQ/m76FfvoOeulbqvM6zXx3AVUgJSVFO1N/V8ylfYoFZunUBQ9Nul6tHbt/U0pKipcqBAAAZ0NoBqpAenq68gudCqpT+gosweFRyi90Kj09vYorAwAAZUFoBqpAWFiY7H42ZR8p/QY5J46mye5nc6/gAgAAqhdCM1AFYmNj1TK6gVJ/WKE/XkZgjNGeH1aqVUxDxcbGeqlCAABwNoRmoApYrVYljhklR0aqtiydq4wDqSrMz1XGgVOPHRmpGjv6Di5iAQCgmqpW6zQDFxqXy1XmNZOLbk4yc/Yc7fx8jnud5lYxDTX2fm5OAgBAdUZoBiqoIjcq4eYkAABcmAjNQAUkJSVp4iNTlRMarZi+oxVUJ0rZR9K084cVmvjIVM2YNllxcXGlPtdqtapdu3ZVXDEAADgXnN4Cysnlcmnm7DnKCY1Wh/4jFFqvifz8AxRar4na/3mEcmtFa9Yrr8rlcnm7VAAAUEkIzUA5lfVGJT/99JOXKgQAAJWN0AyUEzcqAQDg4kNoBsqJG5UAAHDxITQD5VTWG5W0adPGSxUCAIDKRmgGSuFyubR161atXbtWW7duLXZRHzcqAQDg4sOSc8AflGX95bLcqITVMwAA8B2EZuA0ZVl/+fTgzI1KAAC4OBCagf/54/rLRcvJFa2/vGXpXM165VXFxcW5gzE3KgEA4OLAKTHgf8q6/nJKSoqXKgQAAN5CaAb+h/WXAQDAmTA9Axcll8tVYi7y6esvh9ZrUuI5rL8MAMDFi9CMi86ZVse4c9TtahndQDt/WKH2fx5RbIrG6esvx8bGerF6AADgDUzPwEWlaHWMHScciu47Wp2GT1V039Hame3Qg1MeV8/L4ll/GQAAlMCZZlw0yrI6xtdJ3+rJxx7Wy3NeO+P6ywAA4OJDaMZFw706Rt/RZ14d4/M5Cg0N1Vvz57L+MgAAcCM046JRntUxWH8ZAACcjlNnuGicvjpGaVgdAwAAnAmhGT7N5XJp69atWrt2rVwul1o0qa/UH1bIGFNsHKtjAACAs2F6BnxWaUvL1a7hr4JjmdqydK6adL1aweFROnE0TXt+WHlqdYz7JzN3GQAAlEBohk8qWlouJzRaMX1HK6hOlLKPpJ06y3xkk8JP/qY9rI4BAADKiNAMn1OWpeXqBOVqxpP3KTMzk9UxAACAR4Rm+ITTb4t9+PBh7Uz9TTF9x5xxabmdn8+R1WpVz549vVQxAAC4kBCaccH749zlvOwsHck8ofo2R6njT19aDgAAoCz4ezQuaKXdFrvxlTcr3ylt27hex0oJxiwtBwAAyoszzbjgFE3FOHr0qP79zHMl5i436nC5dm9YrfTdW7U7spHCwmrJolP7WFoOAABUBKEZF5TTp2JkZWbqwKHDanhtF6VnZKj2/84cW6xWtep1g9Z/MFv7vvlYkTX9FdW4GUvLAQCACiM0o9orOrP89ddf67W3FshSr41i+o7WiWNpOvKfN5QfGKHtO/+r1i1buINzZPP26nr9cH37xnTt/eyYDjgCWVoOAABUGKEZ1VrRmeUdu3/Trp93ytqwvRo16iynI0SBIQXy8/eXI8CufKe/UvfsKTYVo0atCDVt3lL/b9ydioiIYGk5AABQYYRmVFun36Ckdue+2ncsW2GX9lO206btO/+rVs2bKaRWHWVsW6PwuL/qxOG9On78uEJqhrjnLrdu2kgDBgwgKAMAgHNCkkC19McblNhrBMsYi4IimigksrGcfoHas2+fWvb6i1yHftWR5A+Ul56m3JMnlHEgVVuWzj01d3n0HQRmAABwzkgTqHZcLpeWLFmijdt2KqJNnGSR7DVCZLFK+ZkHZdGpqRcnTuaqRlSMuvxluPwyf1P6unf13/dnaM/nc9QqOE8zpjF3GQAAVA6mZ6BaOP1iv0+/+FK/7Nmn3w9nKn//MR088aOaNGqkkFp1lL5tjaJ6DZHNHiBjjAoKClS3WTtFNGmudg1C9MD4cQoPD2fuMgAAqFSEZnhd0cV+G7ak6PcDabI3aq+QJvGy534nvwCHThRatePnX1S/c2/9vOoDpa15R8HNu8s4C5Rz7IC2fPORAjP36CHOLAMAgPOEU3HwqqKL/bYfD1COraZqxvZWg4RRsjXqIKfVT5k7klWzbiM5/QJ13Bqszn+5TYF5x7T/0xeU8dVrOrr2HaZiAACA844zzfCa0y/2a9ypp377eavqtrtSdkcN+UdFK7dNL2Vt/kIH/3dmOetkjuoG11Zo3fqqWXBMdwwboiuuuIKpGAAA4LwjNMNrtm7dqh+3/6LIq29TxpGDcrkke2ikJMkiKbx1vFSYK9vBHUpf+5ZOZhyWPSpCXdq10thn/82ZZQAAUGUIzfCKpKQkTXlsqvbsT9PJg5kqPH5Eebk5yj7yu2rWi5Ek2ewBctSNUewV1yh733btW/2eHn9oAusuAwCAKkfyQJVyuVx66623NObeCdqd45A9uJYcNUNVq2V3WRzBOvTjSuXl50uSnPl5slgs8rfblfHbz7q0YzsCMwAA8ArSB6pEUVi+tm8/3T3hQf3mqiXT4koZv0Ad27pG/gE1VO+ygco/8LP2r3pLOYf36MSR3+WXm67U1Yu5UQkAAPAqpmfgvEtKStKjUx/Xt5u3yVK7ifIDaimiQ4IC6jRUjVaXK33j5/p91Vuq0+5KRfX4qw4mfag9qRtlNS41iIpQq7atNHYCq2MAAADvITTjvHG5XHrnnXc04/lZ2nc4XTVaXq6aTTvpwLpFsoTUVW6BS7Vjr5AkndyxToe+el0ul5HJPqr2zRtr6C03szoGAACoFgjNqHRFYfmNt9/VD5u3yIQ3VYHFodBmcbL4+clisUi5x2WCw5WTk6ParePkqB2lpnVqKO/ofh3Z8IVmz3xJHTp08PZbAQAAkMScZlSypKQkXfenPyvxgYf0/b4TyguopYDoTrL4+Us1I1QQFC6/GqE6sf1rWf3sKnQ6JaufJIsC6zRU9tED6tS2ldq1a+fttwIAAOBGaEalSUpK0oSHHtV323cpoHkPhXftJ1tAkGy1G8gYI3MyS7L6KahNLxWk/ayM5PeVf+x35Z/IVEHmIf266n0u+AMAANUS0zNQKVwulx6b9k/9fKxA+RaHgi+JU56rUMYY+QWGyFojVMe3r1XtywbJP6q56l7+Nx3d8IXSV7+hTGeeAq1OXd6rhxLHcMEfAACofgjNqBRvvfWWkjZtkyP2KlmyTyigbrRktcoSGKLj279WzQ7XKjN5kdKT3ldg0y4Kqxejmm2ukF/KKkXZsjXxvrs1ZMgQzjADAIBqidCMCnO5XNq6dasWLlyoWa+8qnx7LQVHNpdJ3aK8Y/vliGiiWp376tg3C2WRFNSyh/L3btWx1E3KNC7ZnLmK6xirKQ8/wdllAABQrRGaUSHutZd/2KiTufmy2ANl8w+UJbCmbEFhOrHjG9nCGshRv7Vqx9+kjA1LlfdbiiyFeXI4c9S1fWvd+vchnF0GAAAXBEIzyqXozn4PT31CR7MLZewhCoxqqMKc47IF1tTJnUkKanu1jn+/RJnJ7yuo1WVyRF2iwFaXy/nftWpgz9PE+x4iLAMAgAsKoRlltm7dOj3wj0nasPlHKbCW7A1ayXn8mAJbxOvEluUKbNpV2T+tliTVaHWFclM36tjyV2QKc+XKydKlbVvq308+x1QMAABwweFUH8rk5Zdf1p8G3KgffvpFxhEqa1CYHA1jJatVAY07yFojRIXp+xUSd6MKMw8p+6fVcuUclynIlV/BSXVt00xrvlpBYAYAABckzjTjjIou9Pv3v/+thR/+R5bgcAU0aKqCY/tl8bPLP7yxLPpGrhPHFNzuGmWt/0CSFNL1erlyj8ualabs1E1qWlN6asa/5OfHtxsAALgwkWJQqqIL/dYlJSsnN09+wbVlrRGqwBbxKvz+I8lZKIt/gKw1ail75zqFxN2kkG4Dlb1thdLXzJfFOGUtOKm6NWx68alXOcMMAAAuaEzPQAlJSUkaffd9WvvDj8ordMkWVEvWgEBZbP5yRHeUrVY9ufJP6uR/kxTcro/yD/ysrG8XyuYIVq1etyqoWVcF1ghW8wYRenPuq7r88su9/ZYAAADOCWeaUUxhYaHun/ig/rs3TS5jlcVRU7bAYMlqk5yFcmUdUc0O1yp99Tyd/G+yjLNANVperpzdP+ho6iyZwnz5m3xd1rmdpjz8/zjDDAAAfAKhGW5JSUm6Y/QY7Uz9XdagWrLaLJLNT5aAYFn9AuQ8ceTUVIz4QQq7crgyk99X9k9rZbGd+jayOfPUvtUluidxLEvKAQAAn0JohqRTy8ndfOsI7d9/QJagUFms/pLNJot/oKz+DlkdQXKeTHefXQ5q3Uu1+96tk9vXKee/6xThl6/HH31cQ4cOJSwDAACfQ2i+iBWtjvHee+/phZmzlW91nDrDHFBDkmSx+svm75DFESRndob8wxupIH2/sn9aq5M7kySLRSrMU+c2zfXsUzOYigEAAHwWofkitW7dOk38x//Ths2blZ9fKGtAoGwBgbLWCJUtqLYKjv0mFeTIUitSzuwM2YJqyZV7QhabXdbAmnJmH5O1IEcP3HevHn/8cc4uAwAAn0Zovsi4XC5NnjxZT7/4svKdkstp/rcyhp8s9hqy2PwV2LSLCjPT5DyZKZP2s/zrxsiVc1yu/By5ck/I5J5QsL9VT/7rKd15553efksAAADnHaH5IrJu3TqNGZOolP/+V9bAEMnPIpvNJovNLuMsPBWc/QJUmHFAtXrdpqxvFyv/0K9y7tooi79DMkZWV4Eu7RirGdP/yVJyAADgokFovki88sormvD/JutEVuapM8oWi2T1k1xOWQJD5DpxTK68k/KrFaW8Az9LkmpdOUyu/Bzl/PqDcnZtlD33qF564SkNGzaM6RgAAOCiQmi+CKxbt073TZykXKckq+1UYJZFFqufjKtQVj9/WULrynniqPLTfpF/3WjlH9qtvN+3yxQWnLol9sl0PfXv6Ro+fLi33w4AAECVIzT7uJMnT+qahL7Ks9hlMUYWvwDJGMkYWfztcuWflCvvpOyRTSVXoVy5J5S3d5vkZ5fF5ZIpzJWlME/PPvUv5i8DAICLFn9j91GFhYXq0aOHgoKClOuULDKyWK2y2B0yFslVmC/jcslqd8iVf1L5ab/IL6ye/Go3lDW4tixGMoV5sjjz9dxT/1JiYqK33xIAAIDXEJp90MyZM2UPCFDyt9//bzqGVXI5Zaw2WWx+8qsZIbkKZfJOyLickoxcBXnK27tNBUf2yZzMlCk4qQCrSy88PYPADAAALnpMz/AhhYWF6tSpk7Zt2y7Z/CSLkfzskoxcLpcshQWSf8CpNZfzTsrkZcvib5cpyJUxRhabv1SYLZlCtWp+iWbPfJEVMgAAAMSZZp8xa9Ys+fv7a9v2/0oWSX7+0v+WkDPGSLKcOrtcmK/CjAOyhzeQtWZtuQryT62iIatc+SfVOKq2Xn/5RW3ZtIHADAAA8D+cafYBN998sxYsWCBZbKfCsvNUbpbNX7L5yyKLVJgvi81PpiBfkpR/8NdT+/z8ZQpyZXXma+L993F3PwAAgFIQmi9wEyZM0IIF70uynpqSYVySzV9GkvwCZCnIlX94YxUe23dq1Qw/u1wFebLY/KSCXBmXU3ar9OzTz7A6BgAAwBkQmi9ga9eu1dNPPy3Z7KfCstUqGUn+Din3hCw6KVtIpJyZafKr3UgF6ftl8nNOBWZnoYyzUGGhQfr4g8VMxQAAADgLQvMFyuVy6c7EuyRZTwVmi+XU9IzCfFkKcmStGS7niaMyORmyBNZSwdG9kr9DFhmZwjyZgjy1adVSW7duZToGAACAB6SlC9TWrVu1Y8f2U2eXiwKzs0Cy2WScBVJhrmzB4XKezJQz84CMzX5qOkZBrlSQr3H33K2UlBQCMwAAQBlwpvkCtXHjRrmcRvILkJyFklySccniZ5Ox2uTMzZbFlifVCJPJPSFlH5MxRv4BAfpy5XJdeeWV3n4LAAAAFwxOM17IbDbJP+DUUhnGJVltp25W4nJJxsgUFkoFObJYrZK/QxH16mv1VysJzAAAAOVEaL5Ade7cWcGhtaWCHNmCw/53ExNJLuep/7XaJBmpIE8mP1fXXdVTab/tVY8ePbxWMwAAwIWK0HyBateuneK7dpLFuGQK82ULrHlqSTmrn2SxnprfbE7dInvVqpX6/PPPmb8MAABQQcxpvkBZrVY9OvlhpR05qpQtP8qZnyMFBEuFuVJhvuRyqlGjhkpNTSUsAwAAnCPS1AWsR48emv3Csxo0aJCatWyjQEuh7Faj+vWjtGzZF9q7dy+BGQAAoBJwpvkC16NHD8XFxSklJUXp6ekKCwtTbGwsYRkAAKASkaw8mDlzpqKjo+VwONS9e3d999133i6pBKvVqnbt2qlnz55q164dgRkAAKCSka7OYuHChRo/frymTJmijRs3qkOHDkpISNChQ4e8XRoAAACqEKH5LJ555hndcccdGj58uNq0aaPZs2erRo0amjt3rrdLAwAAQBViTvMZ5Ofna8OGDZo0aZJ7m9VqVZ8+fZScnFxifF5envLy8tyPs7KyJEkul0sul6vMr+tyuWSMKddzUD3RS99CP30L/fQd9NK3VHU/y/M6hOYzOHLkiJxOpyIjI4ttj4yM1I4dO0qMnz59uh577LES2w8fPqzc3Nwyv67L5VJmZqaMMcxNvsDRS99CP30L/fQd9NK3VHU/jx8/XuaxhOZKMmnSJI0fP979OCsrS40aNVJERIRCQkLKfByXyyWLxaKIiAh++C9w9NK30E/fQj99B730LVXdT4fDUeaxhOYzqFOnjmw2mw4ePFhs+8GDBxUVFVVifEBAgAICAkpst1qt5W66xWKp0PNQ/dBL30I/fQv99B300rdUZT/L8xp8d52B3W5Xly5dtHLlSvc2l8ullStXKj4+3ouVAQAAoKpxpvksxo8fr2HDhqlr167q1q2bnnvuOWVnZ2v48OHeLg0AAABViNB8FoMGDdLhw4c1efJkpaWlqWPHjvriiy9KXBwIAAAA30Zo9uCuu+7SXXfd5e0yAAAA4EXMaQYAAAA8IDQDAAAAHhCaAQAAAA+Y03yeGGMk/d/ttMvK5XLp+PHjcjgcrDd5gaOXvoV++hb66TvopW+p6n4W5bSi3HY2hObzpOi2jI0aNfJyJQAAADib48ePKzQ09KxjLKYs0Rrl5nK5tH//ftWsWVMWi6XMzyu6/fa+ffvKdfttVD/00rfQT99CP30HvfQtVd1PY4yOHz+u+vXrezyzzZnm88Rqtaphw4YVfn5ISAg//D6CXvoW+ulb6KfvoJe+pSr76ekMcxEm/wAAAAAeEJoBAAAADwjN1UxAQICmTJmigIAAb5eCc0QvfQv99C3003fQS99SnfvJhYAAAACAB5xpBgAAADwgNAMAAAAeEJoBAAAADwjNAAAAgAeEZi+YOXOmoqOj5XA41L17d3333XdnHb9o0SK1atVKDodD7dq102effVZFlcKT8vTy1Vdf1RVXXKGwsDCFhYWpT58+HnuPqlXen80iCxYskMVi0Q033HB+C0S5lLefGRkZSkxMVL169RQQEKAWLVrw39tqory9fO6559SyZUsFBgaqUaNGuu+++5Sbm1tF1eJs1q5dq/79+6t+/fqyWCz66KOPPD5n9erV6ty5swICAtSsWTPNnz//vNdZKoMqtWDBAmO3283cuXNNSkqKueOOO0ytWrXMwYMHSx3/zTffGJvNZmbMmGF++ukn8/DDDxt/f3+zdevWKq4cf1TeXt5yyy1m5syZZtOmTWb79u3mtttuM6Ghoea3336r4spRmvL2s8ju3btNgwYNzBVXXGGuv/76qikWHpW3n3l5eaZr167mT3/6k1m3bp3ZvXu3Wb16tdm8eXMVV44/Km8v33nnHRMQEGDeeecds3v3brNs2TJTr149c99991Vx5SjNZ599Zh566CHz4YcfGklmyZIlZx2/a9cuU6NGDTN+/Hjz008/mRdffNHYbDbzxRdfVE3BpyE0V7Fu3bqZxMRE92On02nq169vpk+fXur4m266yfTr16/Ytu7du5vRo0ef1zrhWXl7+UeFhYWmZs2a5o033jhfJaIcKtLPwsJC06NHD/Paa6+ZYcOGEZqrkfL28+WXXzZNmzY1+fn5VVUiyqi8vUxMTDRXXXVVsW3jx483l1122XmtE+VXltA8ceJEExsbW2zboEGDTEJCwnmsrHRMz6hC+fn52rBhg/r06ePeZrVa1adPHyUnJ5f6nOTk5GLjJSkhIeGM41E1KtLLPzp58qQKCgpUu3bt81Umyqii/Zw6darq1q2rkSNHVkWZKKOK9PM///mP4uPjlZiYqMjISLVt21b//Oc/5XQ6q6pslKIivezRo4c2bNjgnsKxa9cuffbZZ/rTn/5UJTWjclWnHORX5a94ETty5IicTqciIyOLbY+MjNSOHTtKfU5aWlqp49PS0s5bnfCsIr38o3/84x+qX79+if8YoOpVpJ/r1q3T66+/rs2bN1dBhSiPivRz165d+uqrrzRkyBB99tln+uWXXzR27FgVFBRoypQpVVE2SlGRXt5yyy06cuSILr/8chljVFhYqDFjxuj//b//VxUlo5KdKQdlZWUpJydHgYGBVVYLZ5oBL3jyySe1YMECLVmyRA6Hw9vloJyOHz+uoUOH6tVXX1WdOnW8XQ4qgcvlUt26dTVnzhx16dJFgwYN0kMPPaTZs2d7uzSU0+rVq/XPf/5Ts2bN0saNG/Xhhx/q008/1bRp07xdGi5wnGmuQnXq1JHNZtPBgweLbT948KCioqJKfU5UVFS5xqNqVKSXRZ566ik9+eSTWrFihdq3b38+y0QZlbefv/76q1JTU9W/f3/3NpfLJUny8/PTzp07dckll5zfonFGFfn5rFevnvz9/WWz2dzbWrdurbS0NOXn58tut5/XmlG6ivTykUce0dChQ3X77bdLktq1a6fs7GyNGjVKDz30kKxWzhdeSM6Ug0JCQqr0LLPEmeYqZbfb1aVLF61cudK9zeVyaeXKlYqPjy/1OfHx8cXGS9Ly5cvPOB5VoyK9lKQZM2Zo2rRp+uKLL9S1a9eqKBVlUN5+tmrVSlu3btXmzZvdX3/5y1/Uu3dvbd68WY0aNarK8vEHFfn5vOyyy/TLL7+4f/mRpP/+97+qV68egdmLKtLLkydPlgjGRb8MGWPOX7E4L6pVDqrySw8vcgsWLDABAQFm/vz55qeffjKjRo0ytWrVMmlpacYYY4YOHWoefPBB9/hvvvnG+Pn5maeeesps377dTJkyhSXnqony9vLJJ580drvdLF682Bw4cMD9dfz4cW+9BZymvP38I1bPqF7K28+9e/eamjVrmrvuusvs3LnTLF261NStW9c8/vjj3noL+J/y9nLKlCmmZs2a5r333jO7du0yX375pbnkkkvMTTfd5K23gNMcP37cbNq0yWzatMlIMs8884zZtGmT2bNnjzHGmAcffNAMHTrUPb5oybkHHnjAbN++3cycOZMl5y4mL774omncuLGx2+2mW7du5ttvv3Xv69Wrlxk2bFix8e+//75p0aKFsdvtJjY21nz66adVXDHOpDy9bNKkiZFU4mvKlClVXzhKVd6fzdMRmquf8vYzKSnJdO/e3QQEBJimTZuaJ554whQWFlZx1ShNeXpZUFBgHn30UXPJJZcYh8NhGjVqZMaOHWvS09OrvnCUsGrVqlL/v7Coh8OGDTO9evUq8ZyOHTsau91umjZtaubNm1fldRtjjMUY/lYBAAAAnA1zmgEAAAAPCM0AAACAB4RmAAAAwANCMwAAAOABoRkAAADwgNAMAAAAeEBoBgAAADwgNAMAAAAeEJoBABUSHR2tP//5zxV+/vz582WxWJSamlp5RQHAeUJoBoALSFHQ/OGHH7xdCgBcVAjNAAAAgAeEZgAAAMADQjMA+JD8/HxNnjxZXbp0UWhoqIKCgnTFFVdo1apVxcalpqbKYrHoqaee0syZM9W0aVPVqFFD1157rfbt2ydjjKZNm6aGDRsqMDBQ119/vY4dO1bqa3755Zfq2LGjHA6H2rRpow8//LDEmJSUFF111VUKDAxUw4YN9fjjj8vlcpUY9/HHH6tfv36qX7++AgICdMkll2jatGlyOp2V8wEBQAVZjDHG20UAAMpm/vz5Gj58uL7//nt17dq1xP4jR46offv2uvnmm9W8eXMdP35cr7/+unbt2qXvvvtOHTt2lHQqNMfExKhjx47Kz8/X7bffrmPHjmnGjBnq3LmzrrrqKq1evVqDBw/WL7/8ohdffFG33Xab5s6d636t6OhoBQQE6NChQxozZozq1q2refPmKSUlRV988YWuueYaSVJaWprat2+vwsJC3XvvvQoKCtKcOXMUGBioLVu2aPfu3YqOjpYkDRgwQHa7XZdeeqmCg4P11VdfadGiRZowYYL+/e9/n/fPFwDOyAAALhjz5s0zksz3339f6v7CwkKTl5dXbFt6erqJjIw0I0aMcG/bvXu3kWQiIiJMRkaGe/ukSZOMJNOhQwdTUFDg3n7zzTcbu91ucnNz3duaNGliJJkPPvjAvS0zM9PUq1fPdOrUyb1t3LhxRpJZv369e9uhQ4dMaGiokWR2797t3n7y5MkS72n06NGmRo0axV4bAKoa0zMAwIfYbDbZ7XZJksvl0rFjx1RYWKiuXbtq48aNJcb/7W9/U2hoqPtx9+7dJUl///vf5efnV2x7fn6+fv/992LPr1+/vgYMGOB+HBISoltvvVWbNm1SWlqaJOmzzz5TXFycunXr5h4XERGhIUOGlKgnMDDQ/e/jx4/ryJEjuuKKK3Ty5Ent2LGjXJ8FAFQmQjMA+Jg33nhD7du3l8PhUHh4uCIiIvTpp58qMzOzxNjGjRsXe1wUoBs1alTq9vT09GLbmzVrJovFUmxbixYtJMm9/vKePXvUvHnzEq/dsmXLEttSUlI0YMAAhYaGKiQkRBEREfr73/8uSaXWDwBVxc/zEADAheLtt9/WbbfdphtuuEEPPPCA6tatK5vNpunTp+vXX38tMd5ms5V6nDNtN+fxMpiMjAz16tVLISEhmjp1qi655BI5HA5t3LhR//jHP0q9cBAAqgqhGQB8yOLFi9W0aVN9+OGHxc4AT5ky5by83i+//CJjTLHX+u9//ytJ7ov7mjRpop9//rnEc3fu3Fns8erVq3X06FF9+OGH6tmzp3v77t27z0PlAFA+TM8AAB9SdIb49DPC69evV3Jy8nl5vf3792vJkiXux1lZWXrzzTfVsWNHRUVFSZL+9Kc/6dtvv9V3333nHnf48GG98847HmvPz8/XrFmzzkvtAFAenGkGgAvQ3Llz9cUXX5TYfuWVV+rDDz/UgAED1K9fP+3evVuzZ89WmzZtdOLEiUqvo0WLFho5cqS+//57RUZGau7cuTp48KDmzZvnHjNx4kS99dZbuu6664otOdekSRNt2bLFPa5Hjx4KCwvTsGHDdM8998hiseitt946r1NCAKCsCM0AcAF6+eWXS92+d+9enThxQq+88oqWLVumNm3a6O2339aiRYu0evXqSq+jefPmevHFF/XAAw9o586diomJ0cKFC5WQkOAeU69ePa1atUp33323nnzySYWHh2vMmDGqX7++Ro4c6R4XHh6upUuX6v7779fDDz+ssLAw/f3vf9fVV19d7HgA4A3c3AQAAADwgDnNAAAAgAeEZgAAAMADQjMAAADgAaEZAAAA8IDQDAAAAHhAaAYAAAA8IDQDAAAAHhCaAQAAAA8IzQAAAIAHhGYAAADAA0IzAAAA4AGhGQAAAPDg/wMDPNpmkXhT9wAAAABJRU5ErkJggg==",
"text/plain": [
""
]
@@ -1121,13 +1261,13 @@
},
{
"cell_type": "code",
- "execution_count": 23,
+ "execution_count": 25,
"id": "00a12eea-c805-4209-9143-48fa65619873",
"metadata": {},
"outputs": [
{
"data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAq4AAAIjCAYAAADC0ZkAAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy80BEi2AAAACXBIWXMAAA9hAAAPYQGoP6dpAABAQ0lEQVR4nO3deVxV1R738e8BZXAAQQQcSBHNOccsMYdrpLestCzTx3IsrTAzb6Y0aKmJ2mSpZXVzaLp2HRvuVTM1TTMzZ9PMCNNbIqICDjnBev7o4TweBoXjkeOSz/v1Oq+XZ+211/6dxQK+bvbZx2GMMQIAAACucD7eLgAAAAAoDIIrAAAArEBwBQAAgBUIrgAAALACwRUAAABWILgCAADACgRXAAAAWIHgCgAAACsQXAEAAGAFgiuAq9qGDRsUGxursmXLyuFwaMuWLd4uyUWNGjV0++23e7sMtzkcDj3//POX/Tjt27dX+/btnc+//vprORwOzZs375LGnTRpkurWravs7OxLrNA7nn/+eTkcDo+OmXuud+7cqVKlSmnHjh0ePQ7gDoIr4AE//vij7r//flWtWlX+/v6qUqWKevXqpR9//NHbpZVoZ8+e1b333qsjR47otdde0wcffKDq1at7uyxcITIzMzVx4kSNGDFCPj78OixI/fr11blzZ40aNcrbpQAq5e0CANstWLBAPXv2VGhoqAYMGKDo6Gjt3btX7733nubNm6c5c+borrvu8naZJVJSUpJ+++03vfvuu3rwwQe9Xc5V6c8//1SpUnb+KpkxY4bOnTunnj17eruUK97DDz+s2267TUlJSYqJifF2OSjB7PxpA1whkpKS9MADD6hmzZpavXq1KlWq5Nz2+OOPq02bNnrggQe0bds21axZ04uV5nXy5EmVKVPG22VcVqmpqZKkChUqeLeQq1hAQIC3S3DbzJkzdeedd170NZw7d07Z2dny8/MrpsquPHFxcQoJCdHs2bM1ZswYb5eDEoy/jQCX4KWXXtLJkyf1zjvvuIRWSQoLC9Pbb7+tEydOaNKkSS7bfv/9dw0YMEBVqlSRv7+/oqOj9cgjj+jMmTPOPunp6XriiSdUo0YN+fv7q1q1aurdu7fS0tIkSbNmzZLD4dDevXtdxs659u/rr792trVv314NGzbUxo0b1bZtW5UpU0ZPP/20JOnTTz9V586dnbXExMRo7NixysrKchk3Z4ydO3fqb3/7m8qUKaOqVavmeW2SdOrUKT3//PO69tprFRAQoMqVK+vuu+9WUlKSs092drYmT56sBg0aKCAgQBERERo0aJCOHj1aqLlfsWKF2rRpo7Jly6pChQrq0qWLdu3a5dzet29ftWvXTpJ07733yuFwuFy3l5/09HQNHTpUUVFR8vf3V61atTRx4sQ81z++/PLLio2NVcWKFRUYGKjmzZsXeK3lhx9+qJYtW6pMmTIKCQlR27Zt9eWXX+bpt2bNGrVs2VIBAQGqWbOm3n///YvOwd69e+VwOPTyyy9r2rRpqlmzpsqUKaOOHTtq//79MsZo7NixqlatmgIDA9WlSxcdOXLEZYyCrlGtUaOG+vbte9Eacu+fc83lL7/8or59+6pChQoKDg5Wv379dPLkyYuOJ0nvvPOOYmJiFBgYqJYtW+qbb74psG9WVpaefvppRUZGqmzZsrrzzju1f//+ix4jOTlZ27ZtU1xcnEv7+XM6efJkxcTEyN/fXzt37pR08XUn/bX2atSokeeY+V2P6nA4NHjwYC1atEgNGzaUv7+/GjRooCVLluTZf82aNbr++usVEBCgmJgYvf322wW+vg8//FDNmzdXYGCgQkND1aNHj3znpbBzXbp0abVv316ffvppgccEigNnXIFL8Pnnn6tGjRpq06ZNvtvbtm2rGjVq6D//+Y+z7Y8//lDLli2Vnp6ugQMHqm7duvr99981b948nTx5Un5+fjp+/LjatGmjXbt2qX///mrWrJnS0tL02Wef6X//+5/CwsKKXOvhw4d16623qkePHrr//vsVEREh6a8AXK5cOQ0bNkzlypXTihUrNGrUKGVmZuqll15yGePo0aP6+9//rrvvvlvdu3fXvHnzNGLECDVq1Ei33nqrpL+CxO23367ly5erR48eevzxx3Xs2DEtW7ZMO3bscP6ZcdCgQZo1a5b69eunIUOGKDk5WVOnTtXmzZu1du1alS5dusDX8tVXX+nWW29VzZo19fzzz+vPP//UlClT1Lp1a23atEk1atTQoEGDVLVqVY0fP15DhgzR9ddf73zN+Tl58qTatWun33//XYMGDdI111yjb7/9VgkJCTpw4IAmT57s7Pv666/rzjvvVK9evXTmzBnNmTNH9957r7744gt17tzZ2e+FF17Q888/r9jYWI0ZM0Z+fn5av369VqxYoY4dOzr7/fLLL7rnnns0YMAA9enTRzNmzFDfvn3VvHlzNWjQ4KJf248++khnzpzRY489piNHjmjSpEnq3r27OnTooK+//lojRozQL7/8oilTpujJJ5/UjBkzLjrmperevbuio6OVmJioTZs26Z///KfCw8M1ceLEC+733nvvadCgQYqNjdXQoUP166+/6s4771RoaKiioqLy9H/xxRflcDg0YsQIpaamavLkyYqLi9OWLVsUGBhY4HG+/fZbSVKzZs3y3T5z5kydOnVKAwcOlL+/v0JDQwu17tyxZs0aLViwQI8++qjKly+vN954Q926ddO+fftUsWJFSdL27dvVsWNHVapUSc8//7zOnTun0aNH57umX3zxRT333HPq3r27HnzwQR06dEhTpkxR27ZttXnzZudfIIo6182bN9enn36qzMxMBQUFufVagUtmALglPT3dSDJdunS5YL8777zTSDKZmZnGGGN69+5tfHx8zIYNG/L0zc7ONsYYM2rUKCPJLFiwoMA+M2fONJJMcnKyy/aVK1caSWblypXOtnbt2hlJZvr06XnGO3nyZJ62QYMGmTJlyphTp07lGeP99993tp0+fdpERkaabt26OdtmzJhhJJlXX321wNq/+eYbI8l89NFHLtuXLFmSb3tuTZo0MeHh4ebw4cPOtq1btxofHx/Tu3dvZ1vOXMydO/eC4xljzNixY03ZsmXNzz//7NI+cuRI4+vra/bt2+dsyz1nZ86cMQ0bNjQdOnRwtu3Zs8f4+PiYu+66y2RlZbn0z5kHY4ypXr26kWRWr17tbEtNTTX+/v7mH//4xwVrTk5ONpJMpUqVTHp6urM9ISHBSDKNGzc2Z8+edbb37NnT+Pn5uXxdJZnRo0fnGbt69eqmT58+Fzx+fvuPHj3aSDL9+/d36XfXXXeZihUrXnCsM2fOmPDwcNOkSRNz+vRpZ/s777xjJJl27do523K+tlWrVnV+bxljzL///W8jybz++usXPNazzz5rJJljx465tOfMaVBQkElNTXXZVth116dPH1O9evU8x8yZm/NJMn5+fuaXX35xGVOSmTJlirOta9euJiAgwPz222/Otp07dxpfX1+XMffu3Wt8fX3Niy++6HKc7du3m1KlSjnbizLXOT7++GMjyaxfvz7PNqC4cKkA4KZjx45JksqXL3/BfjnbMzMzlZ2drUWLFumOO+5QixYt8vTN+TPi/Pnz1bhx43zf1OXurW/8/f3Vr1+/PO3nn5U6duyY0tLS1KZNG508eVI//fSTS99y5crp/vvvdz738/NTy5Yt9euvvzrb5s+fr7CwMD322GMF1j537lwFBwfrlltuUVpamvPRvHlzlStXTitXrizwdRw4cEBbtmxR3759FRoa6my/7rrrdMstt+i///1vIWYjr7lz56pNmzYKCQlxqSkuLk5ZWVlavXq1s+/5c3b06FFlZGSoTZs22rRpk7N90aJFys7O1qhRo/K8Yz3317B+/fouZ+0rVaqkOnXquMzrhdx7770KDg52Pr/hhhskSffff7/LG6duuOEGnTlzRr///nuhxr0UDz/8sMvzNm3a6PDhw8rMzCxwnx9++EGpqal6+OGHXa4n7du3r8vrO1/v3r1dvgfvueceVa5c+aLr4PDhwypVqpTKlSuX7/Zu3bq5XP5zudad9Nf1o+e/4em6665TUFCQ8+uflZWlpUuXqmvXrrrmmmuc/erVq6dOnTq5jLVgwQJlZ2ere/fuLus4MjJStWvXdn5vuTPXISEhkuS8XAnwBi4VANyU88syJ8AW5PyAe+jQIWVmZqphw4YX3CcpKUndunXzTKH/T9WqVfN9c8mPP/6oZ599VitWrMgTKjIyMlyeV6tWLU/oCgkJ0bZt25zPk5KSVKdOnQu+03zPnj3KyMhQeHh4vttz3lSVn99++02SVKdOnTzb6tWrp6VLl+rEiRMqW7ZsgWMUVNO2bdvyXKucX01ffPGFxo0bpy1btuj06dPO9vPnJikpST4+Pqpfv/5Fj31+GMkREhJS6Ot9c++fEzxy/7k3p72w416K3DXlhJ6jR48W+GfmnK9t7dq1XdpLly5d4Jsbc/d1OByqVatWnmu/iyo6Ojrf2jy97qSLf/0PHTqkP//8M89rzann/NC8Z88eGWPy7SvJeQmOO3NtjJHk/n+eAU8guAJuCg4OVuXKlV1CW362bdumqlWrKigoSH/++afHjl/QL4/cb6rKkd/1funp6WrXrp2CgoI0ZswYxcTEKCAgQJs2bdKIESPyvCnJ19c337FzfqEVVnZ2tsLDw/XRRx/lu72g8Hg5ZWdn65ZbbtFTTz2V7/Zrr71WkvTNN9/ozjvvVNu2bfXmm2+qcuXKKl26tGbOnKmPP/7YrWNf6rwWtP+ljFvQOiosT62Vy6VixYo6d+6cjh07lu9fTS50fezFFPV705NzlZ2dLYfDocWLF+c7bkFnmAsjJ0i7c4094CkEV+AS3H777Xr33Xe1Zs0a3XTTTXm2f/PNN9q7d68GDRok6a9AFhQUdNFPoImJiblon5wzWOnp6S7tOWdSCuPrr7/W4cOHtWDBArVt29bZnpycXOgxcouJidH69et19uzZAt9gFRMTo6+++kqtW7cuckDI+QCB3bt359n2008/KSwszK2zXjExMTp+/Hied5nnNn/+fAUEBGjp0qXy9/d3ts+cOTPPeNnZ2dq5c6eaNGlS5HqKS0hISJ41dObMGR04cKDYa8n52u7Zs0cdOnRwtp89e1bJyclq3Lhxnn327Nnj8twYo19++UXXXXfdBY9Vt25dSX+t9Yv1Pb+2wqy7/OZUKtr35vkqVaqkwMDAPK81v3piYmJkjFF0dLTzP1v5cWeuk5OT5ePjc8FxgcuNa1yBSzB8+HAFBgZq0KBBOnz4sMu2I0eO6OGHH1aZMmU0fPhwSZKPj4+6du2qzz//XD/88EOe8XLOsHTr1k1bt27VwoULC+yTc03c+ddeZmVl6Z133il0/TlnZM4/s3PmzBm9+eabhR4jt27duiktLU1Tp07Nsy3nON27d1dWVpbGjh2bp8+5c+fy/aWfo3LlymrSpIlmz57t0m/Hjh368ssvddttt7lVd/fu3bVu3TotXbo0z7b09HSdO3dO0l9z5nA4XM6e7d27V4sWLXLZp2vXrvLx8dGYMWPynLm+Us46Sn+to/PXkPTXLZIu9YyrO1q0aKFKlSpp+vTpLreGmzVrVoFr4v3333e5XGfevHk6cOCA8y4XBWnVqpUk5ft9mJ+irLuYmBhlZGS4/DXmwIED+X4/F4avr686deqkRYsWad++fc72Xbt25Vmvd999t3x9ffXCCy/kWWfGGOfPKXfmeuPGjWrQoEGB18ACxYEzrsAlqF27tmbPnq1evXqpUaNGeT45Ky0tTf/6179c3ngxfvx4ffnll2rXrp0GDhyoevXq6cCBA5o7d67WrFmjChUqaPjw4Zo3b57uvfde9e/fX82bN9eRI0f02Wefafr06WrcuLEaNGigG2+8UQkJCTpy5IhCQ0M1Z84cZ8AqjNjYWIWEhKhPnz4aMmSIHA6HPvjgg0sKVr1799b777+vYcOG6fvvv1ebNm104sQJffXVV3r00UfVpUsXtWvXToMGDVJiYqK2bNmijh07qnTp0tqzZ4/mzp2r119/Xffcc0+Bx3jppZd06623qlWrVhowYIDztkTBwcH53pO0MIYPH67PPvtMt99+u/NWVCdOnND27ds1b9487d27V2FhYercubNeffVV/f3vf9f/+T//R6mpqZo2bZpq1arlElRq1aqlZ555RmPHjlWbNm109913y9/fXxs2bFCVKlWUmJjoVp2e9uCDD+rhhx9Wt27ddMstt2jr1q1aunSpV/4cXLp0aY0bN06DBg1Shw4ddN999yk5OVkzZ84s8LrL0NBQ3XTTTerXr58OHjyoyZMnq1atWnrooYcueKyaNWuqYcOG+uqrr9S/f/9C1VfYddejRw+NGDFCd911l4YMGaKTJ0/qrbfe0rXXXuvyBr6ieOGFF7RkyRK1adNGjz76qM6dO6cpU6aoQYMGLusuJiZG48aNU0JCgvbu3auuXbuqfPnySk5O1sKFCzVw4EA9+eSTRZ7rs2fPatWqVXr00Ufdqh/wmGK/jwFwFdq2bZvp2bOnqVy5sildurSJjIw0PXv2NNu3b8+3/2+//WZ69+5tKlWqZPz9/U3NmjVNfHy8y21pDh8+bAYPHmyqVq1q/Pz8TLVq1UyfPn1MWlqas09SUpKJi4sz/v7+JiIiwjz99NNm2bJl+d4Oq0GDBvnWsnbtWnPjjTeawMBAU6VKFfPUU0+ZpUuXFnqM/G79c/LkSfPMM8+Y6Oho53zcc889JikpyaXfO++8Y5o3b24CAwNN+fLlTaNGjcxTTz1l/vjjj4Km2umrr74yrVu3NoGBgSYoKMjccccdZufOnS59inI7LGOMOXbsmElISDC1atUyfn5+JiwszMTGxpqXX37ZnDlzxtnvvffeM7Vr1zb+/v6mbt26ZubMmfne6siYv24P1rRpU+Pv729CQkJMu3btzLJly5zbq1evbjp37pxnv3bt2uV7S6Lz5dy66aWXXirU6865hdr5t2LLysoyI0aMMGFhYaZMmTKmU6dO5pdffrnk22EdOnQo32Pnvn1bft58800THR1t/P39TYsWLczq1avzzEfOa/zXv/5lEhISTHh4uAkMDDSdO3d2uWXUhbz66qumXLlyLrc3K2hOcxRm3RljzJdffmkaNmxo/Pz8TJ06dcyHH35Y4O2w4uPj8+yf3/yvWrXKNG/e3Pj5+ZmaNWua6dOnF7ju5s+fb2666SZTtmxZU7ZsWVO3bl0THx9vdu/e7dKvMHNtjDGLFy82ksyePXvynReguDiMuYL+ZgUAQDHJyMhQzZo1NWnSJA0YMMDb5VzRunbtKofD4fblDoCnEFwBACXWxIkTNXPmTO3cuTPP/Xbxl127dqlRo0basmXLRW/lB1xuBFcAAABYgf9eAgAAwAoEVwAAAFiB4AoAAAArEFwBAABghav+Awiys7P1xx9/qHz58gV+fjQAAAC8xxijY8eOqUqVKhe8w8dVH1z/+OMPRUVFebsMAAAAXMT+/ftVrVq1Ardf9cG1fPnykv6aiKCgIC9XAwAAgNwyMzMVFRXlzG0FueqDa87lAUFBQQRXAACAK9jFLuvkzVkAAACwAsEVAAAAViC4AgAAwAoEVwAAAFiB4AoAAAArEFwBAABgBYIrAAAArEBwBQAAgBUIrgAAALACwRUAAABWILgCAADACgRXAAAAWIHgCgAAACsQXAEAAGAFgisAAACsQHAFAACAFQiuAAAAsALBFQAAAFYguAIAAMAKpbxdwNVowuY0b5eAy2Rk0zBvlwAAQInFGVcAAABYgeAKAAAAKxBcAQAAYAWCKwAAAKxAcAUAAIAVCK4AAACwAsEVAAAAViC4AgAAwAoEVwAAAFiB4AoAAAArEFwBAABgBYIrAAAArEBwBQAAgBUIrgAAALACwRUAAABWILgCAADACgRXAAAAWIHgCgAAACsQXAEAAGAFgisAAACsQHAFAACAFQiuAAAAsALBFQAAAFYguAIAAMAKBFcAAABYgeAKAAAAKxBcAQAAYAWCKwAAAKxAcAUAAIAVCK4AAACwAsEVAAAAViC4AgAAwAoEVwAAAFiB4AoAAAArEFwBAABgBYIrAAAArEBwBQAAgBUIrgAAALACwRUAAABWILgCAADACgRXAAAAWIHgCgAAACsQXAEAAGAFgisAAACs4NXgmpWVpeeee07R0dEKDAxUTEyMxo4dK2OMs48xRqNGjVLlypUVGBiouLg47dmzx4tVAwAAwBu8GlwnTpyot956S1OnTtWuXbs0ceJETZo0SVOmTHH2mTRpkt544w1Nnz5d69evV9myZdWpUyedOnXKi5UDAACguJXy5sG//fZbdenSRZ07d5Yk1ahRQ//617/0/fffS/rrbOvkyZP17LPPqkuXLpKk999/XxEREVq0aJF69OjhtdoBAABQvLx6xjU2NlbLly/Xzz//LEnaunWr1qxZo1tvvVWSlJycrJSUFMXFxTn3CQ4O1g033KB169blO+bp06eVmZnp8gAAAID9vHrGdeTIkcrMzFTdunXl6+urrKwsvfjii+rVq5ckKSUlRZIUERHhsl9ERIRzW26JiYl64YUXLm/hAAAAKHZePeP673//Wx999JE+/vhjbdq0SbNnz9bLL7+s2bNnuz1mQkKCMjIynI/9+/d7sGIAAAB4i1fPuA4fPlwjR450XqvaqFEj/fbbb0pMTFSfPn0UGRkpSTp48KAqV67s3O/gwYNq0qRJvmP6+/vL39//stcOAACA4uXVM64nT56Uj49rCb6+vsrOzpYkRUdHKzIyUsuXL3duz8zM1Pr169WqVatirRUAAADe5dUzrnfccYdefPFFXXPNNWrQoIE2b96sV199Vf3795ckORwODR06VOPGjVPt2rUVHR2t5557TlWqVFHXrl29WToAAACKmVeD65QpU/Tcc8/p0UcfVWpqqqpUqaJBgwZp1KhRzj5PPfWUTpw4oYEDByo9PV033XSTlixZooCAAC9WDgAAgOLmMOd/TNVVKDMzU8HBwcrIyFBQUFCxHHPC5rRiOQ6K38imYd4uAQCAq05h85pXr3EFAAAACovgCgAAACsQXAEAAGAFgisAAACsQHAFAACAFQiuAAAAsALBFQAAAFYguAIAAMAKBFcAAABYgeAKAAAAKxBcAQAAYAWCKwAAAKxAcAUAAIAVCK4AAACwAsEVAAAAViC4AgAAwAoEVwAAAFiB4AoAAAArEFwBAABgBYIrAAAArEBwBQAAgBUIrgAAALACwRUAAABWILgCAADACgRXAAAAWIHgCgAAACsQXAEAAGAFgisAAACsQHAFAACAFQiuAAAAsALBFQAAAFYguAIAAMAKBFcAAABYgeAKAAAAKxBcAQAAYAWCKwAAAKxAcAUAAIAVCK4AAACwAsEVAAAAViC4AgAAwAoEVwAAAFiB4AoAAAArEFwBAABgBYIrAAAArEBwBQAAgBUIrgAAALACwRUAAABWILgCAADACgRXAAAAWIHgCgAAACsQXAEAAGAFgisAAACsQHAFAACAFQiuAAAAsALBFQAAAFYguAIAAMAKBFcAAABYgeAKAAAAKxBcAQAAYAWCKwAAAKxAcAUAAIAVCK4AAACwAsEVAAAAViC4AgAAwAoEVwAAAFiB4AoAAAArEFwBAABgBYIrAAAArEBwBQAAgBUIrgAAALACwRUAAABWILgCAADACgRXAAAAWIHgCgAAACsQXAEAAGAFgisAAACsQHAFAACAFQiuAAAAsALBFQAAAFYguAIAAMAKBFcAAABYgeAKAAAAKxBcAQAAYAWCKwAAAKxAcAUAAIAVCK4AAACwgteD6++//677779fFStWVGBgoBo1aqQffvjBud0Yo1GjRqly5coKDAxUXFyc9uzZ48WKAQAA4A1eDa5Hjx5V69atVbp0aS1evFg7d+7UK6+8opCQEGefSZMm6Y033tD06dO1fv16lS1bVp06ddKpU6e8WDkAAACKWylvHnzixImKiorSzJkznW3R0dHOfxtjNHnyZD377LPq0qWLJOn9999XRESEFi1apB49ehR7zQAAAPAOr55x/eyzz9SiRQvde++9Cg8PV9OmTfXuu+86tycnJyslJUVxcXHOtuDgYN1www1at25dvmOePn1amZmZLg8AAADYz6vB9ddff9Vbb72l2rVra+nSpXrkkUc0ZMgQzZ49W5KUkpIiSYqIiHDZLyIiwrktt8TERAUHBzsfUVFRl/dFAAAAoFh4NbhmZ2erWbNmGj9+vJo2baqBAwfqoYce0vTp090eMyEhQRkZGc7H/v37PVgxAAAAvMWrwbVy5cqqX7++S1u9evW0b98+SVJkZKQk6eDBgy59Dh486NyWm7+/v4KCglweAAAAsJ9Xg2vr1q21e/dul7aff/5Z1atXl/TXG7UiIyO1fPly5/bMzEytX79erVq1KtZaAQAA4F1evavAE088odjYWI0fP17du3fX999/r3feeUfvvPOOJMnhcGjo0KEaN26cateurejoaD333HOqUqWKunbt6s3SAQAAUMy8Glyvv/56LVy4UAkJCRozZoyio6M1efJk9erVy9nnqaee0okTJzRw4EClp6frpptu0pIlSxQQEODFygEAAFDcHMYY4+0iLqfMzEwFBwcrIyOj2K53nbA5rViOg+I3smmYt0sAAOCqU9i85vWPfAUAAAAKg+AKAAAAKxBcAQAAYAWCKwAAAKxAcAUAAIAVCK4AAACwAsEVAAAAViC4AgAAwAoEVwAAAFiB4AoAAAArEFwBAABgBYIrAAAArEBwBQAAgBUIrgAAALACwRUAAABWILgCAADACm4F102bNmn79u3O559++qm6du2qp59+WmfOnPFYcQAAAEAOt4LroEGD9PPPP0uSfv31V/Xo0UNlypTR3Llz9dRTT3m0QAAAAEByM7j+/PPPatKkiSRp7ty5atu2rT7++GPNmjVL8+fP92R9AAAAgCQ3g6sxRtnZ2ZKkr776SrfddpskKSoqSmlpaZ6rDgAAAPh/3AquLVq00Lhx4/TBBx9o1apV6ty5syQpOTlZERERHi0QAAAAkNwMrpMnT9amTZs0ePBgPfPMM6pVq5Ykad68eYqNjfVogQAAAIAklXJnp+uuu87lrgI5XnrpJfn6+l5yUQAAAEBubt/HNT09Xf/85z+VkJCgI0eOSJJ27typ1NRUjxUHAAAA5HDrjOu2bdt08803q0KFCtq7d68eeughhYaGasGCBdq3b5/ef/99T9cJAACAEs6tM67Dhg1Tv379tGfPHgUEBDjbb7vtNq1evdpjxQEAAAA53AquGzZs0KBBg/K0V61aVSkpKZdcFAAAAJCbW8HV399fmZmZedp//vlnVapU6ZKLAgAAAHJzK7jeeeedGjNmjM6ePStJcjgc2rdvn0aMGKFu3bp5tEAAAABAcjO4vvLKKzp+/LjCw8P1559/ql27dqpVq5bKly+vF1980dM1AgAAAO7dVSA4OFjLli3T2rVrtXXrVh0/flzNmjVTXFycp+sDAAAAJLkZXHO0bt1arVu39lQtAAAAQIHculRgyJAheuONN/K0T506VUOHDr3UmgAAAIA83Aqu8+fPz/dMa2xsrObNm3fJRQEAAAC5uRVcDx8+rODg4DztQUFBSktLu+SiAAAAgNzcCq61atXSkiVL8rQvXrxYNWvWvOSiAAAAgNzcenPWsGHDNHjwYB06dEgdOnSQJC1fvlyvvPKKJk+e7Mn6AAAAAEluBtf+/fvr9OnTevHFFzV27FhJUo0aNfTWW2+pd+/eHi0QAAAAkC7hdliPPPKIHnnkER06dEiBgYEqV66cJ+sCAAAAXFzSfVwlqVKlSp6oAwAAALggt96cdfDgQT3wwAOqUqWKSpUqJV9fX5cHAAAA4GlunXHt27ev9u3bp+eee06VK1eWw+HwdF0AAACAC7eC65o1a/TNN9+oSZMmHi4HAAAAyJ9blwpERUXJGOPpWgAAAIACuRVcJ0+erJEjR2rv3r0eLgcAAADIn1uXCtx33306efKkYmJiVKZMGZUuXdpl+5EjRzxSHAAAAJDDreDKp2MBAACguLkVXPv06ePpOgAAAIALcusaV0lKSkrSs88+q549eyo1NVWStHjxYv34448eKw4AAADI4VZwXbVqlRo1aqT169drwYIFOn78uCRp69atGj16tEcLBAAAACQ3g+vIkSM1btw4LVu2TH5+fs72Dh066LvvvvNYcQAAAEAOt4Lr9u3bddddd+VpDw8PV1pa2iUXBQAAAOTmVnCtUKGCDhw4kKd98+bNqlq16iUXBQAAAOTmVnDt0aOHRowYoZSUFDkcDmVnZ2vt2rV68skn1bt3b0/XCAAAALgXXMePH6+6desqKipKx48fV/369dW2bVvFxsbq2Wef9XSNAAAAQNHv42qMUUpKit544w2NGjVK27dv1/Hjx9W0aVPVrl37ctQIAAAAuBdca9WqpR9//FG1a9dWVFTU5agLAAAAcFHkSwV8fHxUu3ZtHT58+HLUAwAAAOTLrWtcJ0yYoOHDh2vHjh2ergcAAADIV5EvFZCk3r176+TJk2rcuLH8/PwUGBjosv3IkSMeKQ4AAADI4VZwnTx5sofLAAAAAC6syMH17NmzWrVqlZ577jlFR0dfjpoAAACAPIp8jWvp0qU1f/78y1ELAAAAUCC33pzVtWtXLVq0yMOlAAAAAAVz6xrX2rVra8yYMVq7dq2aN2+usmXLumwfMmSIR4oDAAAAcjiMMaaoO13o2laHw6Fff/31korypMzMTAUHBysjI0NBQUHFcswJm9OK5TgofiObhnm7BAAArjqFzWtunXFNTk52uzAAAADAHW5d4woAAAAUN7fOuPbv3/+C22fMmOFWMQAAAEBB3AquR48edXl+9uxZ7dixQ+np6erQoYNHCgMAAADO51ZwXbhwYZ627OxsPfLII4qJibnkogAAAIDcPHaNq4+Pj4YNG6bXXnvNU0MCAAAATh59c1ZSUpLOnTvnySEBAAAASW5eKjBs2DCX58YYHThwQP/5z3/Up08fjxQGAAAAnM+t4Lp582aX5z4+PqpUqZJeeeWVi95xAAAAAHCHW8F15cqVnq4DAAAAuCC3rnFNTk7Wnj178rTv2bNHe/fuvdSaAAAAgDzcCq59+/bVt99+m6d9/fr16tu376XWBAAAAOThVnDdvHmzWrdunaf9xhtv1JYtWy61JgAAACAPt4Krw+HQsWPH8rRnZGQoKyvrkosCAAAAcnMruLZt21aJiYkuITUrK0uJiYm66aabPFYcAAAAkMOtuwpMnDhRbdu2VZ06ddSmTRtJ0jfffKPMzEytWLHCowUCAAAAkptnXOvXr69t27ape/fuSk1N1bFjx9S7d2/99NNPatiwoadrBAAAANw74ypJVapU0fjx4z1ZCwAAAFAgt864zpw5U3Pnzs3TPnfuXM2ePfuSiwIAAABycyu4JiYmKiwsLE97eHg4Z2EBAABwWbgVXPft26fo6Og87dWrV9e+ffsuuSgAAAAgN7eCa3h4uLZt25anfevWrapYsaJbhUyYMEEOh0NDhw51tp06dUrx8fGqWLGiypUrp27duungwYNujQ8AAAC7uRVce/bsqSFDhmjlypXKyspSVlaWVqxYoccff1w9evQo8ngbNmzQ22+/reuuu86l/YknntDnn3+uuXPnatWqVfrjjz909913u1MyAAAALOfWXQXGjh2rvXv36uabb1apUn8NkZWVpT59+hT5Gtfjx4+rV69eevfddzVu3Dhne0ZGht577z19/PHH6tChg6S/3hRWr149fffdd7rxxhvdKR0AAACWcuuMq5+fnz755BOtX79eH330kRYsWKBff/1VM2bMkJ+fX5HGio+PV+fOnRUXF+fSvnHjRp09e9alvW7durrmmmu0bt26Asc7ffq0MjMzXR4AAACwX5HPuKanp+uZZ57RJ598oqNHj0qSQkJC1KNHD40bN04VKlQo9Fhz5szRpk2btGHDhjzbUlJS5Ofnl2e8iIgIpaSkFDhmYmKiXnjhhULXAAAAADsUKbgeOXJErVq10u+//65evXqpXr16kqSdO3dq1qxZWr58ub799luFhIRcdKz9+/fr8ccf17JlyxQQEOBe9flISEjQsGHDnM8zMzMVFRXlsfEBAADgHUUKrmPGjJGfn5+SkpIUERGRZ1vHjh01ZswYvfbaaxcda+PGjUpNTVWzZs2cbVlZWVq9erWmTp2qpUuX6syZM0pPT3c563rw4EFFRkYWOK6/v7/8/f2L8rIAAABggSJd47po0SK9/PLLeUKrJEVGRmrSpElauHBhoca6+eabtX37dm3ZssX5aNGihXr16uX8d+nSpbV8+XLnPrt379a+ffvUqlWropQNAACAq0CRzrgeOHBADRo0KHB7w4YNL3j96fnKly+vhg0burSVLVtWFStWdLYPGDBAw4YNU2hoqIKCgvTYY4+pVatW3FEAAACgBCpScA0LC9PevXtVrVq1fLcnJycrNDTUI4VJ0muvvSYfHx9169ZNp0+fVqdOnfTmm296bHwAAADYw2GMMYXt3L9/fyUlJWnZsmV5bnuVEyxr1qypGTNmeLxQd2VmZio4OFgZGRkKCgoqlmNO2JxWLMdB8RvZNMzbJQAAcNUpbF4r8puzWrRoodq1ays+Pl5169aVMUa7du3Sm2++qdOnT+uDDz645OIBAACA3IoUXKtVq6Z169bp0UcfVUJCgnJO1jocDt1yyy2aOnUqt54CAADAZVHkDyCIjo7W4sWLdfToUe3Zs0eSVKtWLY9e2woAAADkVuTgmiMkJEQtW7b0ZC0AAABAgYp0H1cAAADAWwiuAAAAsALBFQAAAFYguAIAAMAKBFcAAABYgeAKAAAAKxBcAQAAYAWCKwAAAKxAcAUAAIAVCK4AAACwAsEVAAAAViC4AgAAwAoEVwAAAFiB4AoAAAArEFwBAABgBYIrAAAArEBwBQAAgBUIrgAAALACwRUAAABWILgCAADACgRXAAAAWIHgCgAAACsQXAEAAGAFgisAAACsQHAFAACAFQiuAAAAsALBFQAAAFYguAIAAMAKBFcAAABYgeAKAAAAKxBcAQAAYAWCKwAAAKxAcAUAAIAVCK4AAACwAsEVAAAAViC4AgAAwAoEVwAAAFiB4AoAAAArEFwBAABgBYIrAAAArEBwBQAAgBUIrgAAALACwRUAAABWILgCAADACgRXAAAAWIHgCgAAACsQXAEAAGAFgisAAACsQHAFAACAFQiuAAAAsALBFQAAAFYguAIAAMAKBFcAAABYgeAKAAAAKxBcAQAAYAWCKwAAAKxAcAUAAIAVCK4AAACwAsEVAAAAViC4AgAAwAoEVwAAAFiB4AoAAAArEFwBAABgBYIrAAAArEBwBQAAgBUIrgAAALACwRUAAABWILgCAADACgRXAAAAWIHgCgAAACsQXAEAAGAFgisAAACsQHAFAACAFQiuAAAAsALBFQAAAFYguAIAAMAKBFcAAABYgeAKAAAAKxBcAQAAYAWCKwAAAKxAcAUAAIAVCK4AAACwAsEVAAAAVvBqcE1MTNT111+v8uXLKzw8XF27dtXu3btd+pw6dUrx8fGqWLGiypUrp27duungwYNeqhgAAADe4tXgumrVKsXHx+u7777TsmXLdPbsWXXs2FEnTpxw9nniiSf0+eefa+7cuVq1apX++OMP3X333V6sGgAAAN7gMMYYbxeR49ChQwoPD9eqVavUtm1bZWRkqFKlSvr44491zz33SJJ++ukn1atXT+vWrdONN9540TEzMzMVHBysjIwMBQUFXe6XIEmasDmtWI6D4jeyaZi3SwAA4KpT2Lx2RV3jmpGRIUkKDQ2VJG3cuFFnz55VXFycs0/dunV1zTXXaN26dfmOcfr0aWVmZro8AAAAYL8rJrhmZ2dr6NChat26tRo2bChJSklJkZ+fnypUqODSNyIiQikpKfmOk5iYqODgYOcjKirqcpcOAACAYnDFBNf4+Hjt2LFDc+bMuaRxEhISlJGR4Xzs37/fQxUCAADAm0p5uwBJGjx4sL744gutXr1a1apVc7ZHRkbqzJkzSk9PdznrevDgQUVGRuY7lr+/v/z9/S93yQAAAChmXj3jaozR4MGDtXDhQq1YsULR0dEu25s3b67SpUtr+fLlzrbdu3dr3759atWqVXGXCwAAAC/y6hnX+Ph4ffzxx/r0009Vvnx553WrwcHBCgwMVHBwsAYMGKBhw4YpNDRUQUFBeuyxx9SqVatC3VEAAAAAVw+vBte33npLktS+fXuX9pkzZ6pv376SpNdee00+Pj7q1q2bTp8+rU6dOunNN98s5koBAADgbV4NroW5hWxAQICmTZumadOmFUNFAAAAuFJdMXcVAAAAAC6E4AoAAAArEFwBAABgBYIrAAAArEBwBQAAgBUIrgAAALACwRUAAABWILgCAADACgRXAAAAWIHgCgAAACsQXAEAAGAFgisAAACsQHAFAACAFQiuAAAAsALBFQAAAFYguAIAAMAKBFcAAABYgeAKAAAAKxBcAQAAYAWCKwAAAKxAcAUAAIAVCK4AAACwAsEVAAAAViC4AgAAwAoEVwAAAFiB4AoAAAArEFwBAABgBYIrAAAArEBwBQAAgBUIrgAAALACwRUAAABWILgCAADACgRXAAAAWIHgCgAAACsQXAEAAGAFgisAAACsQHAFAACAFQiuAAAAsALBFQAAAFYguAIAAMAKBFcAAABYgeAKAAAAKxBcAQAAYAWCKwAAAKxAcAUAAIAVCK4AAACwAsEVAAAAViC4AgAAwAoEVwAAAFiB4AoAAAArEFwBAABgBYIrAAAArEBwBQAAgBUIrgAAALACwRUAAABWILgCAADACgRXAAAAWIHgCgAAACsQXAEAAGAFgisAAACsQHAFAACAFUp5uwAAFzZhc5q3S8BlMrJpmLdLAACrcMYVAAAAViC4AgAAwAoEVwAAAFiB4AoAAAArEFwBAABgBYIrAAAArEBwBQAAgBUIrgAAALACwRUAAABWILgCAADACgRXAAAAWIHgCgAAACsQXAEAAGAFgisAAACsUMrbBQAAiteEzWneLgGXwcimYd4uAbjsOOMKAAAAKxBcAQAAYAWCKwAAAKxAcAUAAIAVCK4AAACwAsEVAAAAViC4AgAAwAoEVwAAAFiB4AoAAAAr8MlZAADAbXwS29XrSvw0NivOuE6bNk01atRQQECAbrjhBn3//ffeLgkAAADF7IoPrp988omGDRum0aNHa9OmTWrcuLE6deqk1NRUb5cGAACAYnTFB9dXX31VDz30kPr166f69etr+vTpKlOmjGbMmOHt0gAAAFCMruhrXM+cOaONGzcqISHB2ebj46O4uDitW7cu331Onz6t06dPO59nZGRIkjIzMy9vsec5dfxYsR0LxSsz06/Yj8l6unp5Yz1JrKmrFesJnlacayonpxljLtjvig6uaWlpysrKUkREhEt7RESEfvrpp3z3SUxM1AsvvJCnPSoq6rLUiJIl78oC3Md6giexnuBp3lhTx44dU3BwcIHbr+jg6o6EhAQNGzbM+Tw7O1tHjhxRxYoV5XA4CjVGZmamoqKitH//fgUFBV2uUq3HPBUec1U4zFPhME+FwzwVDvNUOMxT4bkzV8YYHTt2TFWqVLlgvys6uIaFhcnX11cHDx50aT948KAiIyPz3cff31/+/v4ubRUqVHDr+EFBQSzOQmCeCo+5KhzmqXCYp8JhngqHeSoc5qnwijpXFzrTmuOKfnOWn5+fmjdvruXLlzvbsrOztXz5crVq1cqLlQEAAKC4XdFnXCVp2LBh6tOnj1q0aKGWLVtq8uTJOnHihPr16+ft0gAAAFCMrvjget999+nQoUMaNWqUUlJS1KRJEy1ZsiTPG7Y8yd/fX6NHj85zyQFcMU+Fx1wVDvNUOMxT4TBPhcM8FQ7zVHiXc64c5mL3HQAAAACuAFf0Na4AAABADoIrAAAArEBwBQAAgBUIrgAAALBCiQ2u06ZNU40aNRQQEKAbbrhB33//fYF9Z82aJYfD4fIICAgoxmq9Y/Xq1brjjjtUpUoVORwOLVq06KL7fP3112rWrJn8/f1Vq1YtzZo167LX6W1Fnaevv/46z3pyOBxKSUkpnoK9JDExUddff73Kly+v8PBwde3aVbt3777ofnPnzlXdunUVEBCgRo0a6b///W8xVOs97sxTSfwZ9dZbb+m6665z3uC8VatWWrx48QX3KWlrSSr6PJXEtZSfCRMmyOFwaOjQoRfsVxLX1PkKM0+eXlMlMrh+8sknGjZsmEaPHq1NmzapcePG6tSpk1JTUwvcJygoSAcOHHA+fvvtt2Ks2DtOnDihxo0ba9q0aYXqn5ycrM6dO+tvf/ubtmzZoqFDh+rBBx/U0qVLL3Ol3lXUecqxe/dulzUVHh5+mSq8MqxatUrx8fH67rvvtGzZMp09e1YdO3bUiRMnCtzn22+/Vc+ePTVgwABt3rxZXbt2VdeuXbVjx45irLx4uTNPUsn7GVWtWjVNmDBBGzdu1A8//KAOHTqoS5cu+vHHH/PtXxLXklT0eZJK3lrKbcOGDXr77bd13XXXXbBfSV1TOQo7T5KH15QpgVq2bGni4+Odz7OyskyVKlVMYmJivv1nzpxpgoODi6m6K5Mks3Dhwgv2eeqpp0yDBg1c2u677z7TqVOny1jZlaUw87Ry5UojyRw9erRYarpSpaamGklm1apVBfbp3r276dy5s0vbDTfcYAYNGnS5y7tiFGae+Bn1l5CQEPPPf/4z322spf/vQvNU0tfSsWPHTO3atc2yZctMu3btzOOPP15g35K8pooyT55eUyXujOuZM2e0ceNGxcXFOdt8fHwUFxendevWFbjf8ePHVb16dUVFRV30f6sl1bp161zmVZI6dep0wXktyZo0aaLKlSvrlltu0dq1a71dTrHLyMiQJIWGhhbYhzVVuHmSSvbPqKysLM2ZM0cnTpwo8OPAWUuFmyepZK+l+Ph4de7cOc9ayU9JXlNFmSfJs2uqxAXXtLQ0ZWVl5fnkrYiIiAKvMaxTp45mzJihTz/9VB9++KGys7MVGxur//3vf8VRsjVSUlLyndfMzEz9+eefXqrqylO5cmVNnz5d8+fP1/z58xUVFaX27dtr06ZN3i6t2GRnZ2vo0KFq3bq1GjZsWGC/gtbU1X49cI7CzlNJ/Rm1fft2lStXTv7+/nr44Ye1cOFC1a9fP9++JXktFWWeSupakqQ5c+Zo06ZNSkxMLFT/krqmijpPnl5TV/xHvl4JWrVq5fK/09jYWNWrV09vv/22xo4d68XKYKM6deqoTp06zuexsbFKSkrSa6+9pg8++MCLlRWf+Ph47dixQ2vWrPF2KVe0ws5TSf0ZVadOHW3ZskUZGRmaN2+e+vTpo1WrVhUYykqqosxTSV1L+/fv1+OPP65ly5aVyDejFZY78+TpNVXigmtYWJh8fX118OBBl/aDBw8qMjKyUGOULl1aTZs21S+//HI5SrRWZGRkvvMaFBSkwMBAL1Vlh5YtW5aYEDd48GB98cUXWr16tapVq3bBvgWtqcJ+r9qsKPOUW0n5GeXn56datWpJkpo3b64NGzbo9ddf19tvv52nb0leS0WZp9xKylrauHGjUlNT1axZM2dbVlaWVq9eralTp+r06dPy9fV12ackril35im3S11TJe5SAT8/PzVv3lzLly93tmVnZ2v58uUXvObnfFlZWdq+fbsqV658ucq0UqtWrVzmVZKWLVtW6HktybZs2XLVrydjjAYPHqyFCxdqxYoVio6Ovug+JXFNuTNPuZXUn1HZ2dk6ffp0vttK4loqyIXmKbeSspZuvvlmbd++XVu2bHE+WrRooV69emnLli35hrGSuKbcmafcLnlNeextXhaZM2eO8ff3N7NmzTI7d+40AwcONBUqVDApKSnGGGMeeOABM3LkSGf/F154wSxdutQkJSWZjRs3mh49epiAgADz448/euslFItjx46ZzZs3m82bNxtJ5tVXXzWbN282v/32mzHGmJEjR5oHHnjA2f/XX381ZcqUMcOHDze7du0y06ZNM76+vmbJkiXeegnFoqjz9Nprr5lFixaZPXv2mO3bt5vHH3/c+Pj4mK+++spbL6FYPPLIIyY4ONh8/fXX5sCBA87HyZMnnX1yf++tXbvWlCpVyrz88stm165dZvTo0aZ06dJm+/bt3ngJxcKdeSqJP6NGjhxpVq1aZZKTk822bdvMyJEjjcPhMF9++aUxhrWUo6jzVBLXUkFyv1ueNZW/i82Tp9dUiQyuxhgzZcoUc8011xg/Pz/TsmVL89133zm3tWvXzvTp08f5fOjQoc6+ERER5rbbbjObNm3yQtXFK+e2TbkfOXPTp08f065duzz7NGnSxPj5+ZmaNWuamTNnFnvdxa2o8zRx4kQTExNjAgICTGhoqGnfvr1ZsWKFd4ovRvnNkSSXNZL7e88YY/7973+ba6+91vj5+ZkGDRqY//znP8VbeDFzZ55K4s+o/v37m+rVqxs/Pz9TqVIlc/PNNzvDmDGspRxFnaeSuJYKkjuQsabyd7F58vSachhjjHvnagEAAIDiU+KucQUAAICdCK4AAACwAsEVAAAAViC4AgAAwAoEVwAAAFiB4AoAAAArEFwBAABgBYIrAAAArEBwBYCrwN69e+VwOLRlyxZvlwIAlw3BFQA8pG/fvnI4HJowYYJL+6JFi+RwOLxUFQBcPQiuAOBBAQEBmjhxoo4ePertUjzizJkz3i4BAJwIrgDgQXFxcYqMjFRiYmK+259//nk1adLEpW3y5MmqUaOG83nfvn3VtWtXjR8/XhEREapQoYLGjBmjc+fOafjw4QoNDVW1atU0c+bMPOP/9NNPio2NVUBAgBo2bKhVq1a5bN+xY4duvfVWlStXThEREXrggQeUlpbm3N6+fXsNHjxYQ4cOVVhYmDp16uT+ZACAhxFcAcCDfH19NX78eE2ZMkX/+9//3B5nxYoV+uOPP7R69Wq9+uqrGj16tG6//XaFhIRo/fr1evjhhzVo0KA8xxg+fLj+8Y9/aPPmzWrVqpXuuOMOHT58WJKUnp6uDh06qGnTpvrhhx+0ZMkSHTx4UN27d3cZY/bs2fLz89PatWs1ffp0t18DAHgawRUAPOyuu+5SkyZNNHr0aLfHCA0N1RtvvKE6deqof//+qlOnjk6ePKmnn35atWvXVkJCgvz8/LRmzRqX/QYPHqxu3bqpXr16euuttxQcHKz33ntPkjR16lQ1bdpU48ePV926ddW0aVPNmDFDK1eu1M8//+wco3bt2po0aZLq1KmjOnXquP0aAMDTCK4AcBlMnDhRs2fP1q5du9zav0GDBvLx+f8/oiMiItSoUSPnc19fX1WsWFGpqaku+7Vq1cr571KlSqlFixbOGrZu3aqVK1eqXLlyzkfdunUlSUlJSc79mjdv7lbNAHC5lfJ2AQBwNWrbtq06deqkhIQE9e3b19nu4+MjY4xL37Nnz+bZv3Tp0i7PHQ5Hvm3Z2dmFrun48eO64447NHHixDzbKleu7Px32bJlCz0mABQngisAXCYTJkxQkyZNXP7cXqlSJaWkpMgY47xFlifvvfrdd9+pbdu2kqRz585p48aNGjx4sCSpWbNmmj9/vmrUqKFSpfjxD8A+XCoAAJdJo0aN1KtXL73xxhvOtvbt2+vQoUOaNGmSkpKSNG3aNC1evNhjx5w2bZoWLlyon376SfHx8Tp69Kj69+8vSYqPj9eRI0fUs2dPbdiwQUlJSVq6dKn69eunrKwsj9UAAJcLwRUALqMxY8a4/Dm/Xr16evPNNzVt2jQ1btxY33//vZ588kmPHW/ChAmaMGGCGjdurDVr1uizzz5TWFiYJKlKlSpau3atsrKy1LFjRzVq1EhDhw5VhQoVXK6nBYArlcPkvtgKAAAAuALxX2wAAABYgeAKAAAAKxBcAQAAYAWCKwAAAKxAcAUAAIAVCK4AAACwAsEVAAAAViC4AgAAwAoEVwAAAFiB4AoAAAArEFwBAABghf8L5mxOD3goaycAAAAASUVORK5CYII=",
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAArcAAAIjCAYAAAAZajMiAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy80BEi2AAAACXBIWXMAAA9hAAAPYQGoP6dpAABEDElEQVR4nO3dfXzO9f////sxsxMnO3OyGYuZ5TxENHLy0aJSUStv3sppUZGkE1ahkCHvEpG33oV6V4qik/cbCRFJYs6iYm0RNiezE/Y2bM/vH/12/Drapu3YseOYV7fr5XJcLh3P19njeHiNe689X6/DZowxAgAAACzAy9MFAAAAAK5CuAUAAIBlEG4BAABgGYRbAAAAWAbhFgAAAJZBuAUAAIBlEG4BAABgGYRbAAAAWAbhFgAAAJZBuAXwl7Z9+3Z17NhRVatWlc1m065duzxdkoMGDRrotttu83QZTrPZbHruuefK/TjdunVTt27d7O+//PJL2Ww2LV++vEz7nTlzppo0aaL8/PwyVugZzz33nGw2m0v3+cde79+/X97e3tq3b59LjwM4i3ALuMH333+ve++9V3Xr1pWvr6/Cw8M1YMAAff/9954u7S/t4sWLuueee5Senq6XX35Zb7/9turXr+/pslBBZGVlacaMGRo3bpy8vPjnsjjNmjVTr169NHHiRE+XAkiSvD1dAGB1H330kfr376+QkBANGzZMkZGRSklJ0RtvvKHly5dr6dKluvPOOz1d5l9SUlKSfvnlF73++uu6//77PV2OJf3vf/+Tt/eV+U/Nm2++qUuXLql///6eLqXCe/DBB3XrrbcqKSlJUVFRni4Hf3FX5t84wBUiKSlJ9913nxo2bKhNmzapVq1a9mWPPvqoOnfurPvuu0979uxRw4YNPVhpYTk5OapSpYqnyyhXJ06ckCQFBQV5thAL8/Pz83QJTlu0aJHuuOOOP/0Mly5dUn5+vnx8fNxUWcUTGxur4OBgLVmyRJMnT/Z0OfiL4/csQDl68cUXlZOTo4ULFzoEW0mqWbOm/vnPf+rcuXOaOXOmw7KjR49q2LBhCg8Pl6+vryIjI/XQQw/pwoUL9nUyMjL02GOPqUGDBvL19VW9evU0cOBAnTp1SpK0ePFi2Ww2paSkOOy7YC7il19+aR/r1q2bWrRooR07dqhLly6qUqWKnn76aUnSxx9/rF69etlriYqK0pQpU5SXl+ew34J97N+/X//3f/+nKlWqqG7duoU+mySdP39ezz33nK6++mr5+fmpTp06uuuuu5SUlGRfJz8/X7Nnz1bz5s3l5+en0NBQjRgxQmfOnClR79evX6/OnTuratWqCgoKUu/evXXgwAH78sGDB6tr166SpHvuuUc2m81hHmFRMjIyNGbMGEVERMjX11eNGjXSjBkzCs3HnDVrljp27KgaNWrI399fbdu2LXbu57///W+1b99eVapUUXBwsLp06aLPP/+80HqbN29W+/bt5efnp4YNG+qtt9760x6kpKTIZrNp1qxZmjdvnho2bKgqVaqoR48eOnLkiIwxmjJliurVqyd/f3/17t1b6enpDvsobs5sgwYNNHjw4D+t4Y/bF8wBPXTokAYPHqygoCAFBgZqyJAhysnJ+dP9SdLChQsVFRUlf39/tW/fXl999VWx6+bl5enpp59WWFiYqlatqjvuuENHjhz502MkJydrz549io2NdRj/fU9nz56tqKgo+fr6av/+/ZL+/LyTfjv3GjRoUOiYRc2PtdlsGjVqlFauXKkWLVrI19dXzZs31+rVqwttv3nzZl133XXy8/NTVFSU/vnPfxb7+f7973+rbdu28vf3V0hIiPr161dkX0ra68qVK6tbt276+OOPiz0m4C5cuQXK0aeffqoGDRqoc+fORS7v0qWLGjRooP/85z/2sWPHjql9+/bKyMjQ8OHD1aRJEx09elTLly9XTk6OfHx8dPbsWXXu3FkHDhzQ0KFDde211+rUqVP65JNP9Ouvv6pmzZqlrvX06dO65ZZb1K9fP917770KDQ2V9FtIrlatmsaOHatq1app/fr1mjhxorKysvTiiy867OPMmTO6+eabddddd6lv375avny5xo0bp5YtW+qWW26R9FvYuO2227Ru3Tr169dPjz76qLKzs7V27Vrt27fP/ivNESNGaPHixRoyZIhGjx6t5ORkvfrqq0pMTNSWLVtUuXLlYj/LF198oVtuuUUNGzbUc889p//973+aO3euOnXqpJ07d6pBgwYaMWKE6tatq2nTpmn06NG67rrr7J+5KDk5OeratauOHj2qESNG6KqrrtLXX3+t+Ph4HT9+XLNnz7av+8orr+iOO+7QgAEDdOHCBS1dulT33HOPPvvsM/Xq1cu+3vPPP6/nnntOHTt21OTJk+Xj46Nt27Zp/fr16tGjh329Q4cO6e6779awYcM0aNAgvfnmmxo8eLDatm2r5s2b/+mf7TvvvKMLFy7okUceUXp6umbOnKm+ffuqe/fu+vLLLzVu3DgdOnRIc+fO1RNPPKE333zzT/dZVn379lVkZKQSEhK0c+dO/etf/1Lt2rU1Y8aMy273xhtvaMSIEerYsaPGjBmjn3/+WXfccYdCQkIUERFRaP0XXnhBNptN48aN04kTJzR79mzFxsZq165d8vf3L/Y4X3/9tSTp2muvLXL5okWLdP78eQ0fPly+vr4KCQkp0XnnjM2bN+ujjz7Sww8/rOrVq2vOnDmKi4vT4cOHVaNGDUnS3r171aNHD9WqVUvPPfecLl26pEmTJhV5Tr/wwguaMGGC+vbtq/vvv18nT57U3Llz1aVLFyUmJtp/k1HaXrdt21Yff/yxsrKyFBAQ4NRnBVzCACgXGRkZRpLp3bv3Zde74447jCSTlZVljDFm4MCBxsvLy2zfvr3Quvn5+cYYYyZOnGgkmY8++qjYdRYtWmQkmeTkZIflGzZsMJLMhg0b7GNdu3Y1ksyCBQsK7S8nJ6fQ2IgRI0yVKlXM+fPnC+3jrbfeso/l5uaasLAwExcXZx978803jSTz0ksvFVv7V199ZSSZd955x2H56tWrixz/o9atW5vatWub06dP28d2795tvLy8zMCBA+1jBb1YtmzZZfdnjDFTpkwxVatWNT/99JPD+Pjx402lSpXM4cOH7WN/7NmFCxdMixYtTPfu3e1jBw8eNF5eXubOO+80eXl5DusX9MEYY+rXr28kmU2bNtnHTpw4YXx9fc3jjz9+2ZqTk5ONJFOrVi2TkZFhH4+PjzeSTKtWrczFixft4/379zc+Pj4Of66SzKRJkwrtu379+mbQoEGXPX5R20+aNMlIMkOHDnVY78477zQ1atS47L4uXLhgateubVq3bm1yc3Pt4wsXLjSSTNeuXe1jBX+2devWtf9sGWPMBx98YCSZV1555bLHevbZZ40kk52d7TBe0NOAgABz4sQJh2UlPe8GDRpk6tevX+iYBb35PUnGx8fHHDp0yGGfkszcuXPtY3369DF+fn7ml19+sY/t37/fVKpUyWGfKSkpplKlSuaFF15wOM7evXuNt7e3fbw0vS7w7rvvGklm27ZthZYB7sS0BKCcZGdnS5KqV69+2fUKlmdlZSk/P18rV67U7bffrnbt2hVat+BXlh9++KFatWpV5I1ozj72x9fXV0OGDCk0/vurW9nZ2Tp16pQ6d+6snJwc/fDDDw7rVqtWTffee6/9vY+Pj9q3b6+ff/7ZPvbhhx+qZs2aeuSRR4qtfdmyZQoMDNRNN92kU6dO2V9t27ZVtWrVtGHDhmI/x/Hjx7Vr1y4NHjxYISEh9vFrrrlGN910k/773/+WoBuFLVu2TJ07d1ZwcLBDTbGxscrLy9OmTZvs6/6+Z2fOnFFmZqY6d+6snTt32sdXrlyp/Px8TZw4sdCd+H/8M2zWrJnD1f9atWqpcePGDn29nHvuuUeBgYH29x06dJAk3XvvvQ43e3Xo0EEXLlzQ0aNHS7TfsnjwwQcd3nfu3FmnT59WVlZWsdt89913OnHihB588EGH+a2DBw92+Hy/N3DgQIefwbvvvlt16tT50/Pg9OnT8vb2VrVq1YpcHhcX5zDVqLzOO+m3+ay/v0nrmmuuUUBAgP3PPy8vT2vWrFGfPn101VVX2ddr2rSpevbs6bCvjz76SPn5+erbt6/DeRwWFqbo6Gj7z5YzvQ4ODpYk+9QowFOYlgCUk4J/UAtCbnF+H4JPnjyprKwstWjR4rLbJCUlKS4uzjWF/n/q1q1b5A0x33//vZ599lmtX7++UPDIzMx0eF+vXr1CwSw4OFh79uyxv09KSlLjxo0vewf9wYMHlZmZqdq1axe5vOBGsKL88ssvkqTGjRsXWta0aVOtWbNG586dU9WqVYvdR3E17dmzp9Dc6aJq+uyzzzR16lTt2rVLubm59vHf9yYpKUleXl5q1qzZnx7794GlQHBwcInnH/9x+4Jw8sdfLReMl3S/ZfHHmgqC0ZkzZ4r9lXbBn210dLTDeOXKlYu9IfOP69psNjVq1KjQXPTSioyMLLI2V5930p//+Z88eVL/+9//Cn3Wgnp+H6wPHjwoY0yR60qyT/dxptfGGEnO/w824CqEW6CcBAYGqk6dOg7Brih79uxR3bp1FRAQoP/9738uO35x/8D88UawAkXNP8zIyFDXrl0VEBCgyZMnKyoqSn5+ftq5c6fGjRtX6EaqSpUqFbnvgn/0Sio/P1+1a9fWO++8U+Ty4gJmecrPz9dNN92kp556qsjlV199tSTpq6++0h133KEuXbpo/vz5qlOnjipXrqxFixbp3XffderYZe1rcduXZb/FnUcl5apzpbzUqFFDly5dUnZ2dpG/fbncfN0/U9qfTVf2Kj8/XzabTatWrSpyv8VdqS6JgrDtzJx/wJUIt0A5uu222/T6669r8+bNuuGGGwot/+qrr5SSkqIRI0ZI+i20BQQE/Ok3/URFRf3pOgVXwjIyMhzGC67IlMSXX36p06dP66OPPlKXLl3s48nJySXexx9FRUVp27ZtunjxYrE3hUVFRemLL75Qp06dSh0iCr6E4ccffyy07IcfflDNmjWdunoWFRWls2fPFrp7/o8+/PBD+fn5ac2aNfL19bWPL1q0qND+8vPztX//frVu3brU9bhLcHBwoXPowoULOn78uNtrKfizPXjwoLp3724fv3jxopKTk9WqVatC2xw8eNDhvTFGhw4d0jXXXHPZYzVp0kTSb+f6n637+9pKct4V1VOpdD+bv1erVi35+/sX+qxF1RMVFSVjjCIjI+3/Q1YUZ3qdnJwsLy+vy+4XcAfm3ALl6Mknn5S/v79GjBih06dPOyxLT0/Xgw8+qCpVqujJJ5+UJHl5ealPnz769NNP9d133xXaX8GVmri4OO3evVsrVqwodp2COXq/nwual5enhQsXlrj+gis7v79CdOHCBc2fP7/E+/ijuLg4nTp1Sq+++mqhZQXH6du3r/Ly8jRlypRC61y6dKnIYFCgTp06at26tZYsWeKw3r59+/T555/r1ltvdaruvn37auvWrVqzZk2hZRkZGbp06ZKk33pms9kcrsKlpKRo5cqVDtv06dNHXl5emjx5cqEr4BXl6qX023n0+3NI+u3xUGW9cuuMdu3aqVatWlqwYIHDY/EWL15c7Dnx1ltvOUwNWr58uY4fP25/ekdxYmJiJKnIn8OilOa8i4qKUmZmpsNvdY4fP17kz3NJVKpUST179tTKlSt1+PBh+/iBAwcKna933XWXKlWqpOeff77QeWaMsf895Uyvd+zYoebNmxc7JxdwF67cAuUoOjpaS5Ys0YABA9SyZctC31B26tQpvffeew43i0ybNk2ff/65unbtquHDh6tp06Y6fvy4li1bps2bNysoKEhPPvmkli9frnvuuUdDhw5V27ZtlZ6erk8++UQLFixQq1at1Lx5c11//fWKj49Xenq6QkJCtHTpUnsIK4mOHTsqODhYgwYN0ujRo2Wz2fT222+XKXwNHDhQb731lsaOHatvv/1WnTt31rlz5/TFF1/o4YcfVu/evdW1a1eNGDFCCQkJ2rVrl3r06KHKlSvr4MGDWrZsmV555RXdfffdxR7jxRdf1C233KKYmBgNGzbM/kimwMDAIp/ZWhJPPvmkPvnkE9122232x3CdO3dOe/fu1fLly5WSkqKaNWuqV69eeumll3TzzTfr73//u06cOKF58+apUaNGDmGmUaNGeuaZZzRlyhR17txZd911l3x9fbV9+3aFh4crISHBqTpd7f7779eDDz6ouLg43XTTTdq9e7fWrFnjkV89V65cWVOnTtWIESPUvXt3/e1vf1NycrIWLVpU7DzQkJAQ3XDDDRoyZIjS0tI0e/ZsNWrUSA888MBlj9WwYUO1aNFCX3zxhYYOHVqi+kp63vXr10/jxo3TnXfeqdGjRysnJ0evvfaarr76aoebDkvj+eef1+rVq9W5c2c9/PDDunTpkubOnavmzZs7nHdRUVGaOnWq4uPjlZKSoj59+qh69epKTk7WihUrNHz4cD3xxBOl7vXFixe1ceNGPfzww07VD7iU25/PAPwF7dmzx/Tv39/UqVPHVK5c2YSFhZn+/fubvXv3Frn+L7/8YgYOHGhq1aplfH19TcOGDc3IkSMdHslz+vRpM2rUKFO3bl3j4+Nj6tWrZwYNGmROnTplXycpKcnExsYaX19fExoaap5++mmzdu3aIh8F1rx58yJr2bJli7n++uuNv7+/CQ8PN0899ZRZs2ZNifdR1GOPcnJyzDPPPGMiIyPt/bj77rtNUlKSw3oLFy40bdu2Nf7+/qZ69eqmZcuW5qmnnjLHjh0rrtV2X3zxhenUqZPx9/c3AQEB5vbbbzf79+93WKc0jwIzxpjs7GwTHx9vGjVqZHx8fEzNmjVNx44dzaxZs8yFCxfs673xxhsmOjra+Pr6miZNmphFixYV+ZgnY357NFqbNm2Mr6+vCQ4ONl27djVr1661L69fv77p1atXoe26du1a5OOYfq/gsVUvvvhiiT53wePjfv8Yury8PDNu3DhTs2ZNU6VKFdOzZ09z6NChMj8K7OTJk0Ue+4+PrivK/PnzTWRkpPH19TXt2rUzmzZtKtSPgs/43nvvmfj4eFO7dm3j7+9vevXq5fC4rMt56aWXTLVq1Rwe7VZcTwuU5LwzxpjPP//ctGjRwvj4+JjGjRubf//738U+CmzkyJGFti+q/xs3bjRt27Y1Pj4+pmHDhmbBggXFnncffvihueGGG0zVqlVN1apVTZMmTczIkSPNjz/+6LBeSXptjDGrVq0ykszBgweL7AvgTjZjKtDvvwAAqCAyMzPVsGFDzZw5U8OGDfN0ORVanz59ZLPZnJ5aAbgS4RYAgGLMmDFDixYt0v79+ws9jxi/OXDggFq2bKldu3b96WMMAXcg3AIAAMAy+N9QAAAAWAbhFgAAAJZBuAUAAIBlEG4BAABgGXyJg377ru1jx46pevXqxX7nNwAAADzHGKPs7GyFh4df9uklhFtJx44dU0REhKfLAAAAwJ84cuSI6tWrV+xywq2k6tWrS/qtWQEBAR6uBgAAAH+UlZWliIgIe24rDuFWsk9FCAgIINwCAABUYH82hZQbygAAAGAZhFsAAABYBuEWAAAAlkG4BQAAgGUQbgEAAGAZhFsAAABYBuEWAAAAlkG4BQAAgGUQbgEAAGAZhFsAAABYBuEWAAAAlkG4BQAAgGUQbgEAAGAZhFsAAABYBuEWAAAAluHRcLtp0ybdfvvtCg8Pl81m08qVKx2WG2M0ceJE1alTR/7+/oqNjdXBgwcd1klPT9eAAQMUEBCgoKAgDRs2TGfPnnXjpwAAAEBF4dFwe+7cObVq1Urz5s0rcvnMmTM1Z84cLViwQNu2bVPVqlXVs2dPnT9/3r7OgAED9P3332vt2rX67LPPtGnTJg0fPtxdHwEAAAAViM0YYzxdhCTZbDatWLFCffr0kfTbVdvw8HA9/vjjeuKJJyRJmZmZCg0N1eLFi9WvXz8dOHBAzZo10/bt29WuXTtJ0urVq3Xrrbfq119/VXh4eImOnZWVpcDAQGVmZiogIKBcPh8AAACcV9K8VmHn3CYnJys1NVWxsbH2scDAQHXo0EFbt26VJG3dulVBQUH2YCtJsbGx8vLy0rZt24rdd25urrKyshxeAAAAuPJ5e7qA4qSmpkqSQkNDHcZDQ0Pty1JTU1W7dm2H5d7e3goJCbGvU5SEhAQ9//zzLq64dKYnnvLo8QEAAMpifJuani6hSBX2ym15io+PV2Zmpv115MgRT5cEAAAAF6iw4TYsLEySlJaW5jCelpZmXxYWFqYTJ044LL906ZLS09Pt6xTF19dXAQEBDi8AAABc+SpsuI2MjFRYWJjWrVtnH8vKytK2bdsUExMjSYqJiVFGRoZ27NhhX2f9+vXKz89Xhw4d3F4zAAAAPMujc27Pnj2rQ4cO2d8nJydr165dCgkJ0VVXXaUxY8Zo6tSpio6OVmRkpCZMmKDw8HD7ExWaNm2qm2++WQ888IAWLFigixcvatSoUerXr1+Jn5QAAAAA6/BouP3uu+/0f//3f/b3Y8eOlSQNGjRIixcv1lNPPaVz585p+PDhysjI0A033KDVq1fLz8/Pvs0777yjUaNG6cYbb5SXl5fi4uI0Z84ct38WAAAAeF6Fec6tJ3niObc8LQEAAFzJ3P20hCv+ObcAAABAaRFuAQAAYBmEWwAAAFgG4RYAAACWQbgFAACAZRBuAQAAYBmEWwAAAFgG4RYAAACWQbgFAACAZRBuAQAAYBmEWwAAAFgG4RYAAACWQbgFAACAZRBuAQAAYBmEWwAAAFgG4RYAAACWQbgFAACAZRBuAQAAYBmEWwAAAFgG4RYAAACWQbgFAACAZRBuAQAAYBmEWwAAAFgG4RYAAACWQbgFAACAZRBuAQAAYBmEWwAAAFgG4RYAAACWQbgFAACAZRBuAQAAYBmEWwAAAFgG4RYAAACWQbgFAACAZRBuAQAAYBmEWwAAAFgG4RYAAACWQbgFAACAZRBuAQAAYBmEWwAAAFgG4RYAAACWQbgFAACAZRBuAQAAYBmEWwAAAFgG4RYAAACWQbgFAACAZRBuAQAAYBmEWwAAAFgG4RYAAACWQbgFAACAZRBuAQAAYBmEWwAAAFgG4RYAAACWQbgFAACAZRBuAQAAYBmEWwAAAFgG4RYAAACWQbgFAACAZRBuAQAAYBmEWwAAAFgG4RYAAACWQbgFAACAZRBuAQAAYBmEWwAAAFgG4RYAAACWQbgFAACAZRBuAQAAYBmEWwAAAFgG4RYAAACWQbgFAACAZRBuAQAAYBmEWwAAAFgG4RYAAACWQbgFAACAZRBuAQAAYBmEWwAAAFgG4RYAAACWQbgFAACAZVTocJuXl6cJEyYoMjJS/v7+ioqK0pQpU2SMsa9jjNHEiRNVp04d+fv7KzY2VgcPHvRg1QAAAPCUCh1uZ8yYoddee02vvvqqDhw4oBkzZmjmzJmaO3eufZ2ZM2dqzpw5WrBggbZt26aqVauqZ8+eOn/+vAcrBwAAgCd4e7qAy/n666/Vu3dv9erVS5LUoEEDvffee/r2228l/XbVdvbs2Xr22WfVu3dvSdJbb72l0NBQrVy5Uv369fNY7QAAAHC/Cn3ltmPHjlq3bp1++uknSdLu3bu1efNm3XLLLZKk5ORkpaamKjY21r5NYGCgOnTooK1btxa739zcXGVlZTm8AAAAcOWr0Fdux48fr6ysLDVp0kSVKlVSXl6eXnjhBQ0YMECSlJqaKkkKDQ112C40NNS+rCgJCQl6/vnny69wAAAAeESFvnL7wQcf6J133tG7776rnTt3asmSJZo1a5aWLFlSpv3Gx8crMzPT/jpy5IiLKgYAAIAnVegrt08++aTGjx9vnzvbsmVL/fLLL0pISNCgQYMUFhYmSUpLS1OdOnXs26Wlpal169bF7tfX11e+vr7lWjsAAADcr0Jfuc3JyZGXl2OJlSpVUn5+viQpMjJSYWFhWrdunX15VlaWtm3bppiYGLfWCgAAAM+r0Fdub7/9dr3wwgu66qqr1Lx5cyUmJuqll17S0KFDJUk2m01jxozR1KlTFR0drcjISE2YMEHh4eHq06ePZ4sHAACA21XocDt37lxNmDBBDz/8sE6cOKHw8HCNGDFCEydOtK/z1FNP6dy5cxo+fLgyMjJ0ww03aPXq1fLz8/Ng5QAAAPAEm/n91339RWVlZSkwMFCZmZkKCAhwyzGnJ55yy3EAAADKw/g2Nd16vJLmtQo95xYAAAAoDcItAAAALINwCwAAAMsg3AIAAMAyCLcAAACwDMItAAAALINwCwAAAMsg3AIAAMAyCLcAAACwDMItAAAALINwCwAAAMsg3AIAAMAyCLcAAACwDMItAAAALINwCwAAAMsg3AIAAMAyCLcAAACwDMItAAAALINwCwAAAMsg3AIAAMAyCLcAAACwDMItAAAALINwCwAAAMsg3AIAAMAyCLcAAACwDMItAAAALINwCwAAAMsg3AIAAMAyCLcAAACwDMItAAAALINwCwAAAMsg3AIAAMAyCLcAAACwDMItAAAALINwCwAAAMsg3AIAAMAyCLcAAACwDMItAAAALINwCwAAAMsg3AIAAMAyCLcAAACwDMItAAAALINwCwAAAMsg3AIAAMAyCLcAAACwDMItAAAALINwCwAAAMsg3AIAAMAyCLcAAACwDMItAAAALINwCwAAAMsg3AIAAMAyCLcAAACwDMItAAAALINwCwAAAMsg3AIAAMAyCLcAAACwDMItAAAALINwCwAAAMsg3AIAAMAyCLcAAACwDMItAAAALINwCwAAAMsg3AIAAMAyCLcAAACwDMItAAAALINwCwAAAMsg3AIAAMAyCLcAAACwDMItAAAALINwCwAAAMsg3AIAAMAyCLcAAACwDMItAAAALMOpcLtz507t3bvX/v7jjz9Wnz599PTTT+vChQsuKw4AAAAoDafC7YgRI/TTTz9Jkn7++Wf169dPVapU0bJly/TUU0+5tEAAAACgpJwKtz/99JNat24tSVq2bJm6dOmid999V4sXL9aHH37oyvoAAACAEnMq3BpjlJ+fL0n64osvdOutt0qSIiIidOrUKddVJ+no0aO69957VaNGDfn7+6tly5b67rvvHGqZOHGi6tSpI39/f8XGxurgwYMurQEAAABXBqfCbbt27TR16lS9/fbb2rhxo3r16iVJSk5OVmhoqMuKO3PmjDp16qTKlStr1apV2r9/v/7xj38oODjYvs7MmTM1Z84cLViwQNu2bVPVqlXVs2dPnT9/3mV1AAAA4Mrg7cxGs2fP1oABA7Ry5Uo988wzatSokSRp+fLl6tixo8uKmzFjhiIiIrRo0SL7WGRkpP2/jTGaPXu2nn32WfXu3VuS9NZbbyk0NFQrV65Uv379XFYLAAAAKj6nwu0111zj8LSEAi+++KIqVapU5qIKfPLJJ+rZs6fuuecebdy4UXXr1tXDDz+sBx54QNJvV4pTU1MVGxtr3yYwMFAdOnTQ1q1biw23ubm5ys3Ntb/PyspyWc0AAADwHKefc5uRkaF//etfio+PV3p6uiRp//79OnHihMuK+/nnn/Xaa68pOjpaa9as0UMPPaTRo0dryZIlkqTU1FRJKjQVIjQ01L6sKAkJCQoMDLS/IiIiXFYzAAAAPMepK7d79uzRjTfeqKCgIKWkpOiBBx5QSEiIPvroIx0+fFhvvfWWS4rLz89Xu3btNG3aNElSmzZttG/fPi1YsECDBg1yer/x8fEaO3as/X1WVhYBFwAAwAKcunI7duxYDRkyRAcPHpSfn599/NZbb9WmTZtcVlydOnXUrFkzh7GmTZvq8OHDkqSwsDBJUlpamsM6aWlp9mVF8fX1VUBAgMMLAAAAVz6nwu327ds1YsSIQuN169a97HSA0urUqZN+/PFHh7GffvpJ9evXl/TbzWVhYWFat26dfXlWVpa2bdummJgYl9UBAACAK4NT0xJ8fX2LvAnrp59+Uq1atcpcVIHHHntMHTt21LRp09S3b199++23WrhwoRYuXChJstlsGjNmjKZOnaro6GhFRkZqwoQJCg8PV58+fVxWBwAAAK4MTl25veOOOzR58mRdvHhR0m8h8/Dhwxo3bpzi4uJcVtx1112nFStW6L333lOLFi00ZcoU+2PICjz11FN65JFHNHz4cF133XU6e/asVq9e7TBdAgAAAH8NNmOMKe1GmZmZuvvuu/Xdd98pOztb4eHhSk1NVUxMjP773/+qatWq5VFrucnKylJgYKAyMzPdNv92eqJrv8kNAADAnca3qenW45U0rzk1LSEwMFBr167Vli1btHv3bp09e1bXXnutw/NmAQAAAHdzKtwW6NSpkzp16uSqWgAAAIAycWrO7ejRozVnzpxC46+++qrGjBlT1poAAAAApzgVbj/88MMir9h27NhRy5cvL3NRAAAAgDOcCrenT59WYGBgofGAgACdOsWNUgAAAPAMp8Jto0aNtHr16kLjq1atUsOGDctcFAAAAOAMp24oGzt2rEaNGqWTJ0+qe/fukqR169bpH//4h2bPnu3K+gAAAIAScyrcDh06VLm5uXrhhRc0ZcoUSVKDBg302muvaeDAgS4tEAAAACgppx8F9tBDD+mhhx7SyZMn5e/vr2rVqrmyLgAAAKDUyvScW0mqVauWK+oAAAAAysypG8rS0tJ03333KTw8XN7e3qpUqZLDCwAAAPAEp67cDh48WIcPH9aECRNUp04d2Ww2V9cFAAAAlJpT4Xbz5s366quv1Lp1axeXAwAAADjPqWkJERERMsa4uhYAAACgTJwKt7Nnz9b48eOVkpLi4nIAAAAA5zk1LeFvf/ubcnJyFBUVpSpVqqhy5coOy9PT011SHAAAAFAaToVbvoUMAAAAFZFT4XbQoEGurgMAAAAoM6fm3EpSUlKSnn32WfXv318nTpyQJK1atUrff/+9y4oDAAAASsOpcLtx40a1bNlS27Zt00cffaSzZ89Kknbv3q1Jkya5tEAAAACgpJwKt+PHj9fUqVO1du1a+fj42Me7d++ub775xmXFAQAAAKXhVLjdu3ev7rzzzkLjtWvX1qlTp8pcFAAAAOAMp8JtUFCQjh8/Xmg8MTFRdevWLXNRAAAAgDOcCrf9+vXTuHHjlJqaKpvNpvz8fG3ZskVPPPGEBg4c6OoaAQAAgBJxKtxOmzZNTZo0UUREhM6ePatmzZqpS5cu6tixo5599llX1wgAAACUSKmfc2uMUWpqqubMmaOJEydq7969Onv2rNq0aaPo6OjyqBEAAAAoEafCbaNGjfT9998rOjpaERER5VEXAAAAUGqlnpbg5eWl6OhonT59ujzqAQAAAJzm1Jzb6dOn68knn9S+fftcXQ8AAADgtFJPS5CkgQMHKicnR61atZKPj4/8/f0dlqenp7ukOAAAAKA0nAq3s2fPdnEZAAAAQNmVOtxevHhRGzdu1IQJExQZGVkeNQEAAABOKfWc28qVK+vDDz8sj1oAAACAMnHqhrI+ffpo5cqVLi4FAAAAKBun5txGR0dr8uTJ2rJli9q2bauqVas6LB89erRLigMAAABKw2aMMaXd6HJzbW02m37++ecyFeVuWVlZCgwMVGZmpgICAtxyzOmJp9xyHAAAgPIwvk1Ntx6vpHnNqSu3ycnJThcGAAAAlBen5twCAAAAFZFTV26HDh162eVvvvmmU8UAAAAAZeFUuD1z5ozD+4sXL2rfvn3KyMhQ9+7dXVIYAAAAUFpOhdsVK1YUGsvPz9dDDz2kqKioMhcFAAAAOMNlc269vLw0duxYvfzyy67aJQAAAFAqLr2hLCkpSZcuXXLlLgEAAIASc2pawtixYx3eG2N0/Phx/ec//9GgQYNcUhgAAABQWk6F28TERIf3Xl5eqlWrlv7xj3/86ZMUAAAAgPLiVLjdsGGDq+sAAAAAysypObfJyck6ePBgofGDBw8qJSWlrDUBAAAATnEq3A4ePFhff/11ofFt27Zp8ODBZa0JAAAAcIpT4TYxMVGdOnUqNH799ddr165dZa0JAAAAcIpT4dZmsyk7O7vQeGZmpvLy8spcFAAAAOAMp8Jtly5dlJCQ4BBk8/LylJCQoBtuuMFlxQEAAACl4dTTEmbMmKEuXbqocePG6ty5syTpq6++UlZWltavX+/SAgEAAICScurKbbNmzbRnzx717dtXJ06cUHZ2tgYOHKgffvhBLVq0cHWNAAAAQIk4deVWksLDwzVt2jRX1gIAAACUiVNXbhctWqRly5YVGl+2bJmWLFlS5qIAAAAAZzgVbhMSElSzZs1C47Vr1+ZqLgAAADzGqXB7+PBhRUZGFhqvX7++Dh8+XOaiAAAAAGc4FW5r166tPXv2FBrfvXu3atSoUeaiAAAAAGc4FW779++v0aNHa8OGDcrLy1NeXp7Wr1+vRx99VP369XN1jQAAAECJOPW0hClTpiglJUU33nijvL1/20VeXp4GDRrEnFsAAAB4jFPh1sfHR++//76eeOIJpaSkyN/fXy1btlT9+vVdXR8AAABQYqUOtxkZGXrmmWf0/vvv68yZM5Kk4OBg9evXT1OnTlVQUJCrawQAAABKpFThNj09XTExMTp69KgGDBigpk2bSpL279+vxYsXa926dfr6668VHBxcLsUCAAAAl1OqcDt58mT5+PgoKSlJoaGhhZb16NFDkydP1ssvv+zSIgEAAICSKNXTElauXKlZs2YVCraSFBYWppkzZ2rFihUuKw4AAAAojVKF2+PHj6t58+bFLm/RooVSU1PLXBQAAADgjFKF25o1ayolJaXY5cnJyQoJCSlrTQAAAIBTShVue/bsqWeeeUYXLlwotCw3N1cTJkzQzTff7LLiAAAAgNIo9Q1l7dq1U3R0tEaOHKkmTZrIGKMDBw5o/vz5ys3N1dtvv11etQIAAACXVapwW69ePW3dulUPP/yw4uPjZYyRJNlsNt1000169dVXFRERUS6FAgAAAH+m1F/iEBkZqVWrVunMmTM6ePCgJKlRo0bMtQUAAIDHOfX1u9Jv30rWvn17V9YCAAAAlEmpbigDAAAAKjLCLQAAACyDcAsAAADLINwCAADAMgi3AAAAsIwrKtxOnz5dNptNY8aMsY+dP39eI0eOVI0aNVStWjXFxcUpLS3Nc0UCAADAY66YcLt9+3b985//1DXXXOMw/thjj+nTTz/VsmXLtHHjRh07dkx33XWXh6oEAACAJ10R4fbs2bMaMGCAXn/9dQUHB9vHMzMz9cYbb+ill15S9+7d1bZtWy1atEhff/21vvnmGw9WDAAAAE+4IsLtyJEj1atXL8XGxjqM79ixQxcvXnQYb9Kkia666ipt3bq12P3l5uYqKyvL4QUAAIArn9PfUOYuS5cu1c6dO7V9+/ZCy1JTU+Xj46OgoCCH8dDQUKWmpha7z4SEBD3//POuLhUAAAAeVqGv3B45ckSPPvqo3nnnHfn5+blsv/Hx8crMzLS/jhw54rJ9AwAAwHMqdLjdsWOHTpw4oWuvvVbe3t7y9vbWxo0bNWfOHHl7eys0NFQXLlxQRkaGw3ZpaWkKCwsrdr++vr4KCAhweAEAAODKV6GnJdx4443au3evw9iQIUPUpEkTjRs3ThEREapcubLWrVunuLg4SdKPP/6ow4cPKyYmxhMlAwAAwIMqdLitXr26WrRo4TBWtWpV1ahRwz4+bNgwjR07ViEhIQoICNAjjzyimJgYXX/99Z4oGQAAAB5UocNtSbz88svy8vJSXFyccnNz1bNnT82fP9/TZQEAAMADbMYY4+kiPC0rK0uBgYHKzMx02/zb6Ymn3HIcAACA8jC+TU23Hq+kea1C31AGAAAAlAbhFgAAAJZBuAUAAIBlEG4BAABgGYRbAAAAWAbhFgAAAJZBuAUAAIBlEG4BAABgGYRbAAAAWAbhFgAAAJZBuAUAAIBlEG4BAABgGYRbAAAAWAbhFgAAAJZBuAUAAIBlEG4BAABgGYRbAAAAWAbhFgAAAJZBuAUAAIBlEG4BAABgGYRbAAAAWAbhFgAAAJZBuAUAAIBlEG4BAABgGYRbAAAAWAbhFgAAAJZBuAUAAIBlEG4BAABgGYRbAAAAWAbhFgAAAJZBuAUAAIBlEG4BAABgGYRbAAAAWAbhFgAAAJZBuAUAAIBlEG4BAABgGYRbAAAAWAbhFgAAAJZBuAUAAIBlEG4BAABgGYRbAAAAWAbhFgAAAJZBuAUAAIBlEG4BAABgGYRbAAAAWAbhFgAAAJZBuAUAAIBlEG4BAABgGYRbAAAAWAbhFgAAAJZBuAUAAIBlEG4BAABgGYRbAAAAWAbhFgAAAJZBuAUAAIBlEG4BAABgGYRbAAAAWAbhFgAAAJZBuAUAAIBlEG4BAABgGYRbAAAAWAbhFgAAAJZBuAUAAIBlEG4BAABgGYRbAAAAWAbhFgAAAJZBuAUAAIBlEG4BAABgGYRbAAAAWAbhFgAAAJZBuAUAAIBlEG4BAABgGYRbAAAAWAbhFgAAAJZBuAUAAIBlEG4BAABgGYRbAAAAWEaFDrcJCQm67rrrVL16ddWuXVt9+vTRjz/+6LDO+fPnNXLkSNWoUUPVqlVTXFyc0tLSPFQxAAAAPKlCh9uNGzdq5MiR+uabb7R27VpdvHhRPXr00Llz5+zrPPbYY/r000+1bNkybdy4UceOHdNdd93lwaoBAADgKTZjjPF0ESV18uRJ1a5dWxs3blSXLl2UmZmpWrVq6d1339Xdd98tSfrhhx/UtGlTbd26Vddff32J9puVlaXAwEBlZmYqICCgPD+C3fTEU245DgAAQHkY36amW49X0rxWoa/c/lFmZqYkKSQkRJK0Y8cOXbx4UbGxsfZ1mjRpoquuukpbt24tdj+5ubnKyspyeAEAAODKd8WE2/z8fI0ZM0adOnVSixYtJEmpqany8fFRUFCQw7qhoaFKTU0tdl8JCQkKDAy0vyIiIsqzdAAAALjJFRNuR44cqX379mnp0qVl3ld8fLwyMzPtryNHjrigQgAAAHiat6cLKIlRo0bps88+06ZNm1SvXj37eFhYmC5cuKCMjAyHq7dpaWkKCwsrdn++vr7y9fUtz5IBAADgARX6yq0xRqNGjdKKFSu0fv16RUZGOixv27atKleurHXr1tnHfvzxRx0+fFgxMTHuLhcAAAAeVqGv3I4cOVLvvvuuPv74Y1WvXt0+jzYwMFD+/v4KDAzUsGHDNHbsWIWEhCggIECPPPKIYmJiSvykBAAAAFhHhQ63r732miSpW7duDuOLFi3S4MGDJUkvv/yyvLy8FBcXp9zcXPXs2VPz5893c6UAAACoCCp0uC3JI3j9/Pw0b948zZs3zw0VAQAAoCKr0HNuAQAAgNIg3AIAAMAyCLcAAACwDMItAAAALINwCwAAAMsg3AIAAMAyCLcAAACwDMItAAAALINwCwAAAMsg3AIAAMAyCLcAAACwDMItAAAALINwCwAAAMsg3AIAAMAyCLcAAACwDMItAAAALINwCwAAAMsg3AIAAMAyCLcAAACwDMItAAAALINwCwAAAMsg3AIAAMAyCLcAAACwDMItAAAALINwCwAAAMsg3AIAAMAyCLcAAACwDMItAAAALINwCwAAAMsg3AIAAMAyCLcAAACwDMItAAAALINwCwAAAMsg3AIAAMAyCLcAAACwDMItAAAALINwCwAAAMsg3AIAAMAyCLcAAACwDMItAAAALINwCwAAAMsg3AIAAMAyCLcAAACwDMItAAAALINwCwAAAMsg3AIAAMAyCLcAAACwDMItAAAALINwCwAAAMsg3AIAAMAyCLcAAACwDMItAAAALINwCwAAAMsg3AIAAMAyCLcAAACwDMItAAAALINwCwAAAMsg3AIAAMAyCLcAAACwDMItAAAALINwCwAAAMsg3AIAAMAyCLcAAACwDMItAAAALINwCwAAAMsg3AIAAMAyCLcAAACwDMItAAAALINwCwAAAMsg3AIAAMAyCLcAAACwDMItAAAALINwCwAAAMsg3AIAAMAyCLcAAACwDMItAAAALINwCwAAAMuwTLidN2+eGjRoID8/P3Xo0EHffvutp0sCAACAm1ki3L7//vsaO3asJk2apJ07d6pVq1bq2bOnTpw44enSAAAA4EaWCLcvvfSSHnjgAQ0ZMkTNmjXTggULVKVKFb355pueLg0AAABu5O3pAsrqwoUL2rFjh+Lj4+1jXl5eio2N1datW4vcJjc3V7m5ufb3mZmZkqSsrKzyLfZ3zp/NdtuxAAAAXC0ry8fNx/stpxljLrveFR9uT506pby8PIWGhjqMh4aG6ocffihym4SEBD3//POFxiMiIsqlRgAAAKspnKTcIzs7W4GBgcUuv+LDrTPi4+M1duxY+/v8/Hylp6erRo0astls5X78rKwsRURE6MiRIwoICCj3410p6Evx6E3R6Evx6E3R6Evx6E3R6EvRPNEXY4yys7MVHh5+2fWu+HBbs2ZNVapUSWlpaQ7jaWlpCgsLK3IbX19f+fr6OowFBQWVV4nFCggI4AelCPSlePSmaPSlePSmaPSlePSmaPSlaO7uy+Wu2Ba44m8o8/HxUdu2bbVu3Tr7WH5+vtatW6eYmBgPVgYAAAB3u+Kv3ErS2LFjNWjQILVr107t27fX7Nmzde7cOQ0ZMsTTpQEAAMCNLBFu//a3v+nkyZOaOHGiUlNT1bp1a61evbrQTWYVha+vryZNmlRoasRfHX0pHr0pGn0pHr0pGn0pHr0pGn0pWkXui8382fMUAAAAgCvEFT/nFgAAAChAuAUAAIBlEG4BAABgGYRbAAAAWAbh1k3S09M1YMAABQQEKCgoSMOGDdPZs2dLtK0xRrfccotsNptWrlxZvoW6mTN9GTFihKKiouTv769atWqpd+/exX7V8pWqtH1JT0/XI488osaNG8vf319XXXWVRo8erczMTDdW7R7OnDMLFy5Ut27dFBAQIJvNpoyMDPcUW87mzZunBg0ayM/PTx06dNC333572fWXLVumJk2ayM/PTy1bttR///tfN1XqXqXpy/fff6+4uDg1aNBANptNs2fPdl+hblaavrz++uvq3LmzgoODFRwcrNjY2D89v65kpenNRx99pHbt2ikoKEhVq1ZV69at9fbbb7uxWvcp7d8xBZYuXSqbzaY+ffqUb4HFINy6yYABA/T9999r7dq1+uyzz7Rp0yYNHz68RNvOnj3bLV8L7AnO9KVt27ZatGiRDhw4oDVr1sgYox49eigvL89NVZe/0vbl2LFjOnbsmGbNmqV9+/Zp8eLFWr16tYYNG+bGqt3DmXMmJydHN998s55++mk3VVn+3n//fY0dO1aTJk3Szp071apVK/Xs2VMnTpwocv2vv/5a/fv317Bhw5SYmKg+ffqoT58+2rdvn5srL1+l7UtOTo4aNmyo6dOnF/utllZQ2r58+eWX6t+/vzZs2KCtW7cqIiJCPXr00NGjR91cefkrbW9CQkL0zDPPaOvWrdqzZ4+GDBmiIUOGaM2aNW6uvHyVti8FUlJS9MQTT6hz585uqrQIBuVu//79RpLZvn27fWzVqlXGZrOZo0ePXnbbxMREU7duXXP8+HEjyaxYsaKcq3WfsvTl93bv3m0kmUOHDpVHmW7nqr588MEHxsfHx1y8eLE8yvSIsvZmw4YNRpI5c+ZMOVbpHu3btzcjR460v8/LyzPh4eEmISGhyPX79u1revXq5TDWoUMHM2LEiHKt091K25ffq1+/vnn55ZfLsTrPKUtfjDHm0qVLpnr16mbJkiXlVaLHlLU3xhjTpk0b8+yzz5ZHeR7jTF8uXbpkOnbsaP71r3+ZQYMGmd69e7uh0sK4cusGW7duVVBQkNq1a2cfi42NlZeXl7Zt21bsdjk5Ofr73/+uefPmWfKKgrN9+b1z585p0aJFioyMVERERHmV6lau6IskZWZmKiAgQN7elviuFkmu682V7sKFC9qxY4diY2PtY15eXoqNjdXWrVuL3Gbr1q0O60tSz549i13/SuRMX/4KXNGXnJwcXbx4USEhIeVVpkeUtTfGGK1bt04//vijunTpUp6lupWzfZk8ebJq167t8d8aEm7dIDU1VbVr13YY8/b2VkhIiFJTU4vd7rHHHlPHjh3Vu3fv8i7RI5ztiyTNnz9f1apVU7Vq1bRq1SqtXbtWPj4+5Vmu25SlLwVOnTqlKVOmlHjqy5XCFb2xglOnTikvL6/QtzCGhoYW24fU1NRSrX8lcqYvfwWu6Mu4ceMUHh5e6H+QrnTO9iYzM1PVqlWTj4+PevXqpblz5+qmm24q73Ldxpm+bN68WW+88YZef/11d5R4WYTbMhg/frxsNttlX87e6PTJJ59o/fr1V+TNDeXZlwIDBgxQYmKiNm7cqKuvvlp9+/bV+fPnXfQJyoc7+iJJWVlZ6tWrl5o1a6bnnnuu7IW7gbt6A6D0pk+frqVLl2rFihXy8/PzdDkVQvXq1bVr1y5t375dL7zwgsaOHasvv/zS02V5THZ2tu677z69/vrrqlmzpqfLkXV+X+kBjz/+uAYPHnzZdRo2bKiwsLBCE7AvXbqk9PT0YqcbrF+/XklJSQoKCnIYj4uLU+fOnSv0D1F59qVAYGCgAgMDFR0dreuvv17BwcFasWKF+vfvX9byy407+pKdna2bb75Z1atX14oVK1S5cuWylu0W7uiNldSsWVOVKlVSWlqaw3haWlqxfQgLCyvV+lciZ/ryV1CWvsyaNUvTp0/XF198oWuuuaY8y/QIZ3vj5eWlRo0aSZJat26tAwcOKCEhQd26dSvPct2mtH1JSkpSSkqKbr/9dvtYfn6+pN9+u/bjjz8qKiqqfIv+HcJtGdSqVUu1atX60/ViYmKUkZGhHTt2qG3btpJ+C6/5+fnq0KFDkduMHz9e999/v8NYy5Yt9fLLLzucPBVRefalKMYYGWOUm5vrdM3uUN59ycrKUs+ePeXr66tPPvnkirrC4u5z5krn4+Ojtm3bat26dfZH7eTn52vdunUaNWpUkdvExMRo3bp1GjNmjH1s7dq1iomJcUPF7uFMX/4KnO3LzJkz9cILL2jNmjUO89ytxFXnTH5+foX/N6g0StuXJk2aaO/evQ5jzz77rLKzs/XKK6+4/54Yj9zG9hd08803mzZt2pht27aZzZs3m+joaNO/f3/78l9//dU0btzYbNu2rdh9yGJPSzCm9H1JSkoy06ZNM99995355ZdfzJYtW8ztt99uQkJCTFpamqc+hsuVti+ZmZmmQ4cOpmXLlubQoUPm+PHj9telS5c89THKhTM/S8ePHzeJiYnm9ddfN5LMpk2bTGJiojl9+rQnPoJLLF261Pj6+prFixeb/fv3m+HDh5ugoCCTmppqjDHmvvvuM+PHj7evv2XLFuPt7W1mzZplDhw4YCZNmmQqV65s9u7d66mPUC5K25fc3FyTmJhoEhMTTZ06dcwTTzxhEhMTzcGDBz31EcpFafsyffp04+PjY5YvX+7w90l2dranPkK5KW1vpk2bZj7//HOTlJRk9u/fb2bNmmW8vb3N66+/7qmPUC5K25c/8uTTEgi3bnL69GnTv39/U61aNRMQEGCGDBni8JdEcnKykWQ2bNhQ7D6sGG5L25ejR4+aW265xdSuXdtUrlzZ1KtXz/z97383P/zwg4c+QfkobV8KHnFV1Cs5OdkzH6KcOPOzNGnSpCJ7s2jRIvd/ABeaO3euueqqq4yPj49p3769+eabb+zLunbtagYNGuSw/gcffGCuvvpq4+PjY5o3b27+85//uLli9yhNXwrOlz++unbt6v7Cy1lp+lK/fv0i+zJp0iT3F+4GpenNM888Yxo1amT8/PxMcHCwiYmJMUuXLvVA1eWvtH/H/J4nw63NGGPcc40YAAAAKF88LQEAAACWQbgFAACAZRBuAQAAYBmEWwAAAFgG4RYAAACWQbgFAACAZRBuAQAAYBmEWwAAAFgG4RYA/iJSUlJks9m0a9cuT5cCAOWGcAsAbjR48GDZbDZNnz7dYXzlypWy2WweqgoArINwCwBu5ufnpxkzZujMmTOeLsUlLly44OkSAMCOcAsAbhYbG6uwsDAlJCQUufy5555T69atHcZmz56tBg0a2N8PHjxYffr00bRp0xQaGqqgoCBNnjxZly5d0pNPPqmQkBDVq1dPixYtKrT/H374QR07dpSfn59atGihjRs3Oizft2+fbrnlFlWrVk2hoaG67777dOrUKfvybt26adSoURozZoxq1qypnj17Ot8MAHAxwi0AuFmlSpU0bdo0zZ07V7/++qvT+1m/fr2OHTumTZs26aWXXtKkSZN02223KTg4WNu2bdODDz6oESNGFDrGk08+qccff1yJiYmKiYnR7bffrtOnT0uSMjIy1L17d7Vp00bfffedVq9erbS0NPXt29dhH0uWLJGPj4+2bNmiBQsWOP0ZAMDVCLcA4AF33nmnWrdurUmTJjm9j5CQEM2ZM0eNGzfW0KFD1bhxY+Xk5Ojpp59WdHS04uPj5ePjo82bNztsN2rUKMXFxalp06Z67bXXFBgYqDfeeEOS9Oqrr6pNmzaaNm2amjRpojZt2ujNN9/Uhg0b9NNPP9n3ER0drZkzZ6px48Zq3Lix058BAFyNcAsAHjJjxgwtWbJEBw4ccGr75s2by8vr//9rPDQ0VC1btrS/r1SpkmrUqKETJ044bBcTE2P/b29vb7Vr185ew+7du7VhwwZVq1bN/mrSpIkkKSkpyb5d27ZtnaoZAMqbt6cLAIC/qi5duqhnz56Kj4/X4MGD7eNeXl4yxjise/HixULbV65c2eG9zWYrciw/P7/ENZ09e1a33367ZsyYUWhZnTp17P9dtWrVEu8TANyJcAsAHjR9+nS1bt3a4Vf7tWrVUmpqqowx9seDufLZtN988426dOkiSbp06ZJ27NihUaNGSZKuvfZaffjhh2rQoIG8vfknAsCVh2kJAOBBLVu21IABAzRnzhz7WLdu3XTy5EnNnDlTSUlJmjdvnlatWuWyY86bN08rVqzQDz/8oJEjR+rMmTMaOnSoJGnkyJFKT09X//79tX37diUlJWnNmjUaMmSI8vLyXFYDAJQXwi0AeNjkyZMdpg40bdpU8+fP17x589SqVSt9++23euKJJ1x2vOnTp2v69Olq1aqVNm/erE8++UQ1a9aUJIWHh2vLli3Ky8tTjx491LJlS40ZM0ZBQUEO83sBoKKymT9O7AIAAACuUPxvOAAAACyDcAsAAADLINwCAADAMgi3AAAAsAzCLQAAACyDcAsAAADLINwCAADAMgi3AAAAsAzCLQAAACyDcAsAAADLINwCAADAMv4fVvQCaHUDfkEAAAAASUVORK5CYII=",
"text/plain": [
""
]
@@ -1160,7 +1300,7 @@
},
{
"cell_type": "code",
- "execution_count": 24,
+ "execution_count": 26,
"id": "adbfeb40-76bd-4224-ac45-65c7b2b2cb7b",
"metadata": {},
"outputs": [],
@@ -1175,7 +1315,7 @@
},
{
"cell_type": "code",
- "execution_count": 25,
+ "execution_count": 27,
"id": "1f550686-3463-4e50-be83-ceafb27512b0",
"metadata": {},
"outputs": [],
@@ -1193,88 +1333,27 @@
" print(\"The mu is: \", db.lambda_values[object_id])"
]
},
- {
- "cell_type": "code",
- "execution_count": 26,
- "id": "5b6dac2e-8596-4e7c-97d8-aaf9632e4154",
- "metadata": {},
- "outputs": [
- {
- "data": {
- "text/plain": [
- "count 90.000000\n",
- "mean 0.050767\n",
- "std 0.027965\n",
- "min 0.025100\n",
- "25% 0.030700\n",
- "50% 0.040200\n",
- "75% 0.060625\n",
- "max 0.146900\n",
- "Name: lambda, dtype: float64"
- ]
- },
- "execution_count": 26,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "merged[merged['hits']==0]['lambda'].describe()"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 27,
- "id": "29393374-e379-42c8-8333-abfecc18e828",
- "metadata": {},
- "outputs": [
- {
- "data": {
- "text/plain": [
- "count 10.000000\n",
- "mean 0.356500\n",
- "std 0.259982\n",
- "min 0.158500\n",
- "25% 0.194825\n",
- "50% 0.257200\n",
- "75% 0.393875\n",
- "max 1.000000\n",
- "Name: lambda, dtype: float64"
- ]
- },
- "execution_count": 27,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "merged[merged['hits']>0]['lambda'].describe()"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 30,
- "id": "3f314883-98ec-4a59-ba80-11cf753a423e",
- "metadata": {},
- "outputs": [
- {
- "data": {
- "text/plain": [
- "__main__.SimulationConfig"
- ]
- },
- "execution_count": 30,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "SimulationConfig.mro"
- ]
- },
{
"cell_type": "code",
"execution_count": 28,
+ "id": "135f4a26-a666-4fd5-8f71-1f62abd4bb81",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "[LRUSimulation] Database Object Count: 100, Cache Size: 10, Eviction Strategy: EvictionStrategy.LRU\n"
+ ]
+ }
+ ],
+ "source": [
+ "print(config)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 29,
"id": "b47990b1-0231-43ac-8bc5-8340abe4a8b3",
"metadata": {},
"outputs": [],
@@ -1287,7 +1366,7 @@
},
{
"cell_type": "code",
- "execution_count": 29,
+ "execution_count": 30,
"id": "db83cad4-7cc6-4702-ae3a-d1af30a561d2",
"metadata": {},
"outputs": [],
diff --git a/00_aoi_caching_simulation/input/2024-12-13/lru-results/details.csv b/00_aoi_caching_simulation/results/2024-12-13/LRUResults/details.csv
similarity index 100%
rename from 00_aoi_caching_simulation/input/2024-12-13/lru-results/details.csv
rename to 00_aoi_caching_simulation/results/2024-12-13/LRUResults/details.csv
diff --git a/00_aoi_caching_simulation/input/2024-12-13/lru-results/hit_age.csv b/00_aoi_caching_simulation/results/2024-12-13/LRUResults/hit_age.csv
similarity index 100%
rename from 00_aoi_caching_simulation/input/2024-12-13/lru-results/hit_age.csv
rename to 00_aoi_caching_simulation/results/2024-12-13/LRUResults/hit_age.csv
diff --git a/00_aoi_caching_simulation/input/2024-12-13/lru-results/lambda_distribution.pdf b/00_aoi_caching_simulation/results/2024-12-13/LRUResults/lambda_distribution.pdf
similarity index 99%
rename from 00_aoi_caching_simulation/input/2024-12-13/lru-results/lambda_distribution.pdf
rename to 00_aoi_caching_simulation/results/2024-12-13/LRUResults/lambda_distribution.pdf
index 2aefc49..97a45e0 100644
Binary files a/00_aoi_caching_simulation/input/2024-12-13/lru-results/lambda_distribution.pdf and b/00_aoi_caching_simulation/results/2024-12-13/LRUResults/lambda_distribution.pdf differ
diff --git a/00_aoi_caching_simulation/input/2024-12-13/lru-results/lambda_vs_access_count.pdf b/00_aoi_caching_simulation/results/2024-12-13/LRUResults/lambda_vs_access_count.pdf
similarity index 99%
rename from 00_aoi_caching_simulation/input/2024-12-13/lru-results/lambda_vs_access_count.pdf
rename to 00_aoi_caching_simulation/results/2024-12-13/LRUResults/lambda_vs_access_count.pdf
index d1acc61..53d3cec 100644
Binary files a/00_aoi_caching_simulation/input/2024-12-13/lru-results/lambda_vs_access_count.pdf and b/00_aoi_caching_simulation/results/2024-12-13/LRUResults/lambda_vs_access_count.pdf differ
diff --git a/00_aoi_caching_simulation/input/2024-12-13/lru-results/objects_in_cache_over_time.pdf b/00_aoi_caching_simulation/results/2024-12-13/LRUResults/objects_in_cache_over_time.pdf
similarity index 99%
rename from 00_aoi_caching_simulation/input/2024-12-13/lru-results/objects_in_cache_over_time.pdf
rename to 00_aoi_caching_simulation/results/2024-12-13/LRUResults/objects_in_cache_over_time.pdf
index 878bef9..84b2854 100644
Binary files a/00_aoi_caching_simulation/input/2024-12-13/lru-results/objects_in_cache_over_time.pdf and b/00_aoi_caching_simulation/results/2024-12-13/LRUResults/objects_in_cache_over_time.pdf differ
diff --git a/00_aoi_caching_simulation/input/2024-12-13/lru-results/overall_hit_age.csv b/00_aoi_caching_simulation/results/2024-12-13/LRUResults/overall_hit_age.csv
similarity index 100%
rename from 00_aoi_caching_simulation/input/2024-12-13/lru-results/overall_hit_age.csv
rename to 00_aoi_caching_simulation/results/2024-12-13/LRUResults/overall_hit_age.csv
diff --git a/00_aoi_caching_simulation/results/2024-12-13/LRUResults/simulation_config.txt b/00_aoi_caching_simulation/results/2024-12-13/LRUResults/simulation_config.txt
new file mode 100644
index 0000000..c0f5176
--- /dev/null
+++ b/00_aoi_caching_simulation/results/2024-12-13/LRUResults/simulation_config.txt
@@ -0,0 +1 @@
+[LRUSimulation] Database Object Count: 100, Cache Size: 10, Eviction Strategy: EvictionStrategy.LRU
\ No newline at end of file
diff --git a/00_aoi_caching_simulation/input/2024-12-13/refresh-results/details.csv b/00_aoi_caching_simulation/results/2024-12-13/RefreshResults/details.csv
similarity index 100%
rename from 00_aoi_caching_simulation/input/2024-12-13/refresh-results/details.csv
rename to 00_aoi_caching_simulation/results/2024-12-13/RefreshResults/details.csv
diff --git a/00_aoi_caching_simulation/input/2024-12-13/refresh-results/hit_age.csv b/00_aoi_caching_simulation/results/2024-12-13/RefreshResults/hit_age.csv
similarity index 100%
rename from 00_aoi_caching_simulation/input/2024-12-13/refresh-results/hit_age.csv
rename to 00_aoi_caching_simulation/results/2024-12-13/RefreshResults/hit_age.csv
diff --git a/00_aoi_caching_simulation/input/2024-12-13/refresh-results/lambda_distribution.pdf b/00_aoi_caching_simulation/results/2024-12-13/RefreshResults/lambda_distribution.pdf
similarity index 99%
rename from 00_aoi_caching_simulation/input/2024-12-13/refresh-results/lambda_distribution.pdf
rename to 00_aoi_caching_simulation/results/2024-12-13/RefreshResults/lambda_distribution.pdf
index 97f3825..98ed8a3 100644
Binary files a/00_aoi_caching_simulation/input/2024-12-13/refresh-results/lambda_distribution.pdf and b/00_aoi_caching_simulation/results/2024-12-13/RefreshResults/lambda_distribution.pdf differ
diff --git a/00_aoi_caching_simulation/input/2024-12-13/refresh-results/lambda_vs_access_count.pdf b/00_aoi_caching_simulation/results/2024-12-13/RefreshResults/lambda_vs_access_count.pdf
similarity index 99%
rename from 00_aoi_caching_simulation/input/2024-12-13/refresh-results/lambda_vs_access_count.pdf
rename to 00_aoi_caching_simulation/results/2024-12-13/RefreshResults/lambda_vs_access_count.pdf
index 8d3af9a..01e4496 100644
Binary files a/00_aoi_caching_simulation/input/2024-12-13/refresh-results/lambda_vs_access_count.pdf and b/00_aoi_caching_simulation/results/2024-12-13/RefreshResults/lambda_vs_access_count.pdf differ
diff --git a/00_aoi_caching_simulation/input/2024-12-13/refresh-results/objects_in_cache_over_time.pdf b/00_aoi_caching_simulation/results/2024-12-13/RefreshResults/objects_in_cache_over_time.pdf
similarity index 99%
rename from 00_aoi_caching_simulation/input/2024-12-13/refresh-results/objects_in_cache_over_time.pdf
rename to 00_aoi_caching_simulation/results/2024-12-13/RefreshResults/objects_in_cache_over_time.pdf
index 5bbb620..9806f36 100644
Binary files a/00_aoi_caching_simulation/input/2024-12-13/refresh-results/objects_in_cache_over_time.pdf and b/00_aoi_caching_simulation/results/2024-12-13/RefreshResults/objects_in_cache_over_time.pdf differ
diff --git a/00_aoi_caching_simulation/input/2024-12-13/refresh-results/overall_hit_age.csv b/00_aoi_caching_simulation/results/2024-12-13/RefreshResults/overall_hit_age.csv
similarity index 100%
rename from 00_aoi_caching_simulation/input/2024-12-13/refresh-results/overall_hit_age.csv
rename to 00_aoi_caching_simulation/results/2024-12-13/RefreshResults/overall_hit_age.csv
diff --git a/00_aoi_caching_simulation/results/2024-12-13/RefreshResults/simulation_config.txt b/00_aoi_caching_simulation/results/2024-12-13/RefreshResults/simulation_config.txt
new file mode 100644
index 0000000..7767323
--- /dev/null
+++ b/00_aoi_caching_simulation/results/2024-12-13/RefreshResults/simulation_config.txt
@@ -0,0 +1 @@
+[RefreshSimulation] Database Object Count: 100, Cache Size: 10, Eviction Strategy: EvictionStrategy.TTL
\ No newline at end of file