diff --git a/00_aoi_caching_simulation/00-aoi_cache_simulation.ipynb b/00_aoi_caching_simulation/00-aoi_cache_simulation.ipynb index 6f59753..a650db5 100644 --- a/00_aoi_caching_simulation/00-aoi_cache_simulation.ipynb +++ b/00_aoi_caching_simulation/00-aoi_cache_simulation.ipynb @@ -26,7 +26,7 @@ "\n", "# Constants\n", "SEED = 42\n", - "ACCESS_COUNT_LIMIT = 5000 # Total time to run the simulation\n", + "ACCESS_COUNT_LIMIT = 10 # Total time to run the simulation\n", "EXPERIMENT_BASE_DIR = \"./experiments/\"\n", "TEMP_BASE_DIR = \"./.aoi_cache/\"\n", "\n", @@ -101,10 +101,10 @@ " \"No Refresh (3.0s ttl)\": (100, 100, 0, CacheType.TTL, 3),\n", " \"No Refresh (4.0s ttl)\": (100, 100, 0, CacheType.TTL, 4),\n", " \"No Refresh (5.0s ttl)\": (100, 100, 0, CacheType.TTL, 5),\n", - " \"No Refresh (3_000_000_000.0s ttl)\": (10, 10, 0, CacheType.TTL, 3*10**9),\n", + " \"No Refresh (tests ttl)\": (3, 3, 0, CacheType.TTL, 1),\n", "}\n", "\n", - "experiment_name = \"No Refresh (0.5s ttl)\"\n", + "experiment_name = \"No Refresh (tests ttl)\"\n", "config = configurations[experiment_name]\n", "\n", "DATABASE_OBJECTS = config[0]\n", @@ -163,7 +163,7 @@ " self.request_log = {i: [] for i in range(1, DATABASE_OBJECTS + 1)}\n", " self.hits = {i: 0 for i in range(1, DATABASE_OBJECTS + 1)} # Track hits per object\n", " self.misses = {i: 0 for i in range(1, DATABASE_OBJECTS + 1)} # Track misses per object\n", - " self.cumulative_age = {i: 0 for i in range(1, DATABASE_OBJECTS + 1)} # Track cumulative age per object\n", + " self.cumulative_age = {i: [] for i in range(1, DATABASE_OBJECTS + 1)} # Track cumulative age per object\n", " self.access_count = {i: 0 for i in range(1, DATABASE_OBJECTS + 1)} # Track access count per object\n", " self.next_refresh = {} # Track the next refresh time for each cached object\n", " self.object_start_time = {} # Used as helper variable to determine the starting time of an object in the cache\n", @@ -179,19 +179,23 @@ " # Cache hit: increment hit count and update cumulative age\n", " self.hits[obj_id] += 1\n", " self.access_count[obj_id] += 1\n", - " \n", - " self.cumulative_age[obj_id] += (env.now - self.initial_fetch[obj_id])\n", "\n", + " age = env.now - self.initial_fetch[obj_id]\n", + " self.cumulative_age[obj_id].append(age)\n", + "\n", + " assert len(self.cumulative_age[obj_id]) == self.access_count[obj_id], \"Age values collected and object access count do not match.\"\n", + "\n", + " print(f\"[{env.now:.2f}] {obj_id} Hit: Current Age {age:.2f} (Average: {sum(self.cumulative_age[obj_id])/len(self.cumulative_age[obj_id]):.2f}) \")\n", " # Cache hit: Refresh database object on hit\n", " # self.initial_fetch[obj_id] = env.now\n", " else:\n", - " assert obj_id not in self.storage.keys(), \"Found object in cache on miss.\"\n", - " assert obj_id not in self.initial_fetch.keys(), \"Found age timer on miss.\"\n", - " assert obj_id not in self.object_start_time.keys(), \"Found cache time ratio timer on miss.\"\n", + " assert obj_id not in self.storage.keys(), \"Found object in cache on miss. It should've been deleted.\"\n", + " assert obj_id not in self.initial_fetch.keys(), \"Found age timer on miss. It should've been deleted.\"\n", + " assert obj_id not in self.object_start_time.keys(), \"Found cache time ratio timer on miss. It should've been deleted.\"\n", " # Cache miss: Add TTL if TTL-Cache\n", " # When full cache: If non-TTL-Cache: Evict. If TTL-Cache: Don't add to Cache.\n", " if self.cache_type == CacheType.TTL:\n", - " assert obj_id not in self.ttl.keys(), \"Found cache time ratio timer on miss.\"\n", + " assert obj_id not in self.ttl.keys(), \"Found cache time ratio timer on miss. It should've been deleted.\"\n", " self.ttl[obj_id] = env.now + CACHE_TTL\n", " else:\n", " if len(self.storage) == DATABASE_OBJECTS:\n", @@ -199,7 +203,7 @@ " self.evict_oldest()\n", " elif self.cache_type == CacheType.RANDOM_EVICTION:\n", " self.evict_random()\n", - " elif self.cache-type == CacheType.TTL:\n", + " elif self.cache_type == CacheType.TTL:\n", " return\n", " \n", " # Cache miss: increment miss count\n", @@ -211,10 +215,17 @@ " self.object_start_time[obj_id] = env.now\n", " \n", " self.initial_fetch[obj_id] = env.now\n", - " self.cumulative_age[obj_id] += (env.now - self.initial_fetch[obj_id])\n", + " age = env.now - self.initial_fetch[obj_id]\n", + " assert age == 0, \"Initial age at miss is not 0\"\n", + " self.cumulative_age[obj_id].append(age)\n", + "\n", + " assert len(self.cumulative_age[obj_id]) == self.access_count[obj_id], \"Age values collected and object access count do not match.\"\n", + " \n", + " print(f\"[{env.now:.2f}] {obj_id} Miss: Average Age {sum(self.cumulative_age[obj_id])/len(self.cumulative_age[obj_id]):.2f} \")\n", " \n", " if MAX_REFRESH_RATE != 0:\n", " self.next_refresh[obj_id] = env.now + np.random.exponential(1/self.db.mu_values[obj_id]) # Schedule refresh\n", + " \n", " \n", " def evict_oldest(self):\n", " \"\"\"Remove the oldest item from the cache to make space.\"\"\"\n", @@ -245,16 +256,18 @@ " \n", " def check_expired(self):\n", " \"\"\"Increment age of each cached object.\"\"\"\n", - " if self.cache_type == CacheType.TTL:\n", - " for obj_id in list(self.ttl.keys()):\n", - " if self.ttl[obj_id] <= env.now:\n", - " # Remove object if its TTL expired\n", - " # print(f\"[{env.now:.2f}] Cache: Object {obj_id} expired\")\n", - " self.cumulative_cache_time[obj_id] += (env.now - self.object_start_time[obj_id])\n", - " del self.storage[obj_id]\n", - " del self.ttl[obj_id]\n", - " del self.initial_fetch[obj_id]\n", - " del self.object_start_time[obj_id]\n", + " evicted_objects = []\n", + " for obj_id in list(self.ttl.keys()):\n", + " if self.ttl[obj_id] <= env.now:\n", + " # Remove object if its TTL expired\n", + " print(f\"[{env.now:.2f}] Cache: Object {obj_id} expired\")\n", + " evicted_objects.append(obj_id)\n", + " self.cumulative_cache_time[obj_id] += (env.now - self.object_start_time[obj_id])\n", + " del self.storage[obj_id]\n", + " del self.ttl[obj_id]\n", + " del self.initial_fetch[obj_id]\n", + " del self.object_start_time[obj_id]\n", + " return evicted_objects\n", "\n", " \n", " def record_cache_state(self):\n", @@ -274,8 +287,34 @@ " \"\"\"Process that ages cache objects over time, removes expired items, and refreshes based on object-specific intervals.\"\"\"\n", " while True:\n", " if cache.cache_type == CacheType.TTL:\n", - " cache.check_expired() # Remove expired objects\n", + " if cache.storage:\n", + " obj_id, next_eviction = min(cache.ttl.items(), key=lambda x: x[1])\n", + " print(f\"[{env.now:.2f}] Waiting for next eviction...\")\n", + " yield env.timeout(next_eviction - env.now) # Wait till next request (subject to change when object has been hit)\n", "\n", + " \n", + " if next_eviction == cache.ttl[obj_id]:\n", + " print(f\"[{env.now:.2f}] Object {obj_id} needs to be evicted (At time: {next_eviction})\")\n", + " evicted_objects = cache.check_expired()\n", + " print(f\"[{env.now:.2f}] Evicted {len(evicted_objects)} object(s).\")\n", + " assert len(evicted_objects) != 0, \"There was no object to evict.\"\n", + " else:\n", + " print(f\"[{env.now:.2f}] Object TTL was extended.\")\n", + " evicted_objects = cache.check_expired()\n", + " assert len(evicted_objects) == 0, \"There would've been an object to evict.\"\n", + " continue\n", + " else:\n", + " obj_id, next_request = min(cache.db.next_request.items(), key=lambda x: x[1])\n", + " print(f\"[{env.now:.2f}] Waiting for next request...\")\n", + " yield env.timeout(next_request - env.now) # Wait till next request (subject to change when object has been hit)\n", + " \n", + " evicted_objects = cache.check_expired()\n", + " assert len(evicted_objects) == 0, \"There would've been an object to evict.\"\n", + " evicted_objects = cache.check_expired()\n", + " assert len(evicted_objects) == 0, \"There would've been an object to evict.\"\n", + " else:\n", + " yield env.timeout(0.05) # Run every 0.05 second\n", + " \n", " if MAX_REFRESH_RATE != 0:\n", " # Refresh objects based on their individual refresh intervals\n", " for obj_id in list(cache.storage.keys()):\n", @@ -285,8 +324,7 @@ " # Schedule the next refresh based on the object's mu\n", " cache.next_refresh[obj_id] = env.now + np.random.exponential(1/cache.db.mu_values[obj_id])\n", " \n", - " cache.record_cache_state() # Record cache state at each time step\n", - " yield env.timeout(0.05) # Run every second" + " cache.record_cache_state() # Record cache state at each time step" ] }, { @@ -353,20 +391,154 @@ "scrolled": true }, "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[0.00] Waiting for next request...\n" + ] + }, { "name": "stderr", "output_type": "stream", "text": [ - "Progress: 100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████▊| 4997/5000 [00:28<00:00, 173.02it/s]" + "Progress: 70%|████████████████████████████████████████████████████████████████▍ | 7/10 [00:00<00:00, 1560.05it/s]" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "Simulation ended after 5157.967811921139 seconds.\n", - "CPU times: user 26.4 s, sys: 3.24 s, total: 29.6 s\n", - "Wall time: 28.9 s\n" + "[0.06] Waiting for next request...\n", + "[0.06] 1 Miss: Average Age 0.00 \n", + "[0.06] Waiting for next eviction...\n", + "[0.67] 2 Miss: Average Age 0.00 \n", + "[0.68] 2 Hit: Current Age 0.01 (Average: 0.00) \n", + "[0.92] 3 Miss: Average Age 0.00 \n", + "[1.06] Object 1 needs to be evicted (At time: 1.0598387686086808)\n", + "[1.06] Cache: Object 1 expired\n", + "[1.06] Evicted 1 object(s).\n", + "[1.06] Waiting for next eviction...\n", + "[1.29] 1 Miss: Average Age 0.00 \n", + "[1.53] 1 Hit: Current Age 0.24 (Average: 0.08) \n", + "[1.68] Object 2 needs to be evicted (At time: 1.6773433908263593)\n", + "[1.68] Cache: Object 2 expired\n", + "[1.68] Evicted 1 object(s).\n", + "[1.68] Waiting for next eviction...\n", + "[1.73] 1 Hit: Current Age 0.44 (Average: 0.17) \n", + "[1.85] 2 Miss: Average Age 0.00 \n", + "[1.92] Object 3 needs to be evicted (At time: 1.9190821536272646)\n", + "[1.92] Cache: Object 3 expired\n", + "[1.92] Evicted 1 object(s).\n", + "[1.92] Waiting for next eviction...\n", + "[1.93] 1 Hit: Current Age 0.64 (Average: 0.26) \n", + "[1.97] 2 Hit: Current Age 0.12 (Average: 0.03) \n", + "[2.15] 2 Hit: Current Age 0.31 (Average: 0.09) \n", + "[2.27] 2 Hit: Current Age 0.42 (Average: 0.14) \n", + "[2.58] 2 Hit: Current Age 0.74 (Average: 0.23) \n", + "[2.63] 2 Hit: Current Age 0.79 (Average: 0.30) \n", + "[2.68] 1 Hit: Current Age 1.39 (Average: 0.45) \n", + "[2.71] 3 Miss: Average Age 0.00 \n", + "[2.73] Object TTL was extended.\n", + "[2.73] Waiting for next eviction...\n", + "[2.75] 2 Hit: Current Age 0.90 (Average: 0.37) \n", + "[3.13] 1 Hit: Current Age 1.84 (Average: 0.65) \n", + "[3.26] 2 Hit: Current Age 1.42 (Average: 0.47) \n", + "[3.31] 3 Hit: Current Age 0.61 (Average: 0.20) \n", + "[3.36] 1 Hit: Current Age 2.06 (Average: 0.83) \n", + "[3.40] 1 Hit: Current Age 2.11 (Average: 0.97) \n", + "[3.50] 2 Hit: Current Age 1.66 (Average: 0.58) \n", + "[3.57] 2 Hit: Current Age 1.72 (Average: 0.67) \n", + "[3.59] 2 Hit: Current Age 1.74 (Average: 0.76) \n", + "[3.63] Object TTL was extended.\n", + "[3.63] Waiting for next eviction...\n", + "[4.21] 3 Hit: Current Age 1.51 (Average: 0.53) \n", + "[4.31] Object TTL was extended.\n", + "[4.31] Waiting for next eviction...\n", + "[4.34] 1 Hit: Current Age 3.05 (Average: 1.18) \n", + "[4.40] Object TTL was extended.\n", + "[4.40] Waiting for next eviction...\n", + "[4.58] 2 Hit: Current Age 2.73 (Average: 0.90) \n", + "[4.59] Object TTL was extended.\n", + "[4.59] Waiting for next eviction...\n", + "[4.70] 2 Hit: Current Age 2.86 (Average: 1.03) \n", + "[4.73] 2 Hit: Current Age 2.89 (Average: 1.14) \n", + "[5.12] 2 Hit: Current Age 3.27 (Average: 1.27) \n", + "[5.21] Object 3 needs to be evicted (At time: 5.211951106151475)\n", + "[5.21] Cache: Object 3 expired\n", + "[5.21] Evicted 1 object(s).\n", + "[5.21] Waiting for next eviction...\n", + "[5.31] 2 Hit: Current Age 3.47 (Average: 1.39) \n", + "[5.34] Object 1 needs to be evicted (At time: 5.33890464876055)\n", + "[5.34] Cache: Object 1 expired\n", + "[5.34] Evicted 1 object(s).\n", + "[5.34] Waiting for next eviction...\n", + "[5.36] 2 Hit: Current Age 3.51 (Average: 1.50) \n", + "[5.58] 2 Hit: Current Age 3.74 (Average: 1.62) \n", + "[5.60] 2 Hit: Current Age 3.75 (Average: 1.72) \n", + "[5.99] 1 Miss: Average Age 1.07 \n", + "[6.29] 1 Hit: Current Age 0.30 (Average: 1.01) \n", + "[6.31] Object TTL was extended.\n", + "[6.31] Waiting for next eviction...\n", + "[6.40] 2 Hit: Current Age 4.55 (Average: 1.85) \n", + "[6.52] 2 Hit: Current Age 4.67 (Average: 1.97) \n", + "[6.60] Object TTL was extended.\n", + "[6.60] Waiting for next eviction...\n", + "[6.76] 2 Hit: Current Age 4.92 (Average: 2.09) \n", + "[7.03] 2 Hit: Current Age 5.18 (Average: 2.22) \n", + "[7.10] 2 Hit: Current Age 5.25 (Average: 2.33) \n", + "[7.29] Object 1 needs to be evicted (At time: 7.290693998414112)\n", + "[7.29] Cache: Object 1 expired\n", + "[7.29] Evicted 1 object(s).\n", + "[7.29] Waiting for next eviction...\n", + "[7.38] 1 Miss: Average Age 0.93 \n", + "[7.58] 3 Miss: Average Age 0.42 \n", + "[8.10] Object 2 needs to be evicted (At time: 8.096464406708787)\n", + "[8.10] Cache: Object 2 expired\n", + "[8.10] Evicted 1 object(s).\n", + "[8.10] Waiting for next eviction...\n", + "[8.26] 2 Miss: Average Age 2.25 \n", + "[8.38] Object 1 needs to be evicted (At time: 8.376949796979092)\n", + "[8.38] Cache: Object 1 expired\n", + "[8.38] Evicted 1 object(s).\n", + "[8.38] Waiting for next eviction...\n", + "[8.58] Object 3 needs to be evicted (At time: 8.582581448612647)\n", + "[8.58] Cache: Object 3 expired\n", + "[8.58] Evicted 1 object(s).\n", + "[8.58] Waiting for next eviction...\n", + "[8.87] 1 Miss: Average Age 0.86 \n", + "[9.01] 2 Hit: Current Age 0.75 (Average: 2.19) \n", + "[9.26] Object TTL was extended.\n", + "[9.26] Waiting for next eviction...\n", + "[9.78] 1 Hit: Current Age 0.91 (Average: 0.87) \n", + "[9.86] 2 Hit: Current Age 1.60 (Average: 2.17) \n", + "[9.87] Object TTL was extended.\n", + "[9.87] Waiting for next eviction...\n", + "[9.87] 1 Hit: Current Age 1.00 (Average: 0.87) \n", + "[9.92] 1 Hit: Current Age 1.05 (Average: 0.88) \n", + "[9.93] 2 Hit: Current Age 1.67 (Average: 2.16) \n", + "[10.10] 2 Hit: Current Age 1.84 (Average: 2.14) \n", + "[10.20] 2 Hit: Current Age 1.94 (Average: 2.14) \n", + "[10.31] 1 Hit: Current Age 1.44 (Average: 0.92) \n", + "[10.39] 3 Miss: Average Age 0.35 \n", + "[10.72] 3 Hit: Current Age 0.33 (Average: 0.35) \n", + "[10.75] 1 Hit: Current Age 1.88 (Average: 0.97) \n", + "[10.78] Object TTL was extended.\n", + "[10.78] Waiting for next eviction...\n", + "[10.79] 2 Hit: Current Age 2.53 (Average: 2.15) \n", + "[10.91] 1 Hit: Current Age 2.04 (Average: 1.02) \n", + "[10.98] 1 Hit: Current Age 2.11 (Average: 1.07) \n", + "[11.20] Object TTL was extended.\n", + "[11.20] Waiting for next eviction...\n", + "[11.33] 2 Hit: Current Age 3.07 (Average: 2.18) \n", + "[11.50] 3 Hit: Current Age 1.11 (Average: 0.44) \n", + "[11.72] Object TTL was extended.\n", + "[11.72] Waiting for next eviction...\n", + "[11.72] 3 Hit: Current Age 1.33 (Average: 0.54) \n", + "[11.73] 3 Hit: Current Age 1.34 (Average: 0.62) \n", + "Simulation ended after 11.726962652128046 seconds.\n", + "CPU times: user 9.22 ms, sys: 2.17 ms, total: 11.4 ms\n", + "Wall time: 9.47 ms\n" ] } ], @@ -386,112 +558,17 @@ "cell_type": "code", "execution_count": 10, "id": "3b6f7c1f-ea54-4496-bb9a-370cee2d2751", - "metadata": {}, + "metadata": { + "scrolled": true + }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "Object 1: Hit Rate = 0.40, Expected Hit Rate = 0.39, Average Time spend in Cache: 0.41, Average Age = 0.16, Expected Age = 0.48\n", - "Object 2: Hit Rate = 0.78, Expected Hit Rate = 0.78, Average Time spend in Cache: 0.78, Average Age = 0.68, Expected Age = 0.68\n", - "Object 3: Hit Rate = 0.40, Expected Hit Rate = 0.39, Average Time spend in Cache: 0.41, Average Age = 0.16, Expected Age = 0.48\n", - "Object 4: Hit Rate = 0.40, Expected Hit Rate = 0.39, Average Time spend in Cache: 0.41, Average Age = 0.16, Expected Age = 0.48\n", - "Object 5: Hit Rate = 0.64, Expected Hit Rate = 0.63, Average Time spend in Cache: 0.64, Average Age = 0.37, Expected Age = 0.54\n", - "Object 6: Hit Rate = 0.41, Expected Hit Rate = 0.39, Average Time spend in Cache: 0.40, Average Age = 0.16, Expected Age = 0.49\n", - "Object 7: Hit Rate = 0.92, Expected Hit Rate = 0.92, Average Time spend in Cache: 0.92, Average Age = 1.72, Expected Age = 1.15\n", - "Object 8: Hit Rate = 0.41, Expected Hit Rate = 0.39, Average Time spend in Cache: 0.40, Average Age = 0.16, Expected Age = 0.49\n", - "Object 9: Hit Rate = 0.41, Expected Hit Rate = 0.39, Average Time spend in Cache: 0.40, Average Age = 0.16, Expected Age = 0.49\n", - "Object 10: Hit Rate = 0.39, Expected Hit Rate = 0.39, Average Time spend in Cache: 0.40, Average Age = 0.15, Expected Age = 0.47\n", - "Object 11: Hit Rate = 0.65, Expected Hit Rate = 0.63, Average Time spend in Cache: 0.64, Average Age = 0.38, Expected Age = 0.55\n", - "Object 12: Hit Rate = 0.41, Expected Hit Rate = 0.39, Average Time spend in Cache: 0.40, Average Age = 0.16, Expected Age = 0.49\n", - "Object 13: Hit Rate = 0.40, Expected Hit Rate = 0.39, Average Time spend in Cache: 0.40, Average Age = 0.16, Expected Age = 0.48\n", - "Object 14: Hit Rate = 0.40, Expected Hit Rate = 0.39, Average Time spend in Cache: 0.40, Average Age = 0.15, Expected Age = 0.48\n", - "Object 15: Hit Rate = 0.64, Expected Hit Rate = 0.63, Average Time spend in Cache: 0.64, Average Age = 0.37, Expected Age = 0.54\n", - "Object 16: Hit Rate = 0.65, Expected Hit Rate = 0.63, Average Time spend in Cache: 0.64, Average Age = 0.38, Expected Age = 0.56\n", - "Object 17: Hit Rate = 0.41, Expected Hit Rate = 0.39, Average Time spend in Cache: 0.40, Average Age = 0.17, Expected Age = 0.50\n", - "Object 18: Hit Rate = 0.40, Expected Hit Rate = 0.39, Average Time spend in Cache: 0.40, Average Age = 0.16, Expected Age = 0.47\n", - "Object 19: Hit Rate = 0.78, Expected Hit Rate = 0.78, Average Time spend in Cache: 0.77, Average Age = 0.66, Expected Age = 0.66\n", - "Object 20: Hit Rate = 0.41, Expected Hit Rate = 0.39, Average Time spend in Cache: 0.40, Average Age = 0.16, Expected Age = 0.49\n", - "Object 21: Hit Rate = 0.42, Expected Hit Rate = 0.39, Average Time spend in Cache: 0.41, Average Age = 0.16, Expected Age = 0.50\n", - "Object 22: Hit Rate = 0.41, Expected Hit Rate = 0.39, Average Time spend in Cache: 0.40, Average Age = 0.16, Expected Age = 0.50\n", - "Object 23: Hit Rate = 0.41, Expected Hit Rate = 0.39, Average Time spend in Cache: 0.40, Average Age = 0.16, Expected Age = 0.49\n", - "Object 24: Hit Rate = 0.65, Expected Hit Rate = 0.63, Average Time spend in Cache: 0.64, Average Age = 0.38, Expected Age = 0.55\n", - "Object 25: Hit Rate = 0.40, Expected Hit Rate = 0.39, Average Time spend in Cache: 0.40, Average Age = 0.15, Expected Age = 0.48\n", - "Object 26: Hit Rate = 0.41, Expected Hit Rate = 0.39, Average Time spend in Cache: 0.40, Average Age = 0.17, Expected Age = 0.50\n", - "Object 27: Hit Rate = 0.40, Expected Hit Rate = 0.39, Average Time spend in Cache: 0.40, Average Age = 0.15, Expected Age = 0.47\n", - "Object 28: Hit Rate = 0.92, Expected Hit Rate = 0.92, Average Time spend in Cache: 0.92, Average Age = 1.69, Expected Age = 1.17\n", - "Object 29: Hit Rate = 0.40, Expected Hit Rate = 0.39, Average Time spend in Cache: 0.41, Average Age = 0.16, Expected Age = 0.48\n", - "Object 30: Hit Rate = 0.40, Expected Hit Rate = 0.39, Average Time spend in Cache: 0.40, Average Age = 0.16, Expected Age = 0.48\n", - "Object 31: Hit Rate = 0.40, Expected Hit Rate = 0.39, Average Time spend in Cache: 0.40, Average Age = 0.16, Expected Age = 0.47\n", - "Object 32: Hit Rate = 0.87, Expected Hit Rate = 0.86, Average Time spend in Cache: 0.87, Average Age = 1.10, Expected Age = 0.87\n", - "Object 33: Hit Rate = 0.41, Expected Hit Rate = 0.39, Average Time spend in Cache: 0.41, Average Age = 0.16, Expected Age = 0.49\n", - "Object 34: Hit Rate = 0.87, Expected Hit Rate = 0.86, Average Time spend in Cache: 0.86, Average Age = 1.08, Expected Age = 0.86\n", - "Object 35: Hit Rate = 0.40, Expected Hit Rate = 0.39, Average Time spend in Cache: 0.40, Average Age = 0.15, Expected Age = 0.47\n", - "Object 36: Hit Rate = 0.39, Expected Hit Rate = 0.39, Average Time spend in Cache: 0.39, Average Age = 0.15, Expected Age = 0.47\n", - "Object 37: Hit Rate = 0.42, Expected Hit Rate = 0.39, Average Time spend in Cache: 0.41, Average Age = 0.16, Expected Age = 0.50\n", - "Object 38: Hit Rate = 0.78, Expected Hit Rate = 0.78, Average Time spend in Cache: 0.78, Average Age = 0.64, Expected Age = 0.65\n", - "Object 39: Hit Rate = 0.98, Expected Hit Rate = 0.98, Average Time spend in Cache: 0.98, Average Age = 5.52, Expected Age = 3.19\n", - "Object 40: Hit Rate = 0.39, Expected Hit Rate = 0.39, Average Time spend in Cache: 0.40, Average Age = 0.15, Expected Age = 0.46\n", - "Object 41: Hit Rate = 0.87, Expected Hit Rate = 0.86, Average Time spend in Cache: 0.87, Average Age = 1.09, Expected Age = 0.87\n", - "Object 42: Hit Rate = 0.87, Expected Hit Rate = 0.86, Average Time spend in Cache: 0.86, Average Age = 1.13, Expected Age = 0.87\n", - "Object 43: Hit Rate = 0.64, Expected Hit Rate = 0.63, Average Time spend in Cache: 0.63, Average Age = 0.37, Expected Age = 0.53\n", - "Object 44: Hit Rate = 0.40, Expected Hit Rate = 0.39, Average Time spend in Cache: 0.40, Average Age = 0.15, Expected Age = 0.48\n", - "Object 45: Hit Rate = 0.40, Expected Hit Rate = 0.39, Average Time spend in Cache: 0.40, Average Age = 0.16, Expected Age = 0.48\n", - "Object 46: Hit Rate = 0.41, Expected Hit Rate = 0.39, Average Time spend in Cache: 0.41, Average Age = 0.16, Expected Age = 0.49\n", - "Object 47: Hit Rate = 0.99, Expected Hit Rate = 0.99, Average Time spend in Cache: 0.99, Average Age = 12.37, Expected Age = 7.42\n", - "Object 48: Hit Rate = 0.40, Expected Hit Rate = 0.39, Average Time spend in Cache: 0.40, Average Age = 0.15, Expected Age = 0.47\n", - "Object 49: Hit Rate = 0.40, Expected Hit Rate = 0.39, Average Time spend in Cache: 0.40, Average Age = 0.15, Expected Age = 0.47\n", - "Object 50: Hit Rate = 0.39, Expected Hit Rate = 0.39, Average Time spend in Cache: 0.39, Average Age = 0.15, Expected Age = 0.46\n", - "Object 51: Hit Rate = 0.92, Expected Hit Rate = 0.92, Average Time spend in Cache: 0.92, Average Age = 1.78, Expected Age = 1.18\n", - "Object 52: Hit Rate = 0.99, Expected Hit Rate = 0.99, Average Time spend in Cache: 0.99, Average Age = 9.09, Expected Age = 4.90\n", - "Object 53: Hit Rate = 0.41, Expected Hit Rate = 0.39, Average Time spend in Cache: 0.40, Average Age = 0.16, Expected Age = 0.49\n", - "Object 54: Hit Rate = 0.41, Expected Hit Rate = 0.39, Average Time spend in Cache: 0.40, Average Age = 0.16, Expected Age = 0.49\n", - "Object 55: Hit Rate = 0.41, Expected Hit Rate = 0.39, Average Time spend in Cache: 0.40, Average Age = 0.17, Expected Age = 0.49\n", - "Object 56: Hit Rate = 0.39, Expected Hit Rate = 0.39, Average Time spend in Cache: 0.40, Average Age = 0.14, Expected Age = 0.46\n", - "Object 57: Hit Rate = 0.40, Expected Hit Rate = 0.39, Average Time spend in Cache: 0.41, Average Age = 0.15, Expected Age = 0.48\n", - "Object 58: Hit Rate = 1.00, Expected Hit Rate = 1.00, Average Time spend in Cache: 1.00, Average Age = 349.20, Expected Age = 171.99\n", - "Object 59: Hit Rate = 0.64, Expected Hit Rate = 0.63, Average Time spend in Cache: 0.64, Average Age = 0.36, Expected Age = 0.54\n", - "Object 60: Hit Rate = 0.41, Expected Hit Rate = 0.39, Average Time spend in Cache: 0.40, Average Age = 0.16, Expected Age = 0.50\n", - "Object 61: Hit Rate = 1.00, Expected Hit Rate = 1.00, Average Time spend in Cache: 1.00, Average Age = 1577.96, Expected Age = 1295.47\n", - "Object 62: Hit Rate = 0.39, Expected Hit Rate = 0.39, Average Time spend in Cache: 0.39, Average Age = 0.15, Expected Age = 0.47\n", - "Object 63: Hit Rate = 0.40, Expected Hit Rate = 0.39, Average Time spend in Cache: 0.40, Average Age = 0.15, Expected Age = 0.47\n", - "Object 64: Hit Rate = 0.64, Expected Hit Rate = 0.63, Average Time spend in Cache: 0.64, Average Age = 0.36, Expected Age = 0.53\n", - "Object 65: Hit Rate = 0.40, Expected Hit Rate = 0.39, Average Time spend in Cache: 0.40, Average Age = 0.15, Expected Age = 0.48\n", - "Object 66: Hit Rate = 0.99, Expected Hit Rate = 0.99, Average Time spend in Cache: 0.99, Average Age = 14.76, Expected Age = 7.79\n", - "Object 67: Hit Rate = 0.40, Expected Hit Rate = 0.39, Average Time spend in Cache: 0.41, Average Age = 0.15, Expected Age = 0.48\n", - "Object 68: Hit Rate = 1.00, Expected Hit Rate = 1.00, Average Time spend in Cache: 1.00, Average Age = 2580.01, Expected Age = 2578.24\n", - "Object 69: Hit Rate = 0.40, Expected Hit Rate = 0.39, Average Time spend in Cache: 0.40, Average Age = 0.15, Expected Age = 0.47\n", - "Object 70: Hit Rate = 0.40, Expected Hit Rate = 0.39, Average Time spend in Cache: 0.40, Average Age = 0.16, Expected Age = 0.47\n", - "Object 71: Hit Rate = 0.64, Expected Hit Rate = 0.63, Average Time spend in Cache: 0.64, Average Age = 0.39, Expected Age = 0.55\n", - "Object 72: Hit Rate = 0.39, Expected Hit Rate = 0.39, Average Time spend in Cache: 0.40, Average Age = 0.15, Expected Age = 0.46\n", - "Object 73: Hit Rate = 0.40, Expected Hit Rate = 0.39, Average Time spend in Cache: 0.40, Average Age = 0.15, Expected Age = 0.47\n", - "Object 74: Hit Rate = 0.41, Expected Hit Rate = 0.39, Average Time spend in Cache: 0.41, Average Age = 0.16, Expected Age = 0.49\n", - "Object 75: Hit Rate = 0.79, Expected Hit Rate = 0.78, Average Time spend in Cache: 0.78, Average Age = 0.68, Expected Age = 0.68\n", - "Object 76: Hit Rate = 0.64, Expected Hit Rate = 0.63, Average Time spend in Cache: 0.63, Average Age = 0.39, Expected Age = 0.54\n", - "Object 77: Hit Rate = 0.64, Expected Hit Rate = 0.63, Average Time spend in Cache: 0.65, Average Age = 0.35, Expected Age = 0.55\n", - "Object 78: Hit Rate = 0.78, Expected Hit Rate = 0.78, Average Time spend in Cache: 0.78, Average Age = 0.67, Expected Age = 0.67\n", - "Object 79: Hit Rate = 1.00, Expected Hit Rate = 1.00, Average Time spend in Cache: 1.00, Average Age = 150.39, Expected Age = 57.20\n", - "Object 80: Hit Rate = 0.39, Expected Hit Rate = 0.39, Average Time spend in Cache: 0.40, Average Age = 0.15, Expected Age = 0.46\n", - "Object 81: Hit Rate = 0.40, Expected Hit Rate = 0.39, Average Time spend in Cache: 0.40, Average Age = 0.15, Expected Age = 0.48\n", - "Object 82: Hit Rate = 0.92, Expected Hit Rate = 0.92, Average Time spend in Cache: 0.92, Average Age = 1.79, Expected Age = 1.19\n", - "Object 83: Hit Rate = 0.64, Expected Hit Rate = 0.63, Average Time spend in Cache: 0.64, Average Age = 0.37, Expected Age = 0.55\n", - "Object 84: Hit Rate = 0.40, Expected Hit Rate = 0.39, Average Time spend in Cache: 0.41, Average Age = 0.15, Expected Age = 0.48\n", - "Object 85: Hit Rate = 0.40, Expected Hit Rate = 0.39, Average Time spend in Cache: 0.41, Average Age = 0.16, Expected Age = 0.48\n", - "Object 86: Hit Rate = 0.64, Expected Hit Rate = 0.63, Average Time spend in Cache: 0.64, Average Age = 0.36, Expected Age = 0.54\n", - "Object 87: Hit Rate = 0.41, Expected Hit Rate = 0.39, Average Time spend in Cache: 0.40, Average Age = 0.17, Expected Age = 0.49\n", - "Object 88: Hit Rate = 0.64, Expected Hit Rate = 0.63, Average Time spend in Cache: 0.64, Average Age = 0.37, Expected Age = 0.54\n", - "Object 89: Hit Rate = 0.41, Expected Hit Rate = 0.39, Average Time spend in Cache: 0.40, Average Age = 0.16, Expected Age = 0.49\n", - "Object 90: Hit Rate = 0.40, Expected Hit Rate = 0.39, Average Time spend in Cache: 0.40, Average Age = 0.15, Expected Age = 0.48\n", - "Object 91: Hit Rate = 0.64, Expected Hit Rate = 0.63, Average Time spend in Cache: 0.63, Average Age = 0.36, Expected Age = 0.54\n", - "Object 92: Hit Rate = 0.64, Expected Hit Rate = 0.63, Average Time spend in Cache: 0.64, Average Age = 0.37, Expected Age = 0.55\n", - "Object 93: Hit Rate = 0.78, Expected Hit Rate = 0.78, Average Time spend in Cache: 0.78, Average Age = 0.71, Expected Age = 0.67\n", - "Object 94: Hit Rate = 0.39, Expected Hit Rate = 0.39, Average Time spend in Cache: 0.40, Average Age = 0.15, Expected Age = 0.46\n", - "Object 95: Hit Rate = 0.64, Expected Hit Rate = 0.63, Average Time spend in Cache: 0.64, Average Age = 0.37, Expected Age = 0.54\n", - "Object 96: Hit Rate = 0.40, Expected Hit Rate = 0.39, Average Time spend in Cache: 0.40, Average Age = 0.16, Expected Age = 0.48\n", - "Object 97: Hit Rate = 0.40, Expected Hit Rate = 0.39, Average Time spend in Cache: 0.40, Average Age = 0.16, Expected Age = 0.48\n", - "Object 98: Hit Rate = 1.00, Expected Hit Rate = 1.00, Average Time spend in Cache: 1.00, Average Age = 2576.38, Expected Age = 2574.98\n", - "Object 99: Hit Rate = 0.87, Expected Hit Rate = 0.86, Average Time spend in Cache: 0.87, Average Age = 1.16, Expected Age = 0.88\n", - "Object 100: Hit Rate = 0.63, Expected Hit Rate = 0.63, Average Time spend in Cache: 0.63, Average Age = 0.37, Expected Age = 0.52\n" + "Object 1: Hit Rate = 0.76, Expected Hit Rate = 0.63, Average Time spend in Cache: 0.87, Average Age = 1.07, Expected Age = 1.82\n", + "Object 2: Hit Rate = 0.91, Expected Hit Rate = 0.95, Average Time spend in Cache: 0.91, Average Age = 2.18, Expected Age = 1.80\n", + "Object 3: Hit Rate = 0.60, Expected Hit Rate = 0.63, Average Time spend in Cache: 0.50, Average Age = 0.62, Expected Age = 0.94\n" ] } ], @@ -503,7 +580,7 @@ " hit_rate = cache.hits[obj_id] / max(1, cache.access_count[obj_id]) # Avoid division by zero\n", " expected_hit_rate = 1-math.exp(-db.lambda_values[obj_id]*CACHE_TTL)\n", " avg_cache_time = cache.cumulative_cache_time[obj_id] / max(1, simulation_end_time) # Only average over hits\n", - " avg_age = cache.cumulative_age[obj_id] / max(1, cache.access_count[obj_id])\n", + " avg_age = sum(cache.cumulative_age[obj_id]) / len(cache.cumulative_age[obj_id])\n", " expected_age = hit_rate / (db.lambda_values[obj_id] * (1 - pow(hit_rate,2)))\n", " print(f\"Object {obj_id}: Hit Rate = {hit_rate:.2f}, Expected Hit Rate = {expected_hit_rate:.2f}, Average Time spend in Cache: {avg_cache_time:.2f}, Average Age = {avg_age:.2f}, Expected Age = {expected_age:.2f}\")\n", " statistics.append({\"obj_id\": obj_id,\"hit_rate\": hit_rate, \"expected_hit_rate\": expected_hit_rate, \"avg_cache_time\":avg_cache_time, \"avg_age\": avg_age, \"expected_age\": expected_age})" @@ -523,7 +600,7 @@ }, { "cell_type": "code", - "execution_count": 14, + "execution_count": 12, "id": "80971714-44f1-47db-9e89-85be7c885bde", "metadata": {}, "outputs": [ @@ -561,234 +638,83 @@ "
100 rows × 13 columns
\n", "" ], "text/plain": [ - " access_count hits misses mu lambda hit_rate expected_hit_rate \\\n", - "1 5182 2090 3092 0 1 0.403319 0.393469 \n", - "2 15535 12175 3360 0 3 0.783714 0.776870 \n", - "3 5189 2084 3105 0 1 0.401619 0.393469 \n", - "4 5180 2077 3103 0 1 0.400965 0.393469 \n", - "5 10422 6645 3777 0 2 0.637594 0.632121 \n", - ".. ... ... ... .. ... ... ... \n", - "96 5104 2067 3037 0 1 0.404976 0.393469 \n", - "97 5116 2067 3049 0 1 0.404027 0.393469 \n", - "98 190549 190548 1 0 37 0.999995 1.000000 \n", - "99 20617 17902 2715 0 4 0.868313 0.864665 \n", - "100 10178 6425 3753 0 2 0.631264 0.632121 \n", + " access_count hits misses mu lambda hit_rate expected_hit_rate \\\n", + "1 21 16 5 0 1 0.761905 0.632121 \n", + "2 34 31 3 0 3 0.911765 0.950213 \n", + "3 10 6 4 0 1 0.600000 0.632121 \n", "\n", - " expected_hit_rate_delta avg_cache_time cache_time_delta avg_age \\\n", - "1 0.009850 0.406136 -0.002817 0.164532 \n", - "2 0.006844 0.782651 0.001063 0.675677 \n", - "3 0.008149 0.406382 -0.004763 0.158811 \n", - "4 0.007496 0.405551 -0.004586 0.159370 \n", - "5 0.005473 0.643986 -0.006392 0.367480 \n", - ".. ... ... ... ... \n", - "96 0.011507 0.398209 0.006767 0.157796 \n", - "97 0.010557 0.400947 0.003080 0.162748 \n", - "98 -0.000005 0.999993 0.000002 2576.381044 \n", - "99 0.003648 0.865881 0.002431 1.160598 \n", - "100 -0.000857 0.634451 -0.003187 0.365712 \n", + " expected_hit_rate_delta avg_cache_time cache_time_delta avg_age \\\n", + "1 0.129784 0.870220 -0.108316 1.072219 \n", + "2 -0.038448 0.914511 -0.002746 2.177619 \n", + "3 -0.032121 0.498486 0.101514 0.623042 \n", "\n", - " expected_age age_delta \n", - "1 0.481671 -0.317139 \n", - "2 0.677147 -0.001470 \n", - "3 0.478857 -0.320046 \n", - "4 0.477779 -0.318409 \n", - "5 0.537170 -0.169690 \n", - ".. ... ... \n", - "96 0.484425 -0.326629 \n", - "97 0.482845 -0.320097 \n", - "98 2574.979730 1.401314 \n", - "99 0.882312 0.278286 \n", - "100 0.524736 -0.159023 \n", - "\n", - "[100 rows x 13 columns]" + " expected_age age_delta age_delta in % \n", + "1 1.816216 -0.743997 -0.409641 \n", + "2 1.801709 0.375910 0.208641 \n", + "3 0.937500 -0.314458 -0.335422 " ] }, - "execution_count": 14, + "execution_count": 12, "metadata": {}, "output_type": "execute_result" } @@ -817,25 +743,27 @@ "expected_age.index = range(1,DATABASE_OBJECTS + 1)\n", "age_delta = pd.DataFrame((avg_age.to_numpy()-expected_age.to_numpy()), columns=['age_delta'])\n", "age_delta.index = range(1,DATABASE_OBJECTS + 1)\n", + "age_delta_p = pd.DataFrame(age_delta.to_numpy().T[0]/expected_age.to_numpy().T[0], columns=['age_delta in %'])\n", + "age_delta_p.index = range(1,DATABASE_OBJECTS + 1)\n", "\n", "merged = access_count.merge(hits, left_index=True, right_index=True).merge(misses, left_index=True, right_index=True) \\\n", " .merge(mu, left_index=True, right_index=True).merge(lmbda, left_index=True, right_index=True) \\\n", " .merge(hit_rate, left_index=True, right_index=True).merge(expected_hit_rate, left_index=True, right_index=True).merge(expected_hit_rate_delta, left_index=True, right_index=True) \\\n", " .merge(avg_cache_time, left_index=True, right_index=True).merge(cache_time_delta, left_index=True, right_index=True) \\\n", - " .merge(avg_age, left_index=True, right_index=True).merge(expected_age, left_index=True, right_index=True).merge(age_delta, left_index=True, right_index=True)\n", + " .merge(avg_age, left_index=True, right_index=True).merge(expected_age, left_index=True, right_index=True).merge(age_delta, left_index=True, right_index=True).merge(age_delta_p, left_index=True, right_index=True)\n", "merged.to_csv(f\"{TEMP_BASE_DIR}/details.csv\", index_label=\"obj_id\")\n", "merged" ] }, { "cell_type": "code", - "execution_count": 15, + "execution_count": 13, "id": "01f8f9ee-c278-4a22-8562-ba02e77f5ddd", "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAACVcAAAHWCAYAAAB5HisgAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy80BEi2AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3gU1cIG8Hdp0psNC1cQ4YooFy9ee1fE3ntBsHex8YGKFEFARQEFBelSpNdAEnroSSCNkE4CIT0hvWd3vj82s2yZ2ZnZnW3h/T2Pj2R3dubMzJnT5xyDIAgCiIiIiIiIiIiIiIiIiIiIiIiIyEYzXweAiIiIiIiIiIiIiIiIiIiIiIjIH3FwFRERERERERERERERERERERERkQQOriIiIiIiIiIiIiIiIiIiIiIiIpLAwVVEREREREREREREREREREREREQSOLiKiIiIiIiIiIiIiIiIiIiIiIhIAgdXERERERERERERERERERERERERSeDgKiIiIiIiIiIiIiIiIiIiIiIiIgkcXEVERERERERERERERERERERERCSBg6uIiIiIiIiIiIiIiIiIiIiIiIgkcHAVERERERERERGA3bt3w2AwYPXq1b4Oiip5eXl49tlncf7558NgMGDatGm67TsjIwMGgwE///yz4rZjx46FwWDQ7djeYDAYMHbsWF8HQxcGgwEfffSRr4MR0Hr06IGhQ4f6OhhERERERERE5Kc4uIqIiIiIiIiIvGbhwoUwGAxo3bo1srKyHL6/++67ce211/ogZIHns88+Q0hICEaNGoW///4bDz74oNPtKysr8f3336N///5o27YtOnXqhDvuuAOLFy+GIAheCrV2W7ZsCZiBULt378bTTz+Nbt26oVWrVrjooovw2GOPYe3atb4Omi7q6+sxY8YM/O9//0OHDh3Qvn17/O9//8OMGTNQX1/v6+BZiAMl1fxHRERERERERKSkha8DQERERERERETnntraWkyePBm//fabr4MSsHbu3IknnngCX375peK2eXl5uO+++5CQkIAXX3wRH330EWpqarBmzRq8/vrr2LJlC5YuXYrmzZtrDse3336LkSNHunIKqmzZsgUzZ87UdYBVdXU1WrTQt1lszJgxGD9+PHr37o13330XV1xxBYqKirBlyxY888wzWLp0KV5++WVdj+lNlZWVeOSRR7Bnzx48+uijGDp0KJo1a4bg4GB8+umnWLt2LYKCgtCuXTtfBxV9+/bF33//bfPZqFGj0L59e3zzzTcO2yclJaFZM76DSkRERERERETSOLiKiIiIiIiIiLxuwIAB+OuvvzBq1Chceumlvg6OV1VWVuoyACU/Px+dO3dWte3rr7+OhIQErFu3Do8//rjl808++QRfffUVfv75Z1x//fX4v//7P83haNGihe4DlTytdevWuu5v9erVGD9+PJ599lksW7YMLVu2tHz31VdfISQkxK9mdnLF559/jj179uC3336zWYbw/fffx8yZM/HRRx/hyy+/xB9//OG1MAmCgJqaGrRp08bm84svvhivvvqqzWeTJ0/GBRdc4PA5AJx33nkeDScRERERERERBTa+kkVEREREREREXvf111/DaDRi8uTJTrfLyMiAwWDAwoULHb4zGAw2sxmNHTsWBoMBycnJePXVV9GpUydceOGFGD16NARBQGZmJp544gl07NgR3bp1w9SpUyWPaTQa8fXXX6Nbt25o164dHn/8cWRmZjpsd/jwYTz44IPo1KkT2rZti7vuugv79++32UYM0/Hjx/Hyyy+jS5cuuP32252e84kTJ/Dcc8+ha9euaNu2LW6++WYEBQVZvheXVhQEATNnzlRc3uzQoUMICQnB0KFDbQZWiSZNmoTevXtjypQpqK6udvj+119/xRVXXIE2bdrgrrvuwrFjxyTP0d6SJUswcOBAtGnTBl27dsWLL74oex0ffvhhdOnSBe3atUP//v0xffp0AMDQoUMxc+ZMAJBcyu2ff/7BwIED0aFDB3Ts2BHXXXed5bfOyMWd1NRUDB06FJ07d0anTp0wbNgwVFVVKe5v9OjR6Nq1K+bPn28zsEo0ePBgPProowCAuro6fPfddxg4cCA6deqEdu3a4Y477sCuXbscfmcymTB9+nRcd911aN26NS688EI8+OCDiIyMdNh2/fr1uPbaa3HeeeehX79+CA4OdtgmKysLb7zxBi6++GLLdvPnz1c8v9OnT2PevHm49957bQZWiT788EPcc889mDt3Lk6fPg0AuPbaa3HPPfdIntNll12GZ5991uazadOmoV+/fmjdujUuvvhivPvuuyguLrb5bY8ePfDoo48iJCQEN9xwA9q0aYPZs2crhl9Jjx49MHToUMvf4jO2b98+fPLJJ7jwwgvRuXNnvPvuu6irq0NJSQmGDBmCLl26oEuXLhgxYoTD0ppqz4mIiIiIiIiI/B8HVxERERERERGR1/Xs2RNDhgzBX3/9hezsbF33/cILL8BkMmHy5Mm46aabMGHCBEybNg2DBg3CZZddhilTpuCqq67Cl19+ibCwMIffT5w4EUFBQfi///s/fPLJJ9i2bRvuv/9+m4FHO3fuxJ133omysjKMGTMGP/zwA0pKSnDvvfciPDzcYZ/PPfccqqqq8MMPP+Dtt9+WDXteXh5uvfVWhISE4IMPPsDEiRNRU1ODxx9/HOvWrQMA3HnnnZYlzwYNGoS///7bYQk0a5s2bQIADBkyRPL7Fi1a4OWXX0ZxcbHD4LDFixdjxowZ+PDDDzFq1CgcO3YM9957L/Ly8mSPB5iv4ZAhQ9C7d2/88ssvGD58OHbs2IE777wTJSUllu22bduGO++8E8ePH8enn36KqVOn4p577sHmzZsBAO+++y4GDRoEAJbzFM9127ZteOmll9ClSxdMmTIFkydPxt133+1wDlo8//zzKC8vx6RJk/D8889j4cKFGDdunNPfpKSkIDExEU8++SQ6dOigeIyysjLMnTsXd999N6ZMmYKxY8eioKAAgwcPRnR0tM22b775JoYPH47u3btjypQpGDlyJFq3bo1Dhw7ZbLdv3z588MEHePHFF/Hjjz+ipqYGzzzzDIqKiizb5OXl4eabb8b27dvx0UcfYfr06bjqqqvw5ptvYtq0aU7DvHXrVhiNRtk4BJjjV0NDg2VQ1wsvvICwsDDk5uY6hDU7Oxsvvvii5bN3330XX331FW677TZMnz4dw4YNw9KlSzF48GCHGb+SkpLw0ksvYdCgQZg+fToGDBjgNOzu+Pjjj5GSkoJx48bh8ccfx5w5czB69Gg89thjMBqN+OGHH3D77bfjp59+cngGtZwTEREREREREfk5gYiIiIiIiIjISxYsWCAAECIiIoS0tDShRYsWwieffGL5/q677hL69etn+Ts9PV0AICxYsMBhXwCEMWPGWP4eM2aMAEB45513LJ81NDQIl19+uWAwGITJkydbPi8uLhbatGkjvP7665bPdu3aJQAQLrvsMqGsrMzy+cqVKwUAwvTp0wVBEASTyST07t1bGDx4sGAymSzbVVVVCT179hQGDRrkEKaXXnpJ1fUZPny4AEDYu3ev5bPy8nKhZ8+eQo8ePQSj0Whz/h9++KHiPp988kkBgFBcXCy7zdq1awUAwowZMwRBOHvd27RpI5w+fdqy3eHDhwUAwmeffeZwjqKMjAyhefPmwsSJE22OERcXJ7Ro0cLyeUNDg9CzZ0/hiiuucAib9XX98MMPBakmrE8//VTo2LGj0NDQoHgN7MnFnTfeeMNmu6eeeko4//zzne5rw4YNAgDh119/VXXshoYGoba21uaz4uJi4eKLL7Y5/s6dOwUANs+HyPr6ABBatWolpKamWj6LiYkRAAi//fab5bM333xTuOSSS4TCwkKbfb344otCp06dhKqqKtkwi/EyKipKdpujR48KAITPP/9cEARBSEpKcgiDIAjCBx98ILRv395yvL179woAhKVLl9psFxwc7PD5FVdcIQAQgoODZcMhp1+/fsJdd90l+d0VV1xhkxaI6ZT9M37LLbcIBoNBeO+99yyfiWmM9b61nBMRERERERER+T/OXEVEREREREREPnHllVfitddew5w5c5CTk6Pbft966y3Lv5s3b44bbrgBgiDgzTfftHzeuXNn/Pvf/8aJEyccfj9kyBCbGYieffZZXHLJJdiyZQsAIDo6GikpKXj55ZdRVFSEwsJCFBYWorKyEvfddx/CwsJgMpls9vnee++pCvuWLVtw44032iwd2L59e7zzzjvIyMjA8ePH1V0EK+Xl5QDgdFYl8buysjKbz5988klcdtlllr9vvPFG3HTTTZZrIWXt2rUwmUx4/vnnLdemsLAQ3bp1Q+/evS3L30VFRSE9PR3Dhw9H586dbfbhbJlDUefOnVFZWYlt27YpbquW/X264447UFRU5HBdrInfqZm1CjDHyVatWgEwLx135swZNDQ04IYbbsDRo0ct261ZswYGgwFjxoxx2If99bn//vvRq1cvy9/9+/dHx44dLfFbEASsWbMGjz32GARBsLkvgwcPRmlpqc2x7bkSh/r06YMBAwZgxYoVlm2MRiNWr16Nxx57DG3atAEArFq1Cp06dcKgQYNswjVw4EC0b9/eYbnEnj17YvDgwbLh0NObb75pc61vuukmh7RETGOs0xKt50RERERERERE/q2FrwNAREREREREROeub7/9Fn///TcmT56M6dOn67LPf/3rXzZ/d+rUCa1bt8YFF1zg8Ln1smmi3r172/xtMBhw1VVXISMjA4B5GTgAeP3112XDUFpaii5dulj+7tmzp6qwnzx5EjfddJPD53379rV8f+2116ral0gc9FJeXu4wiEkkN3jG/loA5kEzK1eulD1eSkoKBEGQ/C0AtGzZEgCQlpYGAJrPR/TBBx9g5cqVeOihh3DZZZfhgQcewPPPP48HH3zQpf0BjnFHvIfFxcXo2LGj5G/Ez8VrqMaiRYswdepUJCYm2iwRZx1P0tLScOmll6Jr166awy2Gvbi4GABQUFCAkpISzJkzB3PmzJHcR35+vuz+reOQHKk49MILL+Drr79GVlYWLrvsMuzevRv5+fl44YUXLNukpKSgtLQUF110kapwqX2W9CCVlgBA9+7dHT4XrzWg/ZyIiIiIiIiIyL9xcBURERERERER+cyVV16JV199FXPmzMHIkSMdvpebwchoNMrus3nz5qo+A8wz+mglzkr1008/YcCAAZLbtG/f3uZvcZYeX+jbty/Wr1+P2NhY3HnnnZLbxMbGAgCuueYat49nMplgMBiwdetWyetuf21cddFFFyE6OhohISHYunUrtm7digULFmDIkCFYtGiRS/t0JZ5cffXVAIC4uDhVx1iyZAmGDh2KJ598El999RUuuugiNG/eHJMmTbIMONNKKdxinH311VdlBwX2799fdv/i4L7Y2FjZOC8Vh1544QWMGjUKq1atwvDhw7Fy5Up06tTJZgCcyWTCRRddhKVLl0ru98ILL7T525vPktx1lfrcOo5oPSciIiIiIiIi8m8cXEVEREREREREPvXtt99iyZIlmDJlisN34sxBJSUlNp+fPHnSY+ERZ6YSCYKA1NRUy+ATcfm1jh074v7779f12FdccQWSkpIcPk9MTLR8r9Wjjz6KSZMmYfHixZKDq4xGI5YtW4YuXbrgtttus/nO/loAQHJyMnr06CF7vF69ekEQBPTs2RN9+vRxuh0AHDt2zOl1dLZEYKtWrfDYY4/hscceg8lkwgcffIDZs2dj9OjRuOqqq2R/p6c+ffrg3//+NzZs2IDp06crDh5bvXo1rrzySqxdu9bm3OyX/+vVqxdCQkJw5swZVbNXOXPhhReiQ4cOMBqNLsXZhx56CM2bN8fff/+NIUOGSG6zePFitGjRwmbgVM+ePXHjjTdixYoV+Oijj7B27Vo8+eSTOO+88yzb9OrVC9u3b8dtt93m00GIemqK50RERERERER0Lmvm6wAQERERERER0bmtV69eePXVVzF79mzk5ubafNexY0dccMEFCAsLs/l81qxZHgvP4sWLbZY/W716NXJycvDQQw8BAAYOHIhevXrh559/RkVFhcPvCwoKXD72ww8/jPDwcBw8eNDyWWVlJebMmYMePXq4NLPUrbfeivvvvx8LFizA5s2bHb7/5ptvkJycjBEjRjgMBFm/fj2ysrIsf4eHh+Pw4cOWayHl6aefRvPmzTFu3DiHGZ8EQbAsxfjf//4XPXv2xLRp0xwGz1n/rl27dgAcB9jZL+nYrFkzywC42tpa2fB5wrhx41BUVIS33noLDQ0NDt+HhoZarr0465H1OR4+fNjmngPAM888A0EQMG7cOIf9aZ1xrXnz5njmmWewZs0aHDt2zOF7pTjbvXt3DBs2DNu3b8cff/zh8P2ff/6JnTt34s0338Tll19u890LL7yAQ4cOYf78+SgsLLRZEhAAnn/+eRiNRnz//fcO+21oaHC474GgKZ4TERERERER0bmMM1cRERERERERkc998803+Pvvv5GUlIR+/frZfPfWW29h8uTJeOutt3DDDTcgLCwMycnJHgtL165dcfvtt2PYsGHIy8vDtGnTcNVVV+Htt98GYB7EM3fuXDz00EPo168fhg0bhssuuwxZWVnYtWsXOnbsiE2bNrl07JEjR2L58uV46KGH8Mknn6Br165YtGgR0tPTsWbNGjRr5tp7cosXL8Z9992HJ554Ai+//DLuuOMO1NbWYu3atdi9ezdeeOEFfPXVVw6/u+qqq3D77bfj/fffR21tLaZNm4bzzz8fI0aMkD1Wr169MGHCBIwaNQoZGRl48skn0aFDB6Snp2PdunV455138OWXX6JZs2b4448/8Nhjj2HAgAEYNmwYLrnkEiQmJiI+Ph4hISEAzIPZAOCTTz7B4MGD0bx5c7z44ot46623cObMGdx77724/PLLcfLkSfz2228YMGCAZRk7b3nhhRcQFxeHiRMnIioqCi+99BKuuOIKFBUVITg4GDt27MCyZcsAmGcSW7t2LZ566ik88sgjSE9Px59//olrrrnGZrDePffcg9deew0zZsxASkoKHnzwQZhMJuzduxf33HMPPvroI01hnDx5Mnbt2oWbbroJb7/9Nq655hqcOXMGR48exfbt23HmzBmnv//111+RmJiIDz74AMHBwZYZqkJCQrBhwwbcddddmDp1qsPvnn/+eXz55Zf48ssv0bVrV4eZs+666y68++67mDRpEqKjo/HAAw+gZcuWSElJwapVqzB9+nQ8++yzms7V15riORERERERERGdyzi4ioiIiIiIiIh87qqrrsKrr76KRYsWOXz33XffoaCgAKtXr8bKlSvx0EMPYevWrbjooos8Epavv/4asbGxmDRpEsrLy3Hfffdh1qxZaNu2rWWbu+++GwcPHsT333+P33//HRUVFejWrRtuuukmvPvuuy4f++KLL8aBAwfwf//3f/jtt99QU1OD/v37Y9OmTXjkkUdc3u8ll1yC8PBwTJ06FatWrcKaNWvQokUL9O/fHwsXLsSQIUMkl98bMmQImjVrhmnTpiE/Px833ngjfv/9d1xyySVOjzdy5Ej06dMHv/76q2Xmpe7du+OBBx7A448/btlu8ODB2LVrF8aNG4epU6fCZDKhV69eloFsgHkmrI8//hj//PMPlixZAkEQ8OKLL+LVV1/FnDlzMGvWLJSUlKBbt2544YUXMHbsWJcHobljwoQJuPfeezFjxgz88ccfOHPmDLp06YKbb74ZGzZssJz30KFDkZubi9mzZyMkJATXXHMNlixZglWrVmH37t02+1ywYAH69++PefPm4auvvkKnTp1www034NZbb9Ucvosvvhjh4eEYP3481q5di1mzZuH8889Hv379JJfktNe+fXvs2LEDs2bNwpIlS/DVV19BEARcffXVmDZtGj744AO0bNnS4XeXX345br31Vuzfvx9vvfWW5DZ//vknBg4ciNmzZ+Prr79GixYt0KNHD7z66qsOS1UGiqZ4TkRERERERETnKoOgdR5xIiIiIiIiIiKiRqNHj8akSZMkl8MjIiIiIiIiIiIKdN5/jY+IiIiIiIiIiJqMnJwcXHDBBb4OBhERERERERERkUdwWUAiIiIiIiIiItLsxIkTWLduHVatWoVHH33U18EhIiIiIiIiIiLyCM5cRUREREREREREmoWFhWHcuHG466678Msvv/g6OERERERERERERB5hEARB8HUgiIiIiIiIiIiIiIiIiIiIiIiI/A1nriIiIiIiIiIiIiIiIiIiIiIiIpLAwVVEREREREREREREREREREREREQSWvg6AJ5mMpmQnZ2NDh06wGAw+Do4RERERERERERERERERERERETkY4IgoLy8HJdeeimaNZOfn6rJD67Kzs5G9+7dfR0MIiIiIiIiIiIiIiIiIiIiIiLyM5mZmbj88stlv2/yg6s6dOgAwHwhOnbs6OPQkJz6+nqEhobigQceQMuWLX0dHCIiakKYxxARkScxnyEiIk9iPkNERJ7EfIaIiDyFeQwFirKyMnTv3t0ytkhOkx9cJS4F2LFjRw6u8mP19fVo27YtOnbsyMSViIh0xTyGiIg8ifkMERF5EvMZIiLyJOYzRETkKcxjKNCIY4vkyC8YSEREREREREREREREREREREREdA7j4CoiIiIiIiIiIiIiIiIiIiIiIiIJHFxFREREREREREREREREREREREQkoYWvA0BEREREREREREREREREREREgU8QBDQ0NKBFixaoqamB0Wj0dZDoHNa8eXO0aNECBoPBrf1wcBURERERERERERERERERERERuaWurg45OTmorKxEt27dkJmZ6fagFiJ3tW3bFpdccglatWrl8j44uIqIiIiIiIiIiIiIiIiIiIiIXGYymZCeno7mzZvj0ksvRV1dHdq3b49mzZr5Omh0jhIEAXV1dSgoKEB6ejp69+7tcnzk4CoiIiIiIiIiIiIiIiIiIiIiclldXR1MJhO6d++O1q1bo6ysDK1bt+bgKvKpNm3aoGXLljh58iTq6urQunVrl/bDWExEREREREREREREREREREREbuNgKvI3esRJxmoiIiIiIiIiIiIiIiIiIiIiIiIJHFxFREREREREREREREREREREREQkgYOriIiIiIiIiIiIiIiIiIiIiIic6NGjB6ZNm+b2Nt7mj2GS469h5eAqIiIiIiIiIiIiIiIiIiIiIjonZWZm4o033sCll16KVq1a4YorrsCnn36KoqIizfuKiIjAO++8o1vY9BhspFeYUlNTMWzYMFx++eU477zz0LNnT7z00kuIjIx0e9/+joOriIiIiIiIiIiIiIiIiIiIiOicc+LECdxwww1ISUnB8uXLkZqaij///BM7duzALbfcgjNnzmja34UXXoi2bdt6KLSu0SNMkZGRGDhwIJKTkzF79mwcP34c69atw9VXX40vvvhCp5D6Lw6uIiIiakJ+2JKA8ZuO+zoYREREREREREREREREdA4TBAFVdQ0++U8QBNXh/PDDD9GqVSuEhobirrvuwr/+9S889NBD2L59O7KysvDNN9/YbF9eXo6XXnoJ7dq1w2WXXYaZM2fafG8/01RJSQneeustXHjhhejYsSPuvfdexMTE2Pxm06ZN+N///ofWrVvjggsuwFNPPQUAuPvuu3Hy5El89tlnMBgMMBgMAICTJ0/iscceQ5cuXdCuXTv069cPW7ZskT1H+zAZDAbMnTsXTz31FNq2bYvevXtj48aNsr8XBAFDhw5F7969sXfvXjzyyCPo1asXBgwYgDFjxmDDhg2Wbf/v//4Pffr0Qdu2bXHllVdi9OjRqK+vV3W+oqqqKrzxxhvo0KED/vWvf2HOnDk232dmZuL5559H586d0bVrVzzxxBPIyMiQDb8eWnh070REROQ15TX1mBN2AgDw/t29cGGH83wcIiIiIiIiIiIiIiIiIjoX1dSbcP2UbT459vHxg9G2lfJwmDNnziAkJAQTJ05EmzZtbL7r1q0bXnnlFaxYsQKzZs2yDGz66aef8PXXX2PcuHEICQnBp59+ij59+mDQoEGSx3juuefQpk0bbN26FZ06dcLs2bNx3333ITk5GV27dkVQUBCeeuopfPPNN1i8eDHq6uosA6XWrl2L//znP3jnnXfw9ttvW/b54Ycfoq6uDmFhYWjXrh2OHz+O9u3ba7pG48aNw48//oiffvoJv/32G1555RWcPHkSXbt2ddg2Ojoa8fHxWLZsGZo1c5zDqXPnzpZ/d+jQAQsXLsSll16KuLg4vP322+jQoQNGjBgBAE7PVzR16lR8//33+Prrr7F69Wq8//77uOuuu/Dvf/8b9fX1GDx4MG655Rbs3bsXLVq0wIQJE/Dggw8iNjYWrVq10nQd1OLgKiIioibCZDr7b6NJ/Yh8IiIiIiIiIiIiIiIionNNSkoKBEFA3759Jb/v27cviouLUVBQgIsuuggAcNttt2HkyJEAgD59+mD//v349ddfJQdX7du3D+Hh4cjPz8d555knRfj555+xfv16rF69Gu+88w4mTpyIF198EePGjbP87j//+Q8AoGvXrmjevDk6dOiAbt26Wb4/deoUnnnmGVx33XUAgCuvvFLzuQ8dOhQvvfQSAOCHH37AjBkzEB4ejgcffFDyOgHA1Vdfrbjfb7/91vLvHj164Msvv8Q///xjGVzl7HxFDz/8MD744AMA5pmwfv31V+zatQv//ve/sWLFCphMJsydO9cy4G3BggXo3Lkzdu/ejQceeEDLZVCNg6uIiIiaCAEcUEVERERERERERERERES+17plMxwbO0hypiNPa9OyuabttSwjeMsttzj8bb3knrWYmBhUVFTg/PPPt/m8uroaaWlpAMyzQlnPSqXGJ598gvfffx+hoaG4//778cwzz6B///6a9mG9fbt27dCxY0fk5+dLbqvl+qxYsQIzZsxAWloaKioq0NDQgI4dO1q+V3O+1mEzGAzo1q2bJWwxMTFITU1Fhw4dbH5TU1NjuaaewMFVRERE55Cymnp0bN3S18EgIiIiIiIiIiIiIiKiJsxgMKBtqxY+GVyl1lVXXQWDwYCEhAQ89dRTDt8nJCSgS5cuuPDCC13af0VFBS655BLs3r3b4TtxKT375QjVeOuttzB48GAEBQUhNDQUkyZNwtSpU/Hxxx+r3kfLlrb9hQaDASbrZXKs9OnTBwCQmJiI66+/XnafBw8exCuvvIJx48Zh8ODB6NSpE/755x9MnTrVso2a83UWtoqKCgwcOBBLly51+J2r90kN/43FREREpKufQ5LQf2wotsbl+DooRERERERERERERERERD51/vnnY9CgQZg1axaqq6ttvsvNzcXSpUvxwgsvWJafA4BDhw7ZbHfo0CHZZQX/+9//Ijc3Fy1atMBVV11l898FF1wAwDxL044dO2TD2KpVKxiNRofPu3fvjvfeew9r167FF198gb/++kv1eWs1YMAAXHPNNZg6darkAKySkhIAwIEDB3DFFVfgm2++wQ033IDevXvj5MmTNtsqna+S//73v0hJScFFF13kcE07derk8n6VcHAVERFRE2RVxrP4fVcqAGDMxngvh4aIiIiIiIiIiIiIiIjI//z++++ora3F4MGDERYWhszMTAQHB2PQoEG47LLLMHHiRJvt9+/fjx9//BHJycmYOXMmVq1ahU8//VRy3/fffz9uueUWPPnkkwgNDUVGRgYOHDiAb775BpGRkQCAMWPGYPny5RgzZgwSEhIQFxeHKVOmWPbRo0cPhIWFISsrC4WFhQCA4cOHIyQkBOnp6Th69Ch27dolO8BLDwaDAQsWLEBycjLuuOMObNmyBSdOnEBsbCwmTpyIJ554AgDQu3dvnDp1Cv/88w/S0tIwY8YMrFu3zmZfSuer5JVXXsEFF1yAJ554Anv37kV6ejp2796NTz75BKdPn9b1vK1xcBUREdE5xqR+WWQiIiIiIiIiIiIiIiKiJqt3796IjIzElVdeieeffx69evXCO++8g3vuuQcHDx5E165dbbb/4osvEBkZieuvvx4TJkzAL7/8gsGDB0vu22AwYMuWLbjzzjsxbNgw9OnTBy+++CJOnjyJiy++GABw9913Y9WqVdi4cSMGDBiAe++9F+Hh4ZZ9jB8/HhkZGejVq5dl2Tuj0YgPP/wQffv2xYMPPog+ffpg1qxZHrpCZjfeeCMiIyNx1VVX4e2330bfvn3x+OOPIz4+HtOmTQMAPP744/jss8/w0UcfYcCAAThw4ABGjx5tsx+l81XStm1bhIWF4V//+heefvpp9O3bF2+++SZqamrQsWNHPU/ZRguP7ZmIiIj8kiBwdBURERERERERERERERERAFxxxRVYuHCh4nYZGRmK29TW1qJ9+/aWvzt06IAZM2ZgxowZsr95+umn8fTTT0t+d/PNNyMmJsbms99++00xHNbswy3VVygu7edMnz59sGjRIqfb/Pjjj/jxxx9tPhs+fLjN387OV+oaR0dH2/zdrVs3xXDojTNXERF5UUpeOTbGZHNwC/mUifGPiIiIiIiIiIiIiIiISDdVVVXYtm0b8vLy0K9fP18Hh3TGmauIiLxo0K9hAIAO57XAPVdf5OPQ0LmKywISERERERERERERERER6WfOnDn4/vvvMXz4cNxyyy2+Dg7pjDNXERH5QFxWqa+DQEREREREREREREREREREOhg+fDiKiorwyy+/+Doo5AEcXEVE5ANclY2IiIiIiIiIiIiIiIiIiMj/cXAVEREREREREREREREREREREblN4CwT5Gf0iJMcXEXkp4wmAZ8sj8K8fem+DgoRBQiWVYko0MzdewKfLI+C0cQEjIiIiIiIiIiIAlNSbjmGzA9HdGaJr4NC5FMtW7YEAFRVVfk4JES2xDgpxlFXtNArMESkr+0JedgYk42NMdl48/aevg4OEQUYg68DQESkwoSgBADAo/0vwQP9uvk4NERERERERERERNq9Nu8w8strEZZcgIzJj/g6OEQ+07x5c3Tu3Bn5+fkwmUwwmUyoqalBs2ac84d8QxAEVFVVIT8/H507d0bz5s1d3hcHVxH5qcraBl8HgYiaKANHXhGRn6mqM/o6CERERERERERERC7JL6/1dRCI/Ea3buaXaAsKClBdXY02bdrAwI4p8rHOnTtb4qarOLiKyE9xeS8iIiIiIiIiIiIiIiIiIgoUBoMBl1xyCbp06YIdO3bgzjvvdGspNiJ3tWzZ0q0Zq0QcXEXkBWU19ejYuulkGk3tfCgwMN4REREREQUmQRBQXtvA8jwREZ1T2JZFROea8pp6tD+vBQwGAyprG3Bei2Zo0ZxLgRGdq5o3b46Ghga0bt3a7cFVVXUNaNWcaQr5FmMfkYctO3wK/ceGYu7eE74Oii5WRWai/9hQ/LE7zddBCWgCODWZFksOnUT/saGYvy/d10EhIiIiIiKNvl53DP3HhuJgWpGvg0JEROQV4zbFo//YUOxKyvd1UIiIvOJYVimuGxuKD5cdRUlVHfqNCcHgaWG+DhYRNQGl1fW45rsQDPqVaQr5FgdXEXnY1+viAAATghJ8HBJ9fLU6FgAwJTjRxyGhc8m3648BAMZvPu7jkPg3DtkjIiIiIn+0PPwUAODXbck+DgkREZF3LNifAQCYspVtqER0bpjX+GL0lrhcy0sVaQWVvgwSETUREelnAADphUxTyLd8OriqR48eMBgMDv99+OGHAICamhp8+OGHOP/889G+fXs888wzyMvL82WQibyGgySIyC0GXweAiIiIiMgWZ/AlIiIiIiIiIqJA5NPBVREREcjJybH8t23bNgDAc889BwD47LPPsGnTJqxatQp79uxBdnY2nn76aV8GmYiIyG9xPBURBSp2thMRnRtMTO6JiOgcYzCwtYaIiIjIHSxOkb/w6eCqCy+8EN26dbP8t3nzZvTq1Qt33XUXSktLMW/ePPzyyy+49957MXDgQCxYsAAHDhzAoUOHfBlsIiK3CV7uVKiobcDKiEycqazz7oHJq/y9r6q0qh4rIzJRWl3v66AEtAajCWuOnEbmmSpfB4WIqEkxmgSsPXoaJ4s4xXi90YTVXshrSqsDp2xwLKsUwcdyfR0MrzGZBKyLOq37lPsmb1eEiDxATCNPF7M83pTlltZgZWQmauqNvg4K+RlBELAhOgup+RW+DgqRR6UXVmJ9VBZMHB1PLpAaCHEgrRAH0gq9Hxg654jtO6eKWF7PKKzE2qOnmZYT6aSFrwMgqqurw5IlS/D555/DYDDgyJEjqK+vx/3332/Z5uqrr8a//vUvHDx4EDfffLPkfmpra1FbW2v5u6ysDABQX1+P+nr/b7A9V4n3pqnfIy3nZzQ2uPQ7b/LXcAUCk8no1es3cnUsNsflov+hjljznnT6GSgY7+RZX5uG+gb5ayX45jp+sPQI9qcVISguG3Nf+6/XjtvU8piFB09i4pYkAEDK9w/4ODRE+jAaTU3mGaXAtTLyNL7ZcByAtvS1qeUzADB3XwamhCSjmQFIGu+5vObjZUcQllKEjTFZWPD6QI8dRw+P/rYPALD2vZtw3WWdfBwaz1sfnY2v1hwDoG95w2QSmtSzQuemv/al48eQFLRoZkDCuEEeP15TzGcCwUPTw1BcVY8T+eX4YlBvXweH/Ejo8Tx8+k8MAJV5pMC8j/ybXD5zz8+7AQANDQ14YsCl3g4WBSCTyWT5d0PD2cHJ9fX1qKprwMt/HQYAxIy+F21b+U33tEcw3fetZeGZGLMpAQDbz+9uTMtr6hrw3MDLvH58veoyDUbbNIVIb2rjld/kXuvXr0dJSQmGDh0KAMjNzUWrVq3QuXNnm+0uvvhi5ObKvy06adIkjBs3zuHz0NBQtG3bVs8gkweIS0M2LWcfsy1btqj+VUy+AUBzzb/zPNfOh0Tm65eSkootNcleO2pQXHMABsRmlQXofWO8U6OiHhCv1Y4dO9Cxlf0W5u/q6+t8ch33p5mPvye50CfHbyp5zIbEZhAnH+XzQIHPnC5ER0ejZVaUj8NC57r1qe6lr00lnwGAjQnma2ESPJvXhKWY04B9qUUBkKeZw7pm2wFkXtT03/hcf0Lv8ob5+pWUlATAvSZybsNx8/PRYBK8Gp+bUj4TCIqrzOnW5iMn0Lc+xcehIX+y6aTaPNIch8rKArUtjs41jvmMOQ6v3xeLltnRXg8PBZ7srLPp49GjR2Hdv1VWB4hxatPWUHRo6ZMgehj7MPzFhmS2n59ljpcb9sehXV6Mz0Lhbl0mvthf+8ypqaiqUjfTnd8Mrpo3bx4eeughXHqpeyPgR40ahc8//9zyd1lZGbp3744HHngAHTt2dDeY5CH19fXYtm0bBg0ahJYtm1ap6tODoZZ/P/zww6p/V300C8vS4jX/ztNcPR8yE69f795X4eF7r/LacT87FGpZijAQ7xvjnTpnKuvwTeRuAMB9992HCzucZ/O9eB1btWqFhx++x9vB89l9bGp5zMbiKBwrLgDA54ECn5guDPjPf/Aw34QlH9u9Jg4RBTkAtKWvTS2fAYA1hUeQUFIEwLN5TSCV8cSwXtu/Px7+r/ff9vS2gxuPA3mnAehzb8Tr16lTJzz8cGDPpEu0Mv8Ikko9n0aKmmI+EwjOplsd8fDDt/g4NORPEralYHt2OgDnaYAYhzp2ZBwi/yaXz4hxuEePK/Dww319FTwKILtWxyGi0Fyn/u9//4v5yeaBHA8//DCKKmox+sgeAMD9992H89ufJ7ufQBVI9dumLrQiFigyT9Ryrt8LMV5e3v1yPPzwtV4/vl51mTZJBZiTaH4x91y/p+QZ4mp4SvxicNXJkyexfft2rF271vJZt27dUFdXh5KSEpvZq/Ly8tCtWzfZfZ133nk47zzHTLlly5ZsgAgATf0+aTm35s2bu/Q7b/LXcAWCZs2a++z6Bfp9C/Twe1KLFmenXm7RsoXTa+Xr6+iL4zeVPMZgaGb5d1M4HyIAaNHCeZpF5A2GZu6lr00lnwF8k9cEyrVr7sNyvDc1c/N5kCPAcE5cP2ramjUzWP7tzfjclPKZQNLM0IzXnWxozSObNWPeR4FBLp9p1ozpIKljnT62aHG2+9kct6zbrZt+maapn5+/81R9NpA193Fa7m5dpkUL/+8zp8CmNl41U97E8xYsWICLLroIjzzyiOWzgQMHomXLltixY4fls6SkJJw6dQq33MI3PYgICInPxRsLI1BUUevroJAPzNuXjo+XR8FoCqxlWZJyyzFkfjiiM0s8ehwDDMobnQOWh5/Ch8uj0WBS3tba3L0n8Ok/UTC5Eb8KymsxbEE4th/P0/zbBfvT8dGyo2gwagy4h5lMAj5bEY05YWmqtk/IKcOQ+eGIO13q4ZAp+3VbMkatjYMgBFaaca4QwPui5M89afh8RbTmdGljTDbeXBiBshp168Z7yta4HLyxMALFlXU+DQc5V1NvxDuLI7EnuUBx22NZpegxMgjfrIvzQsj8h+kcyUc8dZpNJb0Xyzixp0t8HRTygXMkGXDJsaxSDJkfjuPZ5rd+ozNLMGR+OJLzyn0cMnlrj57GW4siUVnbIPm9gVVrGE0CPl4ehXn70n0dFL+gNU4EchwSy4YrIzJ9HRSXzduXjk8CsP3QnwRwFPYpQRAwYnUMft/JpWXtuVuWGr/pOCZtSdAnMCqpaVsJ5PTek2objHh/yREsO3zK10FRZDQJuH3KTvQYGYTxm47j/SVHUNtg9HWwdCE+d8vDT+HdvyO9fl7rorLx1qJIVNVJl7mVsL+L/IXPB1eZTCYsWLAAr7/+us1I5k6dOuHNN9/E559/jl27duHIkSMYNmwYbrnlFtx8M6eQp6bPX6t7/lRAfPfvI9iZmI8pwYm+Dgr5wPebj2NTTDa2uTBwxZdenXcYYckFeHLmft337a/phi+NWhuH0OP5OJivLfGaEJSADdHZ2JWU7/Kxx28+jl1JBXhrcaTm347bdBybY3Ow5Viuy8f3hLCUAqyLysIPW9Sluy//dcgc32fpH9+1mr4jBcvDTyHJjzt2iJyZvDURa6OycPBEkabffbI8CjsS8zFzZ6qHQqbO+0uPYmdiPn4KTfJpOJxiRopFBzIQqrJs9ehv+wAASwOggVRPjCbuaSqDUl6d67kyPVEge3rWAYQlF+DFOQcBAE/O3I+w5AIMmRfu45DJ+3xlDLYn5MkOHPKjZjCf2XY8F5tisvH95uO+DkpACuS8b8mhkwg9nocRa2J9HRSXfb/5ODYGYPuhPzH4U4dAAInOLMHKyNP4OTTZ10HxC9bxyJ0XLgorajF/fzpmh51AhczAaE8Q21Z+d9K2widF2sqITGw9louvA+DFrJD4XJwurgYAzN+fjq3HcrEq8rSPQ6WvUWvjEBKfhxVeHjg9Yu0xc5l7LwfrU2Dz+bKA27dvx6lTp/DGG284fPfrr7+iWbNmeOaZZ1BbW4vBgwdj1qxZPgglEfmzwgrOgHAuc3Wku68UlHOmNV+odjGaVNW5/gZHflmNy78VVdT4V/yurNV2PYqrzG9z+dMborX1/jUbGJnx7SP1ql1Ml874yYxRZ1hu82sl1b6d4YyavqbSN1fUmKb6URGHvKipzMDmCXWNM++W2dVjcnWoG3lacZV0GYWDCoByP6uXBppAjkL2z3IgC7T2Qwp8rtbdybkG49lymC/aG/2lbSWQlAZQO4PUgL2mUg6yL4+U+ei+sN2JAp3PB1c98MADssuztG7dGjNnzsTMmTO9HCoikmOA/72tzSWeiMz4KMgL5MZMf9IUOpIC/wyapqYQt4iIiIio6WFdknUoe+fSiyHNzp1TJdLdOZl2eiHNsMmXfXCRmSxqxxdS/IO/9B25HA4+fOQnfL4sIJFaztYytt7GlYE2cvuuN5q88lZLdZ0RdQ2+mUnD+tzLa+phYknHK861q2w0Caj04jS9gUwQBJTX1KOqrgENRtfTBWcDFaTewFCTxrrKZBKcTtPszrHLXUz31XKnIV1tqARBkL0GdT5a010uPHpeak/GOWecxRd3wiQ+u/7AW+UXe766p75g/dyK/3clPaqsbYDRJGguw0qV2ZTSWn/hjQ5KvfIGf7imrtZv9FRR22CJq+SfPFPW9sz9bood0udCPbqm3oia+sCZfUFMOz2VdvlLx4QzzvIPo0z+Jv5G7ntv1ev9Ie/zhXqjqcnOcqKmnuCsXuxr9u22Wsuz/p73NTipPzbzQuHd0+063lLbIJ1X+nPcPlfIt3EF/r1xFn5ft1M5Sz7cSRdtx1apSzu8dS38dbZLk8m3cUFNEl9R26Brncqb+Yor+ZiatMfz/R7+GV+9oabeiFon/S7O6vha+7oCrS5Nyji4igLCyshM9B8bij/3pMluE3e6FP3HhuLj5VGa9h0an4v+Y0MxaUuCw3d3/7Qb13wX4tHGo+o6I/p+F4zbpuy0+dw64XZngIUza4+eRv+xoZi5KxVpBRW4bmwo3lgU4fQ3TbzN2Gv2JBf4Oghe9ehv+9BvTAiKKrgknpKPlkXhurGhuOa7EAz6Ncwjx6g3CojJLLH8/VfYCfQfG4p/wk955Hgv/nUI144Jkfxu4f509B8bir8PZmjeb2p+Oa4bG4q3FkUqbutqVcGd+ovays9nK6LRf2wook4VO3w3dtNxrzcyzttnvidLD590+E6vkOxMzEP/saGYsPm4TntUT+4cLOWBrY7lATXeXBSJ68aGIjW/3PXA6eTeqebyizcHhczda05HlruYjvh7h4O9b9cfQ/+xoXht3mH0HxuKH7Yk4LqxoXh78RHV+yiqqEW/MSHo9fUW9B8biq/XHVP1u8ziKlw3NhSvzD1s8/lzsw/i2jEhyCmt1nQu3ubpKfST88ob74Vy3qDkxTnm/Ot0cZUOIdNub0oB+o8NxZiN8V47ZqHE8sXXjglBvzEheGTGXq+Fg7R5ePpe9BsTgmIdn68m0MfpNdeNDcXrC8J9HQyPMZoEXD9+GwaMDw2IQZYRGWfQf2wo3lwUiX5jQvDYb/t8HSSvO3qqGP3HhuKLlTGS3z/75wFcOyYEuaVnl+qLzixB/7GhGL4iGk//Yf7efpnzx3831+s9udS92Lb3kca2PU+KOlXilePcNnkn+n4X3OQGWM13Ur+09vnKGPQfG4qjEvViX6qpN7fb3jr5bLttYNVclN3/yx5c812IZEevp89VbNd5U0W7jj8zmQQM/H47+o8NRb1dO/6YjfHoPzYU+1IKfRQ69wVy//vy8FPoPzYUc/eecPjuuw2evTeeLk9/v/k4+o8Nxa7EfMnv32psp0rJ8307la5ciI9v6ngtAvF5eHXeYVw3NhSninzTtmFSeBiyS6px7ZgQPDf7oG7H3Bybo9u+pgQnyn6XkFOG68aG4r0l6tsDxbb3ZYfl21ATc837fedv9fvVylcDm329ekG90YT+40Lx3/HbJAdQnWjsKx+6ULqvXGwrzCpxbH+1719oEI/1/baAqEuTOhxcRQFhxOpYAMDkrfKZ2JzGArLWTHN8Y8fu7DDHAraYOMZllWrapxZJjQU6+8Yp6wrtmSrPdEKJ1/WnkCQsb8zIdycF3qCfQMySrAe2nAsScsoABGb88raguLNpWHphpabfaimYzrFqVJjYOLh05No4TcdTKzz9jOx3YzeZ0+DRG7R3HP990Nw4u0OmEcGaP9d710dnAwBm73HMhwCgzkMDbOV835gvfiMx0EOvSteEIHOcm7svXZf96cFSHpC5D0p2NsbDpU4qxt6SecZcfvFmXiPe01EupiO+rlhrJd7nvY2NsHMay5HbE/JU78N+oLXagWmrj5wGABw8UWTz+ZGT5o6oIB0bkDzhsJM8QQ9i3rA9QTlvUBKeYQ7rphjfXNMfg5MAAIsPOu+M1NM2J3E4MbeJNcq7yB8HHYl1yn2p/t9pF4idEWrsDeAOUyUlVXWorjeipt6EEg+1Tehpxo4UAGfLZscb66Lnklm7UgEAa6OyJL8XBwsFHzubv/252/wy44bobEsZMuS4bZ4Qn22+lnKduHr4q7Ge6ovyjK/T9/zGdsHEXD+Ms25cm/FO6pfW1jXGVzEu+ouUvAoAQKHVy4J+WBRwS0ZjZ7tYn7DWzMPrAi45ZK4D7fRguuINVfVGVNQ2oM5oQp7dwFSxLD91W5IvgnbOE9soxDYLa38f8uy98XQ7x7zGNrUfJCYNAM62l3q1ncrLCaTavNtbbXb+WtU5kGZuP1obddonx1dqTxbLfVL5kNdpjMML9pufw5B49e2BYtv71+vk21AXHcgAAGw7rn6/pE5BeS3qGkyorDOiSmJGqX8iMgEAYTITZJxtK8x2+M6+f6Gwog51DSZU1RlRUeP/qw2QOhxcRU2GvxZc/Jkg828iagKUHupz7KF3tSPPrWUBNV5jtcfyZaekrzsciKjpDkwgR4E26JCImiamRI6aYpnYX/Kc5h4eyEGu8Zf4Qd7n6WUBm8JygPaa4CkF3EzT1LRZx8cm+Lh5lK+e5aZ8nzyV5nsjL/HVsoCunpu/5URS5+Hs3Fiebjo4uIooEHgsg24aiXkTOQ2P8pf1k3mrPIwXOKDJPab+1IilWyXA62+yKR9Qr7zEn+4XEWnDbJSIiMi3PD2Qg0grqTpwU42lUufl6UeyqZS/m2qcOFd46v6dk30WXngYrNOlptK/5S2+KmYpLQvoVzReI670Rs6watM0cXAV+a3S6nqsiDiF0irH9d6Dj+XgmAeX6rPni/RPqXM2Nb8cG6Kz3CpAWmf8W+O0T7leVafPNIa7EvOxMjLT4Xy2Hc9D7OkSxd+z/HLWrsR8/5g+1UqGxqXt1MgtrVHeqFFFbQNWRmTiTKXyEhYVtQ34YUsCFh3IsMTFgvJarIzMRHWd4xSh1jLPVGH1kdNo8PISbkqMJgFrj57GySL974Moq6Qaq4+cRl2D5889PrvUpfRK7zrc7D1p6DkqSHJplJp6I1ZGZiKvXDqe7kpy7TltMJqw5shpZJ6psnx2LKsUwcdyNe9LjtQ649Y8URe2Ph+Rlnx+f2ohDtktj6ZWRmEl1h49rXjeSkqrz5ZVtAxAq2xMn4oal5hIyCnDFifxWxAEbIjOQlpBhew28dn6l48yz1RhjYb0zVeNW9GZJdihYVk+ANh+PM8ryyeeKjJfQ6MOrS5NYRppMS6n5lfgTGUdVkZkorJW+byOnirGzkTvT4k+JTgRT87cr7nsa8kPGpcGSS+sxLoodWlOTmk1jmV5b1mgkPhcr9avfKmuwYRVkZnIblwCHgB2J+XjyEn3l6zcl1KIwy7mSVqcKKjA+ij36oJKXNn1lrgcy3Lg5yJnebg1Nfn5gbRCHEjTZ6nB4GM5HikfeIrUM+pvXH3hwDr/01O90YTVR07jdLFjudqZnNIarIrM9Eo9Ti29Jq4ymQSsizqN9MJKHMsqRUi8fnUmV6lt4/In0Zkl+Cf8lGVZam+o97M2FTXyy2uwMkK+3SguqxR/7nFc7rCoolZ1Obip8qf+drHsnl+mvs1RC6V2RXuCIGBjTDZS8rQvzW00CVhz5DROFWnLF+S42jl8+EQR9vnp0slJVkuee+qlZDUDSpTy8IiMM7JLU2lRUG5Ob+TqtAXltfhw2VFd75f1Va2sbcDKyEzL3/kybaZNycxdqZJ9m3LUltmdPd+h8bmIOy2/D/uYfrLI3C4qtlVtjs22eTb04u8DkMR2T6NJ0NzZ6Kk6uSd222B3I+TCvjk226PLVKu5ZsHHcvDhsqOa805XbFNoG66qM7ffF5TX2nwu1gnzy2qwMjITNRJLDNps7+fPAanXwtcBIJLz6T9R2J1UgM2xtg2UMZkleG/JUQBAxuRHLJ835RGgUmnu/b+EAQDatGyOB/p1c/sY2RoGq4jGbTyOKc/2d+u4WSXVGLYwwvJ365bNMbhfNyTnlePtxZEAbO+zFL6hYHa6uMpyLZWumTfd/fNuy7/1ulePzNirettv1sVhQ3Q2+h/uhI0f3e5022/XxWF9tHmt5Mu7tMF9fS/GC7MP4kRhJWIySzDxqetkf3vHj7sAmAdZvHl7T9Xh05PUUp8rIzMxaq3j+t16TkN678+7UdtgQl5ZDT685yrd9ivlkRn7AADrPrhV0xnEFes7nnzS1kQAwIDx2xyet6mhSfhrb7rk73JKqzFsgfRzKjeoVszfloWfwncb4m2+e/Q38/XY/PHtuPayTtpOQsK6qCyn3zvrBHTVXT/twolJZ6+FXD4vpaymHq/MPQwASJ7wEFq1kL7P1kmP9b/F9KnB6N7z8MnyKJd+9+36Y1gXlYV+l3ZE0Cd34KHp5rRt1Xu34H89ujpsvyUuF5/+Ew1A/tqIzwigX6VNTN8qahvw+q09FLffnpCPQddcrM/BNXhy5n4AwO4v70aPC9opbp+aX4G3VJY13HXnT+ZrWFVvxGs3X+HWvjIUGsj9ZbZKZ0KP51nicv/LOyH2dCkOpBVi2ovXO/3d07MOAAD2jrgH3bu2ldzGnfzN2ZWLzizB+E3HMfkZ9WXfX7YlY07YCVzc8Twc/vp+3GNVJnrq+sud/vbBabZlnQajCS2ae+bdqPjsUrz79xEAwI09uiI8w/1BRv7szz1p+GVbMtq2ao7j4x9EbmkNhsrkzVqUVNXh1XnmPCl14kMeu18AcO/UPQCAZs0MePw/l1o+99TjfyCtELf2usDpNhEZZ/DBUuX82/9TKNd9sPQoVrxzM2668nyn222OzXGan1fXGfHyX+a4dHz8YLRt5XrT3dFTxarLVWp4I48Rn9F2rZojfvyDHj+eN4XEK5flXDFvXzomb01Ei2YGpP7wsOrfzQ47AcDcLqOl3OjJJS2idRr0vj46C5+vjLH5bMsnd+CaSzvqsn+tUvM1tHF5I0AqieVrb9qV5P4gAj1JPht2aeFzfx7EyaIqHMsuxfgnrpXcz+Stibij9wXod+nZevtr88JxPKcMh9KL8MvzA3QMtX42NLaReYo/LZEzJTgRC/Zn4LLObbB/5L2afqsme0zUOGBhZ2K+pa1Ba56x9PBJS/uRr9qIG4wmvDDnEAAg5rsH0KltS5+EQ87gaWG+DgIAYMH+dPywJRHNmxmQZpeHC4KA5/48CAA48u39OL/9eS4f56W/DiE1vwJRmcWY9LRjnfaun3ahqs6IoNgcj8SZ7zbEY83RswN1n5p5AMkTH9L9ON6gdsb6n0KSsDelAP+8c4vitlrK7HLPd0JOGd5prNervYd3/bQbAFDbYMIVXdvio2WupTlKlMqZvs4LxHbPqroGnKmUHhCXX16Dizq0dvjcUyH3xDUplnhJ3N6BtEKPxQMtxOfBaBTw52sDAehXFz2QdvaFuLT8CsUy+vebE7A8/BR6XdgOO7642/K5GK+fmnUAWSXVki+aNeX2j3MZZ64iv7W7sTK91260fIrMG35NeXyNs3OL8+Eb5iHH3X/zL8fubVTxLb50DbMdBUInojdomc0p0BWpmIVKFNQ4QDPWyVsboi1xZ+O0+GydaIyLat90PZjm+dkKtAhP93wHaW3jm877U733NlpKXoWmdD+93HvpxI7EfNnvnD6nCkF0NjuTXoOeIhVm1Dqp01uP1rfO/u2lZA1vZZZZzRjVYJJ/w1kpqkS6OVvJHhffIhTTp/hs28qXXKPr0VO+nZlQ7QxhcT5+Iz9L5UwXnpzRT4430uRAYD1rg5g/B2mYlTDHQ2UepbQiWOOsF9sbZ1LLK7N9u+3oyRLF31rPiAc4vmGopxMFZ5+Fe/te5LHj+Iu9KeY0u6rxDcg8nWYnKK6yzpO8UzmN8mC+YN2Ym5ijnDdr7TBsqpJUlGOiTpU4/d56RoEqN9/UdWW2C18TZ2eo9MJbyq5ytf0pykOzZYr1MDHt0Ro++3Y3X5Jr89NKqtyspZ1Jb+mF+tSjyD+J9eRtx53PsJpWYBsHjzd2wm2N8/3ManI8PSOlP7Xni/dPbX3S09S0Y8pxdXZvOa60qFmXh+3rNv7GY8sCqthmX6r5XinNcq1mUIQcgwGWWTND4qXTKXfLnEqCj9nW9+vcmKXQ+n75Iglx1hVl/92hE+ragLSU2eWe7xMFyuUcubBHpJ+x5EmeECiTIxw6cUZ2JYrCculn0FNLHnpit53b2A5ylepXPZ7t+ZmotZya1nY4NazP8aTEihr2V0XsF7Qvx4nEcsN2jaspUODi4CoiP2JdyLBZO9pJduPLYUV6HFvuzAKkvOVXeMmkaRp752Rb9X1kvrsTmt42DvAI489rtQfycE9/GKuq5c7qFQ30jE7+FDV9dT99fQn86R7Ysy7r+XM4fUGv66H2LVI6y/rS67Uckz/jixmewauqnlIU1DOOMq/xL8yjlOmVD/Fakyc11djlizKSP2VT/ti+4C+aevHZY+fnZlzwRFzy1a3UM32x3pe/PW/eKH/InbOamY7k7oMAoLkHGwOU2vEDodwmd339fclDck7vmBcoAwnJPRxcRQFHLrHzZCHfrxvgfRg2z14XZkLkfc7qEGoLRv5SfvKXcHiKt07Plcqds7TRWbib+UFeoxQCva670+fJAzfX9nhN/OGw4qt0oKmnP+Q+qTjCaOOcH2QRTYa7l1Jdo7WbB1EpINNbRuaA4+14FojRWi1PRX/7+kcgX0O96kT+ltSwo4Wc8fVySL7kT4+GO89pIAwM8KVzOY67I9CvmnX5RM98uSk+bXqkIe6mp54cXOVPab0zrqRVnirjBcglc4mrl0yvGKpXnmR/75We46Z8T881HFxFAWfk2ljJz63XgM+XmbpRSZLMUgbvLTmCmnp1U6P+GJyIUWvj8P6SI1hy6KSm48eeLsWQ+eEOUy6LaXRNvRF3/7QLPUYGye7jREEFhswPR0SG68vOpKqchl0uq8gvq8Fr8w6j7+hg/H0ww/L56eIqvD4/3LIUh7N9WBu3Kd7m70UHMvDhsqOWv8OSCzA1NElVmANBdGYJhswP17Q0FmBbKHl9friqKaCr64x4e3EkVkVm2nwe0xgG+2fi0IkiDJkfjgwXp9P/anUs5u49gbcWRWJ9VJbi9pEZZ5zGd71ZN+TaF4bqjSoHV+kaImDYgnAUlNcqbwjpgqFehc49yQUYuiAcOaXV2JtSgB4jg/D87IMwWb2ekZRbjv9+vw3Xjw/Vfer44GO5eGNhhOVvQXCvIFxWU483F0ZgXdRpfL0uDr+oSEMEQcDINbGYvj3F6XZS1/z1+eGKS0ZuismW/PzVuYcb9+v55gOlxg53KozHvLyM7ZTgRHy+MhpvLozApljpaytadeQ06t2YktzaEYWlFW1YXe+tVkuiGQDM3XsCnyyPspkavqTKu1PpJ+WWY8j8cMvfam//rqR8DF0Qjl1J5iUy96YU4PX54YrLKxhNAj79Jwpz957AsSxzmUicqlkQBHy+Mhp/7E6T/O1r8w4rhksQBPzf6lj8tsP5MyxSG25/I7fkggDpeGWtsrYBby2KxJojpz0YQuklUrWkL+42zC47fArv/X0EtQ225fu6BtfTgZ9jm6P36FCU19Rj8tZEjN0Yr/wjO87uj7caI9ceVS6f+cL07SkYuSZWl4bL08W2z7S/dcBbiztditfmHcbjv+/D7zvNadfMXamW7wVB0LWsvO14nqayZ3KeOZ+I9tBSZ3LWRZ3GW4siUVHbILtNRW0DeowMwnVjQ1Ttc/6+dHzsJH3UU5ldOu3sOgqCeSnVHiOD8Ok/UTbfSdUbo04Vo8fIIIzfdNxcdl0bZ/ObrJJqvD4/HDN2pGDI/HA8+tte9BgZhB4jg/Dw9L1IzVduTzCaBHy8PArz96W7cPb6sE9nD6YV4fX54Tgls4R1j5FBOCKxDPSpoirL+W9XWM7Lmi8axg/kGfDBsmiHvAvQZ7anyjrH56m4Unr5E7VJsVI7WnlNPd5aFIEN0ea8Z39qoeyyqr/vTMFXq2JU5wNSl0Sp/uhs3z9sScD3m48rHvewC20mQbE5eNOqrvvbjhT0GBlkSff/3JOGz1dE29S91RLL1zN3peLdvyOxIuKUpt86IwgCRq2Nw6/bklXv0/r6pOab0z5N9ScVGowmfLTsKBbu1yeNUrrqRRVn80xPLV2t1b6UQrw+Pxyni7UtR6mUlFi35zoj5tOVTvJpUYnEUmf2dUFnahuMeO/vI1gerj5uA8C36+Ms6b85Hp6RnX1ErCOtPaqtjvTLtmRN5TTxvOOzzW0nUsHZHJuNNxdGoFSibUCs787YkYItKpaaFOu7p4qq8OmKGOzNlY8BrrxgbbMqh8TJ/LItGd+si9N0v9UQBAEjVseorvdL+W7DMfwUkmjz2Za4HLyxMAIlVXWW9vTp21Pw+vxw7JNZXldNu6Ue9ZuU/ApN+zlyshivzTss2xfmDrm2S6nB0z1GBqHv6GDZfRVW1GLYgnDc+eMu/LAlQXIbpWu8MiIT7yyOdLoNYF6W++3FkVh95DSyS6oxdEE49iRLp3lSj4PJJODzFdFuLXeoxuETRdh6TP9l0gRBcLhH1ulNvdGE+6buRo+RQYg9XWL5zZerYmzqp6Ldje2COaXmurdc+vpjcCLGbDhmcx/FdkG5fk6jScAny6Mw/J8oyb5ULebuPeGQTiuldjsSzHVmsQ/aU2011vvtMTIIy8NP4d2/Ix3K12I/XmKu8nU4qrA8vZTR64/h5xDHfpPSKnPfymaJNvfMM+Z+4ANp0mmj1nZWsV9ZXArdm0bJjEcAVN57m7yQw6uaCg6uooCjZoDD+E3KDR5S5DrmzlTWqRoo1WA0YdbuNCwPP4Wtx3Lx7fpjmo7/xMz9CEsuwCtzbcMhnvGKiExk2DUW2jeivfv3EYQlF+C5Pw9qOra1t1UUOAH5jojvNsRjb0ohquuNGL3hbIPniNWx2JNcgNfmWXXUyuzbOp9ZsD8D+WVnGyjGbIxHUKztOt2/7XQsxAWqJxvjwRCr66SGdea8J7kAL845pPibhQcysO14Hr5abVtIkIuLL845hLDkAny0/ChcNSEoAdsT8jB8RbTits+6EY9FWgakWG9pH7+ddd5Y07uQtCupQFUjrlZag/n6/HDsTirAqLVxlmc4PP0MojLPNoQWVdbhTGUdiqvq8dJfyvFPi/eWHMHOxHzL3+6+YbBofwZ2JObjsxUxWHb4FGaoSEPis8vwT0Qmft3uvPFYKm3ck1yAl/465NLwqMPprg+W1Zs70fv52WefZ2e70ePtkdoGI/7YnYa1R7Ms91lJvsqOZCVxLg4ie3+pbbo6ISgBG2Oyscsq3q/R2Jjr7oCBIfMPI8yqMUntvYnPLsPupAIMW2DuJHptnrlR6qtVzu/D7qR8bIjOxoSgBDw96wDCkgvw4hxzvDl04gzWHs3ClOBEh9+V1dRjr0xjprW4rFKsiMzEVJUdQGK4R6xWjj9qWV/BFJWD2dVIt+rAm+GkEVkqXlmbuzcd2xPy8IXCvXLXWokB1nrlnsVWHTRyA82+XheH4PhcrIq0faaC4nIkt1cjs9L8wD3x+378uScNCw9kIL9MOl2RezbF+7MjQX0Hv94SPdDArodftyfjn4hMxOvQ6WLfkGfd0OvqCwT29CoOPv3HfuxNKUTs6VL8HGpOu36yathUk/Zp8fbiSOxKKsDEoOM25yAXZ1+fH46w5AI8OXO/6jxHj7Fsn62IwfaEPMwJOyG7zZw95sG45TUNOFmkfF/Hbz6OTTHZCI13r7NCaTA9YB7Ube21eYct1xGwvUYCBDz+u/lz6xfKAOl641OzDgAA5u9PlxywMGJ1DPYkF+CXbckISy7Asayzz9TxnDLc/8sexfaEkPhcbIrJxngP1FHUqKk3WtLZvMZ2gpf+OoQ9yQX42Ek99Zk/HM/p7p93Wf79lsp2EHe4E/9XnGiObQn5+Cc80+E7PZ6r/amOcfcXDYNmpCw9fHawg1QaMWt3GrYn5OPTf6IBwKH9wdrPoclYdeQ0olQO5tR7pvU5YScwb1+6zUAaKS+40Gby4bKj2GFVNtuVZC5/i+n+5K2JWBuVhYMqXqCztzPRXL7+KSQJIfF5+L81cco/svqtMwk55VgefgrTNQxgsL4+wxZGICy5AM/8cUD179UIisvB5tgcjHWxbdgZqfaeH7Y41k987dV5hxvrX/Idgq54TWU7pZhP/7VXPp8WtW7Z3OEzsS74wmzlNsEVEZkIjs/FqLXq43Z6YSWWHDqbPpnj4UHZZavmhJ3A9oQ8fL5Svo4kVVd2Vi+TYqkDz25sT5MIz0fLorAjMR/Tdjimz2J9V23aLdZ37/xpF7Ycy8PqdMd7oRepKztjRwqWHj6FR3/bZ77fc9xvAwbML6+vjDytut4P2LYdnyqqwuKDJzFzV5rNoNYPlh7FzsR8/LItGfP3p2Pb8Tz8uj0Ze5IL8KpMn5K7dQItbcxHT6kbqGowAJ+tiMbelEJ8u179c+MuuWy5ut4oOxB0wubj2JVUgFNnqjAn7ISlbd5gW1h2asSaWISqGEA/d6/5nn65Kgaj1sZhd5J58KFaB9KKJNs5VFNZbHlBRX+PM3IDp6U+FtObX7cnY31UFtIKzHUqsW5y5GQxVh85bVM/FQ1dEIHdSQX4Zt2xxv07HkDsS1108CSyrF6AEtsF31si3c+5PSEPG2OysT46G2HJBXjZjT6ICUG2g/bUPHJvLjLXmcU+aKUlD11ln6+MWhuHkPg8LDtsO5hY7Md71Uk5WnTqjLZB1+mFlfj70En8LjGA7tftydiRmI+PlkU5fDd8RTT2JBfg5b+kw6RUxrT31Spzv/JsJ/V/T1kenokzci+cOPztWBrgzJZNEwdXUZNUqNDYIcdZx2p5jfLACr1ecj1TWWeTKTdvLDFKdRDZJ856zK6Q7eY+5GYO09JxbX8p68/BxYtzyzz/xltJtXTBQCT3LOWW6jMIwSuaQPlF7ewB1jw15bZ9R3F1nfQbOZ6eYcckuNdIkV2qLp2zrrBLvSUuxdlSFoGekrlzzavq1F0/PeqkJicvigXaSyJSswio5e655tk97+7uT6kcYB1HxLf9yhrLX1VOroNR5cyCNfWuvUEoN0DGXXrNlubKvuTiVbHEm+OBpsEqPijN8KCmfK9VplXDsKtvrapNL89FamcT1sK6gbnBWQaiwBNFTqUXi+yfZb0a7gor1KUF1jN0+KLRsNRJmnXG6jstaWSlm8+fK8+vfX6rlVy9sVrieZGaOVALA9S/dOIqpY5E67YS+xkHtc4a43Izgw/Lk+U1Eu1CfjoFn7NnFADOqExrrNWofMY8dUnUzm6XU6J/e061C+mLmpmD5FTUOq/Tu1NPyS2tcZhJUi+eTqPsaWmDlkvfPFVHdXVlB2vuzIynpl1Iqv1ELEOXq7iX9rNBOiMeSq5tR+426FVHuuqi9k6/13LeUjNXuVrf9RSt8VqvuplLdSmraFhndP77oso6yRnXPMF+wSlntNx/cYBFRIa+Mwe6Sm4Gafs2JLEMaF3v8MRLWnku9Mk4a7PyJ21bSQ+iFAC0aiE9XKC4qs7SNmdNzbPmLB+yvnd1EvVeubKUfdmmWOc+CLkypH2aJub/3m5nLpOoCwDq6/BaOGt/KZIZcAS4X+e0J/VMujPBgSfvWaD1O5BrOLiKznmq37BVsZ2egxms23/Fiqz/NZdpC5GWrZkJeYernSB+2nbrFzwRddWmLZLPjc73ym8eTcFTw8ccDmPhr50WelJeG9xvYgAFIKUnyOnARCdRz9WynK/LGnos4SPSuit/TM98cT88cRn0GGDih7fHb3gimth2lLt+8X2RpHjquTEYPHc+jN+kRCnuBfLbv56K//a79ZclJ5TGIXmybuGxeKJyt45vsutwaC9HfaXxxg0qX3CQZvB5WdwVYpit74U/52t6lPmd1dH8gZZ4pLStp9NOPa+kt+tz7h7NX/IlOXLn526o/eW0bfNE/36m1fDHtkl/aGNRc1VciZPunJkY96TSAKX9ygXVk5daELSXIT01c5UfRnMbnozx9vHFXy+F/a0P5HoqacPBVXTOqq4zyo6Kl6JHwig1qlhurzZv1zZuJDluwm4HeiTfBoM5A5MbBS13bJFcZqelQu6NQnJ5Tb3ijAbWKmobbDpfjCYBxZV1br9Bn11SrVjJVLoX1XVGNEicS2VtAxrs3tSWetNVK5PJMX7kltZYro9SeK1V1dmG0dWZ08RjGk0C8spqJO9tZW2Dw5vrWsKqRoPR8drIPU9qjy2eSllNParqHM/BFeIzpvX8vdkgUlZTL3vtpN7EV7tPV8mlYNb3pKbe6Nb9qWswSaYpWtIqwHyfiivrNL/dbJ9Mi/dASllNvcvX01k0sv7KaBKQW1pjOY5e8V9JTf3ZMoL1v71FbXZZ2ZgvKd0HZ99bf6c6TTIJlrxE6Z5Yx12l83JlsJFSmI0mwfJWm6tlJE803JTV1MuWi8Rzyi+rUYzv4rZq3m62TjdlG4/9pPW3rKYe+eU1Xn/2lMilB9blGJsyrIrLWVHboCqNt741Yt5YVlOPBqNJdlYKrWVdteqNJqdv5tqnC9az76qpYzjjiShq1JBOAeZ0TWkmEOtwljeW3+zjjngPpa6H3H21L9f76olVkz4B5mulxwwiWuONIAgoq1Z/XKWZaGrqjTazXDg7d3fvSXlNvc0+1LZDSF0fT8zO521lNfWobTCqrnN7qrMlr6wGVXUNlnBItVcYG+O7K+VVZ/FbEASbOnyDxHPl7f48tfHcurNJKohKabrUdZH6ickkIMdqZuKSqjpU12uP/+4+v9Z5rtjOId4/PZ5HtffZ+rq50/6jdD2s006tx7E/F7UzfmgtQ4jbK+VHcvu1z/PdjSNy9X29VNQ22Ozfun5l36ZZWduA0irb+r5Ue3Azu0qaWA40aszjxbYF6/2X1dR7vP3X+vxyZdoKRXJfOUurxLhlU1bXeE5y8U9qphiRVN1Zri5XU29EaXW9TVlGcxuCQvqTeabK5lmx/72raWC90STbrmXdDm3N+jMtaUa5JY46fmdfjld7PkoxwVldDnCv7qM2rTGZBIclr9S2zTtrMwTslrp2ci5SMz5L1b3lyhL2fQvOaJ1BULpO7RgSZ9dBTXrpqaJcWU29qjxaa1uQ2pk8RVKbWz9HWo4vtWlOabWmtg9X27Stz7u0ugHVdUabc6ttMKKwolaXdhhXZ0LXot5ockiHbNuezv7bvk5sTyzjlNXUa6qb2JdPzPtRPvcsFX2qImf32p16lH1+b/+3Qx+h64ciP9PC1wEgcsePwYkY8eDVmn9XU29E3++CcUH789CmlfQYQ8fRsdo6PaT0HxuKz+7vg0/v7624L5v10Z3N1qC4J9cMXxGNDdHZWP/hbRjQvbOmY0edKpHeXkNg7a+leD/06vRLL6zEPT/vxh29L8Dfb96kuH1uaQ1unrQDA7p3xvoPbwMAPPvnAcu5Jk94SHbqVJHUVOF/HzqJ0evNa09nTH5E8nd/7E7DlOBE/PRsfzx3Q3eH7ytrG9BvTIjkb/uNCUGvC9vZfHbd2FBs+eQOXHNpR5vPx26Mx9jH+zk9B1FRZR36jw3Fby9dj8f+cyl+35mCn0PNcXbukBvw1uJIvHvnlRj1cF+n+ymvqcd1Y0Pxr65tETbiHvT5divqGky4+98XYuGwG1WFBQD+3JOGyVsT8eOz/fHDlgSUVNXj3xd3QMhnd9rE01sm7UDviztgzfu3AgAWHcjAmI3xGP9EPwy5pYfNMiBS0fVUURX+dX5bp2HZl1qI/mNDMenp6/DSjf8CcPZ5Gv3oNTbb9h8bik/u643PB/VRPMd5+9Lx/WbzWt6XdW6D/SPvddjG+umwvFEp86QKAhCTWYInZu5XPLYzSw+fdOv3chbuT8fYxrXLpfywJRHPDrxc0z5/Dk3B7L3pmP3aQMn0WhAEp28ayQ2EuOa7EHTv2ga7v7wH//1+m1vLOd30w3aUSExr32ASNCX47y05gpD4PABA4vcPonVL6Wmf7dkfov/YUDza/xL8/vJ/Adimzf3HhgIA3r3rSox6yPmzroX1MXp9vcXy7xEP/hs/Bifh0k6tcWDUfQBsK+LWSycdyy6V37+KMFzzXTA6tG6Jw1/fh77fBaNzm5aI+u4B9SehI7lsr6iiFgMnbLf8/e0jfSWXXQg+loP3lhzFh/f0wleDbctMc/eewISgBPzw1HVIyS/Hgv0ZWDDsf7jn3xdJh6Xx/0MXRiAsuQCbProdj/2+D5d3aSMb/i9WxTg/wUYGGDRXaMU07M4+F8pu8/D0vUjKK8fR0YMcB6SrPF5yXoW2gCkQ86wL2rdy+G7a9mRM256C6//V2VLGkCsfAObn8IYruiDyZLHicYNicyz/9tibdTK0dLjN3pOGSVsTLX9Lnb9e5V+t+6mpN+F/E7cj+rtBNvnFw78dsPzbOi2SawwTf5l5pgp3/LgLN1/ZFf+8c8vZ7yUip3Vd5Jv1x7Ds8Cmb76NGD0KXdmfj1MmiStz1027cdtX5WPrWzepOUIX47FK8vSgS2TLTvItlu+5d22DviHvxT/gpjFwbh19f+A+euv5yfLw8Cptjc7Dpo9tx3eWdNB/fEwMAra+tmpdBRm+Ix+gN8Yj45n5c2OE8y+c2nQeN+zyWVYpHf9sHALi6WwcED78TgLmuN2NHimX7GS9dj8f/c6nl7wemheFEQaXDsa/6ZqvN3/ah9dQAC+vLfvRUMZ6edcBhG+tjHzlZjIFXdMHLcw/h0Ikz2DviHreO/+k/0dgY47xuam3U2jhsjMm2Dp3T7cV7JKXBaEL/caFo0cyAuLGD0byZAXf/tFt2+7DkAsXwOXPd2FDccuX5mn/Xf2wovrCrU3yw9KjDdnq/VZ9TWo1LOsmXA9wlljdbNjfg+PgH0bK58zq3J7K3XUn5GLYgAoB5KZW4sYMlt3v6jwOIySwBAEsaqMb243l4a3Ek3r6jJ7555BqH78W6pGja9hTM25uOsBH3WNL9sJRCLafkIN5J2TmtoAK9LnS+lJWcvW6Gq//YUHz7SF+8dceVls+k7vGVjXWGaS8MwN3/vhADxm+T3J+nX9K40qruUlNvwqBfw3B1tw7YeixXl/2rGWy5+GAGvtsQj3GP94MgCE7r1O6yXkr3urGh2PnFXbjSxbhyzXfSbVrWdiTk4c1FkXjr9p749lHHZ0VkX2dd/MaNmBN2AvtSCxH21T0ObTrLDp/C1+viHOIaADw3+yCOSJSzXX0B96vVsfhm3THEjx9sk57pkXTll9fgxok7bD7LKDIv/ZVXVoObfjjbpmm97RMDLrX5zUfLoxAUm4PNH9+Oay/r5DCI5+6fdiOrpBpXXtgOJwoqHcpD1sRym1hve/w/l6Jl82ZYc/Q07vn3hdiVVKDrbL5SPloeZfn3j8FJ+DE4CcHD73AaXi1enHMI4RlnMPW5/1jtR3pbqSw4JD4X7/59BO/d1cvm812J+Vh4IEP2uLGn5dNte9eNDUG9UUD781ogbuwDiMoskSzLAeYlzpdHZOGvvem492rpdgF7QxeEY3eSufwT+e39mL8vHbN2p2HaCwMs2zwxcz8mPnUtXrnpCtXhBoDbp+xEXlktEsY/iDZWy5ltjcvB+43lHPv64qvzDlv+LZYjlBzPKcN1Y0PxyHWXYLhVv405ThjQ59uzZXDrerW7Hp6xV0N7g/P4aT8I4urRwZa/5+9Pt/zbPh6KcdjarZN3YuitPZz2E0SdKsZTsw7giQGXYvqL16sIv7wHp+21uY/1RpMl3iopr6nHzZN24Irz22LPV+7VOUTW1/K6saEOdWqtxemnZu1H7OlShH99Hy7q2FqXMKqxIToLn/4TbfOZ1skSRCF2ZZmn/zigqj9DZN8GZV1PBrSV4T9f6djOeMuknQCct5+JxPKEnPRCx3q46Ok/zqadCTll6PtdsE3d7d/fmp+7/3TvjA2NfYiu2qxjWiNn2vYUhMTnISGnDEdHD0LXdrbtlNZtJf3HhqJlc3Od2H7gtSAI+N/E7TYv1qkh9rle/6/OWPeB+XrdPGmHw4BPKbdP2QVA+Z6vizqNz1bE4MsH+uCje5X75QF1L7Cq0X9sqNM2awpcnLmKAtqs3Wku/S45rxyA9GAXOc11aoT8dXuy8kYyvPkyoth4NyfMtWssRY+GXL1evl8ZmQlAfWPfljhzYSa6sbEUsB1ElqXijY5difmWf4udAuLAKmemBJs7GL9aHSv5fVyW8wp1mkTHzMID6RKfZSiGxd7oDebwiwOrAGB84wCg2WEnFH9/tPEaimu9i2+kiJVytSY3dsKOWB1rGVyQ1PicW0e7spoGm4axMRvjAQDfbYhXdZy1UadVh2nU2jjLv8XnSRwcZc26Y02WYPtbNfFNjTkq7pESvRqK7alpBM4q1nYdZu81x/vxGhqY1U73n3mmGiVVdW4NrALM68RLVSgbFNZksP+NOLAKAFLcHBiiVJmbvUd7PHI2YFnuux+DkwDApkN/X+rZtMJ6/XVXwmTNJJhnWkkvrIQgmO+LJ7iTK9qnkxOCEvD7rlTb/RvOpm8zdznm5xOCEgAAX6+Lw4L9GQCAKVaDWuSIHcdfrzOnc6edPIvrorIs/3a67B+cD26UMruxjOKsI1vMC/amFEgM3NZ0OH0IZ/OswgrHxoJp2815gtxAdSlqBlbZkzq2J1mXn5RMUhEHnbFOQzwx0ESqsSi9seNKK/H5OHTCtjFbKdj2A6sAYG+qbZl2VaS5zLI/tUgxHFo6khbsz5AdWAWcLdtlnjGnCyMby0Mj15j/L+Ypc/e5lk574rHtZtXA3baVusHIgG3Z3p54SeftO1vmTswtt/zbvvz3jVW5EYDkwCp/8ZHEgB3ANt7+0VhPF+P2hugsye3UEgdKqa2b/hORqWn/CTllst8VVtShrsGEqjojKhtnVnG3LP7Yfy51+v3BE8rPrZSp21xva9DC+h7q2cEokkqS6o3m2UwB78/SJA6sAoCqOiMqZGariLHK68Q00J7UgIzvg8x1k7/2OtbRAdgMrBKV1zZgd/LZNMh+ZgetaaWzt8NXaHyerCm1VagJp1heVWP4imjscVIuzC1V3waoh/TCSn3ryyrivlj2H7Mx3u2BVfKze4gvP9p+viLS9biixsQt5rgwd5/0syLnx5BE7GssJ60+4hhGsU4jFdfsB1bpMci7zmhCQbn+cXHb8TyHz8S0Yatdm+aOhLPph30aI6brc/eay2r2dTgxDxTLKjsTHY8rEq+WWG/bGJONNUfNZdRdjfVZD0yyakMqn5K7jVpnYgFgGZSi5qUiqeOK7VN/7rEt44jxXY5Yz1VDHKBSUduABpOAWRJtA6IN0TmW/Gink7KuNeu2id1JBZb+mrGbbNtav1mn3AZuL6/M/Kwk5tqW1d6XKY+6SnxxLyjONr64Gz2V0gylgVWuzuympS5hP7BKpNRPIN5n+zREdvCOhvQzt7RG1cAq4Gx7yEmVdXJXrqiaOrWz9ixxMOS2BPn0Ug/211isg7vLYDA4xJMYDW08gON1/2uv+30SrlIqW+5Lle8vlDrvo6cc2+S0Xh9fEuvCe1Oc98fVGU2orDOiSmrFDUG6rUyJmOZat4GqGVilxf+tNj8H1v2XSiLSpdNFe2qSNXdfviL/xMFV1CTpsYSffcLYRkVDuy+W17Uvt+kRBOvr5+xaeqJR07IOs/679jnrBonuXZ3PfqQ3T7U/+8nqQR7hB0ulW6itTFtXopR+YTDAuyM2PcDVRga5BjOl+KxlaVO9ufOsablOSoNbAueR1yekgZ7G6R1+T18P54OvSE+ynWVeDocnaKkH+Dqvlzu8VLgCPT2q1WmJR09cB6mZP9VQMwOc6ijmYlz0VLQwGAw218J6hl6VpVK9gwRAn3q+P+jStqXqbfVeLsmVK+gsDHrPhKWVr9JGPY+r14t8gcgjabqTfXp6+TFP83ZMkbtaetw3V85Fj/Nv8MBIHtfSVaUPXNin3nW/xv+70w7S/jzPL5qi52nLXUOtaUdgpzTSmkoZTA3rKO/uc+X+4Czrv5zfA68vEazx5JQ2d3VZOL3SPk/MkOx4DI8fwnUeCpsYL71xfdVyFhZXyop+dGpusX9Z41ymNj3VeuubSlwhDq6iJkqPBhN/TOekEnVfNmZ6s2Kld8ajd8jV7K+ZH6a47kYffygYK51DU2gAcOUyK90bQQj4sVUupwsNJkF6WUD3gnNO8MYj7+oxPBGf/aEDxt0w6HsGgt1f2vauVGZxtiSEVJrmbuP3OdyXSX5C05LZGvftqfRLKchqT8nVx88jywK6uEtn/bOWr+xfhPGDsrNa1nFIbgCa2hk+relZf/X1wB4K/PqEt0lFWftlNdTyZXLiyrGVlrz1B2rOy5ftC15P82TL2uL/Xb9/rpyKq+dvfV9dmZnIZl8Sn7kSLpOnp2tSILtsnUT8Vjo95wMa5ffrj+QGznsyvVWaIc5DR9X8jd4DDgKlTOx2e4yup6nlxUkn3+kQEjMVL5rYrpvufG8uXivNgx89NYjI3d97II/XskuTIGhudNDyHCssyODVMqHeR1Lz0lUgcGcAuqtputrfuZNnSMUt3fIgqbZqP6vfkGf4YVc/kecIgoAN0Vk4ajWtc5HMsij2CWxIvO1U3mHJBXhjYQTKatxbKkjt8mc19UasPqJ+STIASM0vx4boLJtzSc0vx5JDJ7EiwnE5EZFcwetkke2UsrllNQ7XqUZiWkgtojKLsebIadmGBqWMr6iiFisjMlGpsC5urpPlTKwdPlGEfXZLB87fl44Rq22nexavWWp+Od5aFInUfMfpma3f9gpLLsBKFdPr26/xvDIiE6V2y1OpKSfLFY480bxhvSyamnPUar3VElNKjp4qRrVMnCypsn32D7u4/Iae5N4QUFtIt95s9ZHTyCl1vmSJVMVtXdTZ56+8ph4rIzJRbDUdq6cbdI+cPIPdSeqmHreXnFeOjTHZEAQB24/nYVOM4xIagLMGMwEZhZUYMj/c5vOK2gZM255ss7SPt609Kp8u2ss8YzsVtni6W+NyEJ9tuzTHgdRCHEg7m8bJ3d5gy3IW8tduY0y2ZdldOQXl5jS62snyiVqqINZLmKh9uzAi4wxC4nMxbEG4/EZO9pNXVoOZu1Lx96GTlvORcqKgAi/OOWhzP2rqjVgZmWmzhKGSU0XVWHPktENHgP20+FLiskptlpxQk0eKz3jwMfXLJ6hlvexSdZ3RskSvSO1b0eI5ZShM+x5stQzL2qNZliVonQlPP4O9KQVoMLr/xpZ4v/PLz97v2gbt5aRftyVbluXwlJjMEmyXWErEmbSCCsm0SSxvp+aXo7ymHv+En1I9rbd9Gcd+vyJnUUWpIcO6bHUsqwyhjWX8rXHql7ayfVNW3YMhtRS0dZ6qVL4RjyO3jIyvOyiq6hzTlUi7pQOsl4ZTkl1SjVWRmQ5lo1qjCasiM23KODsT8xAlMRW/5TcNRoff2Dp77RbsT5dMI6We3Q3RWegxMghz955wuC/5ZTU4kFaIwyfUTSdfXtOAtALzsiDuLCGwxS4el9XUY0XEKUu5N/hYLo4pLNMFmOsI9nUgUa5VHiYX7ezrMPb12LPphONSKNuO5+H2KTsxYfNxh3QpKC7HJk0V/RKahFsm7cCWuBzJZZGs1TWYsDIiEzN3peKUiuVDElTkt1rJtUFIKa60TRdXRmS6tOSCK8oa6wILG5cOllJQ4d7SVuLzuS+lEG8sjMC8femalpJdHnFKcQkLaxuiszBtezKScqXLrGqu78bYbByxSnM2xWTL7s+Z9MJKGE2C5HPgKXPC0jQtka4nyUEtVh/ZpxtylPJ5T3dwGU0C1hw57VDncpWW+J6cW47X5h1GRMYZrDlyGseySrHk0EksDz/ltAxl72RRJdYePY2w5ALsSym0ySPFNq1fQpOQItGuBShfY5NJwPqoLGyMyXZoSxWJS31poaamcCyrVPaYALA8/JRkPmLNuixrL0tiOXS55V7KnbQXO+SLbnTE7UrKx5GTxU6Xarc2c1eqbDuZTZgEc3mmXGYpVFF6YSXWRZ2WLIv+sTsNq4+cRr3KutXC/el44vd9st+XVNXh4+VRlqUIS6rqHOqUauyXWfLJ/gws7epWn62MyERRY94nPyu6TBushua0NBXLutm3wauJRWuOnEZWifwzsCHaveV+rU/RlfLK6eIqyThjMBgQGp+LuNOO5di5e09YrrnadrNCJ+UXV7ORlRGZKKupx+6kfBw56VgH2OViW6e1P3anoeeoIPyyLdmhXbuwQrm9DQDydVqW1Po6HT1V7HSJUFX7s/q3XH1FcqC23f0ymgSsPXraoR9LtC4qS7EOoLTspjst45sa2073pRRi9ZHTmL8vHcvDT9nUQeuNJgxdEI5dSfnILa3BqshMl9qSqiTiQmJjWSLbbplzZ/FeTdz9YUsC/go7gZURmTb535nKOnM7pFV7wcqITIc2IqnjV1hdk/VRWQiNz8WzfxxwGo7Q+FzEni5xuo2zNlFnS0COs1vqVORu2TO/vAYrIzPd7leVUtdgUt2nLLaDWpdJpAbFbYnLQUJOmW07vJP9HkgtxOsLI+FkFXILV9pCdiflY1divrmNPtIxDVQaWC/5Ar6Tn2yOPdvfJMB8fmpp6Q8g/+b5uVmJvMChwC1TxNl6LBef/hNt85lUIQNwzBAiMopx5GQxBl7RBQAsne/vLj6C5e/c3PgbbRmpySTg1+3Ka70KAjBte4pkJ6Kzitn9v4QBANq2aoFB11xs85nS8c4e4Ow/7/ppt8O2G2Oy8cSAyyx//xySpLh/Z/anFmF/ahFu7NHVpd+/MvcwEnPLEZFxBj899x/Z7daqGKBTbzThhTmHAADD7+9t+Xz8ZvnGSPH6bk/IQ8bkR2y+sy4glVbXY8SaWIff2xds7/l5t83fI9bEYmNMNpa8dZNi+H3FugAtdY7WXKmMDF8RrXrbp2fJF7jtnwXxXvvS7D1pkp+7UkSftj0F8/el44F+3SS/Nxikr/9nK2JgMgHPDLwc/7cmFlvicjEwsosLIXDNM38cVL2tfUH3gV/N97SoohbjnHQaGE2CZHqdX16Lu+2eOQD4Zl0cNkRLD9TSytX61ugN0hU4KXf8uMvhs6OnivH+0qMAYEmbKmob8PLcwwCAxO8fROuWzZEj08j23pIj2Pzx7bKzdOxOLsAny6Ns9i/lhdkHcUKp40TDRfptZ4rl3+e1OLt8r7M9/BjsWj4lCAIMBgOe+H2/pWNZarCE6N6pewCY74d4TX7Zlow5YSdwccfzcPjr+2V/u9EqvonlBPs17f/aqzzYb0pwos3fry8Ix7GsMhw8UYRfXxgg+7ujp4rx3pKjDp/r0VWVnFeOPhd3wJTgRCw8kGH7pcpM4fnZB7Hry7ttBmvZiz1dgveWHLH8vSe5AHsU1rk3mQQ8P9ucBn1y71XqAuPE5K3mc+zetY3ls+0J2htUp+9IUd7ITU/M3A8AuP2qC1T/5u1FkThRWIl257XAYKu8ZntCvqW8/fYdPfHX3nRc3PE8Vfv8YNkR5Y2g9Ba0899al602xmRjY0w2fnjqOny9Lk7Vse2pfVHi70MnnX5vXb5x9nb//yZuV3U8b4+1+n7zcUx6ur9N3eTZP23zdOt6mNJg7Qd+DUNFbQNySmvwyX1ny+HDFkQAADq0boG4sYNxqqgKbyyMBCCf//y+MxW/7UxF57YtEf3dAw7fW1+r2WEnUFBRi1+eH2CzzcxdjmW0w+nmTpMJQQlYcugkFg670fKdmAdIHUvu1O+bugcZkx+xPI9q2N/nzbE5ePmmQtzay/wsf7kyBqHH87DmaBa+e/QaS7roLK8GgJLqepuOF61ldvsOQft6bEj82Xq5dVhOFFTg7cXm+zl3Xzrm7kvHri/vtvnts3ZlxZzSaszYmQoA+GCpY94F2F7zWbtTMW27OV39KSRJ8VqIcQ7Q77kK0jCY87V5h23+HrEmFluP5WCBVXzzlC9WxjgMVjMYbDtL/9idhv978GqXj/HbjlT8vivV8vfORPl8Uur6/7E7DX/slq5DSRHj3bTtKZL3fsSaWGw5lmPzPNuzL/993FgG1uqen3djyjPXufRbJVLXKq2gAj9sSXT8woesg2nf9iH7G4XnMCjWvYEBShYdzLDEOaX0Q06D0YQWzc3vOz+pIc2fuCUBALBXYvBrfHYpJjypLj5Jte2J+ap1m5YcpXuwKTZbU7uNWmoGpjz6m/zAHAAoq2nAc38exJ6v7pHdJvR4nkPbsejun3cjY/IjNmGRe5nxi5Uxkp8D5vL98//r7jSsamSXVNvkU2r85KTdNsNqMIIA4CknbWqi2WHml0CaGQw27cOiL1fJXwd7YxUGfz4/+yCS8yqwKSYbJ354GG8vjrQZVFbbYLRpF5AzIShB8nP7DnLxebiww9m6zIg1seh3aUcEfXIH/pF5cdlbxfD7f9mDff93r6bfjFzrvM5z0s2Bo+6e+90/7UaDSUBhRS3eu6uX5fPEnDJL2O3T3glBCbi8S1s8eG03bJR5ydLey3/JtwEbreKBlrLfiDWx+PvQScQ1Dgwyh/PsDoYtiMDBUffikk5tZPbgyHYAU4mljWfGjhQcTLPNC8R0KzarBK/efIX6gDuRXliJnhe0kw6b1b/F9ve9I+TTViXmAXLmxPV9mTK91MBF++d2VWSmbFwBzG2hd/60y+U8HIDki3tFlcqD1vYkFyi+CAKYy/+HTpzB7qQCdG3XCmcq65BeWIkRbpS5ReJAm1sn77S5BgIE2UpfiYoB3HPCzr4QuMNqoN3p4mqH/iGp/iKlR01tueKdv5Xru4VOXnSpcDLwKiJD+oUud9O9p2YeQFZJNRJyyjDmsX6K22uZDXJOWBp+DlXufwaAeqPjmaw64jiAecRq8/17YsClls+cpZVi30NKlmP+bP87LW0hoqGN5aBWzZuhzmhCTGYJJj51tkys8H6H5IBTZ4ODP1p2tu5XVWe0nJ8aj/2+D+mTXE97yH9w5ipqEhokEn4pzt5oVkPqraWDVrPd6L3WtDW50f9qMtM4FW8n2+zTenkHhW2jTpXY/L3DSWOoFuEZ0m95K12zxMY3RoOdvKmmlnW8Kqt2/qaWmvug9LYXAOSomFFrn4bR0L5wQXt1Hai+5uwtJcA3y4yEaXjrWo0yhTgnd4pHG9PKLXHm5+jISffSTo+RCf/WONeef7k4ITcDVqAQAKRIvHVVYRU/ahtfH8lx8gbFicJK2Tcw41XmM4oDqzSyrvi1O8877wzkuvGWyY7GTgqlN7WPSpRXDp8ownMDL3f52IB5lh7AcWYTawZIxxfxO3dlNMaBUIl82tn+rWOempkNUvK0zwJhfYzNVtfofz1cG2AqNpplnlH3Frk3yZVZ1czuJRKf54Nptm/2Wb8lKA4CVDs7gbO3BD05WMjZDAdKtJazAeUyhtTXvp2XSllIvLY3lZXSE7FRU25QpFiuPl2sHGfFAXByjcL211aqHKE0ODOjqEpVp6/+99Fxj4k5Z9Pw0MZ0KDz9jOwMJFLs34RXQ0sjr30dUiSVBtnPDmO/jZoZiVtarc+udC/9jVRj7y6VgzrdJdf506qFfk2JWmZx8Fb1TO2gWVfYn0J4uvfqWa7OtBQYi3mdJVWO1tOBNPdnvHZn2RU5Sw7Jz06vhpr2KpHSi6Vyabxaj/3nUsnP9Vpa7qTCjCXuzCBpLVShAz2nxP06gpo2RC2yrMIkCILN30rcve9qJFvV8UyC4NDRLTcbvFpyj6b9DKXx2eZ6dXi6uhlKPUXtbGV6UPv8qX1K5ep2YvpoP7uYfRvASzfaDk4U66CREjNGSUl20l6gtHyZM/Z1Q/vzzHdh1j6R/SyZcgM9QuPzdEsvndW1pGbrcZYmKeV8arJGsR7tbFNvPJdS56k0YxggPyOXvUNWsx+LMzx5snzqKrn7oLVtAAi88qY1d9uqxLzW2cB2V4Ulq+9HlDoNtc+TmklHCmrO3uX7rr5I9e/UqmucgEWp/GVPakbT9ir7GJRWT7LXRFaQJHBwFTURahvZtCReriR0Wn+iek1ZJ3tWde4eTLXtj6+1wVNt0MTt1G7fsvm5k7y5MwjI3QZqqdvh7WVp9Kow+gNvF7BcuXJN52qr54G2b6+TnOJWY67lrWfb1aMINm8XeqD72gOnL5cGyx2rpY6dma5oAo+CDfvrbxuHzn7etpVrA/d8MEa3SbOZWNXJtbV9SUBlJ4DW8qu2zTUfV+pjT77EoYWWMOtBj/Rc6f6qmsZfp0zA18s3quXS/VT5o0BOGptCut4UzqEpcadDQWtyonb5ZVXH1imXcSVN9GQqqua8+Ah5vt2iZTPpq+yt9MtbObXaZe29yfrS+0mQvEunk/aX+6kntem+Xs+pUvm8uV06IeZxerff6X0vtdc7zwYgEPIfZ+endE/1HGThC2rinjvxiWX4c4te7Qbeeq60Brd1q+Yu/c4jpMLA540UnDujD6hJ80ThQirjUeqg0ZrpadnanYxG60+tz1LrwB1nW3szT7KvZLnCdt1g93N6d9df1lNTGpBEzjl9JmWe74CpsLmTLkr8Vuq50HIp1KWXnkkH3E6j1A5Sdu8o6o6hw0H0Cqf+DWnqLrSvcwtP5hGuDgj2xsAS69/4U57tCZ5sYPHUpVP9UkIADFQ++1sNvw6QKKn6nLyY7yilO3rFGX9PNvw9fIDMixs67FfLzMzOBMI1PNcF3C3yVJ4p8Zk/1vG8fb/8pR2kqaQlcufh9kA+uYHcfhSJ/SUkel+S5n50jZV44jHSWgfU+iz7SxrkD5QunSDY1f8cXoyy/VuMuv6WvtoHx1txQK9H2Vl4pdtVXefqvTPZj2pyMRDa+ukct/Z0G5KqWZL9LP5rEcBB9whf3EupeO3pspcnTlNNiK2fV3fCYH/JAvkZJG04uIr8wp97TmBpajNLAj59e4rq35pMAj63W8f+4IkiXDc2BMMWhOPj5VEwNhay1KRt7yyOxMqITNRKTSVsACZtSUCPkUE2HyfllmPI/HD8feik6nAD6hPbhQcykJIvPV3t5K2Jmo6phnWwNsVko8fIILyxMEJy2wX7M7D08En0GBmEtxZFIK1A3ZJPxZXalpoQICAi4wz6fLtV1fYtmhlgNAn4eHkUnpq1H28ujEBZjfRSILP3pCnuT2lZwAaTCeuiTjvdRul+j1obh8lbExTDAgC3TtqB5eHmad/dKeMY7aJ58DHHpaIenr4Xj/++T3JpSqmp47NdnJZ82IJwm78H/bJH1e/Urrmtl/2phXh9friqZWiq6tRNDZqYW4Yh88MRe1p6emCluLPoQAY+XHYU9fY3FMCqI/LxUmraU8C8pIB9OhdI5JYVFcmtmz1sYbjDZ9+uP6ZLmETWdf6poUm67Xfy1kSM2xQv+Z195WjI/HDHpQ4E83VxtgRCYUWd7DTUUm9oKaWJ1t5YGOHSEkTWxCAIgqDbdNnWA1CWHlafxzfYPYt3/LgTPUYGIdUqLx+xOgY19ernmxcg0WjkotoGk8+e8bcXR6K8pl6yTDZvX7rkb6I1Ls2hZjp2KdblAevlQlxZQmr1kdNeXabB3ski5+UxkwD0GBmEK0fZxgPr5bae+H2f7NI6c8LOXquFBzJQVdeA08VVeH1+OPan6bt88ej1x1BR24C3FkdaPnvmj4O4evRW7FaxnNSmmGy8uTBCNu0HXJ9if2VkJqZuS3bptz1GBmFKsHQ5Xo8lXqyT/iHzw3EgrRDDFoQjND4XBeW1GLYgHEPmh+PDpUc1lctXRkqn7UUay/Zrj2YhPtux3LP9eJ5N+uRsiRmTScDLcw9b/rZfskVkXVS2T2ee+eMAHpq+1+az6nqjQzoeI1NGs5anYtlYAfrm/5KdGjJ1g1CF5RmKrJZHzrBbMklcmsXoJB/SUiWxLquJS5XlldVg2ALHOudnCmX9UWvjFI/35qIIy/lV2eUR9ungl6tiEOXmsmImk4Dh/0Thr7ATNp9/tSpGt/zXWZomZ8j8cKfL4Kix9VguvttgW+bsMTLIZgnBxQcz8OHSs3WTvLIaDF0QjhsnbseMHea2noNpRXh9fjhOKSzPZe2OH3ehx8ggvL/kiFvnoIXa5VucySmtxtAF4ZJ51tqoLNnfHTlZjCHzHesnoklO2oKsy/9iPd7d5exGO6kX1dQb8c7iSDw9a79bx5DzzB8HLP9+a1EENsVkIzqzBEPmhzssk1QsswQsAEwJTrSUCWbvSUOPkUGSS1UDwE8h0tfXulz64dKjmLv3hOR2zvjr7By1DerK0CZBQEZhJd5cFGnz+T/hmQD06dQ/XVyFHiODcPuUnZb4nF4on37VNhh1Sxvc7RhLK6hw+uyKrJcxV1oqsriyDm8sjMDU0CQMmR+uOW0yqj0n27dMXSLVruiufSnmdjhrnujA1Lpk58aYbMnPS6vVlYuLK+tUt6F+tiLaaRniYFqRqnjnqqONeZLYppFVUo0eI4Mc2umzFZaSHLogHI/+theP/rbP6XYH0oqw5ujZPHL2Hudp7dk2AH0jRt/vgvHe366lLQfSCvHB0qM2n9UZjVgebm5z/X2ndP/XX2En8Ok/UTCZBJt4PlemvcRefnmtZJlaD/HZpZY0SOtgIvsyuJzE3DLZ795YEIGJQccx1KoPIeKkXbndQ1msdXucIJwt1/cYGYSC8lpVaVKuivqinGNZZZJpgNyyZFrTg5D4PFXLrdvQ8VqvdtJ/oQexXe+3Her7nd319bo4/LItGUaTgLcWRVrii1xabt2G6Kyu9+v2ZNl+TjUGjA+V/Fysp1nH5YQc+efRurh39ehgTWEIis1Bj5FBWO+kLmRNz8c6KDbHZjntOVZ19s9XRGPI/HCcUNnHbe90cTXy3Fj+lQIHB1eRX5i6PRXhBc1wpLHx/Nft6jspDp0oQlCsY8WtvKYBu5IKsCkm26ahT0no8TyMWBOLpVYJrLXZYY6F+SHzDyMsuQA/BuvXUG5zTIUKhN6kCrs7E+U7r75ZZ25k256g3MEl+qmxU0HLbF/P/XlQ9bbNDAaExOdiU0w2ok6VYEdivmzhyVmjpGjNUecFvPVRWfhsRYzTbbp1au30++Xhp2TXS7eXXVqjqiNByQ67tZzfW3LUYZvjOWWIPV2KNxZGOnynp112HZtyAwp97ZW5h7EnuQBfrYpV3HbeXnUV3wen7UVYcoFlbWh7SgMLxmyMR1BsjmRa6Mz+VPca2PWmffY/fWvMhRWODWBaOovVtCFbd6r8tjNV9b6V5JXVYsH+DFUV4bDkAjwx07bjIz67FNMU8t7vNx+X/U7sdLWmlCZa25mYj18bByi4OvWx+DN3Ow3ljN4gPXhNSlCc7bOYecaxgVFugAIg88ab4NogH38kl+/uTZEelPPkTG0ddXP3pbsUj34OdW2QjJQvV6mP/57w8fIop9/HNXbImAT5xriY06V4etYBye9+2GJ7D+ftTccXK2OwJ7nA6WAYV/x96CRGrol1GABVU2/CUIlGY/s7//HyKOxIzNf08oYSMX6NWK1cFpCiNPh6vER6q5TnOYvyYckFePmvw9iVVIB3/j6C8ZuPY1dSAcKSCxAUl4Oxm+TTd096ZIZjp4r1IDol9gMFJgZJn4d1P6F9XnbEvjG+0dZj0p3tzozZqJxPCIK++b8WwTIDCEQ/hcjXZcXrsctJnVAtg8F20NznK6MBAN9tkB64ccZJWex4ThkS7QZWSEnOq7AMZrTfXqof9SmZtE+tsJQCrI/OxsQtti/OOHvpQSu5DjlnwnQoR8jVQd+2ena/2xCPoLgcbGrsdP5uwzHsTipAfnktfmks77301yHsSS5AuUwe5Ix9vdGTrAf1uOrbdebzl8qzlI7t7J4VVtSiQub6WZepxHr8H7uVXyqTk1FY6fRlwiWHTiL0eB6OaiwDqC2uWafV9UbzS3RPztyPsOQCvDbvsJNfOhLLBGJ59B2JTvMGowkzdylfr6C4HEwIUveCnDV/fat9lZP6iTWTAHy4zLHtyJVBn5IEWNpbThdXIz7b3LHn7MWU1UdOy+bd2mfAVf6BswFkby+KVJXejtTQpvdzaBJ2Jubjt52pCEsuwNMa0yY1LyQAtm0arra3SLUruuvVeYcd6sJS4fOXR+sXlS9f/Oik7GVvnUIH9Et/HUKd1IviOonIKEZYcoElvx+x2lzftT+mUp16d1IBjmWVOe2wFzmrU9vf63n7ze2vnkhflcrQcl7+yzF/Wh6eaSlLyV2riVsSsCE6G3tSClyO01kKg9zUsn/OXph9CGHJBbJ9NAaD/YooGo7VeKhXJK6bKDzjDP7am27zcrLWtnBXWfeNnSistCnXj1wTi14XtfNKOOz9JTPI25Vyv9q0KxCJA3RdfTnOFcsOn8KMHSkIic/F9gTl/unz27Wy/Hu6wiAwdwaJlci8iFAmMYmCp6mpy2uVL/PSnUiqDCtaG5Wl6dnx1xcmyPM4uIr8ipYZHESVKka9i51GWgrYUo0CcuVBV0ej+uuat95wRmIQg97sGxqdvcEoRUsFQE2jcNtWLTQdXy137q/at0Y8JYBmHHeQJzPrkzXdGhdVkmtcDxTeTKt8lSxW1nr2mZOavUyA8vlW1xslB5epVVPv/nmdaUyj3b03eoRF5Gqc9ESFVICACi9UdL2RLheqfKvPlvoflGrM773pzj4XeuU4WmY+0vqGtpTS6npVs/a4ytV9W5e15WZr9AWZsdROaV52xMmzXOBH18Id9oPU5PIxV5I1V8pUcjNneZKe5Rlng5hElSpnZdVCrEsrNYJKqdWQ56s5P71obdc4r4X2pjmtdVtfEJ8jV+6tv5Cc0Vwjm3qjzgUtby1jbH8d7A/rar1Xj9C7Er/OVEr/RjyvQFwCRQ9SM5NLMQmC07JmM3cvn8H2uVHzHCrNNu9Nnpi9tsiujKN1EI3ack1zt28eAY73S367wMsfxZmpNM9wozO5pZj0yBc92V9TrjDbjPVLYq7OyK0n+2UBxbSkut4oUz91PQ0Rr7vWGZG9xVk9KL+8Fp3atPRiaM6SGyhD/kNtW651HlyssLqD2rqgP/YLy3H1ZWtfCsAgk044uIoCnpZEV0vh2BsDn7yV+DaFEbR6XCutxXst66CrCZ+nCgju7DeQBzeRo0B/0gM9/Gp4uqKgZffW27o7tkKPDghxD65eIk/kda7u0d37LPVzk8mLz4jM7dQr/no67zEJ/lvy8VZjgdIltnkrXacw+es1FzlbzszbXImh/hN653xZtpQ7tit5lKcGLHgjdXL1FrRs7l7zkNrrbF/HEn/WzJXIo+E3ugyWUHn7tHZOuxK0QOj/ZmOz53njGqs5hKvR0VedKEpH9fTj5a+dR2rTIkFhXI+nB6dppTU4WtoCpXizJqI2pGqjnHXe4u518DTJyZ7989GysI+Lfh5cp/w17H4fBzQ8Vwb4Pr9wln5KpXX22+vdt+JJ7hw/EMrlnuC/LW/+RW3bgvXz4lLdWIIn75De5T1fpwGuCMAgk044uIr8isFgu36xGlq2lprRQ8uO1b7FpUZZTb1u+xPf2q6uM6LBKH9F5JZ98RZ38lut6whLvU0gwNyxJvfGliAIKKupb7w39ah2c/aTrJJqm0qQHjND2FNaVkZObYMRtQ1GXTrAst2YathX/Zx6zPBkgPkNeGdvEhkM7l0fJfbPhZZnPNfFGfe0dE5rfZuyweS5KczteaLA7srzpPdsY1IVtpo6o2RzhvXbTSZBcKvRxn62KFdmDtJ6/ezDW1lrRGl1va4VG/s4rDbN1VqWUSO7tNprDWty5RP7t8ZdnUnLlUEu9nmoszJdQUWtYplPEASbdEDPa+vs/Lw1wwTgvOxk3VCjdDvKa+ot16em3lx+sFdvNKHWhRlo1VJqlJU7V+vLXe+kjCzF2X0srqp3uQzmSli0MJoElFTVefR+OOOJduXUfOmp4qXSKkEQbMpnZTX1LoWpvKZBc7qgJh9zVldzhR5vtBtNAiprG9yercL+10pv5osajObju1JXLdcwW04zg7ZyV2l1vcP2eeU1qvIw+0sp1jElj+Pi2+aeng3VFWVW+QUAnDpT5fVZOQrKa30+O7OotsHo8BwoPWX+OBOx1LMsppE19UZU1TWgRmW9r7K2AfVGE7JKqlFdZ/S7880prYEgCJrrJTX1Rk1xva7BhMraBjS4MpWlE+7WQdSWU5W2c7edyT5/r6h1zJPt65/OjilVXnD3Wjm7BHoW952V5+saTKraleuNJtXlhQqrvMVfOs21lMfsZ2fV2pZsTWlGbGf5t5ogm+tV7qcB7pxjIB3TkeNFLqupR5WKtnyl2RZ9WY6wjjvlNQ0urfKiN7n7LdceZJ23a0lHquqM2vruJOSW1qg+onX5xmQSFGcKcjaQxN0+JHeJ90ht/UukdXvH3/tXOc5faZkZVKSmbl5V1+DwzIh1+3K7elkg0Du0JpPgdhxX4m6aRYHLM2tUEbnh1Xny6ypLeffvI6q3XXLolOptpRoLxm8+rvr3zuxIyMObiyJ12RcAXPNdCCK/vR83TNguu01RRS0GOvneV9SssQ4Aj/++X3Eb64pvSVU9Mgorbb5ffeQ0kvPKbdbltjZqbRz+ichUFR41bpu8E9dd1gmbPr4dAPDBUvn1fF11zXchmPPaQM2/Wx+djZ2J+ejctpXyxgpunbzT5d+K611727VjQtzeR1pBJf77/TYAwPHxgyW3+WtvOv7am+72saQ8NH0vEnLK8ObtPS2fLT2sPo2LySxx6bhJeerXwn5q1n4EfXKH6u3//W2wprAEWB0BALDo4Embv/WIi9akLsnLcw9j3OP9HD5/eMbes79zc6Yf6zXSj5w8g2f+OKh5H5aZq1Ru/9HyKJu/7/l5NwCg90XtNR9bzvOzbc/jmu/U3S9PDByVy7v0Fp9dhvhs6fLOgbQim06gjKIql46xPSEf3Tq2tvns/1bHOf3NR8ts7/d9U/fIbltSVY9v1h1TDId1WUwp/Xxkxl5LerY83Pm2T8+SL7PsTy1SDJce8str0X9sKKa9MEDy+ySrZ1ZpoMB1Y0PxYL9umPHS9bh2TAjatGrusI192qa38Iwzst/N3JWKn0KS8Mvz/8HT/73c5jvrM9uekKfpmL2+3iL73f8mulem3hSTrfk3giDgQFqh4naP/rZPdfk6UNz/S5jk51+sinH4bMzGeCxujI/zh96ANxa6VueavDURMZkl+OPVgdgQneXSPqQ8OF36XERfrHQ8J2ekGvInBydi6G09JbaW9uTM/YjLKsVdbi5bOmJNrM3f140Nld7Qrp04q6Qa/VwsD52wq+85k19eq6nc9Z9xjuF/4Ncwh/xLym87Uy3/HrYgHLuSCuSPM17mOikIistx6Xee1H9sKJ4YcKnl73n70jFvn2NdSO8BJfaOnCxWtd2iAxkeDYdYt9EycPHaMSHYP/JeXNa5jerf/LknzebvzbHa8xhnlodnoms723aDKcGJSMgpw+bYbE3lXlefdb1tiJa+RjsT89Fz1BakTnxI0/6uHq2tHiu2zfW6sJ3itgM0pBFD3Gxf+TE4SdV2yjN/uTe6attx2zLb6/PD8dKN3W0+u3p0MNInPaxq1oRTZxzrLFd+vQUZkx9xaDcEgOhM5TRk6rZk2e/0erFy2vZkTNueghkvXY/g+FyH7/t8u1XVfu7+aTeyVL70Z5+e+IM3FkZIfi7VHnT/L2FY+e4tuLFnV0zamoDZe064fFyl51op/5a65mJfg9Ek4Prx23QZkNF/bCh+era/2/tRq7bBhP5yZTwvkrr/asKlJl4896f29iy1pJ5la9anZV+29oXgY7l4Ze5hfHhPL/S5uIPNdzESbVTx2WXYesz5Ocpxt44NADdP2mHz99y98vf6urGh2P75XbjqovZ4dd5hHEhz3laTKZGXiJLzKnw20GjhgQwsPJCBt27vibkS5W5nZOtrKn36T7Rbv/ckqQGyPwYn+iAkwMQtCaq2s17qurlC+aaqrgHXfBfiUGewbsd6sF83DaE0i8w447Oh1X/sTpX9zpWlaF9fEI69KcptaO6Qq1NQ08eZq8jvKBVkvMWTnfYTg9RlqFqsPnJa9jtBMDcS+aNlCh2UWiTbDfqYtduxUcBZ57Q7A6vk3tyLy/J8Z/jhdPkOR2fKahr8aomcQOaLTkzxmFIdFv4iPrtpde4q8Ydp8+XeSskoct75aBL0m7nn953ylSE11IRDEAQExUp3KqbkV7h1fHKusML523xq2Q/nq9PY0SrVSaLp+HbR7Nv1zgdjWadno9Y6Hwgm1cjoKyPXSjfIWg+UVfPMBcfnIqe0Gg0mwe/eTvwpxNwROHKN+b4E4sBbNQQAv4TKd+SJbW9qyiT+kF95ymKrgX7uvtggdgyIcUsPmWecd26uOSpfp1NL6xvuYn1lT7L8ACA1/L1eEXWqRJf95JYpN+xGW73E4GxgVVOkpoH5TKU+ZQl3jdkY75XjaH02gjQOjpq81bajaLRCmcYVM3c5tq1sjNE2sCqQeCuOphUoDxAt0TC73b5Uz3YgiTw9c5WU5eGO7XXWz5arh1x1xHG/h0641samt2nbUwAA365zrxyidmCVv5LLR+VeD/tgqfklbHcGVrlLgICNEvmhOFNVSVWdrjPdfLXa94NwAoUv44Ua/jbTzN+HzHWrmbvSVNWJ7Acz+breOUGhD+6fxn4pNf2Ra5z0vQHAUZWD+z1F68Cqps76hUKRVF+hv1IqS4l9nM7yeKXBnFJ+35Xqs6f2ZyftXa7M9OjpgVV0buPgKvIrflZ+DChKo5n99dL6upCtF1/GXbfWBGcuoInctdZ7iRfyPE9Mce8P0+bLhUAprTWaBJ/nwVrWavd1WMl9vIfeoeY6N5lb0TSKlLIEoQndKw/Rko8Qke+cy2kZk6nAcC7HUTUUB1d5KRzWXL1nrJMELrl7V6fDUnuewixAP0312fXn01JThgm0+6JncFkX9S+Bfjv0GsiudcBmc4MBLZuzw5BICZ8SOie4UlDyaFnQA5l7Mw1TzTdV9mUFLdPvu31sH1Z/3Dl2Uxnc5mt6TftO2vCqO3L1LTelSpu/CazQkj86V+KQmkdb7fMfYMkEAP9789ddep2PR8ut53DRsolFN485h6MINeKz4lwzLb1BvJYewTiqQOH6eKtDU4/bxFsduOTuXb0fvPyolIb4PoSBzx9ebiRHgT6gxRnFJXGb8LmT9+lVFtW6m2bNDExdiVTg4CryK+s9uEZpjNXU/Gp4cqktkwcGYmx2MnX8qiOnka9i+QJPWRWZiboGE1Lyzi7VlF1qnrKyXuMyQM5MCDpu87eW6fef/eOAW8d2dqhVkZlYGen6koNKFuzPcPm3UssqHT7hH0tz+tpPIUnYGKMuTeLgKnknZZajC4rNwfqoLLf2bd3JLHccOXotDWNNz2ndXSVX+dqZmOf0d5/+E21Z/shdWpcjEhkAlFbXY/qOFMVtV7ixjKs3jN98XHmjc5y/LAnU1KlZbnF1pPvLkPmXswnhiULbvCHMzWXPfOl/E7ejzMmSjOEuLhOtp6o695aM1Lu87Gp+5KoiP0rXPlkehbIa+aWkquuMWBmZiYLyWtX7fHNhBLJLfFenpKYjEDpEg2Jz0KBjW4VolYo8t6rOvTpFscQycuKyN6TOgv1cWseZCUEJsmX54so6bQME3TBuUzxWRmZiZUQmtsZJLxnvzMPT9zq0paqpo7i7jK6c0euP4Z6fd6OkyjYMzsp/nqS1HKWlTKEHuXb+6nojiiq8GxZ7uaU1WC2x5KTIun2ctMstrWmyg2Cz/XgZT1fKJ6t1WPLcX6QXOm93jmtcpq2pUNsn4q8qa33fRu+KlRHmOrpSEpd5xjNpxZ7kAvwSmqRq23Vu9ut4ktwslrN2p3o5JNRUtfB1AIisbYjRXhlW64mZ+z22b60yihwHtLjL2UCBgvJap2vWetpXq2ORXVJj08Enrgts3+nljogM19e2jnRzXWxnMwl8tTrWrX172wtzDvk6CH7jk+VRqrYzmvx32nFfu+un3ZKff7jsqFeOI0epUuyKyVsTdd+nVnIpkSfyHTkHXR2gaTA/c+UqGo+/Xhfn2jHIb3BQqv+Yuk1dGdHf75jYjWddJHvuz4M22wyZH+69AHlAar58R8zSw6cw/olrvRgaR+M3HcfjAy51+fcj3Cwz1/vxMjDetjEm22mD+PdBx7Hs8ClceUE71fvckZiPHYn5egSPznEtAmBt+g+XHcWgay7Wfb9ZKjpNf9mWjE/u661qf/tSC1VtN3Ity85azA474esg+DVn+csbiyLQ79KOXgnHkkOnALg+cPB4TpnDZ//9fpvi7173UHny70MnAQADxm9DxuRHPHIMLXZqzPOD4nIw00NhkfLK3MOy3w2csN2LIXFUXtuA8gLHdo2iCvPAuZf+YrurOx79bS/u+fdFvg6GR9zz825fB0FXQbGe6+vzN02tnqS2T8RfBWo6O2JNLHpd2A7/6d5Zl/1pHYha12CC/7wy5rq/9kqX5X8MVjdwjEiJz1s0srKy8Oqrr+L8889HmzZtcN111yEyMtLyvSAI+O6773DJJZegTZs2uP/++5GSojyjAZG1prYkSCAKSwncmQLU4NgaItp23PnsUN4Q6Nmdp94CJrLHsmHTw2n4tc3a6gnB8frMgOgqPWfEbepCG++Vni+6EKnVqoXPmyJV8YeyvZL47KY1SwIFvqhTJSiulJ85kehcVl7rm1nImprCiqbQ9S8t0N9BYzMLkfvSCir9/+1GP7df5QsoRK7yaYtGcXExbrvtNrRs2RJbt27F8ePHMXXqVHTp0sWyzY8//ogZM2bgzz//xOHDh9GuXTsMHjwYNTWcjp4okDT1/i4Taw9EXsenzlEgLLMix9DkcwoiIs9SWx71VHrr61ScA+wCA+8TEREREbkjcFu+iIiUMY1zD9scyNN8uizglClT0L17dyxYsMDyWc+ePS3/FgQB06ZNw7fffosnnngCALB48WJcfPHFWL9+PV588UWvh5n0x5kDqClgLD438D77F2YfjgL5mrDiExiayn0K4EeFZIgDhnhvfcdgMPh0oCwH6WrBa0U+xISaqGljFkNEHhbIbV9NWSC/8EnkT/TqMz9Xn8hmTaXxmvyWTwdXbdy4EYMHD8Zzzz2HPXv24LLLLsMHH3yAt99+GwCQnp6O3Nxc3H///ZbfdOrUCTfddBMOHjwoObiqtrYWtbW1lr/Lyszrp9fX16O+ntMS+yOTF+Y7nbUr1ePHIOciTxY7fNZjZJAPQuIZRqPR10EgL5ixQ3pZ2jcWRkp+Tp4VnVni6yDYqKrzfTqQX1rl6yC4zMT1VQPCTT/s8HUQdPHbjmTNv2lK5RZX/BXm3+Xp6nojErKKYTyHl4b7KThB1XaH0os8cvwzlXUwGn233IknGvPf+zsS1fW+z9/1VlhRq7yRhxw6ccZnxyb/8PqCw74Ogt+buVNdOWXW7jQPh4RIu9S8cl8HIeD5e7lbDvtelJ3rdUq9VNcxrvmjzDPVvg6CJnuS8jFvX7qvg0HkwKhTG3mMn/WdeEt+mf+ufMaykn9Te38Mgg+nDWrdujUA4PPPP8dzzz2HiIgIfPrpp/jzzz/x+uuv48CBA7jtttuQnZ2NSy65xPK7559/HgaDAStWrHDY59ixYzFu3DiHz5ctW4a2bdt67mTIZSYB+OyQT8f5Eblt4AUmHCn06UqrRET4VzsBpyoD8+2Mmy404XAB01Eicl2fTiY0NwAJJUxLfOWja4z4/Xhznxy7fUsBFfWBmQcSERERBbrptzTg04Ns4yciInLHf8834WgR27Waoum3+O6FRFJWVVWFl19+GaWlpejYsaPsdj4t7ZpMJtxwww344YcfAADXX389jh07Zhlc5YpRo0bh888/t/xdVlaG7t2744EHHnB6Ich3GowmfHZou6+DQeSWyy+7DEcKc3wdDCI6xxlbtgHgv29nONO9e3ccLsjydTCIKIBl17TCwH91RkJJoa+Dcs66+eab8PtxH83o2awlADZUEREREfnCww8/jE8Phvo6GERERAHtkksuBYpyfR0M8oCHH37Y10EgJ8TV8JT4dHDVJZdcgmuuucbms759+2LNmjUAgG7dugEA8vLybGauysvLw4ABAyT3ed555+G8885z+Lxly5Zo2bKlTiEnXTU7d5fuoKajWTOOJCcifxC4M3Y0axa4YSciP2JgWuJLLVpwtgIiIiKicxH7XoiIiHTANvImi2Ul/6b2/vh0NMBtt92GpKQkm8+Sk5NxxRVXAAB69uyJbt26YceOHZbvy8rKcPjwYdxyyy1eDSt5ju8WpiTSjw9XWCUisgjktMgQwAPDiMg/VNQ2oKym3tfBOKcVlNf67NgVtZy1ioiIiMhXqupYFiMiInJb4DbvE50TfPpa6WeffYZbb70VP/zwA55//nmEh4djzpw5mDNnDgDAYDBg+PDhmDBhAnr37o2ePXti9OjRuPTSS/Hkk0/6MuikI1MAdwQTifYkF/g6CEREqGkI3NkgV0Rm+joIRNQERJ0q8XUQzmkfL4/ydRCIiIiIyAeu+S7E10EgIiIKeAJHVzVZNfVGtG7Z3NfBIDf5dHDV//73P6xbtw6jRo3C+PHj0bNnT0ybNg2vvPKKZZsRI0agsrIS77zzDkpKSnD77bcjODgYrVu39mHIiYhsFVdxlgQi8r0zlXW+DgIREREREREREREREWlkCtx3p0lBan4Frr2sk6+DQW4yCIG8fowKZWVl6NSpE0pLS9GxY0dfB4ckVNcZ0fe7YF8Hg4iIiIiIiIiIiIiIiIiIyOseuOZihB7P83UwyAM2f3w7B1f5MbVjipp5MUxEkjjFIRERERERERERERERERERnavYY07k3zi4inyuac+dRkREREREREREREREREREJG8bZ61qsk4XV/k6CKQDDq4in+PYKiIiIiIiIiIiIiIiIiIiImpqTp3h4KqmgIOryOcETl1FRERERERERERERERERERERH6Ig6vI5zi0ioiIiIiIiIiIiIiIiIiIiJoaAwy+DgLpgIOryOcEk69DQERERERERERERERERERERETkyO3BVWVlZVi/fj0SEhL0CA+dgxpMHF1FRERERERERERERERERERETYuBE1c1CZoHVz3//PP4/fffAQDV1dW44YYb8Pzzz6N///5Ys2aN7gGkpi84PtfXQSAiIiIiIiIiIiIiIiIiIiIicqB5cFVYWBjuuOMOAMC6desgCAJKSkowY8YMTJgwQfcAUtNXUdPg6yAQERERERERERERERERERERETnQPLiqtLQUXbt2BQAEBwfjmWeeQdu2bfHII48gJSVF9wASERERERERERERERERERERERH5gubBVd27d8fBgwdRWVmJ4OBgPPDAAwCA4uJitG7dWvcAEhEREREREREREREREREREREFGoPB4OsgkA5aaP3B8OHD8corr6B9+/a44oorcPfddwMwLxd43XXX6R0+IiIiIiIiIiIiIiIiIiIiIqKAIwiCr4NAOtA8uOqDDz7ATTfdhFOnTmHQoEFo1sw8+dWVV16JiRMn6h5AavqYlBAREREREREREREREREREVFT04wzVzUJmpcFHD9+PPr27YunnnoK7du3t3x+7733Yvv27boGjoiIiIiIiIiIiIiIiIiIiIgoEHFsVdOgeXDVuHHjUFFR4fB5VVUVxo0bp0ugiIiIiIiIiIiIiIiIiIiIiIgCGcdWNQ2aB1cJggCDxNC6mJgYdO3aVZdAEREREREREREREREREREREREFMqnxNRR4WqjdsEuXLjAYDDAYDOjTp49NBDAajaioqMB7773nkUBS03Zh+/N8HQQiIiIiIiIiIiIiIiIiIiIiXXFsVdOgenDVtGnTIAgC3njjDYwbNw6dOnWyfNeqVSv06NEDt9xyi0cCSU1bzwvb+ToIRERERERERERERERERERERLrizFVNg+rBVa+//joAoGfPnrjtttvQooXqnxI5JQi+DgERERERERERERERERERERGRvji0qmlopvUHlZWV2LFjh8PnISEh2Lp1qy6BonMNR1cRERERERERERERERERERFR08KJq5oGzYOrRo4cCaPR6PC5IAgYOXKkLoEiIiIiIiIiIiIiIiIiIiIiIgpkXMmradA8uColJQXXXHONw+dXX301UlNTdQkUnVuYmBAREREREREREREREREREVFTs/VYjq+DQDrQPLiqU6dOOHHihMPnqampaNeunS6BonMLx1YRERERERERERERERERERFRU1NR67gyHAUezYOrnnjiCQwfPhxpaWmWz1JTU/HFF1/g8ccf1zVwRERERERERERERERERERERESBqJnB1yEgPWgeXPXjjz+iXbt2uPrqq9GzZ0/07NkTffv2xfnnn4+ff/7ZE2GkJo7LAhIREREREREREREREREREVFTw7FVTUMLrT/o1KkTDhz4f/buMzyO6u77+G/Vu2TJVrMky+q23Huvso0LGGx6Nx0MboRieg0loSWBJDyh3gnhDglJbnoxSSC0gKkhQCCBECCmBGwDBiPb+7yQdzW7O7M7sztbJH0/ubgi787OnGmnzX/OeUqPPPKIXn75ZeXm5mrEiBGaMWNGPNKHPsBLdBUAAAAAAAAAAAAAAABSkOPgKknyeDyaP3++ZsyYoezsbHk8xNoBAAAAAAAAAAAAAAAAPsTT9A6OpwXctWuXLr74Yg0cOFAFBQV65513JEnnnnuubrrpJtcTiN6PcasAAAAAAAAAAAAAAEBvk0ZsVa/gOLjqkksu0a233qorr7xSWVlZ/s+HDRumn/3sZ64mDn0DswICAAAAAAAAAAAAAIDexiOiq3oDx8FVt99+u2688UYdcsghSk9P938+cuRIvfHGG64mDgAAAAAAAAAAAAAAAACSxXFw1QcffKCmpqaQz3ft2qXOzk5XEoW+xcvEgAAAAAAAAAAAAAAAoJepK8tLdhLgAsfBVUOHDtUTTzwR8vmvf/1rjR492pVEAQAAAAAAAAAAAAAAAD1Zx5CKZCcBLshw+oPzzjtPRxxxhD744APt2rVLd999t958803dfvvtuvfee+ORRvR2DFwFAAAAAAAAAAAAAACAFOR45KqlS5fqnnvu0aOPPqr8/Hydd955ev3113XPPfdo3rx58UgjejliqwAAAAAAAAAAAAAAQG/j8SQ7BXCD45GrJGn69Ol65JFH3E4LAAAAAAAAAAAAAAAAAKQMxyNXAW7zMnQVAAAAAAAAAAAAAADoZYiH6B1sBVeVlpbq008/lST169dPpaWllv/V1dVp4cKFeuWVVyKu94ILLpDH4wn4r62tzf/9N998o5UrV6qsrEwFBQVavny5Pvrooyh3FanKy8SAAGBL/4KsZCcBQA9VXZyT7CQAPcLFew9zbV1nLmyLvBAAAACAmAwbWJTsJKCPGlCYnewkAAB6CKYF7B1sTQt4zTXXqLCwUJJ07bXXhl12+/btuv/++7VixQpt3Lgx4rrb29v16KOPdicooztJa9eu1X333ae77rpLxcXFOvnkk7Vs2TI9+eSTdpINAECvUlGUo0+//DbZyQDQA/XLz9KHW75JdjJilpWepm937kp2MtCLNQ7Id21dR06p1+UPvOHa+gAAAACEqijM0V+1NdnJQB9UkJ2hT77YnuxkAACABLEVXHXEEUeY/m1l4cKFGjt2rL0EZGSosrIy5PMtW7bopptu0h133KE5c+ZIkm655RYNGTJEzzzzjCZNmmRr/Uh9DIMHAPYQ2Q4AQHx5RGELAAAAAIjMy8MtAIBNFBm9g63gKjPPP/+8Xn/9dUnSkCFDNG7cOP93tbW1+vjjj22t56233lJ1dbVycnI0efJkXXbZZaqrq9PGjRvV2dmpjo4O/7JtbW2qq6vT008/bRlctX37dm3f3h0pvnVr1xsLnZ2d6uzsdLyfiL8dO3YkOwkA0CPwuBdAtPKy0pOdBHeQESLOdu1yr23yzXZGmwQAAADiLTuDhiKSIzezl/S1AADibufOHcSqpDC758ZxcNX777+vgw46SE8++aRKSkokSZs3b9aUKVN05513qqamxva6Jk6cqFtvvVWtra36z3/+owsvvFDTp0/XX//6V23atElZWVn+bfhUVFRo06ZNluu87LLLdOGFF4Z8/vDDDysvL8922pA4r2/2SKISiuhU5nq16Wsa0Ogbtm7ZIiILAERjfsknei769ypSxq6dO0U+iHj66/PPKIZ3kAL8acPDrq0LAICeZOKAXXr2k7SQzytyvfrIRh/OkJJden1z6O8B9FxW+YIbJmR9oPv7UL07TV7tMrSLs9O82r6LdnIy7F3xuV7f1HeuPaAvS/d4tdMbW157SvsO/fA18oy+auPGF7TjXYavSlXbtm2ztZzH63Dcyj322EObN2/WbbfdptbWVknSm2++qRUrVqioqEgPPvig89TutnnzZg0aNEhXX321cnNztWLFioBRqCRpwoQJmj17tq644grTdZiNXFVbW6tPP/1URUVFUacN8fPEW5/qqNtfSHYywvrVsRO0///7S7KTARNvXTxfzec+nOxk9DnN5fl66+Ovkp0MHTS+Rr987v1kJyNhRtYU6+X3tyQ7GYAjb108X5L6RF5dWZStTVu3R14wCRJRXk5vKtMTb/83rtvIzkjT9h274roN9G0PrpqqPX7wpCvr6q311Gv2G661d73q/3dFYbY++iI18z4AsSnOzdCWr3v/aONX7Ttcp/761cgLRikrI03f9rH6y9NnzNTRt7+gv/3ni4DPm8vztXZus0765Uthf99by9BI5g8t18N/szcbBJx56+L5eufTrzT/OnfqeXDuz6fN0LTvPR6XdfeGPKOmX67e//zriMut36NFn33VqZ8+8Y4kaW7bAH1nXrMW/vCpeCcRQez2d63raNLVj76diCT1KqNqi/XSv+kHhz0T6vvpL+9+HtdtvHHhPLWd/0hM60hGebV6TqOue+wfcd3GpUuH6uzf/y2u2+gNrj9opOYPrUh2MmBh69at6t+/v7Zs2RI2pshxeOSf/vQnPfXUU/7AKklqbW3VD3/4Q02fPj261O5WUlKilpYWvf3225o3b56+/fZbbd68OWD0qo8++kiVlZWW68jOzlZ2dnbI55mZmcrMzIwpfYiP9IzUj9LtCWnsq7ivk8PjSY23odLT+9abrOlpqXHcASf6Uj6dnpa6eVIizoMnhfcfsCsz0716f2/N/zKC20ZUT4BeK1XaffGWkcFo6m7LyMiUWQGR5klTuo3j3VvL0EhSuT3R0/FsIPmysuJ3/HvDubVb5Kanpystfafhd2m9Yv97IrvH3eMhb49GWh+ph8IdiWi3ZLmQ1yYjv05Pj39bJxHb6A3S0zMos1OY3XPjuFSvra01nXNw586dqq6udrq6AF9++aX+8Y9/qKqqSmPHjlVmZqY2bNjg//7NN9/Ue++9p8mTJ8e0HQBAbDwp8hQtVdKRKH3l4QYAWOnc2bdGfQAAAL1AH5z5gaZrdDhu6M3SucDD6mt9nH3Jrj5YD3AD/eBINT31kqQvFXCX4+Cq733vezrllFP0/PPP+z97/vnntXr1an3/+993tK7vfOc7+tOf/qR3331XTz31lPbZZx+lp6froIMOUnFxsY4++mitW7dOf/jDH7Rx40atWLFCkydP1qRJk5wmGynM4cyUCVddnKOy/KxkJwNIKalSkUyVdCQKA1cBqW1GS/9kJ6HXo1Oyd+mXl3pva1HURhY8XQkPgoDeqzSPvhA3TGvum3VEs2qbx0NZG05TeWGyk9CrFeYwM0Ey5WQyqkU44+r72V62aUCB4V/ePtc/2tPkZXHtR8PNy7qI/L/Xy8qI/whxPTXg70d/YFrSVFFZnJPsJMAFtnKbfv36qbS0VKWlpVqxYoVeeuklTZw40T8F38SJE/XCCy/oqKOOcrTx999/XwcddJBaW1u1//77q6ysTM8884wGDBggSbrmmmu0ZMkSLV++XDNmzFBlZaXuvvtu53sJxODGw8epvn++Fg23no7SbdlhKgKj60rC/ratMnEdMSNrihO2rWQqzjV/8Ldiar3lb3540GgdOL42TilKvngNy3vbURNsL7vh1Jkhn63paHYzOSnHycPL3540JY4pQax6aFvMMj+04uSeTpZzFg8J+Pf+42qiXtd39xkea3IQxn5joz83kPIT2KH7xOmzbS33x9Nmq73aeg77ZOipnWWJ9P7n2wL+TfA3opGe5tGJsxqTnQxJ0q+On6yLlrYnOxlxEW376MbDxuqK5cNVW5pn+v3/O3xcLMmK2b5jazS+vp/6F2QnNR121JXm6eK9hyU7GQkXS9FQUZT65zVakfqJkl3fveGQMUndfrz1hDwjWm6XY+MG2Q/0sSs/O77BDa0VPTs48YK97J/DfUYPDPh3b6qONw7IT8p2V81p8v89ob7UdJkfHTw6qnUXp+BLRakiXLnoZtO8ISAgEb1Jw4B8/eCg0a4EMc4bWmH6+YV7tev2HtDHbSUR45v0pq602a0D4rLei5e2a1RtSVzWjcSyFVx17bXX6pprrvH/d+ONN+rmm2/WjTfeGPD3Nddc42jjd955pz788ENt375d77//vu688041NnZ3ruXk5Oj666/XZ599pq+++kp33323KisTF+CC5Hj38sVRN4bGO3jDQ5IybDwJKC/sanjfcMjYqNIUjcKcDA0syTX97rcnTQ3729YEBledtWhI5IV6gWOmDTb9PDvDusI2cXCpcnkrxVRLhXVjZmaL/YpL44CCkM6DNR0tUaaqZ3BSSR1d108DCntvx2FPN6WxLOkPpaKRk2n/LaAF7RWO7ulkCU7jzJbyqNdlFpRR08+8PI83ux2Sg/u713EZ79FIOyw6OYzcCDKf3ktHl9h47ryEbOeq/UZaPowPVpybqaMt6lmpoL7M3n70NQwgBzcM7p+vQybWRf37XBdHv6gqztHhk+t10ITe93JMtO2j+e2VOmC89flJ1oNPn+/vN1J3nTBFz5/ToXcvX5zUtESyem6zMtMD64jvXr5Yh00aFJftDRuYWkHL0RhT535QR6q4fPmIsN9npCf2ydSdxwXODrFoeFVCt9+TOe2DjrfDJ9e7ur5T57fqubM7XF1nvBXl9uyRaYpy7AfgpPXwtxv6F1iPjDmypiRxCdnN45Fmt3X3BaVbHN8lI6qj2wANqADGfptwfWbGl4xjnVmGU9B77TNqoPYaGeW9GcSqr/6IKfWaYaOP+8gp9a6koydK8QmqHDlscnzaaYe5XFdD8tiqcR5xxBHxTgcAg4y0tKgfUCayadVX3uy3OhNhd79vHBokmNNbLtWnXe3revv56am710eKNr8+trtIQT01r+jLOGdwQyqVP1zT1qzbwql0BlNbXz1U4a6RSNfPLm5KWPB4UifPjteI7qnC6/VaBpikqlS5NhLN6+155XK49KbCaUxzeXYxyrVAdvPPHnZZI0nSdwemc5sBSBTH4fwffPCBfvOb3+jvf/+7JKm1tVXLli3TwIEDI/wSsC/aipPTAtTWdpJQictI92jHziiDq6h1pgwqdOacTG0XcV197Hp3eux27uIiBJKtj2VTcUW52jP09NNkvGX7Wj3Drt4eHIzE8HhS5x7jgVdsUinYIWUl8Pj0hnOxc1eyU5A8bvaX9EZpHo92pshF3tuDq3Z5e97Uz6lxZcRfZ5TPDFJJql1awekhL44vY/YZPhg7AYlBj5fOhZISen7J1C1FqppIYY5isG+44QY1NjZqzZo1+vnPf66f//znWr16tRobG3XDDTfEK43o5ZzkUyfOaoy8kAN1hilLTp2XOtOJnbN4qLw2j0wsUykgNl9802n9ZZwLYDenwYiH0jBD9VrNXb1sdFeQbnaG/aJpT5eGfO0pnL45lZ+dekOiB0+JYcfUprI4pATRcNK4OLCHTq3jkVQYxb1z1NSuqc32H1cT8PmJM5scrSfRQ0jnuFieHBqn6W3iyWrqnN44lHe8+ps6hlQo3zAV8sTBpfHZUAyWjLA/xU1FUU4cU9I7NA6wnuIZsCvclHN22G0vG1mNwMF9b4+xneaRNKKmWJK075gai1+EiqYtEKu9R9lrM9aWxmcq5/H1pSrOsz/VUzSM0yuNrivx/z25IbntqGiDcXvrFM12JPr5YGtF99RMPWFq1HVx7ru1M+WPz6Qk319mhlS5Ny3okKpCW0HQLRXUC93gpC90567ACFSvUi9YKZLmMNdNKrzI4TQvbi4Pfx9MbkxsflGwu09rSoK36zZjkNs+o2Mb3OOoqfUxpgapan57paTufuhRtSVJS0tfjvPa0Yte8u9Fu4I4sV1ru++++7Rq1SqdfPLJ+uCDD7R582Zt3rxZH3zwgU466SStXr1a999/fzzTCuj0Ba16dN1MPX9Oh549a25M67p1xXh/RVOSTp7j7OFnvPz86InaY1hl2AfYL547Tz8/eqIeWTtDFy8dFvCdsfwOfsBrx0vnzfP/vWpOk/5y1lw9um6m4/UEe3TdDF2y97DICyZQeWF2TL8vyc3S25cudCk1znxvvxFJ2a6P8fI8YWZo0GN2RppuP2pCyOePnzbbtLPnoTUz9L39RkqSNp47L+T7YCW7O6fHDuqnjKCHJMmuxF6w51A9vX6OK+tqGJAf8G+nb07Fcwj3B1ZP1zmLhzj+XUmedeCdldtWhF5LidBWWRh5IQdG2mjcPXbqTG04dWbETt2bjzSfAz4ZjIHKPqvnNmtOm3kgZTJcvPcwVRdbPzi949iJ/r89HukZh3WM6c39/ffDxUFlnZOHFCNqinXekqG664TJjrYvSTX9Ij8QfOWC+XrqzO786bv7DA/IJ/564QLH2zVa0F6pDafGXmcIx+08/udHTzT9/LwlQ3XcjAZ3N2YhmvpaNMzKkPkWAc9OnLmwVc+e3aEH10zXn8+YrdrdeULwg1GrPDVSn4UbHWPXHTja9rK5We4GsL98/nzL7waW2H+Qb3xYnkw3HzlOhTndbahXLrDev3h6y0Ed/LULF+gnh45xdfuVYYJxFg6rDPnsoAm1CQva/M781HlpKJw5beUJfxA41KQd8oODRoe97//wnVlxTJH7/nJ2bP0k4QSX8XedMFl/+M4sR8EIM5oH6LFTZ+r+VdPdTp6pm44Yp2sPHK1+NoKbHlk7U7Na7e+LHbNbB6i2NE/ZGel6ev0crZvXoufP6TBd1kmZ4DO1qUzPn9OhJ07vrt/1L8jWhlNn6p6Tp2nMoJJokx5RlkkgQJWhvu2R9UjKke794HawJP3qeOf142C/dljHvv2oCbbKm58eNjbiMk+vnxO2TuCWPzrIs67ab6T65Wfp6fVz9JsTJ+vSvYdHvd0J9dbB9c+sn6vnz+nQzw6PrQ171wmTdZLLL90G++mhY233gVaX5OjJMwP7fv7v5Kn6zYlTHG1zz5HV+r+Tp5q2q5363copum/VND1x+uyoft9cXqBH183U0+vnqKwgO+LIVY+um6FDJqbOCzapEJQTjV8eO0kvnWc/f0gzOTFut5OjKZOcKM7N1DPrQ+ssbtZjnAQbRjOaqrFucc8p0/SbE63LmEFlgeVarG2ov5w1V3ceN0nXHTgq4PPHT5utjbufmz1x+mzL/g4rpflZAfXlZWNin61oz5HVeuL02Xp47Qz/Z3YPt3G5dosX4+xaOiq2fbF6CXPl7PiUS6ka8HzLkeP12Kkzdfmy6OsMdhhfHIhkcP+u+2tOW4UeO3Wm/vf4SfFKVkRuj3pnp683VWQl4SWaeDEb2fqVC+brRRvPLdE32A6u+t73vqczzzxT3//+91VV1f3mb1VVla6++mqdccYZuvLKK+OSSMDH4/GoqbxA/QuyY367tLww8PdWleh4DgObb9KJ6xuhJVxzsF9+lqY191dzRWFog8rwzyUjnI/qYwx8KMnLUnlRjpos3r5w0u5oKi/0V3RSRawdF155lZFukY3GuS6RSsOdml3HUldHU7C6MvNj3lRe4H/AX5CdoaKc8KPGGPe+vn9wAFJyHTl1sKqK41PxTaHTriFVRWp1OfjIiuV9FmeZLm/XTqxbdUmurRFBMpwOYxZHZiPpmT0QSaYFQys0MEyDNDvDuA8ex6O+NZUX+Mvj4HqDk066NI9HaWkejQ/zcCJcGiIpyslUtaGTNPgSL3BhtLv4jmgTubPcaX+62X3u2X0emmLcF7vxrQ0JGgXI7FJ0I5/zeDwqyM5QW2WRavp1l/PBU6U0VySmzDATz2DjSIpzrR/oD7KoF5kpCbOeeAq+bkrysgLuxKKc5KTLybWbn53hesBvdqb19s3qu1npaY7OdywG9+8bI0i41U6vChN8LSnl2rCRBPdzOBFp5E7jfefxdNWfojk+DQMKNLTavdFVwpk7xP69n5OZrtp+7t6nxnKxqjhXq+Y2q3+B+Ute/fKd56dVxbnqX5AdEiDYOKBAw3ePLBYvDSbnPngkn2in3AyOycrJTHPl4ZJVf4SVwf3zbZU3ka6bguwMVRXnhq0T+MSaswX3j4RTtDs9VcW5Gjuo1DRgw64BYV5erCzOUf+CbHUMrQgbnBxJc3lB3KeTTU/z2GpX+QQHoIyoKdHYQf0cbXNw/3yNqClxpZ6QnZGu9upi1ZbmRfVCab/8LDWVF/j7tCJNfdhUnrz6vZmeGVrVNfJvrC94uP38wiowya0RYTzyqNKkDlaSm+XaeYxlFESneU1OZrqGVtkvd2NtQ5UX5WhSQ1lIf1xdWZ7KCrKVn52h2tI8x/n6oLI8/wvNkjv9Ow3981VbmqcWQ3+A3es10mnIc/nFqHDKLIJ90uPUP5tq+atP+8AiNQwoMA2yd1O0bbCGAQVBfbw9WzL7spzqofHNpsz2pSgnU/3CzNaDvsV2DvjCCy/osMMOs/z+sMMO0wsvvOBKooB4N5ZThVl549t3NwqjVDuMKZacmIU9R96e+8aUU9Z7aX7Gzabw6G3XhluCj0tfyRtTRbwPd9/IIVKHVeeNG+fZuO5Y1rcjaHh/JyJ1fJvpicWU27dlKmSriUpCvLZjtV63+oCSeZnG+9ykwvUXjWgflvcZJoeHI5a6Ajuse+hN6ZJI12lfODrJzN+i2XSqnZOAu8ljPqWGnTZtvM5DPF+eRN/jdv9MKlav7LQxU6nvM4WSElfB+xmPcxD3dorF+tM87p3HWHYhmt/21Ladkdeb+LpQuOMWqdxOhXu+F5z2lESdredJgdvRNfR5IRLbwVU7d+5UZqZ1RHVmZqZ27tzpSqKARBWdyc4iwzdSo0tdjuGNhXjPDes4cjrF6kTh3ji3I9LhzTEZzcVN2XF+QyAWTkd9CVYU4Y3OcMe+NwUgBe+L0z2LVz3Qd+1F09BJxtmxGl0t0YLfqPpq+w7LZXvPVZwiHBzQrAznR7/ExlQzdnTuiP6mDRnI0k5HuKT87NS4P+zo6uhzd51mdbG8OJffwRJVbJleE24EF1rsQF5QXWDztm9Nl8uMMHR4ZhLf1It3XS4vK/bR4hItI82jzKC3c3tC3cvtJH75jXUZ/vhbn4Z8Rt+cueDpvZ0we2EjErO321NpROCU5zH+Gd1xy0mRenkw36iwiXzTPfgazo+iTDC7fJOZ32QHlZtW0wJGZPKzaF4kCF2Hw2Qk4wF/ArMkVwMyeklWGk3Z4hNtkRavvj03zq6dAVlSqYqTyFFskin4mnF7WnPJvRdlrFi1uT0ej+no6FFxsA+FORkBI8T3lOqh2yPuB3OjnDAfXKD773DtAeM9bVb3/Loz+c+je8q14rZwfdpu6El9lUZ99XqQele7muAqRGK79G1vb9fvf/97y+9/97vfqb293ZVEoY8xfZMt9LNT5jS5vFmvrY4SY1qCh3sOrvsdP6Mh4N/3njIt7LpbKqyHVo22D2ptR4v/b7MCbWRtiQ6eWGdrXcYk3HjYWLVWFGqcYXjrUTUlttZTv3to66woKvyRjqEk3XHsRLVUFGj+UGfTfZwws1Gn79GqETXFGl1X4v/c7rDBka6fE2eZz7ndXF5ge973tjDTrv32pKn+v8NdS4n0093XyY8OHh3y3W1HTbD8XfAwxT89bGzAvycODpwiy3jsgxt6xjWdu2RohBSntuA7ON6dG80Rhr8/cHytWioK9MvjQucu33tUtSY3lAXkQVYmNTif8mzF1HpNaSzT/xw9wfH1ftPhY2wt9535kdMei+/u0z0fvUcevfDe5wHfLxs90PRBvlXgwXkuXN9HTqmPeR2J0mpjSrGR4aY/sXn/zGgeYDNF0lmL2tReXaTDJg0y3cywgdZ5fX+TIcVjGbnKuOXgPDTcsbt82Qi1VRbqugNHSZJKTYY4jtd1EnzPtVUW6jcnTvZ3Fl+6zzDH6/TKqxkt9s9hTma6lo0eqAXtFbpy+QgNqSrSuXv27LLDikfSxUvbNdRmHSRW5yweEvBvq6kPFg6r0vj6fpb1uHlDKwLqn9HyXeN2XLhXu9qri7RqbrP/M7O6jV23HDne//dBE7rq4cvH1OisRUNClm2pKNAle4de+3YDmI4Lao+EE66e6d+u4e9ZrQM0rLpYe42q1thB/WJun5XlZ+nq/UeGXWZEmHw9uG1mtHJ2Vz38+Jldx8PO0Zsw2H795L9fmQcLStLr/9ka8ll+dkbcX3zxSUafplkdanLQ9GBmwk0j5UR6mkfnLB4SUO6WmZRnly8fYfpbN9x85DhX1uMTabrCaK2a26wxdSUhU3lctmy4xS+6xTpSZ0P/fJ1tku+ZWT6mJuSzfUYP1IiaYp2xR5utdZhdA1bm7S6DTna538nJcbpi39DrMxI3Ao4OGFerHx08Wm2VhbpvVWD/yx3HTtT8oRW2p0lbMbXe/7dHHtPgKjspDn6g4fVKFUWB+YXTF2huO2qC42Bgswcr1x4wKuSzeOe7s1vt122l7rIvHtoqC7VHe6Xt5YOnyIsleMlntaF+FsyqblNXGnnKvenN/f0BlnbzKqm7T/JXx0+2tXxwWg6f3NWWdOPYGH3yxfaY15Gdka5lYwa6kJpuVlOjusHY59KTOJ26zdee8LVfz1k81FE+NKSqSBtOnamRYab4K83P1pIRVXGZHnloVZFOW9AqSbrhkMD+uvQ0j1Z3WN/jPpHah0dNHewoEPy2FRPUbpiyOM3jUYdhauGWigLdadIXamX/caH1mGDHzWgIO83i4hFVWtPRrBE1xZbnKtqpD8MFdQb2uUe1eusV7mY8M9PD9MGdF6Fvxo1+AjvOWmSv7hmJWXn+w4Oc9zMMrSqKa93DTh36xfc2W34XXEcbUlWk79ms566b16K2ykJdtNR5f6BbLl7aHjbIM1w/it3Tkoz++O/vN1JtlYVaNtp5uR7czxxsZssADRsY3ynJpfjc82bt4ET13aDnsh3psHLlSp199tm64YYbtGNHd1Tqjh07dP311+ucc87RSSedFJdEAk+dOUenzm8N+Ty4gu80z3MagRocMX35ssBKwfEzA4Np6srydLmNTkoz0bwZcM7iIQEd1MEjM504q1G/Xzk1qsbm/PZKPbR2hloNlQc7jb93L1+sP5422/L7x06dqVcumG/6u3cvXxxQKI+uK9G7ly8OWXZKY389vHambjy8u0P78mXDIz4wKsnN0kmzmvR/J09TgWF0hf85eqKtQK3gjo/g4LqSPPOKaGVxjh5YPV03HRG5A/7BNTN04Pha0++GVhf5j9PDa2dGXJdTkR52+Rgv1QW7r5O2ytAHtzN3P+y2c2m3VwdWxvKy0k3PfSR7jqjy/12Y0/NGhwjmtDM40uK3BwW8RRqhY0pT1702pi60InvtgaP1y+MmRewE8XikS6PIg87fs113HDtJ05sHmF7vK2c36t3LF+sHJo3SSCOh+Rw4ITDwNPjwXWzysNuuGw8bq0Fl3WWWxyPtDIqjudrQUW88dzcbHsobHTVtcNTp8blgr8DA+Iw0jxYOs99ZHo36sjzT8xTJQ2tnRFxmtMm1KTkbXSHDQSDwcTMadd+q6ZZzrp+9yLojaGpTaCfYjhhab8ZrZkHQAw+rDlGvV6rvn68H18zQ0lFdjWuzzrkL9mrXITYDs504eU5gfvHgmhkaO6hUb16yUO9evlgLh1VZ/DK8uW3ljpa/+oBR+ulh47T/+Fo9sHp62IANSdpzZHVU6UoFh02u1/2rpydkW1XF4Y+jT1ZGmu46YYpuPHycaSdvRnqa7YdV4Swebv96OmJKve5bNT0gCHLJiOjPe8OA7nvw/D2H6t3LF+uq/UeaBk/ct2q6DjUEbEby7uWLA4JwixzUdx5cM0Pj6+13Tt26YoLS0jzKyUzXb06cYto+c2LjufO0zCSAwujXJ0yx/K4xzMP+0xa06d3LF2v9QvsPRz2SrjnAXv3XKa+82hWUx1+1X3TbevfyxWEfxMRi71HRXefB+bkk7Tu2JiTI0sjr9cY06pmxbK8ozNYx0xt07ynd+dtwk8A8s/IwXHCVk/bHnLYKy+XNzld5hMCyp9fPNQ3iiIbxAce6eS26+6SpyjbUd969fLH/QW0wY7+E1emyU3s5aEKdHvvOLFVHKGMlacmIKl1l0hYtyM7Q/508zfIlpmDn72XvBdCr9hvpDzYzCzI32m9saJ4VLgjUSbfO4P75tq65dfO6gxlNB6V0eFstH1ujJSOq9eCaGWqvLvb3Mbx7+WJNaeyvGw8fp0fX2etvKDa0u3Z5vZZ9bpHSaDWd4GsXLvD/207bwGh8fT/nI0EH/fsnh47R3iYPpNx8wGnWbjHbps+7ly/W+UEPn9cvHGJ6LfnOq080LY8H18zQTw4bGxBg3TjAOvgimpcsI1k7r8Wyn+zBNebXhdmLSUdNHaxH13Uvf+Nh3X10x85o0PdNyunAUVS6+Pokx9XbC9I2BiFKUqHFCwixqulnry4eydX7j9KtK8z7JKJx7hL7dTOn6vvna/1Cd4IgzDgJurOjujgnqr5O32wBvvZrcNkaLgBRkh5YPV2NAwr0+5VTw2zfqx8dPCaqwI9wpjX11/2rp6u8qKsdtGh4VUjgSpnJi2g+aZ6uvOzXJ1q3EfYZPVDn7RkYcLZ4eJV+drh5P/wbF++hkbUlAc85PJKqS7rbag+vnalJEV4cMG7v8Mn1YZeVpLMWDdHvdp+D4If7g8rydP3BY7Smo0X/d/I0/X7lVNMXTY39V/0cjKj+kEVembB4AsPBCjeSdU2/8IGxbgSZ+4QLJJw7pMLWsYkU+H3LisB++HcvX2zZv2S2Z/uNrdG7ly+Oe59OeprHMhDWTv/q2nmBL948sHq69htnXm4HWzZmoB5cM0O1hkDk6w/uDsIMV+dwS6R+M6u6hhMX7NUeVf5vxc7LqfuOrdGDa2aoxkbAubGvYtmYgSH9zMHCDaoQLV+91dhv9usTp4TUZ4NFyhYm1JeqtrS73DRrB0c7ap+b5xSpzXbP6xFHHKFXX31VJ598stavX6/GxkZ5vV7985//1JdffqlVq1bpyCOPjGNS0ZfYrRdFPcS4S7+PddjrcFuPJmXBeX6sFUyzX/eVoF07hy6kjHV4uJ2+mZSqrN6uc7WDMWhltis4veMQ+7m9O07PUcgoYVEkyJPCs6ZHSlcsw9uaXbF2r2OzxZKVF/fkMiAZ1124bN7sqx07YwiuiuI3br8d3VfYvnfjnA6n4jQrYNzvLVenrOkBYj2esQRppiK36pN2g3jiVUvxeqWdfexa9iq+05MZy7BYgrRimZqwJzMLeomU3/bkI+V230vqCD0rycxqjMGKO3ZZB1dFYtVXZ/zU8YtH8sRcpiRiGtzo2tjRcW3aQ4/90tO9bbqznnDrTHSe5/a96+Yx6tn5pHt60YxHSWPnGIbLUaJ+1uHwZ4k+13bu/4SU797AXiJXBq4y+ayn3Urh0pu6vdyxsqqLRb4qYnkmaVbXSkbe21vPqhTFvtnMCFKljznN44m574VpARGJo2E8vv/972vffffVL3/5S7311luSpJkzZ+rAAw/UpEn2h8UEIrFbKYk1k7PzeyeFjeO34MJsPppdC94ft6Y4MEpmueJ0206Wj2a/Qqejc3a8U30e4lROXrjTFZDuHl4PCunci/M5SdQ5T0SndMD27C4XIV2xPHwze1gVLsC3F13GCWV1Cj2ecNe3u9ej8Tpyeq3HMi1guOspVRq4iZCIeorbm0hUZ1yi8143uZH0nrL/VukMF/TQdQ11fe/05ZFU7wwO35Htznp84pl9eL3e2F/sMegJl3O4UWvc8E1n+DLT7qYT8cKLaZB93LcaXjSXo1X+5P4LIO6s0f6LDMk+G84Yj4475WPs6/Axtpd27vKGjNRrVzzOSVd7wNnOBqfD6mFhssvSZLy4Z7+N7d42Y7ks7LW8I+sBxW98uNx/HU89oY7kE69DF/IusCe+fepuC1d/jDZow6Pw/UWhn3kiHoPgMiXZZYGTMi7srrl87iNfSzZfgonz4Q1X93BzhCy7Uj4vC/cyaQxpNzsPyciPoo7jTPXzFgW7hz9e58npIU3zSDvDfO+VN2J+nWp1G6Qex2PzTpo0Sdddd53uv/9+3X///br22msJrILrxtSVBPw7z2JIzeBMbmRNiely1tvp52j5YJGGWI6U8YebzmHiYHvDSRsZp5ySQudHdqNsjzTVXjhlJsOJOimnnC47JsIcvCVhhsu10yDKzYpumrnhu6c6rDSZCiaVGIfeNQ6/GW64XjuiqZs0Bw19bLz3x+4+z77K65TGrimtgqfa6R112/juRaQhru1M4yGF5uFG05v7x2Uv3Kj0BqcrOI+utTFsrpWKosDrcfjAYo0IUwYYp0StKArNO82mkok0vYwdkxvDXwMTdpdNkYa6NuN72DJ2UOTyLctkajA7hlaFTknqEy5fDy4v3RLuOUd2RugxND54dzqP/IY3Prb8zqq+Y3bfWCW5NYbyP5wJu6fPaDAZ2jsnaHpjO7f5mLp+ce/MCHedGfWzmB44WF1Z9HlLrIZW29uXcApsTkNnZ1tTdudBxnyvtjQvaYFRZnVXN4V7ESK4LB1i87oLN52BmVQPvgx37ocbykpXeN2bQidYU3mBBgXd67Ec+Xh19rm6Wm/iAojmmEwHa/f6SNYLLxOiaO9Hy1e/M07vMWxgaJ5itpxbnBzmIVVddQ4340UmDbau4w50cN87vabD5bHRPoRtGNDdNm6tiL1+5mY92DjNfE5mmiYM7qqDGqes9Xgi94X4jlrl7jaUr50aME1lFOkzuw7DXWfBZ89sOl8pfN+SJE2M0M42Mh5Dn0hTVtdF3U6NPpc2Ts07tbHMsrw2m6I1WsGvN8aqKcz0wpL59eLkXCabm8EAbtQX211odyRapHvbDt9UbfEu9wuyu/PZ4BcDpzX1j3q9/VzuKzGrn9UHPc8Ie+06uKyNi452+AxoWHVxxOvejdH9rX47zqTfzCo1vut0gs2pScMJ3obTtqX5OiOMjBpLVuViXTFcX2Vwn4evv665vMC0L6unCxeQmbu7njIgTB908D0dzMkUlsFc7wOwEG0Z2lzuft+pr9/IrbbRNzvChR6FiuV5cDJMjaHM8yG4CpG4P/E54JBZBev0Pdp06rwWrelo1jUHjFSJxcMp45sMp85r0anzW0yXs3L24iFaN69FG06d6SzRu01uKNPxMxtsL3/ukqEBnUqnLWjVunktumTv0Dlxr1g+wvZDlP89bpLOXjREC9orJEk/PWysrlw+QrWlefrlse4GPx4ysU6n79Gq36+cKilwPt+y/Cyt6bCe131w/3xdvmx4wDzJ8eKRdNaiNstj6Ds+/uXDdahZFKYluc4qgrNaB+g781t0ypyuY9RSUajv7jM8wq/s+8FBo0M+u/ukKTphZqNWzW3Wr0+YrDUdzSEPdqyMry/VhXu163+OnqCjpw32f241L3swNx9THGwy97HPuUuGat28Fj26rus+vuaAUVrb0aJfHT85IBEej0e/OGZixG2VutRxYGeua6esrtN7T5mmrPS0mOcdP31BqwaV5enEWY06YFytpjYFdhyOt9lQ/8lhYwP+feq8Fq2b16LKohxdsXxE2PstOJjCqc4doa9H254KyLDY+Pp+On2PtoDvrQKPfrdyqtZ2mJc/h00apIuWtvs7ch5cM13fmd+iVXObdehE6+t65ewmfWd+ix5YPV1tlUW6dJ9huvnIcbrlyPG6dJ9hpnnbb06cEmkXdeD48HPcX3vAqLDff3fv4Vrb0RIw97zd9ubDa2do3bwWnb/X0LDLXbXfSD126kyt7WjRytmNpsvMaSvXGYbzM7AkV1csH649hnXPAR+cJxrTuUfQXPH1/fN1xfLhujHo2jVz3IwGjakr0QOGY2Al+Nqb0limhgH5umDPoco1CVDrNEwL+ONDI6fFruNm2K+rWDl4Qlf5/7uVU3XZsuH6yaFjdNqC1pjXe/0hY7Smo1k/Pzo0f87LyjAt28I5Z8mQmNPkY9UJeMz0waafB6sqztH39h2hGw4xr/f46m/zh1YEfH7lviMirvtHB4/WNQeMtJUOM/eeMk2nLWjV0dMG65fHTvKXHyfMbNSj62bqhzaO+5FT6nX1/iNtPYSf3txfx0wfrDsilMNX7d9Vhv/6hCm60+L4RCuaeomv7vr/Dh9nvk6PtH5hm46aMsj2Oo31ysz00DLPl86fHDZWazqa9bPDx+m0Ba06apq9627pqIEB+aMTZp1m0Qa22clPfX57UmD59Zez5mr9wjb9+oTJpsvfftQESdLJc5psb8PubozbXf/1bcPKSMPD4uB8ynjN3n3SFJ2xR5v2HVurRcOqAtqC4UyJEOxsNL25v2sPLK0OU7ig6gPGmdctgkeuui3CMbVy0xHjdNmy4Xpg9XSdOKtRK2c36tF1ge2RtfO662EPrO6qa508p0n3njJN6WkeLR1VbZn/uDHac0MUD56+u/dw3XHsRJ27JHy9KJixDji92V7H8ff2Ham1HS0B99pJs0LvH7PljKyOlFlpWV6YHbZvQAos705b0KrfnDjFXzZJ0qPrZurIKfXd23d4qoz51+XLu+qwvzmxO19pqyzUkVPqNdlBsIRV38Cj62Zq3Txn/VFW9Yz7Vk0LW8daNLxSi0dUaXbrAB1i0p4ImM7HZBPGMuLSfYYFBGuFE/wih9m6czLT/XWUkrwsfXefruN+zynTApZrry7WJXsP0y0rxptuy5d33HXCZK3taNE1EdooZn5z4uSQh3dml9CL5863bMv59vGWFeN18d7DAl6A8Xl6/RxVFOWEra98z0bd7roDR+m6A0cFBEhI0s8OH6dxJu3wUbUl/ut5ZssAnbtkaEg+d5dFOeoTy4OjPUdU+9vu5+/ZbrrMqfNatGZu4LGNLbDYEFznMD8w/va3J03R6Xu06oCgtnG4dR40oU4dQ8p11X4jbS1vVXdMJLuH6OYjDWmNZlR/w9/7jB5ousyqOU26+ciu+93qugsXRHjF8tC+0zUdzVo4rNJk6ch891mkPpT/WzlNx81o0FFTB/v7HH2MbaAsQ53+dyunaq4h6PsXx0zSmo5m0zZhpHvQSbnSLz9L1xwwUj86eHRAG2NIVZGuPWCUHl03Q4PK8gKu4XB8aQs+L1ZJ9nhkmZf6nDqvqy8s2LyhFTpn8RDdeVzXMwzjy3aD++cHPDeJttp21NT6gFE7jXUoY7Dzfaum6TvzW3T8zAbXHq477atdMbU+Yr+Z0f+tnKa1HS263OQ+ccrrDayfLB5epfUL2wLqJWYvdtaW5ur7+43UuUuGqro4x/SeNTLmn05Oqa8fIx7CHfP+BdkB18MNh3b1Y91+9AQtHl4VsOxPDxur/cfVaP3CNv3k0DGqj/JlOqeX+o8t+p0kaemo6qjS4PPQmhlqrSjU5cuGqzCnq2412BBAtXRUtaY2laljSLk6hpRrVuuAsOu7YvkIre1o0d420+XxBLbxUpGv3b98bI3r635kd3/6i+fO1+GTzfuenLy0UZhtr0/Cd7+tmBraF2Vsj/vu53Ajdd94qLO+XTus+uWv3n+UFo8IvC+Dy6fgOlxwX4XbsVVnLWrrelaJXiO6YVeAOMvPztApJpXtYMZKjZ3lg39bmJNpWqk3CpjeJ6iQ8ng8WjFlsH76p3/u/nfob40Z8dHTBuvZf/5XD//tI0ld+7lqbrOe/ed/Q7bbLz9LD6yervoz74u4LxMbygLenlpgeGgcaRQSpzLS0wI6Yg+ZOEiHTAws1K999C3L3x84oU7fmgQ/2OKwVVOYk6lVc5p04i9eCPlu/6BOlOBVR/McKdJv9miv1IFBQUIHT6zTz5/5l/72n63ONxhkr5HVWvXLFwM+G1PXL2DEknH1pVqzuzLhu7YGluTqg81fm67ziN2d2e9++pX/s+DO10REcgePYmPsGAu+j0vzs7R6d0f+x198E/A7O5HrAwqy9dlX38aSXEnxeZPCqhNh2MBi/f3ShTrtrpf1j0++Ml/Ihoz0NP3ptNkBn/muE7OgM6tLvrww8I3eE2c1KiM9zX+ewlX4hw8s1nPvfu4g1YFimVbNmK7Llg1XvqGxsW+YxlFhToZWdzTrmkf/HvLdjJYBmmfoaG+rLFJbZfdDsV8dP1n7//TpkN/lZKbr5Dnd13VwPmvGzshaI2tLdOdz/zb9bs+R1RFHaSnOy/TfX041DCiIWOZK8jdEV3c066Y/v2O6THqaRyfOatQVD74hqasz7oDxdfpy+w7/MoPDvCn1w4NHq/nsBwI+O2C8dbCb0VmLwgfvGK/u4HJhYEmu7tgd9HzhPa+F/HaHYe6UAYXZGllbopf/vdlWusKmyWqaMQfrMJb/xlHdvvfQmzGkrGs/14TphDWWbXbKm8KczLiO8Te+vp/pqGNW9htXq10WHQzB9Tcf4xung/vn651PQ/P1JSO6OqHW/u/L/s8OnlinO559T5LUMaRCj77+kWW6hg0s9j8gnNxYpg2nzgr4vqm8QKcE1SmCLRpeZfsN7JWzm5Sdka4pTf21dFS1fv/Sh6bLGcvw2tK8iCMquiVcXSi47hbs+JmNuvel93XzU/+yXCaa0UnKC3P890bH0Apt2dZp63fB+aMTZqNlROOek6c5GqlidF0/ZaZ7/AGm5UU5On5mV3Bt8P0zoqZYM1oGuJreYEcYgjnsCK6DG7Pc4Lr4cTMa9P2Hu+oL4a4KJ6NRVhTlaNHwKq2/+1Xbv7FiVV68dtEelu3S0gLzFxO8Csy3Z7aE72S3MndIdz3K6sUZYz11SFWRf7lhA4v1j+8uCrt+N4KrzKbkmj+0wt/uN1Ocl6kpjf01pbG/Lr73b7a28+7li3Xizzfq9d1tx6byAj3x1qcRf9fPkLf6ZJu80GC2nJGTNnJVcVceFq5vwPjG+8rZXXWMsYaROxsGFOiCvdp161Pv2t+wgbHNWJLXtW/G9uEvj53kyogcXm/XuVg1t1lXP/L3kO+caq8uVnt1sWUdy+PxxPTCmm9kMEk6yGb9V5LmDinXL/9i3o4w8tVRpO7jbubQSdbtG1/WX1uaF3XbY+ygUv3yuEna49onJHVdv8GjENxx7ER/+8asLeerLc9uDR0dT+pqg1QVdwUeLB9bY3rPD6kqsnWdLR0VGpSyoL1CHRZBW8fPaPCPsuHxeAJeiPMZX1+qETXFeuX9LRG3b5SXla5t34Yf1SAtzaM3Ll7o/3dw9lBVnOO4n9aMcfQMt7qeRtf1czyKzWXLnAUtzAsTbJeo0RDsBMiPqSvRnLbutFpNx2Y3zavnNuu3L34Q8vmajpaI01ceO32wLrjHvDw8YHydzvhNYD1nTUeLLvi/0Da1HX+9cIEk6ZvO8Nd5XVleQPv/T3//xP/36rlNOvf3Xduf1TrAf/+Pqi3RaXu0+keWHliSG7a9G84pc5pCypVw9hnd1Zfy4z/+w/+Z7+FzWUF2SH+fm4pywuWlUn1ZnmWe4PF4dMx08xfCVs9t1oyWATrnd3+VFMO0gB5PQL1gTUezaR3KVwZLkfOc0GkBzdnpHzbeY6vmNKsox/4L3XVl0ZeVZozNr7Q0j46f2ai3P/7CXy85d8nQkL6CYdXF/n5TX3kUfM9asf9CrMffjxFrP5QZJ8fc2FYPtqC9MuDZ3Nsff+lv/8XTwuFVai4v0Fsffxny3d6jB1r2wZjxBo1A3FpZqIfWWr9sf92BoYEz+Vnp+sqiLuFrc1z1sP3z6Gvj/fuzbbZ/Y1d1cY4+3BL4DMlpVhPc7neTsT/9oqXDdPvT1n1Pdti55zyewH5Do3lDK9RkGKHL9wKzsQ4R3Bae1RL9aFJW6Q3XN3D9wWPU0P9N/fCxtyVJlcWB/SvBa5zZMkBTm8r05Ntdz+mt+nGjddwM85fH0XMxchV6tFSfxgLmoh3u1cnZjnX064A3KCzW5fTq69FzLodJvOOpEaLoSQp+6BHPOz+VzlNI0F+Eh7MhAZ4R1u/kYW80582/neAOhzgcY1/qvt0Zw9WRhHOfStdbItm9nmIaHTwFjm24jj+z+6/T5cZbNJI1/VpP4SQrdKO+E+1D/0Scxp52qcQzvVYPosy2HZdpEeK4b8k+zW6dNzt5m5O2Zbgl7eYTYddhOyXuTp3m5uXn9YbvlEx+idfFjWmTzKYWjFeeY7y+Ej1dQbTT2CF5zC6RnlDXs2orGD+1sxvG1XjkMWkvh19Jb5gSJNweJmP33Dqm8biKE5XHJeoWtLOZ4NMR6+kJN6pRtL8N+xuTCyphZZVhp8KmPfWz3JTmlTfgEMZSb4t3d0ssL7X1gKI5rHDBk2b5vlu728MPW+L0gvpMPJnlDT2hvhytmJ+bWqwvUr9YKjE7v8bypSftC5KD4Cr0aCnwDDIsu+VUby6sI4lXOeW0Me3GKYg2kCXStvvw5eGXkRY8clX8tuXGAxYpPh06PfVacJLsWM+t2bSAdgU8/A4JbIuPHnpKky6qh7/GoFnXUhJhmw6XN45cleht9wS2Ax9SLB+PJTlmD+yBeHEvkMn5b6zK/0S2kz7c/E3khWxIdBM12QEv1i+ieFO+vS65E5xm9kApXufFWBbG8vKD3Qt1y9eGUfOszrVJOmw9SLSXhJRiVhdJ5aLa7BIxXq7JSLudbdp5oBFNn4/T3zi5w3rTM5j4XhbuHCjH0wLGYRtu3z+u348OAxC7/h3byFWWSbET5N4D7qFwAeWBy9k7man80rjTtJlNd24UbT3bjZkmutdlvk+WddkEnh5bwZAJSJBX3ojbMTte4frSIwV6p3A1Kql29ISGVILE+xoxq3e6+QJTLOze9oms01u9rLDD8MK72QxPqS7DcNK5/RAJwVXo0eaHGWbZLcZs/5jpg0O/D3hYa+eN6FAtFQUmn8bXaheG545WtEWpozbE7o0Yh/o+bPew83bmrLd1LoMSVGgYPrY4r+vv2tLuuendnNrGzfK9v8VUHkbTdk+nl59lf/oV3/D4ktRgmF9+fL29KYSMCnO6pmc7YFzXdI52hzsuye3et1Pn2xuGOy1NKspJzVlzg6ezlKSKIvvTxritzWL41UjC1aft1rWD5xj33Y6+qYKiaQSF+4kvXRMcXr+ROiWaDcPoRsN3HILnDrcSlzd8TU7auAjHyW4+MLO163wG35O+TTb078pb9hzZNZd6rmGKqDJD3rbL69Vhk+olSRNtTmMWLbORD9squ87zPmMGmi7nEzyE9FFT6yV1X9dOHDuja1j9jiGhdaXC3VNeTjOZKjXcFJjhBM9nbyWW6Zci1QN8ZdT0oP2a3hzd8NNOO5Tdqpca841ZbfbP/d4m08m4bdWc7qmhndTLWiu687pkdam40ZkTfC+eMse6PmKcpsw49VWkaSWt33iOrva3aHjXEO3GupiVI02mw1u7u958UITpEWNldzsrdueLPhkmecqy0fbuheDywGpqSCf2ibBt3/ROAxxM+xdxm2Pcu/enhxmuf3RdiennVu0mr7d7WiSz+mpVcU7IZ8lgvOcinT8r1YZ98U2du//4Gv9UiCum1Gtum/m0YuGMN6mzGPPeZWO6yuyafl3truJc+9OZ2JVtmJ7dKhv11euMZfyHQfeT0zq0mVTokl8+JrSeFJwvGcXSbvfVH3NMpnA047unjPUR02Aww5F0UjbG65nu8TNCp4KyaivkGer6JXnd1/tIw5TV4TgOyImwz3aOidl0fanCKv3RTC8Vr2dmp8yOru4pSbNbnbWhnI5sFonV9NmzLKaZjOSEmYFTytSV5vn/NsuH7Lw46CunfHVcq6mRR9RGntZMspdPm5Vtknm71crAkq5yb69RXdOQ+voFJGn27vZTvzz3y0Rj/4SvzVmQnaFwub3xNAS3F0+a1aRwom2/zB3SdY3Z6e/tSkfs0xWdtiC0T2rx8O4+gm8dvkiWtbv+Mb6+NOAYrjBco8sc1oGdTgfqqxc2lReYfr5yduD5sxt8Z6amX/f9vPUb8+ngj9tdXrrR71BZZF4PD54Orlv33plNc2hWr/fdpwuHVYZ8l5nevb4Ki7T4+OqX4wbZP38HTQjtPw/H12YOx5cH79Eeuuz+47rqh6tMnrcF38cF2faeOTzw1022louHlbObdPLu6zva9lG4y7559z1lds/0LwhtNzodudQps/I6US8wme1vJMfPNJ9G1U3h+u2t8rTWyu5+P7vT4CVuNE+Pvw/88Mn1/vbHgvbu/NTYlo3meb2x39Po9D1aHa8Lqc9WTj569GjblbkXXnghpgSh74mlg8ZqXlWp68HhF9t3OFrfGxfvoXte/lANAwq0/MdPhXy/37hanfbrVyx/75VX96+arkU/eEKS/cKhJC9Lz6yfG/BQON7WdDTrug1vJWx7yVJZnKMnz5yjwpwMFWRl6PDJg0IaRW7JTPfo+XM65PV2Pzh7ZO1M/eOTL1WcmxnQUDJysxKxcFil48p3VkbkztrB/fP1xOmzAx4U+lncxLlZ6frL2XP1wedfB9yr1SW5enTdDHVc/bit9E1v7u9/A+q7y4br2BmD1TjA3jnMykjTs2fN1buffuWvKJ8yp8k/37KZNI9HT6+fq8+++lbTr/yDre1Eq6WiQLNay3Xj4/+MuOyl+wzTbJNOuIXD7AU0mDFeewdPdP7QtDTfOu+687hJOvDGZ0K20/Xv2C/6C/Zs12GTBmneNYHXUVN5gZ44fbbS0zyacvljEdczqCxP//rvtpB0WRVNPz9molrOeSDqdAcrzsuMKf+/YM92HT55kOU98X8nT1VxbqZmfu+PEdflRlZ03YGjNK6+1N+JYqW6JFdPnjlHJ/18o15+f4vlco0DCkzzHl8j9/7V07Vpyzeq392Zmp7m0cZzOrTLK2UZ3pz0eqU9hlXqsVNnqqZfXlTX4ImzGk0f/oTj69D+3cqpAens2odQlUEdUktHDdSwgcWqK81T89ld193pe7Tqygff9C/zl7PmKjM9TaMvfiTgt/uNrdGYun6qLwste545qyuPqy0N/W5qU389dupMzbnqT7b3U5LpQ+M5beVqKi/w53FPnD5bZQVZ2vr1DtfrPDccMsb/UMB4nEfWFOu2FRP0z0+/1MLrnlDn7jepfnLoGE1vDv/AxU4ddfXcZq2c3aT3Ptum+rI8NZ3dnT/4rlOn15txs3YDMNuriwI6hOLRP3HBnkN1xJR6/SBMGRrs5fPm6+vOnepnuIejLQNePHee9v/p03rr4y8tlzl3yVANrSpSW2VhyD1h5ZUL5mvhtU/YWvamI8b570Wpu4M7mO9a98nJ7KoTpXs8IQGGL583Xy+897lW3PqcrTRIXZ3X/9li7+3vo6cN1ukL2lRZnKO2cx8Mu6wvz5lruP9PmtWoBe0Vaugf35dB7GzngHG12md0YGDDi+fN09ZvdmjHzl0qL8zRB5u3abDNtB43o0GX7jPMdp3UjkXDq/S/z/3b8vu2yiI9ftps9S/M0v2vhtbZz140REdOrdd37nrZ9PdmwTOTGsr0zqdf+f9tdYcN7p8fsJyZcMf/7hOn6OG/faTj/2ej6fdvXLyHnnjrUx17+/OSugJFh1Z372+wvCzr7qj9xtboro3vh02rW4z3pNWDcJ+BJbm687hJIW2EPMNDkv89fpI++PxrNQwo0PTmAXrvs21qHFCgsYP6acMbHztK28CSXDWVF+htQ75nLCNG1pbosVNnqrokV598sd28rWbFZlZsJ8/21euKcjI0/IKHJSmkjlEdoW7olnXzWnT1I393ZV0DCrP1yRfbJXXVcUfUlGhw/8BA1UfXzQzbvxCuLhGpnuGrP15wz2v645ufREzvY6fO0idfbFedse7nYkBUvIKrztijTT81tIf/fMZsy76TjPQ0f10/x1CXPGRina7ab6Q6rrauv3pk1i6NKekRHT+zIeoXF6T4j5piFbh97PQGfff+NyR1BTEncvSM78xv0dhBpSrNz1Kap+uho6/u6TTQfNHwKv3Bxr0TLz8/eqLGX/qofwTAgSW5+t/jJ1le35EcNbVeP/nTPyRJG06dqYEludq05Rt17txl2h9gvLxfPn++Nrz+ke5/9T969PXusqh598PDm44Y5y+vzJQX5uipM+fohj++rZ8/817Ad05H0zH2FaR5pN+eNFX9C7M1sCRXz53dIY9H2rztW3/9LDi4e9HwSl213yhJ0thBpfrjd2YFtKObygv9dfGh5z0Usv17T5nm/9uYB9y/aro2b/tW7QOLte3bHab1FGP/RH52hv/v1Xe+aLm/xvNwwyFj9O5/t+2uk31perzvOHaiDv5/z1quz46WisKQ9kg4py1o1ZSGfnrn5Wd07sau/XZyWg+ZWKf9xwUGsxw2aZDO33Oo7nv1P/ZXZPDCufO0edu3qumXpy3buoON9hxZ7f/7e/uO1EmzGm3X5Y3PCP6+6Qv/51ZFwYTBodeXJH1/v5FaObsx5PxZlSl23i/rl99dx7fKcvcfV6uxg0pN+3icyjW8PN1aUag3P/oizNKB+hdka+ygftr4r8/9n+WYPFt4dN3M0HrJbmkej144d5527NrV9fzgrLl686MvVF2Sq3N++1c9/c//+pd9aXd7z6ou+fL58zXywq76Z3t1kS7Yq13j60t13IxG7fvjp/Tfr74N+c2SEVW695Wua3PZ6IG6ct8RAd8vGz1Qd7/4QcBnB02o1YTB5sf/smUjdNyMBlvPK169YL4eem1TxIDSr7bvCNi3RMnPSve/yDujpb/ttrUdvv6hkrzQvGnjOR3a6fUG1O8SJdpy2a492iv14Gvmz+v+eNosDTs/sKw6c2GbLn+gqx5mlq+cuUeb9htbEzbvm9xQFnAfWZnSWKan/tG93BOnz5bHE/6YhKRp979L8rL06LqZ+nbHLg2tLtKV+47Q6SbP0k9b0Kp9Rg9UVkaaplz2mOPgW7uCk3nLivH+uo7X69W4+uD7ufsXJWECtP964QK99dEXGlSWrx07d2nHLq/e3PRFyMuYi0dU6YBxtVG9MI3UZyu4au+99/b//c033+iGG27Q0KFDNXnyZEnSM888o9dee00nnXRSXBIJWAnXgIumkyQnM137jauN6a3lXAcj+xgFV9TjrScMxRgs2jf2jQ33ZosIYrcER5vnZKarvdreG15uiOdpNXsIH0l5YY7KC0Ov7SYHo/WUGR4SpKd5HP1W6noDxvgWTKS39zyS8rMzlG/zTZJYeL1SbT97DxoGl0UecSKWtyqyIgzhbcUq7zK+iROc37hxmaaleSzv59rSwM6XcOrL8ruDq8Is5zu2doIRnYol/0+LcE9kZ6RrkOHasTVFi8MTZFy8IDsjYmCVz8CSXFv3mVne40tjTmZ6QCCNJJXtzoe/MLzt5xviuWF3R8fOKB4QVBblmHYA2GGWTrPjbFatCe6caQr6d7nFW34ej8fyYV+kPK7BZgBrJBlpnoC3iH3nMtwD9WhVl+SavgFYW5rnv0+67uOug7xHDIGpRg0D8pWVkRa3wG27WbOd6ytWzRWFjuuPxXmZKlZgp0S0aeuXn6XyouywwVWZ6R5NbnQ2UmhRjv232q2muwi+d83yLbP6kNR1jCK9rRur4OvDKDjtoQ8JnNe9omFnO43loftRmJMZMHqsk7R6PM6Wt7VOG8uYPWDwWdBeGXFaFclsdI3IYs0WPB6P6ZvyxjJ5XsCIOV3C7a8Vt6bptrct+8vmZ6eb10sMf2dnpPvL0cz0NP89ZTZ1oB3VJbmBwVVB96xvW9G01WwxbC/cHgTX/9ycxscJN+vqpXlZ/uCq7Iy0kMAqKXQ0Czf56o92H3DnZqXbut9SrSso+N6I9ICrzOINfzvnwvm0gLEFFTXGOTA5XqLpL3TrsupfkB1Ql9u8zfBQPCA/iv+FHHFawAhpyMpI06CyPL2y+2WikbXFsT3ANWyuODfTtI0ZsHjQ8svG1Oilf28OWMbXLDaWV1aqS3ID6lxuyEhPCxh5zjeyp7FvNfgo15bmBfS9mx2D4DKxsihHm7Z2vZhgLCeM5zArw6Mpu0e1CDcSpHHdvr/tlnkZ6d3tRqs6qJO2SThO6gUej0cTB5fqv69Ht60Wk3Zi44B8ZUTZzyh19S1FGuEnmj5is/6qcHme2fXldLtuPYMJ18cT23q7//Z6IwfWeTz2RqCNVC8xvhRQXpTj79tqLM8PCAoJbu8FM96vlUU5/hF3BvfP19DqIj3x1qchvzEex8bygpBr1bwf0vr4O7kmPB6P7f6o4txM9S/I0qdfhgaIma/b6gtbP5fUdWx812y4fYqmhmTWP+RjVb9LFjenBUwLkxXmmQSTtVWGv5bM+k6Ck2tnim1JKg8aUTuaNqVx28Z7pLrY/PnA4P75CXvxxshY1zG7n9OC8kIrBdkZISMhmu1PUU4mgVW9mK0nG+eff77/72OOOUarVq3SxRdfHLLMv/9t/YYmEA/hHo66V3GN4bcpMXB99BLT6Wa/KubkrZlEJD2Rc6+nsngfhkQf5kTmHV6F3z87+x6uspyqQZTxSFZIx3cU2wjuUOirnO672TR48WZnO8YHs9EEU0Wzza7luhd0+nA41gc4yWS1q4naI6uA+7iXUWE2EO39YFxnRrheGOO2Qv6dmvm/lNigCbuiP1ddJysR13nYay0B24cT0V8Rka7FZOV14VgleVcMZa/NrM8VbtSX45mtBa/a6QghsTLWTQJGeXUhGU6PvZ3lIz4QjDLH7Kltg1RMdjLrKE4DU52d99CFU71un4zr2s5D+4B/u3S9WG033tVSJ+3QSPvq9FiYLZ/sMiWEjc0nql8rXociVfvlInFyOOJ+HUV5CMMd+oBpxqJbvcn2oq8nJftW9InUTy115S2pel3b7rdLYF0k2vvDrN8kIYc9Bc+tMUXxuFdMdzlF+rft7m/wYtH+LhpW+YFlP3Gi8ruABxaRFzeOaJ3AQVvRQznusrrrrrt0+OGHh3x+6KGH6je/+Y0riQLsygzzVmJRbvxHnbHDzpvHieKbqi7ZjAWuxxOf6mzMb6xaBFkUGt6aMc4PHss2X/9P+KF3nQyHGs3QqblxGEGkJ7M797kbvF6v7RGjgqcR8jEGV8XS/snODJ8Opw3ncA/Pw9310Q7/mx10HI2bt/u2iTFdwR3hOWGOT7hGQUZ6ajVKnY5QVmjjfsg35CHpCXoampsZOV3GeybcObK6t4JFcybDnX+zeypVyulomNV3dnkTVw+yOsU5MRxTO2kPd46j7TAwdr4F1zWshIwQmICsJ9pTmxflKK92ON1tXx73/ufRjVrrVn+LnXzIWK4W5gTmgeHe5LXKl+3mfanEbEqHWMRSZlnd35kZaa7Ura2mTrVzzVmNEpCXHfu956Q+GMv9Yef6dCsvcXIrWJ13O1PdRnvHBe+nW/mO3eBdY8eyk32wk87MJORDxk1GfJiRIoExbpeb0QY5B7eH8l3IU9xiZ488Hk/Ivkdqq0U6VtGOXG9XuPW7UY7bqWcW5Ngr09zqVwo7labh73DtczMZFscrPYZKs522fr6D4+LkerKTarNzF+t0S9kuj+RtZ312RsiJxHj6nZQDdoUrLXpejTs8s+nfwj2fSQZf/hCuf8WY18S77WznvjP2PSS6emTMe6INBHL6K7dGM49UR7L63tgHHu1MDvHmuy6NzykSMWVeKuZZ8e67MCuLEhWAZ9a+diN4MSfMveF237NVHSsZQaOx1FOMh93uyF/xSgtSn+Ozm5ubqyeffDLk8yeffFI5OYmd1gxYPqZGY+pKtHpus/+z7+4zXEOrivSr4ydrenP/gOWHVBX5/442f3x47QxJ8g8JH66o83ikPUdWadygfjp5dlN0G3TBmQvbNKKmWCum1Zt+P7quRC0VBfqfoycEfB7tMZrUUBr2+/Q0T9e8wEMq1NA/X4U5mVo6qlpl+VlqqSjQXSdMNv2dnfScNKtR4wb10x7DKqNJuimPR7r9qAlqqSjQ7UdP0NqOFo2qLdEB4+skSWs6mjWqtkT7ja2NsCZzZm+yNZUX6JK9h0mSTpnT7B8aO5Iz9mhTS0XXkJbHzWgIu+zV+49UW2WhLlk6TD86eLTaKgt1xfLhDlPfs62b13UuL92n61jnZ6X7/5akGw4Zo9aKQt2/arr/s8qiHE1pLPMfZyeyM9J0xO55y6WuxufeowdqTF2JVhnyMaPDJw/S9Ob+Grd7WOML92pXe7V5XhbNdG7nLB6iYQOLdOLMRmc/jmBIVaHmtJXrwPGh90W4dB41bbCGD7Q/leZZi9o0fGCxjp5ufb3nZKZrXP9dGliSo9aKQi0bM9B0ObN0XbDnULVXF1meHyvHTBusyQ1lmtGc2OFfrztwlOnnh0ys08yWAdpn9EBN2H0tnbN4SMT1Pbi7zLPaVltloa7Yd4SOmjpYUxrLNNXhdFzBgqdWDXbpPsM0tKpIZ+zRGnFdOZnpWjZmoOYPrVBN0PSb6Wke7Tu2RvOGVgTNr97tf4+bFHifO7jB9h9Xo7lt5WoOM2S7cW2XLRuuIVVFOmOPNlvrP2VOV53i0El1/s8eXdd1rupcmhbIqnEc7ISZjZpQX6r5Q0PL3S1ff6slIxJTDwquI1yyd+i14vQh6ZLddbiVs7vzR99lEG6/fT7fFnsgSGFOpvYZPVALh1XqtydNMa2vmXGjg/jivYep1TD9qm+Vh03qKpdG1/aLar2r5zarvbpIF+w5NPZEhhFuitIZLQO6juUxE2Pahm/ajljf1m6pKNDctnIdMM66Llmcl6m9RlZr8Ygq3XXClIDvbjlyvForCnXLkeP9n/ny/RGGMtVXRmRlpOl/j5sUU5rt8D0M23DqTH96YukXfeS1j1xJV1N5gWmZ1b8guqlfJQWUg2ctatOQqqKo6tW+e3fd/BYNrSrS+UH3ie9SCx2trtus1sC6xw2HjFFbZaGuPWCUrTT49uU3J3blObcfFSHPschwzN72NCujlo6q9v/d1UYsjzg1kST94piJtvNEox8eNDqgfHcyxZHZnT60qkjr5rc4SkPHkHLby56zZKiGVBXpyuUjutLgUi/12EH9NL25vw43tE3MeKN9kcNGOic2lGlqU5mOnFLvYMX2mT2YKCvI1pIRVdpzZHXU0z2vX2ivvhaJ3eN5zpLoy0uz66WtslBzLdpp4QS3h763X1d/wvf2HaHRQf1y4SRyQIRII1UZ6zJHTqnX1KYyLR9TI0ma01Zu2ea/fHfd/axF7lwLwS5b1tWvuX6heXtt4uBSzW6zmY+YHPDjZzRowuBSzR0SOtWrz21HTVBrRaFuWzEh4vQ0Ulffih3GK9JWn4rF9XLSrCYNG1ikcyPcH8dMG6xJDaUhZaPPoLI8zR9aoeVjamy/FGKnHeBzmYO6wPl7DvW3Cduri3Tx0vaA7wNG2raxvu/tO0JtlYX6wUGj/Z+dOKtRwwZG3zd+1LTBtpe18zD8pDBtxO/vzmO+Mz+w7R/NA2+Pp7sf2k4dI1apGJwQC2Mbw9eW8xldV+LPN80sGdE1/dlPDh0T9fbtlhtFORld9bJ5XdfMiqn1GlFTHLGfJR6jMHk80sVL23enJzB/LDIJfDTmh2716fhY1bN8zwK+v9/IwC8iZAyxHC5fvnTBXrH1BVy1O3+4aOmwsMudt2d7Vz1636569GkLWjWypliHThqk78xv0ciaYh08sS7kd15Jd+7uE/zV8ebPqeyKturuC/D+8aFj/Z9Z1bWM+byP7/xeFXR+z9xdjy0vzFZJXmg7KJUGrjp2elcZHq7OM6LG/BnC93afcyuD++erIDtDK2c36qhpgzWipth/bKTA42D2jM3Yhr0tqL180xHjAvrSjKY2hfab7z/OOg+1PxpboEuWDguovxnXc9CEWo2qLdGp81oCfhdc77BrzCBnfYNWfbOHTQrfLjXzk0PHqrWiUOctGaqWigL9MoZ+LmP9IpbgqvOjfJaEnsVxiPCaNWt04okn6oUXXtCECV2ZxrPPPqubb75Z5557rusJRO8XS99gTma67j5pasBnB0+s81eK/ufoibr20b/r2kffkiQ9sHq66s+8z9E2ghttLRWFevfyxabLer2hBVl2Rrp+feIU0+UT5YSZjTohTODEyJoSXbBXdIWnmYMnDtIz//ws7DLfC6rYXXdgaCUwGqfbfDDt1IyWAXq4ZaYkaXRdP63u6C4c13S0aE2Hsw71cH5w0GjtNbK7glaan6Xnzu6QpIjXb0VRjh5eO9PWdpaNqdGy3Q3gurI8LRlRreffDX/ezMQ7Cj2e6181t9lf0TlkYmgFbtHwKi0a3tURYHbf281P3rh4j4C3S257+l9df3gD87EfbHgr5LfBDcUjptTriCn1/m2HG6bUTv37mOkNOiZMYFK0PB6PbjZ0wAR8F+Z3RTkZuueUabaP7XEzGnXcjMiBYYc179KiRTOUmZmp/3v5Q939wgeSrDslfdfdkVMH68ipkToQQ9cSy0OQWCwdNVAPvbZJ97+6SVJ3g+XSfbo7dX9lEcBq1mALF5ywdNRALR3VFah2nktBEvuMrg77/SETB5neq1au3n+U5XchHUhBJjaU6eG1M/3XopP+hSv3Db/uYAdNqNNBE0I7dMx4PB6dOr9VpwZ1MjeVW9dPonHA+Fr94tn3Ii53ZpgHjBVFOcrJdK8eFL44CPz20EmDdGgUDXMjYx3u+j/8Q1J3x2u4/fYJDuoLZ9+xNfr1xvdDPk/zeHSNISDCqowPDbSIvUfssEmDdNikQSH58cV7h+/AjKSsIFv3GYKWnXBSJ2gYkK8PNpuPSHXa/FYNt+iEi0asVRWPx6ObLMpMI2OnqfF+H15TrIeCgmGN+b6PMd+OJ1958vT6uSHpaTn7AX27c1dU63WrSnjO4iGa1RraQdsQ4WHb25cuVNPZD5h+ZywHq4pz9cDqyNe4WdCDL48pL8zR/bvX8cc3P9Gf/v5JwG/CPQQKfjhsrM9GTJMC98VOu8IqJWb7t9fIav3oD28HfDZ/aKV+/9KHkrrbiLc8+U7E7Y6u62e73WO058hq7TkyfH3DrrbKQv95isR4yr67zP7D9oElgdeTmyPm/c/RkQNMA6fNcXfksvQ0j35xjLuBnsbOeqvn+j86OPoHvJJU6+ihp/WRsFumDSzJVXVxjj7c8o2D7Vpvw+ORrTInWFlBtvYaWa3/e7nrfm0cUKAH13SVPfuFCQ5OJcb78P5V05VmuEiMfWJX7R++Ln/ghDodGFR3d7PfIlLb4H9jfNC7flHkl2xmtgzQzJaugKTB/fP1xqbwI67bfSHQWDYY21o+YafxMhzjfvlZuveUrrzx4nv/ZvmbSO1yj8ejGw8fF3aZYHbaAT5OAnlq+uX58/sTZ3X1cZz7+9ccpc2owXCP+pTkdR237v4kZxdukYOAZDslRmm+9fr2HVujfcdaP3B2wuv1hvRDS+4FQQXXeQLKzhQKVHDCuEvGl9dLC7IcwtMLaQAAWYhJREFUteV+dPAY/ehgN1Nm7bDJg3Tagu77szAnU/938rTEbDyI1ysdNrleh02uD/muoih0gAqPx+Nqf47RBXu164K92jXlsg0BdYklI6q1ZERondgsV3Br6rL9xtVGrDPYWdfysTVabiN/CK5Hr5zdpJW7gzpPntOsk+dYBz9M2t0nGCsnuezImmK9/P4WSd3HfEhVkem14TGsey+Tto3x/P7hzY/9nxufE465+BEHqQuUiFGJzl4cvgz/20ULLEdB229crU779SuWv/3Dd2YF/Ds4rzCOXmoWXDW7tdzfhvXVl3zmDqnQ3CEVhv7k7nWZvaR45b4j9avnQ/sDpfDHubY0V//+zLzPq64sTw+umeFPg3F/8rIy9LuVXc+i1tz5ov9zs/zKTpqsRgF1Wv5dvPcwVRbn6HsPvWn7N3sMq/QPshEuANxWUoxB7DFc3yumDtaKiM+S0NM5Dq4688wz1dDQoOuuu04///nPJUlDhgzRLbfcov3339/1BAKximbI83i2e1JlDm07Uq0BmKxDl2KHIeWkynQJPZEbQ4y69fY6os/zUu0URBtU4R8Ng0zPlOvHpQ8c52innYlGou5DJ6PuuBHgZHdq0ZBDHY9D3wOuWeNlkMi8OdXKgVSWCmVMPN5Od4tZygKHp09YUmxzcjjNlu2LbYlYyodE5zfRXnPB6UzUXWfcbiLrIamq791d4Rnz/76Y96SCSHlKSN4RMFpTYs9ZqtUX4pGaeJYpfekOCz8tYGpdR9FI9r1gd+uOgsBpwJnyeiPnCx5P6DmhTLUW7aUW6Wo2DYJzmN+Y9W+leo6VqOzIuBk3nt/415ukA2wVABXNngX/xmqf3Dps0R4zpz+L1zlH7xTV5Lb7778/gVToMRI9TzXi10BJZMNnVyo+ueijevOZcGPfYrotkpU/ht1uYhMVMNWJYdtOjmtvvkYTLdmdduG43Sma6p2sbpwKt09nuHqAnfvQE/BuX3Ti9aDWuGvGFNrdXiJiq3qaRHaGUA7YlwrBDtG2KRJxns0Oj/GjeDy48Hhiq09alWdm96DZkmbNruRfJeZCRqZwcNzcKvcTnt9EOy1gCog1v7E6v07WmuyHCmbb76vPCkIeBPfR45BsTutnAWUg58zPrWPhzgt/Vp+nzgmz6mcIDLiMXrICiuOJYJn4SVZ9yk5/m3f3/5xKlds9VdJh5CSfDVgyARdKKvfBJpsnsBGe2G1H85sIP0qzN/NxQqTifSoF1QlSNI1IHVHdUps3b9bPfvYznXXWWfrss64ppF544QV98MEHriYOfU9xblTxfmFZVRLM5hQ2X4H9bdmJ2jXObZ8qmisCh6n2pXtw//wkpMba6LrQYTPjZcvXnf6/Bw9IreMgxa+hbrdOPaeta7jTYQOLHA1zngriWTeymkLN6rhObepv/oUDxkZa8Hze/QvCD80/IML3Utc0fZI0ob40itSZC/dwqSw/y7XtWDGeJ+Pc7NG+FesbGn/k7nUZ5zRPiiiHsR1S1VU+Da0KLKfG7p47vanc/Xt9RE1JwL+bUjg/qS21P8WbHdEez6ri0CHkU1XwtRSr6pJcTRxsnheV2sg73OggDr5mwy5bWxzyWV5W1xSxxbnW9VDjfWtnv6TQ+m59WerVXdwQ6fjbfQBnux1g08CSnnNf2tFe3XXvDh8Yeg3HakpjmST70wcZxT3/i/SWtuHvSQ3u1YsiGWY4D75ApOCaVPA0ZY272y/j6wPbT756ndHUxtjqo1ZtpbrS0M8bTco+s/sn1foyfVmsr07k1vqiMdxGf8Ko2hJJ7tRJfetyKrjMtVueuSndxTftKg35T1WYabODtVRYn4NWB+en2sE2jYL7emI1tDr1+rOi5XZdwMl1EQ1fu9Xt+nW8jLPqP4iQwQeXZ8apbn316GCj60okhbav/vafreE3FoFV/05vMtDBNOZWBpV1n7NCQz0jXgH10bSjrQK93EphuDqz08PQLwnlpZkhld15TTTHqa7MyRS64dkNAHFyrONd1wxXxiTrof243e2CnEzrR8Jer/m0ZZ6Av+MbkOOkfhQ3Lp6kBgfPlYz17sqi8O3labufKVQb6qhjBpWYLltRaN6ONutfG2Vy/lNJvmEawEh1fV9baGRNYB5dkB35GXTAC9hOEpgkNf3C57lWZfKQKOqVdgOKyy2u4eoE9Z+Z9T2EY6xju91OQO/jOJLllVdeUUdHh4qLi/Xuu+/qmGOOUWlpqe6++2699957uv322+ORTvQR/+/QMa6vM7jg+OlhY7VlW2dIgz1RTpjZqMz0NM1qHRB54Tj77UlT9PQ//6sDgua6/sUxE/XaB1tD5gtOlg2nztR9r/xHK6bWJ2yb+YZK1qJhVXHd1vTm/nrirU8d/SbZlboTZjYqKz1di0dUqqF/gT7+YnvIw5tIHlwzXYuue0J3nTAl7HKp9LablfqyPO0zukbLxw60tfzquc26+8X3deFe7TFv23h0Dpk0SF99u9PfwBrcP19/efcz0999d5/hag7T2e9z7ynT9dsXP9ARUwbFnFYzR00drP3H1+jfn32tz77arvrdQZ2DyvL0r/9ui3q94S6bsYP66aKl7aovy9eEwaXKzUxXx9AKx90D7dVFOnJKvf9hy/87fJzu+Mt7OnB8XdTpdkNAp4eNnbr3lGn6098/0VHT6iVJx85okMfj8ZcBPz50jO549j0dML42zFqis3pus/Kz0tW/MFubt3Vq+dga17cRqzuOmajXN33hv6/css/ogfr0S/t55y0rxuv9z78OeMieqnzXlFtzzP/P0RP0j4+/1Pj6Ul1/yBiNu+RR/3c/O3ycPvlye9wDfR9cM12PvPaRjpneEHa5W1eM16Ovf6SKwhzTZS9bNlzvfrpN+4y2V17YDSbx3er/e9wkvfL+Fk0YXKof/eFtSV2dbUdNi/1cpMJoa6vnNqsgO13ff/jvEZc1e0PUqh1QUZStj7Zujzpd4wb1U2vxLr25JYVeB4zBzUeO1y//8p4OnmCvPHPyIOP7+43U7U//S8vG2LsHjMa49KKF1QOa4GCQ362cqqf+8an6F2SrIDtDGelp/s+Om96gpvIC9ctz9wGY2X22cnaTfvhY1/3sqxcH78KUxjKdt2So/2HEz4+ZqP997t86ZGJg/c1Xr5vVOkB3PPue8rMzdNLsRn++6qTefdaiNnm90pLhgW0lXz60oL0i5Dd7jqjWpi3fBAQpjR1Uqgv3ak+5F3uMNqybqXtN2qNuPTf2lZv/+PhL3f1i+JcWT5nT7K+7WrnxsLGu1UlP36NNZQXZWjisMuDzSAHLvkvpZ4eP06dfbleDC+W00+PtRmzV7UdN0Lv//SrgRa9RtSW6aGm7BoUJZB5SVaQlI6p02GTrNtTBE+p03u9fs5WO0bXFeu7dz+0nfLf9x9Xq/lf/o6f+8V/tdGF07qOmDtbOXd6Y+ooSWZswy1N9dYFID6GcMl4XR9z8F1u/OX5GgwqyMzS/vTLisj/b3dY8yGbZ7JOM2tvAklxdsnSY6XeRrkJfELZPTma6fnTwaHXu3KUSizL3p4eN1S+f/XdIe/Wfn3xlO81mxg7q52r5FEtd+ojJg1yd1vIXx0zU3z/6QpMbyiIvHMG8oRU6e9EQDa8pVllBtq7ef6SyM9K17lcvaYeLswL85sQpeu7dz2y3oxLp5DlNyslM09wh1mWzXQNLcnXlviP8L/EZnbFHmybGOcD/tydM0lPvfK4jptSbfh+pqvjLYyfptQ+3aHZruWtpctrHlUx2njslax8uWjpMDf0LtHRUteUyXklnLGzTgMJsLRpuXjbFO/0HT6jTl9t3aEqML4CkCrP2T7BH183Q/a9u0tHTBuv2p/8lSRpaFb7v79oDRunnz7wX8Czi7MVDVVWcq0VB7bOh1UW6dJ9hqi4ODKi9dJ/hai4v1P+9/IH+sbvM/M6CFkf7ZyVej3P65WfpmgNGKjM9TdkZ5kHXPrcdNcHfrzHhuxv8n9+3alrE7XgMXTtm++LoPkjAPT+lsUynLWjVn9/6VBeYPG+yCq6Kpm5vt8+gpaJQ391nuCp2B1mdOGSnBjS0a+wg63LMzeeAS4ZXadUvX5RkL+D76GmD9dBrmzSipjhsOw+QogiuWrdunY488khdeeWVKizsfii7aNEiHXzwwa4mDn2DL7scVOD1v23kpuAOtQU2Oi0ccVg45mSma+XsJnfTEKXRdf1MR4Oa0tg/pgqs25WnxgEFWjW32d2VBgl+yGIsyNPiPLek8U285LO3r4U5mVrd0X1OTpjZ6HhLbZVF+udlix3/LhWVFWQHHI9gwZ1oa+e1aO28yI0VOxVK48PjzPQ02/nLwRPtdcrWleWF3bdoGG+3k+c0qTQ/S22VgW9KtFYUxhRcZbU9n8Mn1xvS0LV/xgcOdvKxPdortZ8hOLW8KEdrOtxphMbC6TC2wwYWBwTsZGcEllPlhfHbr9ysdJ0S5/w9VlOa+muKy4FVUtcbVk7yTjc7J+Mt+JqK1fTmAZre3NXQ71+QrbysdG37dqckhX247Ka2yqKQfMrMrNZyzQpzropzMx3lqU47Lic2lGliQ5lefX+L/7On1s91tpIUlpuVrpPnNNsKrjLL/6zaAf3ysmIKrpKk6ZVevbkl8nKpxqyYqIixPAv38LBfflbU9YpET08yqrYkZNQe42cHJCiYOiezu9PYcpoyjycgiLKqONf0HBrrdSN370e0HZhjB5WaPiTw5UNm0tI8Ot6k7At+gJcKz82Mo6s1WLRHo233Bu+fr9z881ufRgyuyslM99ddrbhZJ83PzvDv+/YdO23/znds3Cyn0x0Wim6MmjKjZYBmKPRhg7EtYWZYdVHEdlmGg36AaIMy0tM8+p+jJ+q+V/6jlXe8ENU6jLIy7Lc3U5XrfYIGka6LYE7aQqnS1rRj1dwmFVu88R+pzDELgF4ywjoQQOpqr5rVLdyY8s4qwCQasdRjQkaYinHXpjb1d2UkdanrnB07o/ulkmVjul6YWvurl1xZv8/YQf2iHkHSelrAWFLULbhsjnW9+48zf7HtxFnO+16dGjawSKPrA+txTvZncmOZJjfGHrRnJdxtnYxpe4PFs4yJlZ2+CK/XqwJD3c8n0uhhbh7OjPQ0nTSrZ9c1jKzaP0ZN5YVaNdfZiF1mzyLMzp1P8Es3Uvc18eoHm/3BVXlZ9kIGkjl16D6j7b2Ya9avMaAw21bgjPGKj7k+Yfi5m+1cY/vA4/Fo5ewmy3q61eNNN+r24bIH3/Onzs5OtZV4tWhSUB9KHBv+xme6dsqxrIyul+kAOxw/0X/uued0/PHHh3w+cOBAbdq0yZVEAW6KtUPN6c9T/Q0KmAs+bS6+XOV42/H6TU+V+uNWmUtUXtADBvYKKxEjk9k9Fb3lvuot+wFY6en5XiTGTirbD1O58UO48UANqSXe9fOecMnEI4l2p1pB/KX6qXByj8TnWrWxXUMiYz2eseyD2/sf677E+X2xHiHV76++IpF9bb2tLtjjLuHedfijRt4Tu952DFNhRGgrVrdtT5hVArDDbp3Y+EzZ1avfRoYWjzzPzcEjEp0buHE8els5guRzHFyVnZ2trVtD5yz/+9//rgEDUmMKMcAomoyTzBbJbDRw+fU8kc5ZPPOUcNdqquZlCUlWFLdwbwmmTdV0AYhfJ0RwB2088oGelrf0tgdq6H3MrtBI95l/WsCUaDH07nssFY5wTxaP9rTTF+fSkxhR5Pbux7onPa0MR2px8/pJZP3Mjakw3RRL2Z0a5X7vk4gA895w7npMIH5PSWcqizLb7G1N7162Ozb0nXvHbp5szE56Q3ChGyP6+gQfj55QzvWENKJncRxctddee+miiy5SZ2enpK7K1XvvvaczzjhDy5cvdz2BQKwS3QAoL8zx/52ZFvt0b4PKuufoHlnj3hQ78TR+cNe8uRk9+PXIg3cPlTouyiGnnThoQuBwmHaGuTabzrHXcrn+uqC9a2oK33zP8RJNpS07oyvPGFrVNfXUsdMbwi0uKfybn3uPHmj9ZYqwSv6BE7qGQQ+ejseu/OzuKXRK8rJs/cbudHrlu6eJmTskMdORxaIXtP+AXmVYtXldzjhalfG+jVSNHbK7vFg+Jv75fWuFs2Hqk+3IqV1TpE2Lw7SeZuoKemaG+9HWb2JeR/AUp/FqfsW7TOsJZ9Bf7+u5zSxbZrR0vbhXmGNvWop4CHcdd+yuAx49fbD1QmHWZ9VH4cvTU1WWYRo7Y7+HUceQrqlxj55m/9hEUlvaNR3WouFVlssMMKmfD03C8fRtc5nL5fJX39qfktFMcW53e6ggifeVlaN2l9mnzIltWpIVU+slSatTfNpxX1/EvARNbx0r3xRlkfokc3dPYzu5wbrutXZe1/Q8B5hMe+brq3HLqghTqCaasb5/3O5p9CJN81aa33XvzmoNfKG9J9RZfOf6wPGh59rOteKGJSO6yo0TZkbuWxtYkhtxGft6b0UtGX1MgVNfubPOZExp5svzndQfE2WP3dMZHjfD/F6pKu6+P9I9Hu03LnBatmROEeem6uKu+m0qT++YKnz9LHlZ6abfr9k9ZeF+Y8NM4ZfA57a+8uCk2famVzXmO2b53vj6ruef4R5/+upNwfdLJEOqirRoePh7UpKO3122LRwW+Xp1I7hqfH3X88jgZ5luFnm+KeV9bTu3EHsLtzluUV911VXad999VV5erq+//lozZ87Upk2bNHnyZF166aXxSCMQk1jje5zN1+1Vbla6/nL2XGWkpbky3OJDa2boo63faJdXqi4x78BMNQNLcvXnM2arODcz2UmxLbiAnTe0Qo+dOlM1/fLMf+Cijt3bKsnL0tedO1UdpkH/ygXz9cU3O1RZHJ9roS9UNNqri/X4abNdr6SFY/ewbjx3njZv+1aVRTl697/b1Dgg8hzg4d78nNRQpj9+Z5Yqi3P0/ufbdOPj/9Svnn/fZmrix04Q05y2rvtiYL/oOrgy0tP0/Dkd8nq7g9acCNcx8MfTZunTL75VXVn884do9IHbGH1cT+y4e/n8+fpq+w7HZU+k+/m3J03Rf7Z8o8H9I5cX0Xr5vPna1rlD/fLtBaqmir1GVqu9ukh1pYnJq4uzpMe/M0MlBT2jvu5T0y9X73/+dUzrOGRincbU9dOiHzzhUqrMuXXvp/Kbp26+UdqTNQwo0BOnz/Y/VE41Pzl0jO26uhOl+Vl6ev0c5WWlXvCL1DWdxAvnztOOXbuUa/Eg5SeHjtW7/92mpvIC17b78JqZ+viLbzSozPp4/+m0Wfrvl9+qtjRPL58/X9u+3aGygsS193x+u3KKPtzsfrlcnBvbNZFlaA9lpsf+EqDbzlk8RAdNqI36uvG1L89dPFQHT6hz9fqLhz9+Z7Y++WJ7QtqTbhQrs1rLbbXNnzunQ5u3fRu2H+34GQ3qGFKuhv6B5yg3M13XHzwm9sRKemb9XL332TZN2P3iZyo6c4827T+uRo0Dwl+rfz5jtj9v27zt2wSlLrzGAfn6xydfRVzuhJkNmjc09FxL9q4VN1x7wCit6WgOe5xfPHeeOnfuUn52fMpet6p2WVH0a/VG4erKjg51EpoDPz4kPvVHN/zo4NFh0xb8vGt68wD94TuzNPv7f0xsQuNsw6mzElY+p5Jo8qlBZfl64vTZlv1Ex81o0Nwh5RpsUgYkw3UHjo5YHhgFjlwV+n11Sa6ePHOOisK8tPCrEybrg8+/VoPNbfr0L8jWDw4crXXzwucXB0+o08TBZaq3cb26Uf3/xTGT9P7n2xzvjxNtlUV6/LTZ6l/obj8A/Sxwm+NaY3FxsR555BH9+c9/1iuvvKIvv/xSY8aMUUdHRzzShz6ge2qD+Igm44y1v93qLc5o5GSmh+1ETFWJCEqKt3hWFKLdVlFOpopyek7Qmhvi8RDd7UaSW/WzguwMFezu0LHbIRzp6NTv7thvKi9MmYqk3VTEeg/23/1AxTfaplvysjJUV5aaD72kHjRkO9CHFOdmRhV0Hul+zslMj2tglSQV52WqWD2z7mG348wtVcU5yszsWcfKjbqBx+NRY3nPa68ES4WgK4rwbrUJCoy0Em4U2oz0tJiCN8KdZuPIAKkoUsBbrMfGTG5W5D6RvKwM5ZV21c+jLXODRZMnZGfEv1yORqrnLWlpHjW7MEJmuPWkUhspNyu9xz24tdM2N/ZnWPF4PGoqDz1HTeUFynAp8K+yOCduLyTGwliupKWZH4dgxrwtVdi9l6zOtWTvWnFDV5kU/jj3lBdIevLsEG5KlX7NaMSjjuQWO2kLft4VUN9JfjPKFT2xfHZDtHdVuPZauDIgGdJtlrtmrJ5NRRrxMDsjPepnG3buya5jbG/9buSdWRlpCXleGo97sAcXHUhRUddip02bpmnTprmZFiAuohk9ylhcplIHDBBvXO3xEc98JBUeBMYiVUeg6cmHlfsYvV2092dPua8DpgWMch1UX2FXPB5QxO36c+ketqqXpUIWYffQpcIh7il5KoC+2z6gPgS4j9sqsnjkPX35uBv7DdPDPOdxctypxiLVUYdJrkgjV0W9XvdW5Ug8A1PjvU/hXnpK5DoAo6iCqzZs2KANGzbo448/1q5duwK+u/nmm11JGOCWqKaDMpSYkbLddEPBRCAWerqMtNQbZjonw3zKiVRiNnWHMTuIZ84QVAz3CD0hqwzXYZPqrKZpAZzIzUzd66gwJ1Pbv9ye7GS4yup4R5tfpmJ5jtSUn+3OvZ6Iziq3pkOxevM/L8HlZ5bJCB2RR6vr+k28pq5xIpqXmNClJ9SFkRr3mVtSqq8qDmnJTDdfZ7JHOKE+BjcZ61rJDHBOpewkVaXH4SAVpsgsBsnI1ozXe7i+OidthZ7c5wdrOb2oPzSRU4GSr4cKKHPdXG+SjnU0z8jt6gnT1lq1FYBoOb7qL7zwQs2fP18bNmzQp59+qs8//zzgPyDV7DWyWmMH9dMpc5qi+n2kAq+sIFtLRlRpyYiqiEPkI3VRvHZpry7SrNYBOnhiXbKTou/uM1xDq4p0xsK2ZCfF0lX7jVRbZaEu2XtY0tKQqiM/2ZZiyT9oQq1mtw7Q0KqiZCclams6Wvx/9/jrA0lz0qwmDRtYpHOXDE12UkLccuR4tVYU6pYV45OdFNes6WhRe3WRLlraHnDfRvswtKWiQHPbynXAuFq3kphSjpo6WJMbypKdjF7hvD3bNaSqSFcuH5HspFg6a1Gbhg8s1jHTG2Jaz5FT6jW1qUyTgq6daw7oqs99d5/hMa3fqYXDKzW+vp/2G1vj/8zqjv/50RPVUlGgO46dJEm6cK92tVUW6vv7jUxASgMdOqlOM1oGaFRNScK3nUg8ZOi7rj94jNoqC3X1/qOSnRTX9NbL+aRZjRpf3097DKs0/b5xQL46hlQE5LOJcPLsJo0b1E9LRlYldLs9GXmuM8ls5yc7aLEnGFSWp/lDK7R8TI0yY5zu8qYjxqm1olA/O2KcS6mLzoHjazW3rVytLkzh6lR+doaWjqrWwmGVqjKZ8vO0Ba0aWVOswyfX217n+PpSTW/ur8MnD3IxpX1Xsnser1g+XEOqinT2oiFJTknsfNfzoZP6wLWZwkMhG+Mve/qsIZI0v928rhwLXz184bDUre8eN6NBEweXanZbuePfnrO45+cniB/Hr2H95Cc/0a233qrDDjvM1YRcfvnlWr9+vVavXq1rr71WkvTNN9/o1FNP1Z133qnt27drwYIFuuGGG1RRUeHqttG75WSm6zcnTnH0G6fl5Y8OHuPsB0g5KfUmZxKlpXl064oJyU6GJOngiXUpEeQVzvKxNVpuo6M2npfXrh5Yv4/X2x9uuGxZ6j5ctmtAYXayk4BeoF9+lu49ZXqyk2FqeE2xHlo7I9nJcNWAwmzdt6rreL/24ZaY1+fxeHTTkb0n+CzYeXt2Bf3Vn3lfklPS8w0sydUDq929190exeq4GY06bkZjzOu5YK9208/3GV2jfUYn9sG7JGVnpOuuE6bo463f6K6N70uyfmA5rbm/Hl470//v2tI8PbgmOfngJXsnNggNSLTFI6q0eETqPiSIRm8Nhjh9j/AvYnk8nqQEJHxnQWvCt2mld575PoqT2WN4PB7deLg7ec/cIRWaOyT5z8IuT/KLGNcdONryu5Wzm7RytrOX6tPTPPqfoyfGmizsluzgkwPG1+mA8an9DMGuaK7nWDFlWijjs8Ke+OwlWDxGropUD08FZ8UQcHnM9AY9+NdNev5fDCqEUI7vqG+//VZTpjgLVInkueee009/+lONGBFYSVu7dq3uuece3XXXXfrTn/6kDz/8UMuWLXN120i+VC+bqFwASGVOGrAp86IF2SoAIIUQZB87DmH0AjprOY4pg1OB3oQ8GqmOS7Tn6K3BmgDQV5Gthwo8JKnyQCV6qVp2p2aqgMgcB1cdc8wxuuOOO1xLwJdffqlDDjlE/+///T/169fP//mWLVt000036eqrr9acOXM0duxY3XLLLXrqqaf0zDPPuLZ9AADiLZ4PbVMmYCpKPT39qY7jC/Q83LdA32Kc2ieN3sWUQdAlACBVJbO9kOb+4BcAejj6MBCNVL5sPAHTAiYvHW6JcYZaAEFsTQu4bt06/9+7du3SjTfeqEcffVQjRoxQZmZmwLJXX321owSsXLlSixcvVkdHhy655BL/5xs3blRnZ6c6Ojr8n7W1tamurk5PP/20Jk2aZLq+7du3a/v27f5/b926VZLU2dmpzs5OR2lDYuzcsdP/d6qco6y07hJz184d6uzclcTUIBy3rpmhlQV67I2PXV0n+raCrO5aeDyvqdaKAtvr3+XtzsuSeZ2nebvz/QzPrrinxbf+vnhvF2R5+uR+A2YmN5Tqibf/q8qi7JS+LwoTVH70BlMaSvXUPz/z/3vnrujKFOMokJF+P6SyUK9v+kLDqotCype+fL527OyuY+zYQdvbiUxP9/Xn2bVTyTx0Ozp39Plzl5uZpq87d2lMXbGrx8K4rs7OHersJHgL0vCBRXr1g60aUlkY9nrbuTO2dtzOnTti+r2bvN74t/9gLpWPu9frTen0uWFXlPVUH2M/SqYnicfL8JC5t5+zvoT2DGIxuCyXa6cHa6so0AN/7fo7kedxUGmu/+9Uvn5yMtxLn526QDyORV2/nKQeY6syZtLgUv3prU9VURiun9Z+f53bnPQVonewe549XhvzCc2ePdveyjwePfbYY7aWlaQ777xTl156qZ577jnl5ORo1qxZGjVqlK699lrdcccdWrFiRUCglCRNmDBBs2fP1hVXXGG6zgsuuEAXXnhhyOd33HGH8vLybKcNifPKZx7d9Ga66gu8Wjt8Z+QfJMhzn3iUkSaNLusFocm9zOqnu+NCr5u8I8yS9nXukv7woUft/bwamO/KKgH95WOPstKlUXHIRz74Snrtc49mVXmVlW7vN7/8R5qe+bjrVQW37p1ovfCpR7u80rgB5LHx8PJ/Pfp6pzSpnOML+HzZKf15k0cTyr0qzU52asJ75mOP8jKkEaXcw+H4zukD73cVhPsO3qnplc6P2ZUvp+uDbV2BDpHKxy3fSk995NGUCq+Ks5ynubfa6ZXWPdNVRz9z5A5V0fR25PlPPErzSGP6J+ee97Wv1gzbocGFSUlCyvjka2njpx7NqPIqz9briPZs3i6d/0LXCi8bv8PVdaPnslum3P/vND30fvTtuA++kq58JSPq37vBl88MKvBqXQr1/fV21/41Xe98Ya+Okwx94brw7eOosl1a0RLby7svfurRDq80Pon9KFe9kq73vkrdawpA4rz7hfT2Vo/mVHsZgbcH27FLeuxDj4b286omgc/Fdnm7nsc1FHlTsg368n892r5TmuBC37qvLrCwZqf2qA1dXzyed0rSP7ZK//rSo9lV3pSc/tHXpzd+gFdlOebLXPxCuj7dnpx6R6rXo+G+bdu26eCDD9aWLVtUVFRkuZyt7pw//OEPriXM59///rdWr16tRx55RDk5FndNFNavXx8w0tbWrVtVW1ur+fPnhz0QSJ7Mv32sm958SZI0b968kNHQkmVRshMAS6ufftj/96JF7p2ppa6tCeiSavnIn3/3mp75+ANJ7t470Ujk1js7O/XII4+kVBkTb6l27QGpYv9kJ8Am7mH79pfUfG5X3XBYe7sWTaxzvI4fv/O0tO0LSfbKx4OC/t0Xy5lgO3bu0rpnHpUkzZg+Q80VBUlOUc+S7Hve176aMmWKRteWJDcxKeCIOKzzP1u+0fkvPC5JWjB/vgpziK5Cl+Ayxcwbj/xdev9dSdG1497Y9IWufOXpqH/vBl8+U1xSrEWLzGcjgPtu++AveueLzZKS3wdgxnddlJSUaNGiiUlOTXz49rGqskqLFo2MaV2pcAZv+vczeu+rrplCUvGaQnRozwB9215J2u6SJG3XDjdLOF9doKWlRYtmN1p+L/XOsjVcGROpn/aqN5+Qtn8tKfHH5vYUr0fDfb7Z8CJx3JuzZcsW7dy5U6WlpQGff/bZZ8rIyLAdwLRx40Z9/PHHGjNmjP+znTt36vHHH9ePfvQjPfTQQ/r222+1efNmlZSU+Jf56KOPVFlZabne7OxsZWeHvoqemZlJxTBFpaV3vWnu8XCe4BzXC2Bfmqd7gu2+eO9QxgBA75aekRFVPu8xvMIXSznRl8uZtPTuty8zMqM7D0i+9HTOXbykpXcPL5+dlanMTIKrYF96WmztOOP1lux73ONJS3oa+hK36jjx5vF4Ujp9bkhL6x3Xfl/vV+rt+nJ7BgDiLT09PWIe25vz4GjKmKTWZXtIPRrusXue0yIvEujAAw/UnXfeGfL5r371Kx144IG21zN37ly9+uqreumll/z/jRs3Tocccoj/78zMTG3YsMH/mzfffFPvvfeeJk+e7DTZAAAAAACESMHR0QH0Ml7D7A9pqTgnA3o1DyVdn9VTzjzZYs/BuQIAAIlCtQOpyHFw1bPPPqvZs2eHfD5r1iw9++yzttdTWFioYcOGBfyXn5+vsrIyDRs2TMXFxTr66KO1bt06/eEPf9DGjRu1YsUKTZ48WZMmMXw0AAAAAEAqzO4akWNaU/+ofn/0tMGSpDlt5a6lqa+hw6t3aBrAdI7xMqCwe4T1rAzHXXHo4+YN7SqfKopCR+q3o6ZfrpvJicqMlgGSpBVT6pObEKQU33VxJNdFj7Fiale9eXpzdPVuAAAAu46f2TWN4oL2iiSnBOjmeBzy7du3a8eOHSGfd3Z26uuvv3YlUT7XXHON0tLStHz5cm3fvl0LFizQDTfc4Oo2AADoK7zyRl4IAIAe5pmz5uqzr75VbWleVL9fPrZGI2tLNKgsut8jEIFWPc9L583TN527VJzHUPfxkpOZrr+cPVfpHo/S07hL4MzQqiKdO3qH9lsyN6rf52dn6C9nzVVmevIC+246Ypze+2ybGgnihAHXRc+z18hqtVcXqS7KejcAAH0VrUDnDhxfq/H1paqnvw4pxHFw1YQJE3TjjTfqhz/8YcDnP/nJTzR27NiYEvPHP/4x4N85OTm6/vrrdf3118e0XgAAAABA75SfnaH8bMdN2wBN5TzUQ99VkpeV7CT0CeWFOclOAnqw/jlSblZ61L8vL0ru9ZeZnkYADUJwXfRMnDMAAJAIHo+H/jqkHMc90Jdccok6Ojr08ssva+7crjemNmzYoOeee04PP/yw6wlEX8BIKgAAAADQU3l4BRMAAAAAAABAL+Z4POipU6fq6aefVm1trX71q1/pnnvuUVNTk1555RVNnz49HmkEAAAuyMmM/k1nAAAAO9KY8gwAgJQQ68iecBHVIwAA+rSsjPAhGYXU21JKXgyjBqN3i+pOHTVqlH7xi1+4nRYAsOWuEybr7N++qgv3GpbspAA9yuq5zdr4r8+1/7jaZCcFAAD0Ih6PR/uNrdHn2zrV0D8/2ckBAACSLl46TMf9z/M6bkZDspMCJm4AAKBPOm1Bqx5+bZMOnTTI9Pvbj5qgS+77m67cd2SCU4ZwLt17uI77n+d1/Ezq0QgUUxjkN998o2+//Tbgs6KiopgSBACRjK8v1cNrZyY7GUCPU1aQrftWMcokAABw3/f2oyMQAIBUUleWpwfXzEh2MgAAAPqslbObtHJ2k+X3M1oG6OEWnnemGurRsOJ4WsBt27bp5JNPVnl5ufLz89WvX7+A/wAAAAAAAAAAACCmBQQAAAB6AcfBVaeddpoee+wx/fjHP1Z2drZ+9rOf6cILL1R1dbVuv/32eKQRvZx397DItDEBAAAAAAAAAAAAAACQShxPC3jPPffo9ttv16xZs7RixQpNnz5dTU1NGjRokH7xi1/okEMOiUc6AQAAAAAAAAAAepShVUXJTgIAAACAGDkeueqzzz5TQ0ODJKmoqEifffaZJGnatGl6/PHH3U0dAAAAAAAAAABAD3PvKdN02oJWHTN9cLKTAgAAACBGjoOrGhoa9M4770iS2tra9Ktf/UpS14hWJSUlriYOAAAAAAAAAACgpxk2sFgrZzcpOyM92UkBAAAAECPHwVUrVqzQyy+/LEk688wzdf311ysnJ0dr167Vaaed5noCAQAAAAAAAAAAAAAAACAZMpz+YO3atf6/Ozo69MYbb2jjxo1qamrSiBEjXE0c+gbv7v/3JDUVAAAAAAAAAAAAAAAAQCDHwVXBBg0apEGDBrmRFgAAAAAAAAAAAAAAAABIGbanBXzsscc0dOhQbd26NeS7LVu2qL29XU888YSriQMAAAAAAAAAAAAAAACAZLEdXHXttdfq2GOPVVFRUch3xcXFOv7443X11Ve7mjgAAAAAAAAAAAAAAAAASBbbwVUvv/yy9thjD8vv58+fr40bN7qSKAAAAAAAAAAAAAAAAABINtvBVR999JEyMzMtv8/IyNAnn3ziSqLQt3i9yU4BAAAAAAAAAAAAAAAAEMp2cNXAgQP117/+1fL7V155RVVVVa4kCgAAAAAAAAAAAAAAAACSzXZw1aJFi3Tuuefqm2++Cfnu66+/1vnnn68lS5a4mjgAAAAAAAAAAAAAAAAASJYMuwuec845uvvuu9XS0qKTTz5Zra2tkqQ33nhD119/vXbu3Kmzzz47bgkFAAAAAAAAAAAAAAAAgESyHVxVUVGhp556SieeeKLWr18vr9crSfJ4PFqwYIGuv/56VVRUxC2hAAAAAAAAAAAAAAAAAJBItoOrJGnQoEG6//779fnnn+vtt9+W1+tVc3Oz+vXrF6/0oQ/wyheol+SEAAAAAAAAAAAAAAAAAAaOgqt8+vXrp/Hjx7udFgAAAAAAAAAAAAAAAABIGWnJTgAAAAAAAAAAAAAAAAAApCKCqwAAAAAAAAAAAAAAAADABMFVAAAAAAAAAAAAAAAAAGDCVnDVmDFj9Pnnn0uSLrroIm3bti2uiULf4vX6/0pmMgAAAAAAAAAAAAAAAIAAtoKrXn/9dX311VeSpAsvvFBffvllXBMFAAAAAAAAAAAAAAAAAMmWYWehUaNGacWKFZo2bZq8Xq++//3vq6CgwHTZ8847z9UEAgAAAAAAAAAAAAAAAEAy2AquuvXWW3X++efr3nvvlcfj0QMPPKCMjNCfejwegqsAAAAAAAAAAAAAAAAA9Aq2gqtaW1t15513SpLS0tK0YcMGlZeXxzVh6Hs8yU4AAAAAAAAAAAAAAAAAYGAruMpo165d8UgH+jBvshMAAAAAAAAAAAAAAAAAmHAcXCVJ//jHP3Tttdfq9ddflyQNHTpUq1evVmNjo6uJAwAAAAAAAAAAAAAAAIBkSXP6g4ceekhDhw7VX/7yF40YMUIjRozQs88+q/b2dj3yyCPxSCMAAAAAAAAAAAAAAAAAJJzjkavOPPNMrV27VpdffnnI52eccYbmzZvnWuIAAAAAAAAAAAAAAAAAIFkcj1z1+uuv6+ijjw75/KijjtLf/vY3VxIFAAAAAAAAAAAAAAAAAMnmOLhqwIABeumll0I+f+mll1ReXu5oXT/+8Y81YsQIFRUVqaioSJMnT9YDDzzg//6bb77RypUrVVZWpoKCAi1fvlwfffSR0yQjxXm93mQnAQAAAAAAAAAAAAAAAAjheFrAY489Vscdd5z++c9/asqUKZKkJ598UldccYXWrVvnaF01NTW6/PLL1dzcLK/Xq9tuu01Lly7Viy++qPb2dq1du1b33Xef7rrrLhUXF+vkk0/WsmXL9OSTTzpNNgAAAAAAAAAAAAAAAAA44ji46txzz1VhYaGuuuoqrV+/XpJUXV2tCy64QKtWrXK0rj333DPg35deeql+/OMf65lnnlFNTY1uuukm3XHHHZozZ44k6ZZbbtGQIUP0zDPPaNKkSU6TDgAAAAAAAAAAAAAAAAC2OQ6u8ng8Wrt2rdauXasvvvhCklRYWBhzQnbu3Km77rpLX331lSZPnqyNGzeqs7NTHR0d/mXa2tpUV1enp59+2jK4avv27dq+fbv/31u3bpUkdXZ2qrOzM+Z0wn07d+70/805AgC4zVe2UMYAAOKBcgYAEE+UMwCAeKKcAQDEC2UMegq716jj4CojN4KqXn31VU2ePFnffPONCgoK9Nvf/lZDhw7VSy+9pKysLJWUlAQsX1FRoU2bNlmu77LLLtOFF14Y8vnDDz+svLy8mNML9730qUdSujwe6ZFHHkl2cgAAvRRlDAAgnihnAADxRDkDAIgnyhkAQLxQxiDVbdu2zdZyMQVXuaG1tVUvvfSStmzZol//+tc64ogj9Kc//Snq9a1fv17r1q3z/3vr1q2qra3V/PnzVVRU5EaS4bIdL/9HeutVSdK8efOUmZmZ5BQBAHqTzs5OPfLII5QxAIC4oJwBAMQT5QwAIJ4oZwAA8UIZg57CNxteJEkPrsrKylJTU5MkaezYsXruued03XXX6YADDtC3336rzZs3B4xe9dFHH6mystJyfdnZ2crOzg75PDMzk5s2RWVkpPv/5jwBAOKFMgYAEE+UMwCAeKKcAQDEE+UMACBeKGOQ6uxen2lxTodju3bt0vbt2zV27FhlZmZqw4YN/u/efPNNvffee5o8eXISUwgAAAAAAAAAAAAAAACgL3A0clVnZ6f22GMP/eQnP1Fzc3PMG1+/fr0WLlyouro6ffHFF7rjjjv0xz/+UQ899JCKi4t19NFHa926dSotLVVRUZFOOeUUTZ48WZMmTYp52wAAAAAAAAAAAAAAAAAQjqPgqszMTL3yyiuubfzjjz/W4Ycfrv/85z8qLi7WiBEj9NBDD2nevHmSpGuuuUZpaWlavny5tm/frgULFuiGG25wbfsAAAAAAAAAAAAAAAAAYMVRcJUkHXroobrpppt0+eWXx7zxm266Kez3OTk5uv7663X99dfHvC2kLq832SkAAAAAAAAAAAAAAAAAQjkOrtqxY4duvvlmPfrooxo7dqzy8/MDvr/66qtdSxwAAAAAAAAAAAAAAAAAJIvj4Kq//vWvGjNmjCTp73//e8B3Ho/HnVQBAAAAAAAAAAAAAAAAQJI5Dq76wx/+EI90AAAAAAAAAAAAAAAAAEBKSYv2h2+//bYeeughff3115Ikr9frWqLQNzHuGQAAAAAAAAAAAAAAAFKJ4+Cq//73v5o7d65aWlq0aNEi/ec//5EkHX300Tr11FNdTyB6P68IzAMAAAAAAAAAAAAAAEDqcRxctXbtWmVmZuq9995TXl6e//MDDjhADz74oKuJAwAAAAAAAAAAAAAAAIBkyXD6g4cfflgPPfSQampqAj5vbm7Wv/71L9cSBgAAAAAAAAAAAAAAAADJ5Hjkqq+++ipgxCqfzz77TNnZ2a4kCgAAAAAAAAAAAAAAAACSzXFw1fTp03X77bf7/+3xeLRr1y5deeWVmj17tquJQ9/iSXYCAAAAAAAAAAAAAAAAAAPH0wJeeeWVmjt3rp5//nl9++23Ov300/Xaa6/ps88+05NPPhmPNKKX83qTnQIAAAAAAAAAAAAAAAAglOORq4YNG6a///3vmjZtmpYuXaqvvvpKy5Yt04svvqjGxsZ4pBEAAAAAAAAAAAAAAAAAEs7xyFWSVFxcrLPPPtvttAAAAAAAAAAAAAAAAABAyogquOrzzz/XTTfdpNdff12SNHToUK1YsUKlpaWuJg4AAAAAAAAAAAAAAAAAksXxtICPP/646uvr9YMf/ECff/65Pv/8c/3gBz/Q4MGD9fjjj8cjjQAAAAAAAAAAAAAAAACQcI5Hrlq5cqUOOOAA/fjHP1Z6erokaefOnTrppJO0cuVKvfrqq64nEr2b15vsFAAAAAAAAAAAAAAAAAChHI9c9fbbb+vUU0/1B1ZJUnp6utatW6e3337b1cQBAAAAAAAAAAAAAAAAQLI4Dq4aM2aMXn/99ZDPX3/9dY0cOdKVRAEAAAAAAAAAAAAAAABAstmaFvCVV17x/71q1SqtXr1ab7/9tiZNmiRJeuaZZ3T99dfr8ssvj08qAQAAAAAAAAAAAAAAACDBbAVXjRo1Sh6PR16v1//Z6aefHrLcwQcfrAMOOMC91KFP8XiSnQIAAAAAAAAAAAAAAACgm63gqnfeeSfe6UAf5o28CAAAAAAAAAAAAAAAAJBwtoKrBg0aFO90AAAAAAAAAAAAAAAAAEBKsRVcFezDDz/Un//8Z3388cfatWtXwHerVq1yJWEAAAAAAAAAAAAAAAAAkEyOg6tuvfVWHX/88crKylJZWZk8Ho//O4/HQ3AVAAAAAAAAAAAAAAAAgF7BcXDVueeeq/POO0/r169XWlpaPNIEAAAAAAAAAAAAAAAAAEnnODpq27ZtOvDAAwmsgmu8Xm+ykwAAAAAAAAAAAAAAAACEcBwhdfTRR+uuu+6KR1oAAAAAAAAAAAAAAAAAIGU4nhbwsssu05IlS/Tggw9q+PDhyszMDPj+6quvdi1xAAAAAAAAAAAAAAAAAJAsUQVXPfTQQ2ptbZUkeTwe/3fGvwGnuHoAAAAAAAAAAAAAAACQShwHV1111VW6+eabdeSRR8YhOQAAAAAAAAAAAAAAAACQGtKc/iA7O1tTp06NR1rQR3mTnQAAAAAAAAAAAAAAAADAhOPgqtWrV+uHP/xhPNICAAAAAAAAAAAAAAAAACnD8bSAf/nLX/TYY4/p3nvvVXt7uzIzMwO+v/vuu11LHAAAAAAAAAAAAAAAAAAki+PgqpKSEi1btiweaQEAAAAAAAAAAAAAAACAlOE4uOqWW26JRzoAAAAAAAAAAAAAAAAAIKWkJTsBgLzJTgAAAAAAAAAAAAAAAAAQyvHIVYMHD5bH47H8/p///GdMCQIAAAAAAAAAAAAAAACAVOA4uGrNmjUB/+7s7NSLL76oBx98UKeddpqjdV122WW6++679cYbbyg3N1dTpkzRFVdcodbWVv8y33zzjU499VTdeeed2r59uxYsWKAbbrhBFRUVTpMOAAAAAAAAAAAAAAAAALY5Dq5avXq16efXX3+9nn/+eUfr+tOf/qSVK1dq/Pjx2rFjh8466yzNnz9ff/vb35Sfny9JWrt2re677z7dddddKi4u1sknn6xly5bpySefdJp0pLgwA6IBAAAAAAAAAAAAAAAACec4uMrKwoULtX79et1yyy22f/Pggw8G/PvWW29VeXm5Nm7cqBkzZmjLli266aabdMcdd2jOnDmSpFtuuUVDhgzRM888o0mTJrmVfAAAAAAAAAAAAAAAAAAI4Fpw1a9//WuVlpbGtI4tW7ZIkn89GzduVGdnpzo6OvzLtLW1qa6uTk8//bRpcNX27du1fft2/7+3bt0qqWv6ws7OzpjSh/jYsXOH/2/OEQDAbb6yhTIGABAPlDMAgHiinAEAxBPlDAAgXihj0FPYvUYdB1eNHj1aHsP8bV6vV5s2bdInn3yiG264wenq/Hbt2qU1a9Zo6tSpGjZsmCRp06ZNysrKUklJScCyFRUV2rRpk+l6LrvsMl144YUhnz/88MPKy8uLOn2In1c+8khKlyQ98sgjyU0MAKDXoowBAMQT5QwAIJ4oZwAA8UQ5AwCIF8oYpLpt27bZWs5xcNXee+8d8O+0tDQNGDBAs2bNUltbm9PV+a1cuVJ//etf9ec//znqdUjS+vXrtW7dOv+/t27dqtraWs2fP19FRUUxrRvx8dXG93XnP/8mSZo3b54yMzOTnCIAQG/S2dmpRx55hDIGABAXlDMAgHiinAEAxBPlDAAgXihj0FP4ZsOLxHFw1fnnn+84MZGcfPLJuvfee/X444+rpqbG/3llZaW+/fZbbd68OWD0qo8++kiVlZWm68rOzlZ2dnbI55mZmdy0KSo9vWvUKo84TwCA+KGMAQDEE+UMACCeKGcAAPFEOQMAiBfKGKQ6u9dnWpzTEZbX69XJJ5+s3/72t3rsscc0ePDggO/Hjh2rzMxMbdiwwf/Zm2++qffee0+TJ09OdHIBAAAAAAAAAAAAAAAA9CG2R65KS0uTx+MJu4zH49GOHTtsb3zlypW644479Pvf/16FhYXatGmTJKm4uFi5ubkqLi7W0UcfrXXr1qm0tFRFRUU65ZRTNHnyZE2aNMn2dpDavN5kpwAAAAAAAAAAAAAAAAAIZTu46re//a3ld08//bR+8IMfaNeuXY42/uMf/1iSNGvWrIDPb7nlFh155JGSpGuuuUZpaWlavny5tm/frgULFuiGG25wtB0AAAAAAAAAAAAAAAAAcMp2cNXSpUtDPnvzzTd15pln6p577tEhhxyiiy66yNHGvTaGLMrJydH111+v66+/3tG6AQAAAAAAAAAAAAAAACAWadH86MMPP9Sxxx6r4cOHa8eOHXrppZd02223adCgQW6nDwAAAAAAAAAAAAAAAACSwlFw1ZYtW3TGGWeoqalJr732mjZs2KB77rlHw4YNi1f6AAAAAAAAAAAAAAAAACApbE8LeOWVV+qKK65QZWWlfvnLX5pOEwhEI/LkkAAAAAAAAAAAAAAAAEDi2Q6uOvPMM5Wbm6umpibddtttuu2220yXu/vuu11LHAAAAAAAAAAAAAAAAAAki+3gqsMPP1wejyeeaQEAAAAAAAAAAAAAAACAlGE7uOrWW2+NYzIAidA9AAAAAAAAAAAAAAAApJK0ZCcAAAAAAAAAAAAAAAAAAFIRwVVIOq832SkAAAAAAAAAAAAAAAAAQhFcBQAAAAAAAAAAAAAAAAAmCK4CAAAAAAAAAAAAAAAAABMEVwEAAAAAAAAAAAAAAACACYKrAAAAAAAAAAAAAAAAAMAEwVVIOq+8yU4CAAAAAAAAAAAAAAAAEILgKgAAAAAAAAAAAAAAAAAwQXAVAAAAAAAAAAAAAAAAAJgguAopw+NJdgoAAAAAAAAAAAAAAACAbgRXAQAAAAAAAAAAAAAAAIAJgquQdF5vslMAAAAAAAAAAAAAAAAAhCK4CgAAAAAAAAAAAAAAAABMEFwFAAAAAAAAAAAAAAAAACYIrgIAAAAAAAAAAAAAAAAAEwRXAQAAAAAAAAAAAAAAAIAJgquQdN5kJwAAAAAAAAAAAAAAAAAwQXAVAAAAAAAAAAAAAAAAAJgguAopw5PsBAAAAAAAAAAAAAAAAAAGBFcBAAAAAAAAAAAAAAAAgAmCqwAAAAAAAAAAAAAAAADABMFVSD6vN9kpAAAAAAAAAAAAAAAAAEIQXAUAAAAAAAAAAAAAAAAAJgiuQsrwJDsBAAAAAAAAAAAAAAAAgAHBVQAAAAAAAAAAAAAAAABgguAqAAAAAAAAAAAAAAAAADBBcBWSzpvsBAAAAAAAAAAAAAAAAAAmCK4CAAAAAAAAAAAAAAAAABMEVyF1eJKdAAAAAAAAAAAAAAAAAKAbwVUAAAAAAAAAAAAAAAAAYCKpwVWPP/649txzT1VXV8vj8eh3v/tdwPder1fnnXeeqqqqlJubq46ODr311lvJSSwAAAAAAAAAAAAAAACAPiWpwVVfffWVRo4cqeuvv970+yuvvFI/+MEP9JOf/ETPPvus8vPztWDBAn3zzTcJTiniyetNdgoAAAAAAAAAAAAAAACAUBnJ3PjChQu1cOFC0++8Xq+uvfZanXPOOVq6dKkk6fbbb1dFRYV+97vf6cADD0xkUgEAAAAAAAAAAAAAAAD0MUkNrgrnnXfe0aZNm9TR0eH/rLi4WBMnTtTTTz9tGVy1fft2bd++3f/vrVu3SpI6OzvV2dkZ30QjKjt37pQkeSTOEQDAdb6yhTIGABAPlDMAgHiinAEAxBPlDAAgXihj0FPYvUZTNrhq06ZNkqSKioqAzysqKvzfmbnssst04YUXhnz+8MMPKy8vz91EwhWv/ccjKV2S9MgjjyQ3MQCAXosyBgAQT5QzAIB4opwBAMQT5QwAIF4oY5Dqtm3bZmu5lA2uitb69eu1bt06/7+3bt2q2tpazZ8/X0VFRUlMGaz895n39Jt335AkzZs3T5mZmUlOEQCgN+ns7NQjjzxCGQMAiAvKGQBAPFHOAADiiXIGABAvlDHoKXyz4UWSssFVlZWVkqSPPvpIVVVV/s8/+ugjjRo1yvJ32dnZys7ODvk8MzOTmzZFpaWl+f/mPAEA4oUyBgAQT5QzAIB4opwBAMQT5QwAIF4oY5Dq7F6faZEXSY7BgwersrJSGzZs8H+2detWPfvss5o8eXISUwYAAAAAAAAAAAAAAACgL0jqyFVffvml3n77bf+/33nnHb300ksqLS1VXV2d1qxZo0suuUTNzc0aPHiwzj33XFVXV2vvvfdOXqIBAAAAAAAAAAAAAAAA9AlJDa56/vnnNXv2bP+/161bJ0k64ogjdOutt+r000/XV199peOOO06bN2/WtGnT9OCDDyonJydZSQYAAAAAAAAAAAAAAADQRyQ1uGrWrFnyer2W33s8Hl100UW66KKLEpgqAAAAAAAAAAAAAAAAAJDSkp0AwDq8DgAAAAAAAAAAAAAAAEgegqsAAAAAAAAAAAAAAAAAwATBVUgZnmQnAAAAAAAAAAAAAAAAADAguAoAAAAAAAAAAAAAAAAATBBcBQAAAAAAAAAAAAAAAAAmCK5C0nm9yU4BAAAAAAAAAAAAAAAAEIrgKgAAAAAAAAAAAAAAAAAwQXAVAAAAAAAAAAAAAAAAAJgguAoAAAAAAAAAAAAAAAAATBBcBQAAAAAAAAAAAAAAAAAmCK5C0nmTnQAAAAAAAAAAAAAAAADABMFVSBkeT7JTAAAAAAAAAAAAAAAAAHQjuAoAAAAAAAAAAAAAAAAATBBcBQAAAAAAAAAAAAAAAAAmCK4CAAAAAAAAAAAAAAAAABMEVyHpvF5vspMAAAAAAAAAAAAAAAAAhCC4CgAAAAAAAAAAAAAAAABMEFwFAAAAAAAAAAAAAAD+f3v3Hlt1ffcB/NPSC2ApRQstlYsaWJkXyk0I27whtiGMzF2ZIQRxaKZFRXYxJBPc/hDEzDmdgtvi0MQLaobLnKINMJwTRUsQkcnUoJgpZcig5SLU9vf88YTzeB4OaiaHU8rrlZzknO/ve875/Lj0nUPe/A4AGShXAQAAAAAAAAAAZKBcBQAAAAAAAAAAkIFyFQAAAAAAAAAAQAbKVXQYebkeAAAAAAAAAAAAPkG5CgAAAAAAAAAAIAPlKgAAAAAAAAAAgAyUqwAAAAAAAAAAADJQriLnkiTXEwAAAAAAAAAAwOGUq+gw8nI9AAAAAAAAAAAAfIJyFQAAAAAAAAAAQAbKVQAAAAAAAAAAABkoVwEAAAAAAAAAAGSgXEXOJZHkegQAAAAAAAAAADiMchUdR16uBwAAAAAAAAAAgP+jXAUAAAAAAAAAAJCBchUAAAAAAAAAAEAGylUAAAAAAAAAAAAZHBflqrvvvjtOO+206Nq1a4wZMybWrl2b65E4ipIk1xMAAAAAAAAAAMDhOny5aunSpTF79uyYN29erFu3LmpqaqKuri62b9+e69E4yvJyPQAAAAAAAAAAAHxChy9X3X777XHllVfG9OnT48wzz4zFixdH9+7d47777sv1aAAAAAAAAAAAQCdWkOsBPs3BgwejsbEx5syZk1rLz8+P8ePHx5o1azI+58CBA3HgwIHU4+bm5oiIaG1tjdbW1uwOzH+lrb0tdd/vEQBH26FskTEAZIOcASCb5AwA2SRnAMgWGcPx4vP+Ge3Q5aodO3ZEW1tbVFRUpK1XVFTEG2+8kfE58+fPj5///OeHrT/77LPRvXv3rMzJF/PGv/IioktERDQ0NOR2GAA6LRkDQDbJGQCySc4AkE1yBoBskTF0dPv27ftc+zp0ueq/MWfOnJg9e3bqcXNzc/Tv3z9qa2ujtLQ0h5NxJDW79sc3mprjzdca45JLLonCwsJcjwRAJ9La2hoNDQ0yBoCskDMAZJOcASCb5AwA2SJjOF4c+ja8z9Khy1Xl5eXRpUuXaGpqSltvamqKysrKjM8pLi6O4uLiw9YLCwv9pe2gTutdGKeWdYs9b/t9AiB7ZAwA2SRnAMgmOQNANskZALJFxtDRfd4/n/lZnuMLKSoqipEjR8aKFStSa+3t7bFixYoYO3ZsDicDAAAAAAAAAAA6uw595aqIiNmzZ8e0adNi1KhRMXr06Ljjjjti7969MX369FyPBgAAAAAAAAAAdGIdvlw1efLk+Pe//x1z586Nbdu2xbBhw2L58uVRUVGR69EAAAAAAAAAAIBOrMOXqyIiZs6cGTNnzsz1GAAAAAAAAAAAwAkkP9cDAAAAAAAAAAAAdETKVQAAAAAAAAAAABkoVwEAAAAAAAAAAGSgXAUAAAAAAAAAAJCBchUAAAAAAAAAAEAGylUAAAAAAAAAAAAZKFcBAAAAAAAAAABkoFwFAAAAAAAAAACQgXIVAAAAAAAAAABABspVAAAAAAAAAAAAGRTkeoBsS5IkIiKam5tzPAmfprW1Nfbt2xfNzc1RWFiY63EA6ERkDADZJGcAyCY5A0A2yRkAskXGcLw41CU61C06kk5frmppaYmIiP79++d4EgAAAAAAAAAAoCNpaWmJnj17HvF4XvJZ9avjXHt7e7z//vvRo0ePyMvLy/U4HEFzc3P0798/3nvvvSgtLc31OAB0IjIGgGySMwBkk5wBIJvkDADZImM4XiRJEi0tLVFVVRX5+flH3Nfpr1yVn58f/fr1y/UYfE6lpaV+uAKQFTIGgGySMwBkk5wBIJvkDADZImM4HnzaFasOOXLtCgAAAAAAAAAA4ASmXAUAAAAAAAAAAJCBchUdQnFxccybNy+Ki4tzPQoAnYyMASCb5AwA2SRnAMgmOQNAtsgYOpu8JEmSXA8BAAAAAAAAAADQ0bhyFQAAAAAAAAAAQAbKVQAAAAAAAAAAABkoVwEAAAAAAAAAAGSgXAUAAAAAAAAAAJCBchU5d/fdd8dpp50WXbt2jTFjxsTatWtzPRIAHcxzzz0XkyZNiqqqqsjLy4snnngi7XiSJDF37tzo27dvdOvWLcaPHx9vvvlm2p6dO3fGlClTorS0NMrKyuIHP/hB7NmzJ23Phg0b4rzzzouuXbtG//79Y+HChdk+NQA6gPnz58e5554bPXr0iD59+sSll14amzdvTtvz0UcfRX19fZxyyilRUlIS3/72t6OpqSltz9atW2PixInRvXv36NOnT/zkJz+Jjz/+OG3PX//61xgxYkQUFxfHoEGDYsmSJdk+PQByaNGiRTF06NAoLS2N0tLSGDt2bDz99NOp4/IFgKNpwYIFkZeXF7NmzUqtyRoA/ls333xz5OXlpd2GDBmSOi5jOJEoV5FTS5cujdmzZ8e8efNi3bp1UVNTE3V1dbF9+/ZcjwZAB7J3796oqamJu+++O+PxhQsXxp133hmLFy+Ol156KU466aSoq6uLjz76KLVnypQp8frrr0dDQ0M8+eST8dxzz8VVV12VOt7c3By1tbUxcODAaGxsjNtuuy1uvvnm+O1vf5v18wMgt1avXh319fXx4osvRkNDQ7S2tkZtbW3s3bs3teeGG26IP//5z/HYY4/F6tWr4/33349vfetbqeNtbW0xceLEOHjwYLzwwgtx//33x5IlS2Lu3LmpPVu2bImJEyfGRRddFOvXr49Zs2bFjBkz4plnnjmm5wvAsdOvX79YsGBBNDY2xiuvvBLjxo2Lb3zjG/H6669HhHwB4Oh5+eWX4957742hQ4emrcsaAL6Is846Kz744IPU7fnnn08dkzGcUBLIodGjRyf19fWpx21tbUlVVVUyf/78HE4FQEcWEcmyZctSj9vb25PKysrktttuS63t2rUrKS4uTh5++OEkSZJk06ZNSUQkL7/8cmrP008/neTl5SX/+te/kiRJknvuuSfp1atXcuDAgdSeG2+8Mamurs7yGQHQ0Wzfvj2JiGT16tVJkvxvrhQWFiaPPfZYas8//vGPJCKSNWvWJEmSJE899VSSn5+fbNu2LbVn0aJFSWlpaSpbfvrTnyZnnXVW2ntNnjw5qaury/YpAdCB9OrVK/n9738vXwA4alpaWpLBgwcnDQ0NyQUXXJBcf/31SZL4LAPAFzNv3rykpqYm4zEZw4nGlavImYMHD0ZjY2OMHz8+tZafnx/jx4+PNWvW5HAyAI4nW7ZsiW3btqXlSc+ePWPMmDGpPFmzZk2UlZXFqFGjUnvGjx8f+fn58dJLL6X2nH/++VFUVJTaU1dXF5s3b47//Oc/x+hsAOgIdu/eHRERJ598ckRENDY2Rmtra1rWDBkyJAYMGJCWNeecc05UVFSk9tTV1UVzc3Pq6iRr1qxJe41De3z+ATgxtLW1xSOPPBJ79+6NsWPHyhcAjpr6+vqYOHHiYXkgawD4ot58882oqqqKM844I6ZMmRJbt26NCBnDiUe5ipzZsWNHtLW1pf0wjYioqKiIbdu25WgqAI43hzLj0/Jk27Zt0adPn7TjBQUFcfLJJ6ftyfQan3wPADq/9vb2mDVrVnz1q1+Ns88+OyL+NweKioqirKwsbe//z5rPypEj7Wlubo79+/dn43QA6ABee+21KCkpieLi4vjhD38Yy5YtizPPPFO+AHBUPPLII7Fu3bqYP3/+YcdkDQBfxJgxY2LJkiWxfPnyWLRoUWzZsiXOO++8aGlpkTGccApyPQAAAAB0FPX19bFx48Z4/vnncz0KAJ1EdXV1rF+/Pnbv3h2PP/54TJs2LVavXp3rsQDoBN577724/vrro6GhIbp27ZrrcQDoZCZMmJC6P3To0BgzZkwMHDgwHn300ejWrVsOJ4Njz5WryJny8vLo0qVLNDU1pa03NTVFZWVljqYC4HhzKDM+LU8qKytj+/btacc//vjj2LlzZ9qeTK/xyfcAoHObOXNmPPnkk7Fq1aro169far2ysjIOHjwYu3btStv//7Pms3LkSHtKS0v9gxRAJ1ZUVBSDBg2KkSNHxvz586OmpiZ+/etfyxcAvrDGxsbYvn17jBgxIgoKCqKgoCBWr14dd955ZxQUFERFRYWsAeCoKSsriy996Uvx1ltv+TzDCUe5ipwpKiqKkSNHxooVK1Jr7e3tsWLFihg7dmwOJwPgeHL66adHZWVlWp40NzfHSy+9lMqTsWPHxq5du6KxsTG1Z+XKldHe3h5jxoxJ7XnuueeitbU1taehoSGqq6ujV69ex+hsAMiFJEli5syZsWzZsli5cmWcfvrpacdHjhwZhYWFaVmzefPm2Lp1a1rWvPbaa2ll3oaGhigtLY0zzzwzteeTr3Foj88/ACeW9vb2OHDggHwB4Au7+OKL47XXXov169enbqNGjYopU6ak7ssaAI6WPXv2xNtvvx19+/b1eYYTTl6SJEmuh+DEtXTp0pg2bVrce++9MXr06Ljjjjvi0UcfjTfeeOOw71YF4MS1Z8+eeOuttyIiYvjw4XH77bfHRRddFCeffHIMGDAgbr311liwYEHcf//9cfrpp8dNN90UGzZsiE2bNqUuiT5hwoRoamqKxYsXR2tra0yfPj1GjRoVDz30UERE7N69O6qrq6O2tjZuvPHG2LhxY1xxxRXxq1/9Kq666qqcnTsA2XfNNdfEQw89FH/605+iuro6td6zZ8/U/5C7+uqr46mnnoolS5ZEaWlpXHvttRER8cILL0RERFtbWwwbNiyqqqpi4cKFsW3btpg6dWrMmDEjbrnlloiI2LJlS5x99tlRX18fV1xxRaxcuTKuu+66+Mtf/hJ1dXXH+KwBOBbmzJkTEyZMiAEDBkRLS0s89NBDceutt8YzzzwTl1xyiXwB4Ki78MILY9iwYXHHHXdEhM8yAPz3fvzjH8ekSZNi4MCB8f7778e8efNi/fr1sWnTpujdu7eM4cSSQI7dddddyYABA5KioqJk9OjRyYsvvpjrkQDoYFatWpVExGG3adOmJUmSJO3t7clNN92UVFRUJMXFxcnFF1+cbN68Oe01Pvzww+Syyy5LSkpKktLS0mT69OlJS0tL2p5XX301+drXvpYUFxcnp556arJgwYJjdYoA5FCmjImI5A9/+ENqz/79+5Nrrrkm6dWrV9K9e/fkm9/8ZvLBBx+kvc4777yTTJgwIenWrVtSXl6e/OhHP0paW1vT9qxatSoZNmxYUlRUlJxxxhlp7wFA53PFFVckAwcOTIqKipLevXsnF198cfLss8+mjssXAI62Cy64ILn++utTj2UNAP+tyZMnJ3379k2KioqSU089NZk8eXLy1ltvpY7LGE4krlwFAAAAAAAAAACQQX6uBwAAAAAAAAAAAOiIlKsAAAAAAAAAAAAyUK4CAAAAAAAAAADIQLkKAAAAAAAAAAAgA+UqAAAAAAAAAACADJSrAAAAAAAAAAAAMlCuAgAAAAAAAAAAyEC5CgAAAAAAAAAAIAPlKgAAAAA6tMsvvzwuvfTSnL3/1KlT45Zbbvlce7///e/HL3/5yyxPBAAAAMCxkpckSZLrIQAAAAA4MeXl5X3q8Xnz5sUNN9wQSZJEWVnZsRnqE1599dUYN25cvPvuu1FSUvKZ+zdu3Bjnn39+bNmyJXr27HkMJgQAAAAgm5SrAAAAAMiZbdu2pe4vXbo05s6dG5s3b06tlZSUfK5SU7bMmDEjCgoKYvHixZ/7Oeeee25cfvnlUV9fn8XJAAAAADgWfC0gAAAAADlTWVmZuvXs2TPy8vLS1kpKSg77WsALL7wwrr322pg1a1b06tUrKioq4ne/+13s3bs3pk+fHj169IhBgwbF008/nfZeGzdujAkTJkRJSUlUVFTE1KlTY8eOHUecra2tLR5//PGYNGlS2vo999wTgwcPjq5du0ZFRUV85zvfSTs+adKkeOSRR774Lw4AAAAAOadcBQAAAMBx5/7774/y8vJYu3ZtXHvttXH11VfHd7/73fjKV74S69ati9ra2pg6dWrs27cvIiJ27doV48aNi+HDh8crr7wSy5cvj6ampvje9753xPfYsGFD7N69O0aNGpVae+WVV+K6666LX/ziF7F58+ZYvnx5nH/++WnPGz16dKxduzYOHDiQnZMHAAAA4JhRrgIAAADguFNTUxM/+9nPYvDgwTFnzpzo2rVrlJeXx5VXXhmDBw+OuXPnxocffhgbNmyIiIjf/OY3MXz48LjllltiyJAhMXz48Ljvvvti1apV8c9//jPje7z77rvRpUuX6NOnT2pt69atcdJJJ8XXv/71GDhwYAwfPjyuu+66tOdVVVXFwYMH077yEAAAAIDjk3IVAAAAAMedoUOHpu536dIlTjnllDjnnHNSaxUVFRERsX379oiIePXVV2PVqlVRUlKSug0ZMiQiIt5+++2M77F///4oLi6OvLy81Noll1wSAwcOjDPOOCOmTp0aDz74YOrqWId069YtIuKwdQAAAACOP8pVAAAAABx3CgsL0x7n5eWlrR0qRLW3t0dExJ49e2LSpEmxfv36tNubb7552Nf6HVJeXh779u2LgwcPptZ69OgR69ati4cffjj69u0bc+fOjZqamti1a1dqz86dOyMionfv3kflXAEAAADIHeUqAAAAADq9ESNGxOuvvx6nnXZaDBo0KO120kknZXzOsGHDIiJi06ZNaesFBQUxfvz4WLhwYWzYsCHeeeedWLlyZer4xo0bo1+/flFeXp618wEAAADg2FCuAgAAAKDTq6+vj507d8Zll10WL7/8crz99tvxzDPPxPTp06OtrS3jc3r37h0jRoyI559/PrX25JNPxp133hnr16+Pd999Nx544IFob2+P6urq1J6//e1vUVtbm/VzAgAAACD7lKsAAAAA6PSqqqri73//e7S1tUVtbW2cc845MWvWrCgrK4v8/CP/E9mMGTPiwQcfTD0uKyuLP/7xjzFu3Lj48pe/HIsXL46HH344zjrrrIiI+Oijj+KJJ56IK6+8MuvnBAAAAED25SVJkuR6CAAAAADoiPbv3x/V1dWxdOnSGDt27GfuX7RoUSxbtiyeffbZYzAdAAAAANnmylUAAAAAcATdunWLBx54IHbs2PG59hcWFsZdd92V5akAAAAAOFZcuQoAAAAAAAAAACADV64CAAAAAAAAAADIQLkKAAAAAAAAAAAgA+UqAAAAAAAAAACADJSrAAAAAAAAAAAAMlCuAgAAAAAAAAAAyEC5CgAAAAAAAAAAIAPlKgAAAAAAAAAAgAyUqwAAAAAAAAAAADJQrgIAAAAAAAAAAMjgfwCZzASQPlYd5AAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAACWUAAAHWCAYAAAAVGHklAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy80BEi2AAAACXBIWXMAAA9hAAAPYQGoP6dpAACt1klEQVR4nOzdd3QU5dvG8Ws3vYdAQkLvCb2DIF2KoCg2ioUi2AABEQt2LD9sKKigYgFREUQQG1KkiHRpUkxC7wlJCKSXze68f0TyGkNJIGFSvp9zcg4788zsNcPsDmTvvR+LYRiGAAAAAAAAAAAAAAAAAACFwmp2AAAAAAAAAAAAAAAAAAAoTSjKAgAAAAAAAAAAAAAAAIBCRFEWAAAAAAAAAAAAAAAAABQiirIAAAAAAAAAAAAAAAAAoBBRlAUAAAAAAAAAAAAAAAAAhYiiLAAAAAAAAAAAAAAAAAAoRBRlAQAAAAAAAAAAAAAAAEAhoigLAAAAAAAAAAAAAAAAAAoRRVkAAAAAAAAAAAAAAAAAUIgoygIAAAAAALhCa9askcVi0XfffWd2lHw5ffq07rzzTpUvX14Wi0VTp04ttH0fOXJEFotFb7/99mXHvvTSS7JYLIX23NeCxWLRSy+9ZHaMQmGxWDR69GizY5RoNWrU0NChQ82OAQAAAAAAijGKsgAAAAAAQLE2e/ZsWSwWubu76+TJk3nWd+nSRY0aNTIhWcnz2GOPadmyZZo4caK+/PJL3XjjjZccn5KSoldeeUVNmjSRp6en/Pz81LFjR82ZM0eGYVyj1AW3ZMmSElNAtWbNGt1+++0KDg6Wq6urgoKC1LdvXy1atMjsaIXCZrPpvffeU+vWreXj4yNvb2+1bt1a7733nmw2m9nxcpwvsMzPDwAAAAAAQH44mx0AAAAAAAAgPzIyMvT666/r/fffNztKibVq1SrdeuutmjBhwmXHnj59WjfccIPCw8M1cOBAjR49Wunp6Vq4cKGGDBmiJUuW6Ouvv5aTk1OBczz33HN6+umnr+QQ8mXJkiWaPn16oRZmpaWlydm5cH+V9uKLL+rll19W3bp19dBDD6l69eo6c+aMlixZojvuuENff/217r777kJ9zmspJSVFN910k37//XfdfPPNGjp0qKxWq5YuXaqxY8dq0aJF+uWXX+Tl5WV2VNWvX19ffvllrmUTJ06Ut7e3nn322TzjIyMjZbXyfVcAAAAAAHBxFGUBAAAAAIASoVmzZvrkk080ceJEVapUyew411RKSkqhFK7ExMTI398/X2OHDBmi8PBwff/997rllltylo8ZM0ZPPPGE3n77bTVv3lxPPfVUgXM4OzsXeoFTUXN3dy/U/X333Xd6+eWXdeedd2ru3LlycXHJWffEE09o2bJlxaqT1JUYP368fv/9d73//vu5pkt85JFHNH36dI0ePVoTJkzQhx9+eM0yGYah9PR0eXh45FpesWJF3XvvvbmWvf7666pQoUKe5ZLk5uZWpDkBAAAAAEDJx9e5AAAAAABAifDMM8/Ibrfr9ddfv+S4I0eOyGKxaPbs2XnWWSyWXN2TXnrpJVksFu3bt0/33nuv/Pz8FBgYqOeff16GYej48eO69dZb5evrq+DgYE2ZMuWCz2m32/XMM88oODhYXl5euuWWW3T8+PE84zZv3qwbb7xRfn5+8vT0VOfOnbV+/fpcY85n+vvvv3X33XerXLly6tChwyWP+dChQ7rrrrsUEBAgT09PXXfddfrll19y1p+fAtIwDE2fPv2y07Bt2rRJy5Yt09ChQ3MVZJ03efJk1a1bV2+88YbS0tLyrH/33XdVvXp1eXh4qHPnztqzZ88Fj/G/vvrqK7Vs2VIeHh4KCAjQwIEDL3oe+/Tpo3LlysnLy0tNmjTRtGnTJElDhw7V9OnTJemCU87NmzdPLVu2lI+Pj3x9fdW4ceOcbS/lYtfOgQMHNHToUPn7+8vPz0/Dhg1TamrqZff3/PPPKyAgQJ9//nmugqzzevXqpZtvvlmSlJmZqRdeeEEtW7aUn5+fvLy81LFjR61evTrPdg6HQ9OmTVPjxo3l7u6uwMBA3Xjjjdq6dWuesYsXL1ajRo3k5uamhg0baunSpXnGnDx5Uvfff78qVqyYM+7zzz+/7PGdOHFCn332mbp165arIOu8UaNGqWvXrvr000914sQJSVKjRo3UtWvXCx5T5cqVdeedd+ZaNnXqVDVs2FDu7u6qWLGiHnroIZ09ezbXtjVq1NDNN9+sZcuWqVWrVvLw8NDHH3982fyXU6NGDQ0dOjTn8fnX2Lp16zRmzBgFBgbK399fDz30kDIzM3Xu3DkNHjxY5cqVU7ly5fTkk0/mmQI0v8cEAAAAAABKBoqyAAAAAABAiVCzZk0NHjxYn3zyiU6dOlWo+x4wYIAcDodef/11tW3bVq+++qqmTp2qHj16qHLlynrjjTdUp04dTZgwQWvXrs2z/WuvvaZffvlFTz31lMaMGaMVK1aoe/fuuQqWVq1apU6dOikxMVEvvvii/ve//+ncuXPq1q2btmzZkmefd911l1JTU/W///1PDzzwwEWznz59Wu3bt9eyZcs0cuRIvfbaa0pPT9ctt9yi77//XpLUqVOnnKnZevTooS+//DLPVG3/9tNPP0mSBg8efMH1zs7Ouvvuu3X27Nk8RWVz5szRe++9p1GjRmnixInas2ePunXrptOnT1/0+aTsczh48GDVrVtX77zzjsaNG6eVK1eqU6dOOnfuXM64FStWqFOnTvr77781duxYTZkyRV27dtXPP/8sSXrooYfUo0cPSco5zvPHumLFCg0aNEjlypXTG2+8oddff11dunTJcwwF0b9/fyUlJWny5Mnq37+/Zs+erUmTJl1ym/379ysiIkL9+vWTj4/PZZ8jMTFRn376qbp06aI33nhDL730kmJjY9WrVy/t3Lkz19jhw4dr3Lhxqlq1qt544w09/fTTcnd316ZNm3KNW7dunUaOHKmBAwfqzTffVHp6uu644w6dOXMmZ8zp06d13XXX6bffftPo0aM1bdo01alTR8OHD9fUqVMvmfnXX3+V3W6/6DUkZV9fWVlZOcVgAwYM0Nq1axUdHZ0n66lTpzRw4MCcZQ899JCeeOIJXX/99Zo2bZqGDRumr7/+Wr169crTYSwyMlKDBg1Sjx49NG3aNDVr1uyS2a/Go48+qv3792vSpEm65ZZbNHPmTD3//PPq27ev7Ha7/ve//6lDhw5666238rwGC3JMAAAAAACgBDAAAAAAAACKsVmzZhmSjD///NM4ePCg4ezsbIwZMyZnfefOnY2GDRvmPD58+LAhyZg1a1aefUkyXnzxxZzHL774oiHJePDBB3OWZWVlGVWqVDEsFovx+uuv5yw/e/as4eHhYQwZMiRn2erVqw1JRuXKlY3ExMSc5d9++60hyZg2bZphGIbhcDiMunXrGr169TIcDkfOuNTUVKNmzZpGjx498mQaNGhQvs7PuHHjDEnGH3/8kbMsKSnJqFmzplGjRg3DbrfnOv5Ro0Zddp/9+vUzJBlnz5696JhFixYZkoz33nvPMIz/P+8eHh7GiRMncsZt3rzZkGQ89thjeY7xvCNHjhhOTk7Ga6+9lus5du/ebTg7O+csz8rKMmrWrGlUr149T7Z/n9dRo0YZF/q119ixYw1fX18jKyvrsufgvy527dx///25xt12221G+fLlL7mvH374wZBkvPvuu/l67qysLCMjIyPXsrNnzxoVK1bM9fyrVq0yJOV6fZz37/MjyXB1dTUOHDiQs+yvv/4yJBnvv/9+zrLhw4cbISEhRlxcXK59DRw40PDz8zNSU1Mvmvn8dbljx46Ljtm+fbshyRg/frxhGIYRGRmZJ4NhGMbIkSMNb2/vnOf7448/DEnG119/nWvc0qVL8yyvXr26IclYunTpRXNcTMOGDY3OnTtfcF316tVzvRecf5/672u8Xbt2hsViMR5++OGcZeffY/6974IcEwAAAAAAKBnolAUAAAAAAEqMWrVq6b777tPMmTMVFRVVaPsdMWJEzp+dnJzUqlUrGYah4cOH5yz39/dXaGioDh06lGf7wYMH5+p4dOeddyokJERLliyRJO3cuVP79+/X3XffrTNnziguLk5xcXFKSUnRDTfcoLVr18rhcOTa58MPP5yv7EuWLFGbNm1yTXHo7e2tBx98UEeOHNHff/+dv5PwL0lJSZJ0yS5O59clJibmWt6vXz9Vrlw553GbNm3Utm3bnHNxIYsWLZLD4VD//v1zzk1cXJyCg4NVt27dnGn6duzYocOHD2vcuHHy9/fPtY9LTcd4nr+/v1JSUrRixYrLjs2v//49dezYUWfOnMlzXv7t/Lr8dMmSsq9JV1dXSdlT3MXHxysrK0utWrXS9u3bc8YtXLhQFotFL774Yp59/Pf8dO/eXbVr18553KRJE/n6+uZc34ZhaOHCherbt68Mw8j199KrVy8lJCTkeu7/upJrqF69emrWrJnmz5+fM8Zut+u7775T37595eHhIUlasGCB/Pz81KNHj1y5WrZsKW9v7zzTOtasWVO9evW6aI7CNHz48Fznum3btnneS86/x/z7vaSgxwQAAAAAAIo/Z7MDAAAAAAAAFMRzzz2nL7/8Uq+//rqmTZtWKPusVq1arsd+fn5yd3dXhQoV8iz/9/Ru59WtWzfXY4vFojp16ujIkSOSsqerk6QhQ4ZcNENCQoLKlSuX87hmzZr5yn706FG1bds2z/L69evnrG/UqFG+9nXe+WKZpKSkPMVP512s6Oa/50LKLrb59ttvL/p8+/fvl2EYF9xWklxcXCRJBw8elKQCH895I0eO1LfffqvevXurcuXK6tmzp/r3768bb7zxivYn5b12zv8dnj17Vr6+vhfc5vzy8+cwP7744gtNmTJFERERuaay+/d1cvDgQVWqVEkBAQEFzn0++9mzZyVJsbGxOnfunGbOnKmZM2decB8xMTEX3f+/r6GLudA1NGDAAD3zzDM6efKkKleurDVr1igmJkYDBgzIGbN//34lJCQoKCgoX7ny+1oqDBd6L5GkqlWr5ll+/lxLBT8mAAAAAABQ/FGUBQAAAAAASpRatWrp3nvv1cyZM/X000/nWX+xjkl2u/2i+3RycsrXMim7g1BBne+C9dZbb6lZs2YXHOPt7Z3r8fmuQGaoX7++Fi9erF27dqlTp04XHLNr1y5JUoMGDa76+RwOhywWi3799dcLnvf/npsrFRQUpJ07d2rZsmX69ddf9euvv2rWrFkaPHiwvvjiiyva55VcJ2FhYZKk3bt35+s5vvrqKw0dOlT9+vXTE088oaCgIDk5OWny5Mk5hWoFdbnc56/Ze++996LFhE2aNLno/s8XBe7ateui1/yFrqEBAwZo4sSJWrBggcaNG6dvv/1Wfn5+uQrnHA6HgoKC9PXXX19wv4GBgbkeX8vX0sXO64WW//saKegxAQAAAACA4o+iLAAAAAAAUOI899xz+uqrr/TGG2/kWXe+U9G5c+dyLT969GiR5TnfCes8wzB04MCBnKKV89PE+fr6qnv37oX63NWrV1dkZGSe5RERETnrC+rmm2/W5MmTNWfOnAsWZdntds2dO1flypXT9ddfn2vdf8+FJO3bt081atS46PPVrl1bhmGoZs2aqlev3iXHSdKePXsueR4vNZWhq6ur+vbtq759+8rhcGjkyJH6+OOP9fzzz6tOnToX3a4w1atXT6Ghofrhhx80bdq0yxadfffdd6pVq5YWLVqU69j+O01h7dq1tWzZMsXHx+erW9alBAYGysfHR3a7/Yqu2d69e8vJyUlffvmlBg8efMExc+bMkbOzc66Cq5o1a6pNmzaaP3++Ro8erUWLFqlfv35yc3PLGVO7dm399ttvuv76600tXixMpfGYAAAAAAAo66xmBwAAAAAAACio2rVr695779XHH3+s6OjoXOt8fX1VoUIFrV27NtfyGTNmFFmeOXPm5Jqm7bvvvlNUVJR69+4tSWrZsqVq166tt99+W8nJyXm2j42NveLn7tOnj7Zs2aKNGzfmLEtJSdHMmTNVo0aNK+pk1b59e3Xv3l2zZs3Szz//nGf9s88+q3379unJJ5/MU0CyePFinTx5Mufxli1btHnz5pxzcSG33367nJycNGnSpDwdpgzDyJkyskWLFqpZs6amTp2ap+ju39t5eXlJyluY99+pJ61Wa07hXEZGxkXzFYVJkybpzJkzGjFihLKysvKsX758ec65P99l6d/HuHnz5lx/55J0xx13yDAMTZo0Kc/+CtrhzcnJSXfccYcWLlyoPXv25Fl/uWu2atWqGjZsmH777Td9+OGHedZ/9NFHWrVqlYYPH64qVarkWjdgwABt2rRJn3/+ueLi4nJNXShJ/fv3l91u1yuvvJJnv1lZWXn+3kuC0nhMAAAAAACUdXTKAgAAAAAAJdKzzz6rL7/8UpGRkWrYsGGudSNGjNDrr7+uESNGqFWrVlq7dq327dtXZFkCAgLUoUMHDRs2TKdPn9bUqVNVp04dPfDAA5Kyi38+/fRT9e7dWw0bNtSwYcNUuXJlnTx5UqtXr5avr69++umnK3rup59+Wt9884169+6tMWPGKCAgQF988YUOHz6shQsXymq9su/kzZkzRzfccINuvfVW3X333erYsaMyMjK0aNEirVmzRgMGDNATTzyRZ7s6deqoQ4cOeuSRR5SRkaGpU6eqfPnyevLJJy/6XLVr19arr76qiRMn6siRI+rXr598fHx0+PBhff/993rwwQc1YcIEWa1Wffjhh+rbt6+aNWumYcOGKSQkRBEREdq7d6+WLVsmKbsITpLGjBmjXr16ycnJSQMHDtSIESMUHx+vbt26qUqVKjp69Kjef/99NWvWLGe6vWtlwIAB2r17t1577TXt2LFDgwYNUvXq1XXmzBktXbpUK1eu1Ny5cyVldy5btGiRbrvtNt100006fPiwPvroIzVo0CBXkV/Xrl1133336b333tP+/ft14403yuFw6I8//lDXrl01evToAmV8/fXXtXr1arVt21YPPPCAGjRooPj4eG3fvl2//fab4uPjL7n9u+++q4iICI0cOVJLly7N6Yi1bNky/fDDD+rcubOmTJmSZ7v+/ftrwoQJmjBhggICAvJ06urcubMeeughTZ48WTt37lTPnj3l4uKi/fv3a8GCBZo2bZruvPPOAh2r2UrjMQEAAAAAUNZRlAUAAAAAAEqkOnXq6N5779UXX3yRZ90LL7yg2NhYfffdd/r222/Vu3dv/frrrwoKCiqSLM8884x27dqlyZMnKykpSTfccINmzJghT0/PnDFdunTRxo0b9corr+iDDz5QcnKygoOD1bZtWz300ENX/NwVK1bUhg0b9NRTT+n9999Xenq6mjRpop9++kk33XTTFe83JCREW7Zs0ZQpU7RgwQItXLhQzs7OatKkiWbPnq3BgwdfcJrAwYMHy2q1aurUqYqJiVGbNm30wQcfKCQk5JLP9/TTT6tevXp69913czo9Va1aVT179tQtt9ySM65Xr15avXq1Jk2apClTpsjhcKh27do5BXBSduetRx99VPPmzdNXX30lwzA0cOBA3XvvvZo5c6ZmzJihc+fOKTg4WAMGDNBLL710xcVrV+PVV19Vt27d9N577+nDDz9UfHy8ypUrp+uuu04//PBDznEPHTpU0dHR+vjjj7Vs2TI1aNBAX331lRYsWKA1a9bk2uesWbPUpEkTffbZZ3riiSfk5+enVq1aqX379gXOV7FiRW3ZskUvv/yyFi1apBkzZqh8+fJq2LDhBacO/S9vb2+tXLlSM2bM0FdffaUnnnhChmEoLCxMU6dO1ciRI+Xi4pJnuypVqqh9+/Zav369RowYccExH330kVq2bKmPP/5YzzzzjJydnVWjRg3de++9eabULClK4zEBAAAAAFCWWYyC9i4HAAAAAAAArsLzzz+vyZMnX3DaPgAAAAAAAKA0uPZfAQQAAAAAAECZFhUVpQoVKpgdAwAAAAAAACgyTF8IAAAAAACAa+LQoUP6/vvvtWDBAt18881mxwEAAAAAAACKDJ2yAAAAAAAAcE2sXbtWkyZNUufOnfXOO++YHQcAAAAAAAAoMhbDMAyzQwAAAAAAAAAAAAAAAABAaUGnLAAAAAAAAAAAAAAAAAAoRBRlAQAAAAAAAAAAAAAAAEAhcjY7QHHkcDh06tQp+fj4yGKxmB0HAAAAAAAAAAAAAAAAgMkMw1BSUpIqVaokq/XSvbAoyrqAU6dOqWrVqmbHAAAAAAAAAAAAAAAAAFDMHD9+XFWqVLnkGIqyLsDHx0dS9gn09fU1OU3pZrPZtHz5cvXs2VMuLi5mxwEAAPnA/RsAgJKH+zcAACUP928AAEoe7t9A6ZeYmKiqVavm1BZdCkVZF3B+ykJfX1+KsoqYzWaTp6enfH19uSkBAFBCcP8GAKDk4f4NAEDJw/0bAICSh/s3UHacry26lEtPbggAAAAAAAAAAAAAAAAAKBCKsgAAAAAAAAAAAAAAAACgEFGUBQAAAAAAAAAAAAAAAACFyNnsACWVYRjKysqS3W43O0qJZrPZ5OzsrPT0dM7lVXBycpKzs3O+5iwFAAAAAAAAAAAAAABA0aIo6wpkZmYqKipKqampZkcp8QzDUHBwsI4fP05B0VXy9PRUSEiIXF1dzY4CAAAAAAAAAAAAAABQplGUVUAOh0OHDx+Wk5OTKlWqJFdXV4qJroLD4VBycrK8vb1ltTKb5pUwDEOZmZmKjY3V4cOHVbduXc4lAAAAAAAAAAAAAACAiSjKKqDMzEw5HA5VrVpVnp6eZscp8RwOhzIzM+Xu7k4h0VXw8PCQi4uLjh49mnM+AQAAAAAAAAAAAAAAYA6qYK4QBUQobrgmAQAAAAAAAAAAAAAAigeqOAAAAAAAAAAAAAAAAACgEFGUBQAAAAAAAAAAAAAAAACFyNSirMmTJ6t169by8fFRUFCQ+vXrp8jIyMtut2DBAoWFhcnd3V2NGzfWkiVLcq03DEMvvPCCQkJC5OHhoe7du2v//v1FdRilTo0aNTR16tSrHnOtFcdMF1OSsgIAAAAAAAAAAAAAAKBgTC3K+v333zVq1Cht2rRJK1askM1mU8+ePZWSknLRbTZs2KBBgwZp+PDh2rFjh/r166d+/fppz549OWPefPNNvffee/roo4+0efNmeXl5qVevXkpPT78Wh1VsHT9+XPfff78qVaokV1dXVa9eXWPHjtWZM2cKvK8///xTDz74YKFlq1Wr1lUXKRVWpgMHDmjYsGGqUqWK3NzcVLNmTQ0aNEhbt2696n0DAAAAAAAAAAAAAACg9DO1KGvp0qUaOnSoGjZsqKZNm2r27Nk6duyYtm3bdtFtpk2bphtvvFFPPPGE6tevr1deeUUtWrTQBx98ICm7S9bUqVP13HPP6dZbb1WTJk00Z84cnTp1SosXL75GR1b8HDp0SK1atdL+/fv1zTff6MCBA/roo4+0cuVKtWvXTvHx8QXaX2BgoDw9PYso7ZUpjExbt25Vy5YttW/fPn388cf6+++/9f333yssLEyPP/54ISUFAAAAAAAAAAAAAABAaeZsdoB/S0hIkCQFBARcdMzGjRs1fvz4XMt69eqVU3B1+PBhRUdHq3v37jnr/fz81LZtW23cuFEDBw7Ms8+MjAxlZGTkPE5MTJQk2Ww22Wy2XGNtNpsMw5DD4ZDD4ZCUXQiWZrMX4EgLh4eLkywWS77Gjhw5Uq6urlq6dKk8PDwkSVWqVFHTpk1Vt25dPfPMM5oxY0bO+MTERA0cOFA//fST/P39NXHiRI0cOTJnfa1atTR27FiNHTtWknTu3Dk98cQT+vHHH5WRkaFWrVppypQpatq0ac42P/30k1599VXt3r1b3t7e6tChgxYuXKibb75ZR48e1WOPPabHHntMkmS323X06FE9+uijWr9+vTIzM1WjRg298cYb6tOnzwWP8b+ZnJyc9PHHH2vJkiVavny5KleurLfeeku33HLLBbc3DENDhw5V3bp19fvvv8tq/f+axSZNmujRRx/N+Tt/+umntXjxYp04cULBwcG6++679fzzz8vFxeWSx7to0aKc9SkpKRo2bJi+++47lStXTs8880yuTl/Hjx/XhAkTtGLFClmtVnXo0EFTp05VjRo1Lpjf4XDIMAzZbDY5OTldcAxQEuw4fk7v/nZA8SmZZkcBcBGGYSgp2UnTD67P979FAACAubh/AyhJvN2c9Vq/hqod6GV2FMBU5z+f+O/nFAAAoPgqyvv3sfhUvfJLhKISyvYMYRfi5+Git+9srBA/d7OjoAwoyOu72BRlORwOjRs3Ttdff70aNWp00XHR0dGqWLFirmUVK1ZUdHR0zvrzyy425r8mT56sSZMm5Vm+fPnyPJ2XnJ2dFRwcrOTkZGVmZhcMpGXa1e6dTZc5wsK3cfx18nC9fPHN2bNntXz5cj333HN5Cs08PT111113af78+Zo8ebIsFoscDofefvttPfbYY5owYYJWrVqlcePGqXLlyuratauk7L+v9PT0nAK2O+64Q+7u7vr222/l6+ur2bNnq3v37tq6davKlSunZcuW6Z577tHjjz+uDz74QJmZmVqxYoWSkpL05ZdfqkOHDho6dKgGDx4sKbso7OGHH5bNZtPPP/8sLy8vRUREyGKx5Dznf/03kyRNmjRJkyZN0gsvvKCZM2fqvvvu065du1SuXLk82+/atUt79+7VJ598ouTk5DzrrVZrzr5dXV31/vvvKyQkRHv37tW4cePk4uKSUxB2seM9v73D4dCUKVP0zDPP6NFHH9UPP/ygUaNGqWXLlqpbt65sNpt69eql1q1b65dffpGzs7Pefvtt3XjjjVq3bp1cXV3z5MvMzFRaWprWrl2rrKysy14XQHFjN6TlJ6xafsIih/iQCCj+LIpKvfiU0wAAoDji/g2g5HhzwR+6tYbD7BhAsbBixQqzIwAAgAIq7Pv30WRpZoSTkm18hnYxr36zRjdV4/8QKHqpqan5HltsirJGjRqlPXv2aN26ddf8uSdOnJir+1ZiYqKqVq2qnj17ytfXN9fY9PR0HT9+XN7e3nJ3z66ydM40pwDGx9dHnq6X/ysMDw+XYRhq1qxZnuORsrtAffHFF8rIyFBQUJCsVqvat2+vF198UZLUokULbdu2TTNnztStt94qKbtAyd3dXb6+vlq3bp22b9+u6Ohoubm5SZKaN2+uX3/9VcuWLdODDz6oadOmacCAAZo8eXLO815//fUyDEOS5OLiogoVKqhu3bo566OionT77berXbt2OTkv5d+Zzhs2bJjuv/9+SdJbb72ljz/+WOHh4brxxhvzbH/q1Kmc7Bc6T//28ssv5/y5UaNGOnHihObPn6/nn39eki56vP/O2qdPn5zrrmnTpvroo4/0559/qmXLlvrqq68kSbNnz875BvOXX36pgIAAbd++XT179syTKT09XR4eHurUqVPOtQmUFEfjUzXhu93aeSK7Y2LfJsG6vXll8QV+oHjKysrS9m3b1aJlCzk7F5t/TgIAgEvg/g2gpPhjf5w+W39UNq9A9enT0uw4gKlsNptWrFihHj165JqlAQAAFF9Fcf9eGR6jDxfsUprNobBgHz3Rs66crHyIdt6fR85q+ppDOuHwU58+7cyOgzLgYo2ELqRY/BZu9OjR+vnnn7V27VpVqVLlkmODg4N1+vTpXMtOnz6t4ODgnPXnl4WEhOQa06xZswvu083NLaeY6N9cXFzyvFHa7XZZLBZZrdac6e283Fz098u9Ln2QRSC/0xeez3k+93+d38e/j6l9+/a5xrZv315Tp07Ntez8/nbv3q3k5GQFBgbm2m9aWpoOHz4sq9WqnTt36oEHHsjz/OenA7xQvjFjxuiRRx7RihUr1L17d91xxx2XLcz67z6aNm2a89jHx0e+vr6Ki4vL93m4mPnz5+u9997TwYMHlZycrKysLPn6+uZsd7Hj/bd/Z5Oyr93z2Xbv3q0DBw7Iz88v1zbp6ek55/S/rFarLBbLBa9boLgyDEMLtp3QpB/3KiXTLh93Z73ar5FubVbZ7GgALsFmsynloKHOoRW55wAAUEJw/wZQUvh4uOmz9UcVeTqZ9yvgH/zOFwCAkqew7t9fbjyiF3/cK4chdaoXqBn3tJC3W7Eo8yg2GlUppxm/H9LfUUmKT7Oroi8NTFC0CvLaNvXVahiGHn30UX3//fdas2aNatasedlt2rVrp5UrV2rcuHE5y1asWJHTTalmzZoKDg7WypUrc4qwEhMTtXnzZj3yyCNFcRiyWCz56lhlljp16shisSg8PFy33XZbnvXh4eEqV65cnqKq/EpOTlZISIjWrFmTZ52/v78kycPDo8D7HTFihHr16qVffvlFy5cv1+TJkzVlyhQ9+uij+d7Hf18M56dnvJB69epJkiIiItS8efOL7nPjxo265557NGnSJPXq1Ut+fn6aN2+epkyZkjMmP8d7qWzJyclq2bKlvv766zzbXenfE1DcnE3J1MRFu7V0b/bUsm1qBuid/k1VpZznZbYEAAAAAAClVWiwjyQpJilDZ5IzVN4775dpAQAAgNLO4TD0xrIIffz7IUnSgFZV9eptjeTidOnmImVRBW83Nanir7+On9OayBgNaF3N7EhADlNfsaNGjdJXX32luXPnysfHR9HR0YqOjlZaWlrOmMGDB2vixIk5j8eOHaulS5dqypQpioiI0EsvvaStW7dq9OjRkrILW8aNG6dXX31VP/74o3bv3q3BgwerUqVK6tev37U+xGKhfPny6tGjh2bMmJHr3EpSdHS0vv76aw0YMCBX161NmzblGrdp0ybVr1//gvtv0aKFoqOj5ezsrDp16uT6qVChgqTsqQdXrlx50Yyurq6y2+15lletWlUPP/ywFi1apMcff1yffPJJvo+7oJo1a6YGDRpoypQpFyzcOnfunCRpw4YNql69up599lm1atVKdevW1dGjR3ONvdzxXk6LFi20f/9+BQUF5Tmn/+2eBZREf+yPVa+pa7V0b7ScrRY9dWOYvnngOgqyAAAAAAAo47zdnFUtIPv3A5HRSSanAQAAAK69dJtdY+btyCnIerxHPb1+R2MKsi6ha2h2Y5NVETEmJwFyM/VV++GHHyohIUFdunRRSEhIzs/8+fNzxhw7dkxRUVE5j9u3b6+5c+dq5syZatq0qb777jstXrxYjRo1yhnz5JNP6tFHH9WDDz6o1q1bKzk5WUuXLpW7e9ltU/fBBx8oIyNDvXr10tq1a3X8+HEtXbpUPXr0UOXKlfXaa6/lGr9+/Xq9+eab2rdvn6ZPn64FCxZo7NixF9x39+7d1a5dO/Xr10/Lly/XkSNHtGHDBj377LPaunWrJOnFF1/UN998oxdffFHh4eHavXu33njjjZx9VK9eXWvXrtXJkycVFxcnSRo3bpyWLVumw4cPa/v27Vq9evVFC8MKg8Vi0axZs7Rv3z517NhRS5Ys0aFDh7Rr1y699tpruvXWWyVJdevW1bFjxzRv3jwdPHhQ7733nr7//vtc+7rc8V7OPffcowoVKujWW2/VH3/8ocOHD2vNmjUaM2aMTpw4UajHDVxL6Ta7Xv7pb9332RbFJGWoVqCXFo+6Xo90qc3c1wAAAAAAQJJUPyS7W1Y4RVkAAAAoY86lZmrwZ1v0864oOVstmnJXUz16Q91cDVaQV7ewIEnSuv1xysy68MxZgBlMLcoyDOOCP0OHDs0Zs2bNGs2ePTvXdnfddZciIyOVkZGhPXv2qE+fPrnWWywWvfzyy4qOjlZ6erp+++23nKnpyqq6detq69atqlWrlvr376/atWvrwQcfVNeuXbVx40YFBATkGv/4449r69atat68uV599VW988476tWr1wX3bbFYtGTJEnXq1EnDhg1TvXr1NHDgQB09elQVK1aUJHXp0kULFizQjz/+qGbNmqlbt27asmVLzj4mTZqkI0eOqHbt2jnT89ntdo0aNUr169fXjTfeqHr16mnGjBlFdIaytWnTRlu3blWdOnX0wAMPqH79+rrlllu0d+9eTZ06VZJ0yy236LHHHtPo0aPVrFkzbdiwQc8//3yu/VzueC/H09NTa9euVbVq1XT77berfv36Gj58uNLT0+Xr61uYhwxcMxHRieo3fb0+X39YknTfddX1y6Md1agy3d8AAAAAAMD/CwvO/v1XRFSiyUkAAACAa+d4fKpu/3CDthyJl4+bs764v43uaFnF7FglQqNKfqrg7aaUTLv+PBJvdhwgh8UwDMPsEMVNYmKi/Pz8lJCQkKcAJj09XYcPH1bNmjXLdOetkJAQvfLKKxoxYsRV7cfhcCgxMVG+vr6yWmm3eDW4NlFcORyGPl9/WG8ujVSm3aEK3q56884m6hZW0exoAK6QzWbTkiVL1KdPH7m4uJgdBwAA5AP3bwAlydI9UXr4q+1qXNlPPz3awew4gGm4fwMAUPJc6f1714lzun/2n4pLzlSIn7tmDWud82UF5M+EBX/pu20nNLxDTT1/cwOz46AUu1RN0X9RBYMCSU1N1YoVK3T69Gk1bNjQ7DgAirnohHQN/nyLXv0lXJl2h7qFBWnpuE4UZAEAAAAAgIs6/+HTvtNJyrIz9QgAAABKt5XhpzXg402KS85UWLCPvh95PQVZV+D8FIarI2NMTgL8P4qyUCAzZ87UwIEDNW7cOLVr187sOACKsV93R+nGaWu17kCc3F2serVfI302pJUqeLuZHQ0AAAAAABRj1QI85eHipIwsh46cSTU7DgAAAFBkvtp0VA/M2ao0m10d61bQgofbKdiPWZGuRIe6FeRstehQbIqOnkkxOw4giaIsFNC4ceN05swZvfPOO2ZHAVBMJWdkacKCv/TI19t1LtWmRpV99fOjHXXvddVlsVjMjgcAAAAAAIo5q9Wi0GAfSVJEdKLJaQAAAIDC53AYev3XCD23eI8chnRXyyr6fGhr+bgzZfGV8nV3Uasa5SRJqyPoloXigaIsAECh2Xb0rPpM+0PfbTshi0Ua2aW2Fj1yveoEeZsdDQAAAAAAlCD1Q/4pyopKMjkJAAAAULgysuwaO3+nPvr9oCTpse719OadTeTiRPnG1To/heGqyFiTkwDZnM0OUFIZhmF2BCAXrkmYKcvu0PurDuiD1Qdkdxiq7O+hdwc0U5uaAWZHAwAAAAAAJVBYsK8kOmUBAACgdElItemBL7dqy+F4OVstev2OJrqzZRWzY5UaXUOD9L8lEdp06IxSM7Pk6UpJDMzFFVhALi7Z7QJTU1Pl4eFhchrg/6Wmpkr6/2sUuFaOxKVo3Pyd2nn8nCSpX7NKerlfI/nSXhUAAAAAAFyhsH+mLwynUxYAAABKiePxqRo2+08diEmWt5uzPrq3pTrUrWB2rFKlTpC3qpTz0Imzadpw4Iy6N6hodiSUcRRlFZCTk5P8/f0VE5M9B6mnp6csFovJqUouh8OhzMxMpaeny2qlHeOVMAxDqampiomJkb+/v5ycnMyOhDLCMAx9u/W4Jv30t1Iz7fJxd9ar/Rrp1maVzY4GAAAAAABKuPOdsk6eS1NCmk1+Hnz5CwAAACXX7hMJGjb7T8UlZyjY112zhrVW/RBfs2OVOhaLRd3CgjRn41GtioyhKAumoyjrCgQHB0tSTmEWrpxhGEpLS5OHhwfFbVfJ398/59oEitrZlExNXLRbS/dGS5La1gzQOwOaqbI/HQQBAAAAAMDV8/N0USU/d51KSFdkdJLa1AwwOxIAAABwRVZFnNaor3cozWZXWLCPZg1rrRA/PlMrKl1Ds4uy1kTEyDAM6hBgKoqyroDFYlFISIiCgoJks9nMjlOi2Ww2rV27Vp06dWLavavg4uJChyxcM2v3xWrCgr8Uk5QhFyeLHu8Zqgc61pKTlX/QAAAAAACAwhMW4qtTCemKiE6kKAsAAAAl0tzNx/Tc4t1yGFLHuhU0454W8nHnc/Gi1K52ebk5W7O/4HE6KacLL2AGirKugpOTE4UwV8nJyUlZWVlyd3enKAso5tJtdr2xNEKz1h+RJNUO9NK0gc3VqLKfucEAAAAAAECpFBbso1URMQqPSjI7CgAAAFAgDoehN5dGaMaag5KkO1tW0eTbG8vFyWpystLP3cVJ7WuX1+rIWK2KiKEoC6biFQ8AuKzwqETd8sG6nIKswe2q6+dHO1KQBQAAAAAAikxYSPaHJxHRiSYnAQAAAPIvyyFNWLg7pyBrXPe6euvOJhRkXUPdwoIkSWsiYk1OgrKOTlkAgItyOAx9vv6w3lwaqUy7QxW8XfXWnU3V9Z9/yAAAAAAAABSV+sE+kqTI6CQ5HIasVovJiQAAAIBLS0iz6cNwJx1IjJaz1aLJtzfWXa2qmh2rzOkSGiRpr7YdO6uEVJv8PJm1C+agFBMAcEHRCem67/PNevWXcGXaHepeP0hLx3WiIAsAAAAAAFwTNSt4ydXJqtRMu46fTTU7DgAAAHBJJ86masAnW3Qg0SIvNyd9PrQ1BVkmqRrgqbpB3rI7DK3dT7csmIeiLABAHkt2R6nX1LVaf+CM3F2seu22RvpkcCtV8HYzOxoAAAAAACgjnJ2sqlvRW5IUHpVkchoAAADg4vacTNBtMzboYGyK/FwNfTO8jTrVCzQ7Vpl2fgrD1RExJidBWUZRFgAgR1K6TRMW/KWRX29XQppNTar46ZcxHXVP2+qyWJgiAAAAAAAAXFv1Q3wlSRHRiSYnAQAAAC5sdWSM+n+8UbFJGQqt6K3xjeyqH+JjdqwyL3sKQ2nNvljZHYbJaVBWUZQFAJAkbTsarz7v/aHvtp2QxSKN6lpbCx9pr9qB3mZHAwAAAAAAZVRYcPaHWRF0ygIAAEAxNHfzMY34YqtSM+26vk55fTOitfyZeKZYaFWjnHzcnRWfkqldJ86ZHQdllLPZAQAA5rLZHXp/5X59sPqAHIZU2d9D7w5opjY1A8yOBgAAAAAAyjg6ZQEAAKA4MgxDby+P1PTVByVJd7Soosm3N5bFsJucDOe5OFnVqW6gftkdpdURMWperZzZkVAG0SkLAMqwI3EpuuujjXpvVXZB1m3NK+vXcR0pyAIAAAAAAMXC+U5ZR+NTlZKRZXIaAAAAQMrMcuix+TtzCrLG3FBXb9/VRK7OlF8UN11CAyVJqyNjTU6CsopOWQBQBhmGofl/HtfLP/+t1Ey7fN2d9eptjXVL00pmRwMAAAAAAMhR3ttNgT5uik3K0L7TSXy7HQAAAKZKSLPp4S+3aeOhM3KyWjT5tsbq37qq2bFwEV1CgyRJu08mKCYxXUG+7iYnQllDqSYAlDHxKZl66MttenrRbqVm2nVdrQAtHdeJgiwAAAAAAFAsne+WFRGdZHISAAAAlGUnz6Xpzg83aOOhM/JyddLnQ1tTkFXMBfq4qUkVP0nSGrplwQQUZQFAGfL7vlj1mrpWy/8+LRcniyb2DtPcEdepkr+H2dEAAAAAAAAuqH6IryQpIirR5CQAAAAoq/acTNBt09drf0yyKvq66duH26lzvUCzYyEfuv7TLWt1ZIzJSVAWMX0hAJQB6Ta7Xv81QrM3HJEk1Qny1tQBzdSosp+5wQAAAAAAAC7jfKescDplAQAAwASrI2M0+uvtSsm0K7Sij2YNa03DgxKkW1iQpq3crz/2xykzyyFXZ3oX4dqhKAsASrm/TyVq3Pwd2nc6WZI0pF11Pd27vjxcnUxOBgAAAAAAcHlhwf/fKcswDFksFpMTAQAAoKyYt+WYnl28R3aHofa1y+vDe1vKz8PF7FgogMaV/VTB21VxyZnaejRe7WtXMDsSyhBKAAGglHI4DH2y9pD6TV+vfaeTVcHbTbOGtdakWxtRkAUAAAAAAEqM2kFecrZalJiepaiEdLPjAAAAoAwwDENTlkfq6UW7ZXcYur1FZc0e1oaCrBLIarWoc71/pjCMYApDXFsUZQFAKRSVkKZ7P9us15aEK9PuUPf6FbVsXMecOZMBAAAAAABKCjdnJ9UO9JYkhUclmpwGAAAApV1mlkOPf/uX3l91QJI0plsdTbmrKdPelWBdwwIlSasoysI1xvSFAFDK/LIrSs98v1sJaTZ5uDjp+ZsbaFCbqrT2BwAAAAAAJVZYiI8iTycpIjpJN9SvaHYcAAAAlFIJaTY9/OU2bTx0Rk5Wi17r10gD21QzOxauUse6gXKyWnQwNkXHzqSqWnlPsyOhjKCUEwBKiaR0mx7/9i+NmrtdCWk2Nanip1/GdNDdbatRkAUAAAAAAEq0sGBfSXTKAgAAQNE5dS5Nd320QRsPnZGXq5M+G9KKgqxSws/DRa2ql5MkrY6kWxauHYqyAKAU2HokXn3e+0MLt5+Q1SKN7lpHCx9pr1r/tPYHAAAAAAAoycJCfCRJEdFJJicBAABAabT3VIJum7Fe+04nK8jHTfMfaqcuoUFmx0Ih6hqW/fdJURauJaYvBIASzGZ36L2V+zV99QE5DKlKOQ+9O6CZWtcIMDsaAAAAAABAoan/T6esQ7HJSrfZ5e7iZHIiAAAAlBa/74vVyK+2KSXTrnoVvTVrWBtV9vcwOxYKWbewIL3+a4Q2HjyjtEy7PFz5PwWKHp2yAKCEOhyXojs/2qj3V2UXZN3evLKWjO1IQRYAAAAAACh1Kvq6yd/TRQ5DOhCTbHYcAAAAlBLz/zym+2f/qZRMu9rVKq8FD7enIKuUqhvkrcr+HsrIcmjDwTiz46CMoCgLAEoYwzD0zZZj6jPtD/11/Jx83Z31/qDmemdAM/m6u5gdDwAAAAAAoNBZLJacblnhUYkmpwEAAEBJZxiG3lkeqacW7pbdYei25pX1xf1t5OfBZ22llcViUdewQElMYYhrh+kLAaAEiU/J1NMLd2n536clSe1qldeU/k1ViYp9AAAAAABQyoWF+GjjoTOKiE4yOwoAAABKsMwsh55etEuLtp+UJI3uWkeP96wni8VicjIUtW5hQfpq0zGtjoiVYRj8naPImdopa+3aterbt68qVaoki8WixYsXX3L80KFDZbFY8vw0bNgwZ8xLL72UZ31YWFgRHwkAFL01kTHqNXWtlv99Wi5OFj3TJ0xfj2hLQRYAAAAAACgTznfKioimUxYAAACuTGK6TcNmb9Gi7SflZLVo8u2NNaFXKMU5ZUS7WhXk5mzVyXNp2s+06LgGTC3KSklJUdOmTTV9+vR8jZ82bZqioqJyfo4fP66AgADddddducY1bNgw17h169YVRXwAuCbSbXa99ONeDZ31p2KTMlQ3yFuLR12vBzvVltXKPxABAAAAAEDZEBbiI0kKj0qSYRgmpwEAAEBJc+pcmu76cKPWHzgjT1cnfTqklQa1qWZ2LFxDHq5Oale7vCRpVQRTGKLomTp9Ye/evdW7d+98j/fz85Ofn1/O48WLF+vs2bMaNmxYrnHOzs4KDg4utJwAYJa9pxI0bt7OnErtoe1r6OneYXJ3cTI5GQAAAAAAwLVVN8hHVosUn5Kp2OQMBfm4mx0JAAAAJcTfpxI1bPYWnU7MUKCPm2YNba1Glf0uvyFKna6hQVoTGatVETF6uHNts+OglDO1KOtqffbZZ+revbuqV6+ea/n+/ftVqVIlubu7q127dpo8ebKqVbt4hWtGRoYyMjJyHicmZre/ttlsstlsRRMekpRzfjnPQG4Oh6HPNxzVO7/tl81uqIK3q16/raE61wuU5JDN5jA7IoAyjPs3AAAlD/dvAKWBs0WqUd5Th+JStefEWXWsU8HsSECR4v4NAEDh+ONAnB6d95dSMuyqE+ilTwe3UGV/jyK5x3L/Lv461iknSdp29KzOJKbK18PF5EQoaQry+rYYxaTPs8Vi0ffff69+/frla/ypU6dUrVo1zZ07V/37989Z/uuvvyo5OVmhoaGKiorSpEmTdPLkSe3Zs0c+Pj4X3NdLL72kSZMm5Vk+d+5ceXp6XtHxAMCVOpshfX3Aqv2J2TPMNi7n0MDaDnnz7wEAAAAAAFDGzdpn1c4zVt1a3a5ulYrFr7YBAABQjG2KsWj+IaschkV1fB0aHuqQZ4luXYPC8L+dTjqdZtHQunY1r8D/K1Awqampuvvuu5WQkCBfX99Lji2xbzdffPGF/P398xRx/Xs6xCZNmqht27aqXr26vv32Ww0fPvyC+5o4caLGjx+f8zgxMVFVq1ZVz549L3sCcXVsNptWrFihHj16yMWFihNgye5ovfPj30pMz5KHi1XP9glT/5aVZbFYzI4GADm4fwMAUPJw/wZQWhz2PKSdKw/I4l9Fffo0NjsOUKS4fwMAcOUMw9D7qw/qm4OHJEl9mwRr8m2N5OZsLdLn5f5dMuyyRuqz9UeV4F1Vffo0MjsOSpjzs+/lR4ksyjIMQ59//rnuu+8+ubq6XnKsv7+/6tWrpwMHDlx0jJubm9zc3PIsd3Fx4Y3yGuFco6xLSrfpxR/2atGOk5KkplX8NHVgc9Ws4GVyMgC4OO7fAACUPNy/AZR0DSv7S5IiY1J4P0OZwf0bAICCycxyaOL3u7Vw+wlJ0qiutfV4j1BZrdeuCQL37+LthgbB+mz9Uf2xP05OTs7X9NpAyVeQ13bRloEWkd9//10HDhy4aOerf0tOTtbBgwcVEhJyDZIBQMH9eSRevaf9oUU7TspqkR7tVkffPdKegiwAAAAAAID/CAv2kSQdiEmSze4wOQ0AAACKm6R0m+6f/acWbj8hJ6tF/7utsZ7oFUbRDXJpVT1A3m7OikvO1K6TCWbHQSlmalFWcnKydu7cqZ07d0qSDh8+rJ07d+rYsWOSsqcVHDx4cJ7tPvvsM7Vt21aNGuVtIzdhwgT9/vvvOnLkiDZs2KDbbrtNTk5OGjRoUJEeCwAUlM3u0NvLIjXg4406cTZNVcp56NuH2unxnqFycSqRNbMAAAAAAABFqko5D3m7OctmN3QoNsXsOAAAAChGohLSdNdHG7XuQJw8XZ306eBWurttNbNjoRhydbaqY90KkqTVETEmp0FpZuqn/lu3blXz5s3VvHlzSdL48ePVvHlzvfDCC5KkqKionAKt8xISErRw4cKLdsk6ceKEBg0apNDQUPXv31/ly5fXpk2bFBgYWLQHAwAFcCg2WXd+uEEfrD4ghyHd3qKyfh3bUa1qBJgdDQAAAAAAoNiyWCw53bIiohNNTgMAAIDiIjwqUbdN36CI6CQF+rhp/oPt1DUsyOxYKMbOXx+rIynKQtFxNvPJu3TpIsMwLrp+9uzZeZb5+fkpNTX1otvMmzevMKIBQJEwDEPfbDmuV37+W2k2u/w8XPTabY10c5NKZkcDAAAAAAAoEcJCfLT16FmFRyXp1mZmpwEAAIDZ/tgfq0e+2q7kjCzVCfLWrKGtVTXA0+xYKOa6hGY39tl1IkGxSRkK9HEzORFKI1OLsgCgLDmTnKGnFu7Wb+GnJUnta5fXlP5NFeLnYXIyAAAAAACAkiMs2FdSdjcEAAAAlG0Lth7XxEW7leUw1LZmgGbe10p+ni5mx0IJEOTjrsaV/bT7ZILWRMborlZVzY6EUsjU6QsBoKxYHRmjXlP/0G/hp+XqZNWzferrq+FtKcgCAAAAAAAooPohTF8IAABQ1hmGoam/7dMT3+1SlsPQLU0rac7wNhRkoUC6/tMtiykMUVTolAUARSjdZtfkJeH6YuNRSVLdIG9NG9hcDSr5mpwMAAAAAACgZKpXMbso63RihuJTMhXg5WpyIgAAAFxLNrtDzyzarQXbTkiSHulSW0/0DJXVajE5GUqarmFBem/VAf2xL042u0MuTvQ1QuHiigKAIrL3VIJufn9dTkHW0PY19NOjHSjIAgAAAAAAuAo+7i6qGpDdfZxuWQAAAGVLUrpN98/+Uwu2nZDVIr3ar5GeujGMgixckaZV/FXey1VJGVnaeuSs2XFQClGUBQCFzOEw9PHvB9Vv+nodiElWoI+bvri/jV66paHcXZzMjgcAAAAAAFDi1Q/O/tJbRFSSyUkAAABwrUQnpOuujzbqj/1x8nBx0ieDW+ne66qbHQslmNVqUed62VMYrmEKQxQBirIAoBCdOpemuz/dpMm/RshmN9SzQUUtG9cp52YOAAAAAACAqxcW8k9RFp2yAAAAyoSI6ETdNmO9IqKTVMHbTfMfuk431K9odiyUAl3DgiRJqyIoykLhczY7AACUFj/9dUrPfr9bielZ8nBx0ot9G2hA66qyWGiXCgAAAAAAUJjqB/tIkiKi6ZQFAABQ2q0/EKeHv9ympIws1Q700uxhbVQ1wNPsWCglOtUNlJPVov0xyToen8q1hUJFpywAuEqJ6TaNn79Tj36zQ4npWWpa1V9LxnbUwDbVKMgCAAAAAAAoAuc7ZUVGJ8nuMExOAwAAgKLy3bYTGvL5FiVlZKlNzQAtfKQ9RTMoVH6eLmpZrZwkpjBE4aMoCwCuwp9H4tV76h9atOOkrBZpTLc6+u7hdqpZwcvsaAAAAAAAAKVWtQBPebg4KSPLoSNnUsyOAwAAgEJmGIbeW7lfExb8pSyHob5NK+nL4W3k7+lqdjSUQkxhiKJCURYAXAGb3aG3lkVowMcbdfJcmqoGeGjBw+00vmeoXJx4awUAAAAAAChKTlaL6p2fwjCKKQwBAABKE5vdoacW7tI7K/ZJkh7uXFvTBjSTm7OTyclQWnUNC5QkbTh4Ruk2u8lpUJpQOQAABXQwNll3fLhB01cflMOQ7mxZRUvGdFTL6gFmRwMAAAAAACgz6p8vyopONDkJAAAACktSuk33z/5T3249IatFeuXWhnq6d5isVovZ0VCKhVb0USU/d2VkObTx4Bmz46AUoSgLAPLJMAx9vfmobn5vnXadSJCfh4tm3NNCb9/VVD7uLmbHAwAAAAAAKFPC/inKCqdTFgAAQKlwOjFd/T/epD/2x8nDxUkz72ul+9rVMDsWygCLxaIuTGGIIuBsdgAAKAnOJGfoqYW79Vv4aUnS9XXK6+27mirEz8PkZAAAAAAAAGVTWIivJDplAQAAlAaR0UkaNmuLTiWkq4K3qz4b0lpNq/qbHQtlSLfQIM3dfEyrI2NkGIYsFrqz4epRlAUAl7E6IkZPfLdLcckZcnWy6skbQ3X/9TVpkwoAAAAAAGCi852yTpxNU2K6Tb50MgcAACiRNhyI00NfblNSRpZqBXrpi2FtVDXA0+xYKGPa1ykvV2erTpxN04GYZNWt6GN2JJQCTF8IABeRlmnXCz/s0bDZfyouOUP1Knpr8ajrNaJjLQqyAAAAAAAATObv6aoQP3dJ0r5opjAEAAAoiRZtP6Ehs7YoKSNLrWuU06JH2lOQBVN4ujrrulrlJUmrI5nCEIWDoiwAuIA9JxPU94N1mrPxqCRp2PU19OPoDmpQydfkZAAAAAAAADjvfLescIqyAAAAShTDMPT+yv0a/+1fstkN3dQkRF8Obyt/T1ezo6EM6xYaKElaFUFRFgoHRVkA8C92h6GPfj+o22as14GYZAX6uOmL+9voxb4N5e7iZHY8AAAAAAAA/EtYSPYX6CKiEk1OAgAAgPyy2R2auGi3pqzYJ0l6qFMtvT+wOZ/FwXRdw4IkSVuPnFVius3kNCgNnM0OAADFxclzaXr8253adChektSrYUVNvr2JAryoyAcAAAAAACiOznfKiqBTFgAAQImQnJGlUV9v1+/7YmW1SC/d0lCD29UwOxYgSape3ku1Ar10KDZF6/bHqU/jELMjoYSjKAsAJP341yk9+/1uJaVnydPVSS/2baD+rarKYrGYHQ0AAAAAAAAXUf9fnbIcDkNWK7/LAQAAKK5OJ6Zr2Kw/9XdUotxdrHp/UAv1aFDR7FhALt1Cg3Qo9rBWRcRQlIWrRlEWgDItMd2mFxbv0eKdpyRJzar6a+qAZqpRwcvkZAAAAAAAALicmhW85OpkVUqmXSfOpqlaeU+zIwEAAOAC9p1O0tDPt+hUQrrKe7nqs6Gt1ayqv9mxgDy6hgXp03WHtSYyhi9+4KpRlAWgzNpyOF6Pzd+pk+fSZLVIo7vV1aPd6sjFyWp2NAAAAAAAAOSDi5NVdYK89XdUosKjEynKAgAAKIY2HIzTQ19uU1J6lmpV8NLsYW34dxuKrdY1AuTl6qS45EztOZWgJlX8zY6EEozKAwBlTmaWQ28ti9DAmRt18lyaqgV4asHD7TW+Rz0KsgAAAAAAAEqY/5/CMMnkJAAAAPivxTtOasjnW5SUnqVW1ctp4SPtKchCsebqbFWHuhUkSasiYkxOg5KO6gMAZcrB2GTd8eEGTV99UA5DuqtlFS0Z21Etq5czOxoAAAAAAACuQP0QH0lSRHSiyUkAAABwnmEYmr76gMbN3ymb3dBNjUP01Yi2KuflanY04LK6hQVJklZHxpqcBCUd0xcCKBMMw9DXm4/p1V/+VrrNIT8PF02+vbH6NA4xOxoAAAAAAACuQljwP52youmUBQAAUBxk2R16/oc9+mbLcUnSg51q6ekbw2S1WkxOBuRPl9DsoqxdJ84pLjlDFbzdTE6EkoqiLAClXlxyhp76bpdW/tNeskOdCnr7rqYK9nM3ORkAAAAAAACuVtg/nbKOnElRamaWPF35tTcAAIBZUjKyNGrudq2JjJXFIr3Ut6GGtK9hdiygQCr6uqthJV/tPZWoNZGxurNlFbMjoYRi+kIApdrqiBjdOHWtVkbEyNXJquduqq8597ehIAsAAAAAAKCUqODtpgrebjIMad/pZLPjAAAAlFkxiekaMHOj1kTGyt3Fqo/vbUlBFkqs/5/CMMbkJCjJKMoCUCqlZdr1/OI9Gjb7T8UlZyq0oo9+GH29RnSsRWtUAAAAAACAUqb+P92yIqISTU4CAABQNu0/naTbZmzQnpOJKu/lqm8euE49GwabHQu4YuenMFy7L1Y2u8PkNCip6OMMoNTZczJBY+ft0MHYFEnS/dfX1JM3hsrdxcnkZAAAAAAAACgKYcE++mN/nCKik8yOAgAAUOZsPHhGD365VUnpWapZwUuzh7VW9fJeZscCrkqzqv4K8HJVfEqmth89q7a1ypsdCSUQRVkASg27w9DMtYf0zopI2eyGgnzcNKV/U3WsG2h2NAAAAAAAABShsGBfSVI4nbIAAACuqR92ntSEBX/JZjfUsno5fTK4lQK8XM2OBVw1J6tFnesF6vsdJ7UqMoaiLFwRpi8EUCqcPJemuz/ZpDeWRshmN3Rjw2AtG9eJgiwAAAAAAIAyIOz89IXRSTIMw+Q0AAAApZ9hGJq++oDGztspm91Q70bB+npEWwqyUKp0Cc3+rHl1RIzJSVBS0SkLQIn3w86Tem7xHiWlZ8nT1Ukv9W2ou1pVkcViMTsaAAAAAAAAroE6Qd5yslqUkGZTdGK6Qvw8zI4EAABQamXZHXrhx72au/mYJGlEh5p6pk99Wa18NofSpXO9QFkt0r7TyTpxNlVVynmaHQklDJ2yAJRYCWk2jZu3Q2Pn7VRSepaaV/PXr2M7qn/rqhRkAQAAAAAAlCFuzk6qHeglSYqISjI5DQAAQOmVkpGlB+Zs1dzNx2SxSC/2baDnbm5AQRZKJX9PV7WoVk6StDoy1uQ0KImuuigrMTFRixcvVnh4eGHkAYB82XzojPpM+0OLd56Sk9Wicd3rasFD7VS9vJfZ0QAAAAAAAGCCsGBfSVJ4dKLJSQAAAEqnmKR0DZi5UasjY+XmbNWH97TUsOtrmh0LKFJdw4IkSWuYwhBXoMBFWf3799cHH3wgSUpLS1OrVq3Uv39/NWnSRAsXLizQvtauXau+ffuqUqVKslgsWrx48SXHr1mzRhaLJc9PdHR0rnHTp09XjRo15O7urrZt22rLli0FygWg+MrMcuiNpREa+MkmnTyXpmoBnvr2oXYa172enJ1o/gcAAAAAAFBWhYX4SKJTFgAAQFE4EJOk26Zv0J6TiQrwctU3D16nGxsFmx0LKHLd/inKWn8wTuk2u8lpUNIUuIJh7dq16tixoyTp+++/l2EYOnfunN577z29+uqrBdpXSkqKmjZtqunTpxdou8jISEVFReX8BAUF5aybP3++xo8frxdffFHbt29X06ZN1atXL8XEULUIlHQHYpJ1+4fr9eGagzIMqX+rKloytqNaVi9ndjQAAAAAAACYrP4/nbIi6JQFAABQqDYdOqPbZ2zQyXNpqlHeU4seaZ8zpRtQ2oUF+yjEz13pNoc2HjpjdhyUMAUuykpISFBAQIAkaenSpbrjjjvk6empm266Sfv37y/Qvnr37q1XX31Vt912W4G2CwoKUnBwcM6P1fr/h/HOO+/ogQce0LBhw9SgQQN99NFH8vT01Oeff16g5wBQfBiGoa82HdXN7/+hPScT5e/poo/ubaE372wqbzdns+MBAAAAAACgGDjfKetgbIoysvgGOwAAQGH4YedJDf5sixLTs9Simr8WjbxeNSp4mR0LuGYsFou6hDKFIa5MgasZqlatqo0bNyogIEBLly7VvHnzJElnz56Vu7t7oQe8kGbNmikjI0ONGjXSSy+9pOuvv16SlJmZqW3btmnixIk5Y61Wq7p3766NGzdedH8ZGRnKyMjIeZyYmP1NKpvNJpvNVkRHAUk555fzjIs5k5yhiYv3anVknCSpfe0AvXF7IwX7unPdAIBJuH8DAFDycP8GUBaU93CSn4ezEtKyFH7ynBpW8jU7EnBVuH8DAMxkGIZm/nFEb6/IbszSs0GQptzZWO4uFu5Nl8D9u3TqVCdA32w5ppURMXq2d6YsFovZkWCigry+C1yUNW7cON1zzz3y9vZW9erV1aVLF0nZ0xo2bty4oLsrkJCQEH300Udq1aqVMjIy9Omnn6pLly7avHmzWrRoobi4ONntdlWsWDHXdhUrVlRERMRF9zt58mRNmjQpz/Lly5fL09Oz0I8Dea1YscLsCCiG9py16JuDViXbLHK2GOpb3aFOgTHavm6V2dEAAOL+DQBAScT9G0BpF+hiVUKaVQuWr9fRIMPsOECh4P4NALjW7Ia08LBV609nz1jVOcSh3r6ntGrFKZOTlRzcv0uXDLvkZHHSibNpmr3oV1X0MDsRzJSamprvsQUuyho5cqTatm2rY8eOqUePHjlTB9aqVUuvvfZaQXdXIKGhoQoNDc153L59ex08eFDvvvuuvvzyyyve78SJEzV+/Picx4mJiapatap69uwpX1++TVWUbDabVqxYoR49esjFxcXsOCgm0jLten1ZpOZGnJAkhVb01pQ7Gys02MfkZAAAifs3AAAlEfdvAGXFNiNCBzYdk1vFWurTO/TyGwDFGPdvAIAZUjKyNO7bXVp/Ok4Wi/RM71ANbVfd7FglBvfv0uvH+G1ad+CMHMEN1Of6GmbHgYnOz76XHwUuynr55Zc1YcIEtWzZMtfybt266a233lL79u0Lusur0qZNG61bt06SVKFCBTk5Oen06dO5xpw+fVrBwcEX3Yebm5vc3NzyLHdxceGN8hrhXOO83ScSNHb+Dh2KTZEkDe9QU0/0CpW7i5PJyQAA/8X9GwCAkof7N4DSrmFlP0nSvpgU3u9QanD/BgBcKzFJ6Ro+e5t2n0yQm7NV0wY2042NQsyOVSJx/y59uoVV1LoDZ/T7vjN6uEtds+PARAV5bVsLuvNJkyYpOTk5z/LU1NQLTgFY1Hbu3KmQkOwbgaurq1q2bKmVK1fmrHc4HFq5cqXatWt3zbMByD+7w9CMNQd024z1OhSbooq+bvpqeFs9f3MDCrIAAAAAAACQL2HB2TMfRETn/5vLAAAAkA7EJOn2GRu0+2SCynm6aO4D11GQBfxLt7AgSdKfR+KVlG4zOQ1KigJ3yjIMQxaLJc/yv/76SwEBAQXaV3Jysg4cOJDz+PDhw9q5c6cCAgJUrVo1TZw4USdPntScOXMkSVOnTlXNmjXVsGFDpaen69NPP9WqVau0fPnynH2MHz9eQ4YMUatWrdSmTRtNnTpVKSkpGjZsWEEPFcA1cuJsqsZ/+5e2HI6XJPVuFKz/3dZY5bxcTU4GAAAAAACAkqReRR9ZLFJccqZikzIU6JN3hgQAAADktvnQGT345TYlpNlUvbynZg9ro5oVvMyOBRQrNSp4qWYFLx2OS9G6/XHq3ZiiRVxevouyypUrJ4vFIovFonr16uUqzLLb7UpOTtbDDz9coCffunWrunbtmvN4/PjxkqQhQ4Zo9uzZioqK0rFjx3LWZ2Zm6vHHH9fJkyfl6empJk2a6Lfffsu1jwEDBig2NlYvvPCCoqOj1axZMy1dulQVK1YsUDYA18YPO0/qucV7lJSeJS9XJ710S0Pd2bLKBYs/AQAAAAAAgEvxcHVSzfJeOhSXoojoRAX6BJodCQAAoFj78a9TmvDtX8q0O9S8mr8+HdxK5b0pbAcupGtokA7HHdbqyBiKspAv+S7Kmjp1qgzD0P33369JkybJz88vZ52rq6tq1KhR4CkCu3TpIsMwLrp+9uzZuR4/+eSTevLJJy+739GjR2v06NEFygLg2kpIs+n5xXv041+nJEktqvnr3QHNVL08VfcAAAAAAAC4cmEhPtlFWVFJ6liXoiwAAIALMQxDH689pNd/jZAk9WpYUVMHNJeHq5PJyYDiq1tYkD5ff1irI2PlcBiyWmk0gkvLd1HWkCFDJEk1a9bU9ddfL2fnAs98CACSpE2Hzujxb//SyXNpcrJa9Gi3OhrdtY6cnaxmRwMAAAAAAEAJFxbsqyW7oxUenWh2FAAAgGIpy+7QSz/t1VebsmetGtq+hp6/uYGcKDABLql1zXLydHVSbFKG9p5KVOMqfpffCGVagSsgUlJStHLlyjzLly1bpl9//bVQQgEonTKzHHpjaYQGfbJJJ8+lqXp5Ty14uJ3Gda9HQRYAAAAAAAAKRViwjyQpIirJ5CQAAADFT2pmlh7+apu+2nRMFov0/M0N9NItDSnIAvLBzdlJHepUkCStjowxOQ1KggJXQTz99NOy2+15lhuGoaeffrpQQgEofQ7EJOv2D9frwzUHZRjSgFZV9cuYjmpRrZzZ0QAAAAAAAFCK1A/xlZT9+yib3WFyGgAAgOIjNilDg2Zu0m/hMXJztmrG3S00vENNs2MBJUrXsCBJ0qoIirJweQWeg3D//v1q0KBBnuVhYWE6cOBAoYQCUHoYhqGvNh3Va0vClW5zyN/TRa/f3lg3NgoxOxoAAAAAAABKocr+HvJ2c1ZyRpYOx6WoXkUfsyMBAACY7mBssobO2qLj8Wkq5+miT4e0UsvqAWbHAkqcrqHZRVl/nTinM8kZKu/tZnIiFGcF7pTl5+enQ4cO5Vl+4MABeXl5FUooAKVDbFKG7p/9p57/Ya/SbQ51rFtBy8Z1oiALAAAAAAAARcZqtSj0nykMw6MSTU4DAABgvj+PxOv2GRt0PD5N1QI8tfCR9hRkAVco2M9dDUJ8ZRjS7/tizY6DYq7ARVm33nqrxo0bp4MHD+YsO3DggB5//HHdcssthRoOQMm1Mvy0bpy6VqsjY+XqbNULNzfQF8PaqKKvu9nRAAAAAAAAUMqF/VOUFRGdZHISAAAAc/2865Tu+XSzEtJsalbVX4tGtletQG+zYwElWtewQElMYYjLK3BR1ptvvikvLy+FhYWpZs2aqlmzpurXr6/y5cvr7bffLoqMAEqQtEy7nv1+t4Z/sVVnUjIVFuyjH0dfr/s71JTVajE7HgAAAAAAAMqAsBBfSVIEnbIAAEAZZRiGZq49qNFzdygzy6EeDSrqmweuUwWmWgOuWrew7CkM1+6LVZbdYXIaFGfOBd3Az89PGzZs0IoVK/TXX3/Jw8NDTZo0UadOnYoiH4ASZPeJBI2dv0OHYlMkSSM61NSEXqFyd3EyORkAAAAAAADKkvp0ygIAAGWY3WFo0k97NWfjUUnS0PY19PzNDeREAwWgUDSrWk7+ni46l2rT9mPn1KYm04HiwgpclCVJFotFPXv2VKdOneTm5iaLhTdvoCyzOwx99PtBvbtin7IchoJ93TWlf1NdX6eC2dEAAAAAAABQBtX7pygrKiFd51Iz5e/panIiAACAayMt065Hv9mh38JPS5Keu6m+hneoyWf6QCFyslrUuV6gfth5SqsjYyjKwkUVePpCh8OhV155RZUrV5a3t7cOHz4sSXr++ef12WefFXpAAMXbibOpGjRzk95aFqksh6E+jYO1dFxHCrIAAAAAAABgGl93F1Up5yGJblkAAKDsiEvO0MBPNum38NNydbZq+t0tNKJjLQqygCJwfgrD1RExJidBcVbgoqxXX31Vs2fP1ptvvilX1///dlGjRo306aefFmo4AMXb4h0n1XvqH9pyJF5erk56+66mmn53C755CAAAAAAAANPVD/GVJIVHJZqcBAAAoOgdjE3WbTPW66/j5+Tv6aK5I9rqpiYhZscCSq1OdQNltWR/CeTkuTSz46CYKnBR1pw5czRz5kzdc889cnJyylnetGlTRUREFGo4AMVTQppNY77ZoXHzdyopI0stqvnr17GddGfLKlTaAwAAAAAAoFio/88UhhFRdMoCAACl29Yj8brjww06Hp+magGeWvRIe7WqwXRqQFEq5+Wq5tXKSZLWRNItCxdW4KKskydPqk6dOnmWOxwO2Wy2QgkFoPjaePCMek9dqx//OiUnq0Xje9TTtw+1U7XynmZHAwAAAAAAAHKE/dMpKyKaTlkAAKD0+mVXlO7+dLPOpdrUtIqfFo1sr1qB3mbHAsqErqGBkpjCEBdX4KKsBg0a6I8//siz/LvvvlPz5s0LJRSA4iczy6HJv4br7k836VRCumqU99R3D7fTmBvqytmpwG8lAAAAAAAAQJEK+6dTVuTpJNkdhslpAAAACpdhGPpk7SGNmrtdmVkOda9fUd88eJ0qeLuZHQ0oM7qGBUmS1h84o3Sb3eQ0KI6cC7rBCy+8oCFDhujkyZNyOBxatGiRIiMjNWfOHP38889FkRGAyQ7EJGnsvJ3aeyr7W4UDW1fV8zc3kJdbgd9CAAAAAAAAgGuienkvubtYlW5z6OiZFDpGAACAUsPuMPTKz39r9oYjkqTB7arrxb4N5WS1mBsMKGMahPiqoq+bTidmaPPheHWuF2h2JBQzBW5vc+utt+qnn37Sb7/9Ji8vL73wwgsKDw/XTz/9pB49ehRFRgAmMQxDczYe0U3vrdPeU4kq5+mij+5tqdfvaEJBFgAAAAAAAIo1J6tFoRWzu2VFRCeZnAYAAKBwpGXa9fBX23IKsp7tU1+TbqEgCzCDxWJR19DsbllMYYgLuaKqio4dO2rFihWFnQVAMRKblKEnv/tLqyNjJUkd61bQ23c1VUVfd5OTAQAAAAAAAPkTFuyrv04kKCIqUX0ah5gdBwAA4KrEJWdo+Bdb9dfxc3J1tuqd/k11c5NKZscCyrSuYUGa9+dxrYqI0Yt9G8hioUAS/49WNwDy+O3v03pq4S6dScmUq7NVE3uHaUi7GrJSYQ8AAAAAAIASJCwku1NWOJ2yAABACXcoNllDZ/2pY/Gp8vd00SeDW6l1jQCzYwFlXoc6FeTiZNGx+FQdiktRbaZNx7/kqygrICBA+/btU4UKFVSuXLlLVvZ5e3urYcOGeuONN9SkSZNCCwqg6KVmZunVX8I1d/MxSVJYsI/eG9Rc9f5p8w4AAAAAAACUJGHBvpKkiOhEk5MAAABcuW1H4zXii606m2pT1QAPzR7WhsIPoJjwcnNW25rlte5AnFZHxPDaRC75Ksp699135eOTXZQxderUS47NyMjQkiVLNGzYMG3btu2qAwK4NnadOKdx83bqUFyKJOnBTrX0eM96cnN2MjkZAAAAAAAAcGXCgrN/r308Pk1J6Tb5uLuYnAgAAKBgft0dpbHzdyozy6GmVfz06ZDWCvRxMzsWgH/pGhaUXZQVGaMRHWuZHQfFSL6KsoYMGXLBP19M79691bJlyytPBeCasTsMffT7Qb27Yp+yHIaCfd31Tv+mal+ngtnRAAAAAAAAgKtSzstVwb7uik5M177TSWpZnSl+AABAyfHpH4f02pJwGYbUvX6Q3hvUXJ6u+fqIH8A11DU0UK/8LG05HK/kjCx5u/E6RbYrvhK2bt2q8PBwSVL9+vXVqlWrnHVVq1ZVTEzM1acDUKSOx6dq/Lc79eeRs5KkmxqH6LXbGsnf09XkZAAAAAAAAEDhCAvxUXRiusKjKMoCAAAlg91h6JWf/9bsDUckSfddV10v3dJQTlaLucEAXFCtQG/VKO+pI2dStW5/nG5sFGx2JBQTBS7KOnHihAYNGqT169fL399fknTu3Dm1b99e8+bNU5UqVQo7I4BCZhiGFu88qRcW71XSP5W6k25pqNtbVJbFwj/mAAAAAAAAUHqEBftqTWSsIqITzY4CAABwWWmZdo2bv0PL9p6WJE3sHaYHO9XiMzygmOsaFqRZ649odUQMRVnIYS3oBiNGjJDNZlN4eLji4+MVHx+v8PBwORwOjRgxoigyAihECak2PfrNDj02/y8lZWSpZfVy+nVsR93Rsgr/mAMAAAAAAECpUz/ER5IUEZVkchIAAIBLO5Ocobs/3aRle0/L1cmq9wc110Oda/MZHlACdA0NkiStjoyRYRgmp0FxUeBOWb///rs2bNig0NDQnGWhoaF6//331bFjx0INB6BwbTx4Ro9/u1OnEtLlZLVo3A119UiX2nJ2KnB9JgAAAAAAAFAihAX7SpIiopNkGAYfagIAgGLpcFyKhs7aoqNnUuXn4aJPBrdSm5pMvQyUFG1rBcjDxUkxSRnaeypRjSr7mR0JxUCBi7KqVq0qm82WZ7ndblelSpUKJRSAwpWRZdc7y/dp5h+HZBhSjfKemjqwuZpV9Tc7GgAAAAAAAFCkagV6ydXJquSMLJ04m6aqAZ5mRwIAAMhl29GzGvHFnzqbalOVch6aPayN6gR5mx0LQAG4OTvp+joV9Fv4aa2OiKEoC5KuYPrCt956S48++qi2bt2as2zr1q0aO3as3n777UINB+Dq7T+dpNumb9DHa7MLsga1qapfxnSkIAsAAAAAAABlgouTNedDzYhopjAEAADFy9I9Ubr7k006m2pTkyp++n7k9RRkASVUt7D/n8IQkPLZKatcuXK5WjqnpKSobdu2cnbO3jwrK0vOzs66//771a9fvyIJCqBgDMPQnI1H9b8l4crIcqicp4tev6OJejUMNjsaAAAAAAAAcE2Fhfjo76hERUQlqkeDimbHAQAAkCR9tu6wXv3lbxmGdENYkN6/u7k8XQs82RWAYqJrWKAkacfxc4pPyVSAl6vJiWC2fL2jT506tYhjAChMMUnpevK7XVoTGStJ6lwvUG/d2URBvu4mJwMAAAAAAACuvfrBvpJO0ikLAAAUC3aHoVd/+Vuz1h+RJN3Ttpom3dJQzk4FnugKQDES4uehsGAfRUQnae2+WPVrXtnsSDBZvoqyhgwZUtQ5ABSSFX+f1lMLdyk+JVOuzlY90ztMQ9rXyNXtDgAAAAAAAChLwkJ8JEnhUYkmJwEAAGVdus2ucfN2auneaEnS073D9FCnWnyWB5QS3cKCFBGdpFURMRRlIX9FWf928uRJLVy4UPv27ZMkhYaG6vbbb1flylxMgJlSM7P0ys/h+mbLMUlS/RBfTRvYTPUq+picDAAAAAAAADBXWLCvJOnwmRSlZdrl4epkciIAAFAWnUnO0ANztmr7sXNydbLqrbua6NZmfM4OlCZdw4I0Y81B/b4vVll2Bx3wyrgCFWXNmDFD48ePV2Zmpnx9s/8Tm5iYqCeeeELvvPOORo4cWSQhAVzaX8fPadz8nToclyKLRXqgYy093rOe3Jz55RIAAAAAAAAQ6OOmCt6uikvO1L7TSWpa1d/sSAAAoIw5EpeiobO26MiZVPm6O2vm4Fa6rlZ5s2MBKGTNq/rLz8NFCWk27Tx+Tq1qBJgdCSbKd0neL7/8ojFjxmj06NE6efKkzp07p3PnzunkyZMaOXKkxo4dqyVLlhRlVgD/YXcY+mDVft3x4QYdjktRiJ+7vh7eVs/0qU9BFgAAAAAAAPAv57tlRUQzhSEAALi2th87q9s/3KAjZ1JV2d9Di0a2pyALKKWcnazqXC9QkrQqIsbkNDBbvouy3nrrLT399NN6++23FRISkrM8JCRE77zzjp566im9+eabBXrytWvXqm/fvqpUqZIsFosWL158yfGLFi1Sjx49FBgYKF9fX7Vr107Lli3LNeall16SxWLJ9RMWFlagXEBJcDw+VQM+3qi3l+9TlsPQTU1CtHRsJ7WvU8HsaAAAAAAAAECxExbsI0kKj0oyOQkAAChLlu6J1qCZmxSfkqlGlX31/aj2qhPkY3YsAEWoa1h2UdbqyFiTk8Bs+S7K2r59u+67776Lrr/vvvu0ffv2Aj15SkqKmjZtqunTp+dr/Nq1a9WjRw8tWbJE27ZtU9euXdW3b1/t2LEj17iGDRsqKioq52fdunUFygUUZ4ZhaNH2E+o97Q9tPXpW3m7Oeqd/U30wqLn8PF3MjgcAAAAAAAAUS2EhdMoCAADX1qz1h/XI19uUkeVQ19BAzX+wnYJ83M2OBaCIda4XJItFCo9KVFRCmtlxYCLn/A602+1ycbl4wYeLi4vsdnuBnrx3797q3bt3vsdPnTo11+P//e9/+uGHH/TTTz+pefPmOcudnZ0VHByc7/1mZGQoIyMj53FiYvZ/ym02m2w2W773g4I7f345z/mTkGbTCz/+rSV7TkuSWlbz11t3NlLVcp7KysoyOR0AoKzg/g0AQMnD/RsApDoVPCRJEVFJyszMlMViMTkRcGncvwGg5HI4DL2+bJ9mbTgqSRrYuopevClMzlaD9/VSjvs3JMnH1aKmVfy083iCftsbrYGtq5gdCYWoIK/vfBdlNWzYUD/88IMee+yxC65fvHixGjZsmO8nLgwOh0NJSUkKCAjItXz//v2qVKmS3N3d1a5dO02ePFnVqlW76H4mT56sSZMm5Vm+fPlyeXp6Fnpu5LVixQqzIxR7+xIs+vqAVecyLbJaDPWu4tANleK0e+Ma7TY7HACgTOL+DQBAycP9G0BZZnNIVjnpXJpN3yz+Vf5uZicC8of7NwCULJl26asDVv0Vnz1p1c3V7LrO6YiWLztibjBcU9y/UUkW7ZSTvv1jj3xjd5kdB4UoNTU132PzXZQ1atQoPfLII3Jzc9ODDz4oZ+fsTbOysvTxxx/rueee04wZMwqe9iq8/fbbSk5OVv/+/XOWtW3bVrNnz1ZoaKiioqI0adIkdezYUXv27JGPz4Xn5p04caLGjx+f8zgxMVFVq1ZVz5495evrW+THUZbZbDatWLFCPXr0uGQntrIsI8uhd3/br8/Dj8owpBrlPTXlzsZqUsXP7GgAgDKK+zcAACUP928AyPbRofU6EJuiyg1bq3O9QLPjAJfE/RsASp74lEw9Mnen/oo/Jxcni16/rZFuaRpidixcQ9y/cV71U4la8uEmHUxx0Q09u8rN2Wp2JBSS87Pv5Ue+i7KGDBmi3bt3a/To0Zo4caJq164twzB06NAhJScna8yYMRo6dOiV5L0ic+fO1aRJk/TDDz8oKCgoZ/m/p0Ns0qSJ2rZtq+rVq+vbb7/V8OHDL7gvNzc3ubnl/VqUi4sLb5TXCOf6wvadTtLYeTsVHpX9oh7Uppqev7m+PF3z/dIFAKDIcP8GAKDk4f4NoKyrX8lPB2JTtD82Td0b8n6IkoH7NwCUDEfPpGjorD91OC5Fvu7O+vi+VmpXu7zZsWAS7t9oWi1AQT5uiknK0I4TiepYly+FlBYFeW0XqLLj7bff1p133qlvvvlG+/fvlyR17txZAwcO1HXXXVewlFdh3rx5GjFihBYsWKDu3btfcqy/v7/q1aunAwcOXKN0wNUzDENfbDiiyb9GKCPLoQAvV71+e2P1bBhsdjQAAAAAAACgxAoL9tFPf0kR0fn/ZjMAAMDl7Dh2ViO+2KozKZmq7O+h2cNaq27FC8/iBKBssFgs6hoapPlbj2tVRAxFWWVUgdvtXHfddde0AOu/vvnmG91///2aN2+ebrrppsuOT05O1sGDB3Xfffddg3TA1YtJTNcT3+3S7/tiJUmd6wXqrbuaKMjH3eRkAAAAAAAAQMlWPyT7w9GIqCSTkwAAgNJi+d5ojZm3Q+k2hxpW8tWsoa0V5MvnegCkrmGBmr/1uFZHxOjFvg3NjgMTmDoHWnJycq4OVocPH9bOnTsVEBCgatWqaeLEiTp58qTmzJkjKXvKwiFDhmjatGlq27atoqOjJUkeHh7y8/OTJE2YMEF9+/ZV9erVderUKb344otycnLSoEGDrv0BAgW0fG+0nl60W/EpmXJztuqZPvU1uF11WSwWs6MBAAAAAAAAJV5YsK8k6WBssjKy7HJzdjI5EQAAKMlmrz+sST//LcOQuoQGavrdLeTlZupH8ACKkQ51A+XiZNGRM6k6HJeimhW8zI6Ea8xq5pNv3bpVzZs3V/PmzSVJ48ePV/PmzfXCCy9IkqKionTs2LGc8TNnzlRWVpZGjRqlkJCQnJ+xY8fmjDlx4oQGDRqk0NBQ9e/fX+XLl9emTZsUGEgrOBRfqZlZmrholx78cpviUzLVIMRXPz/aQUPa16AgCwAAAAAAACgkIX7u8nV3VpbD0MGYFLPjAACAEsrhMPTaL3/rpZ+yC7IGtamqTwe3oiALQC7ebs5qUzNAkrQqIsbkNDCDqXeFLl26yDCMi66fPXt2rsdr1qy57D7nzZt3lamAa2vn8XN6bP5OHY5LkcUiPdiplsb3qMe39AAAAAAAAIBCZrFYVD/EV5sPxysiOlENKvmaHQkAAJQw6Ta7Hv/2L/2yO0qS9ESvUI3sUptGCwAuqGtokNYfOKM1kTEa3qGm2XFwjZnaKQsoy7LsDr2/cr/u+HCDDselKMTPXV+PaKuJvetTkAUAAAAAAAAUkfoh2YVYEdFJJicBAAAlzdmUTN376Wb9sjtKLk4WTR3QTKO61qEgC8BFdQ0LkiRtPhSvlIwsk9PgWqN/ImCC4/Gpemz+Tm09elaSdHOTEL3Wr7H8PF1MTgYAAAAAAACUbmHBPpKk8KhEk5MAAICS5NiZVA2dtUWH4lLk4+6sj+9rqfa1K5gdC0AxV6uCl6oFeOpYfKrWHYhTr4bBZkfCNZSvoqzmzZvnu7p3+/btVxUIKM0Mw9DC7Sf10o97lZyRJR83Z73cr6H6NatMBT0AAAAAAABwDYTRKQsAABTQzuPnNHz2nzqTkqlKfu6afX8b1avoY3YsACWAxWJRt7Agzd5wRGsiYyjKKmPyVZTVr1+/nD+np6drxowZatCggdq1aydJ2rRpk/bu3auRI0cWSUigNDiXmqlnv9+TM7906xrl9E7/Zqoa4GlyMgAAAAAAAKDsqFfRWxaLFJuUobjkDFXwdjM7EgAAKMZW/H1aj36zXek2hxpW8tXnQ1uroq+72bEAlCBd/ynKWh0RK8MwaNhShuSrKOvFF1/M+fOIESM0ZswYvfLKK3nGHD9+vHDTAaXEhgNxGv/tX4pOTJez1aLHetTTw51ry8nKmy0AAAAAAABwLXm6OqtGeS8djktRRFSSOtSlKAsAAFzYnI1H9NKPe+UwpM71AjX9nhbydsvXR+wAkKNtzQB5uDgpOjFd4VFJalDJ1+xIuEasBd1gwYIFGjx4cJ7l9957rxYuXFgooYDSIiPLrtd++Vt3f7pZ0YnpqlXBS4tGtteornUoyAIAAAAAAABMEhacPd1QRHSiyUkAAEBx5HAY+t+ScL3wQ3ZB1sDWVfXpkFYUZAG4Iu4uTrq+TnlJ0urIGJPT4FoqcFGWh4eH1q9fn2f5+vXr5e5Om0bgvH2nk3TrB+v1yR+HJUl3t62mn8d0UJMq/uYGAwAAAAAAAMq4sODsb6aHRyWZnAQAABQ36Ta7Hp23QzPXHpIkTehZT5NvbywXpwJ/tA4AObqEBkmSVkVQlFWWFLiUd9y4cXrkkUe0fft2tWnTRpK0efNmff7553r++ecLPSBQ0jgchr7YeESTf41QZpZDAV6ueuOOJurRoKLZ0QAAAAAAAABICguhUxYAAMjrXGqmHpizVX8eOSsXJ4vevLOJbmtexexYAEqBrmHZRVk7jp3V2ZRMlfNyNTkRroUCF2U9/fTTqlWrlqZNm6avvvpKklS/fn3NmjVL/fv3L/SAQEkSk5iuCd/t0tp9sZKkrqGBeuPOJgryoYscAAAAAAAAUFzU/6dT1v7TycqyO+RM5wsAAMq8Y2dSNXT2Fh2KTZGPm7M+vq+l2tepYHYsAKVEZX8PhQX7KCI6SWv3x+rWZpXNjoRr4Iomve3fvz8FWMB/LNsbracX7tLZVJvcnK167qb6uve66rJYLGZHAwAAAAAAAPAvVcp5yMvVSSmZdh2OS1Hdij5mRwIAACb66/g5Df/iT8UlZ6qSn7tmDWuj0GD+fQCgcHUJDVJEdJJWR8RQlFVGXNHXf86dO6dPP/1UzzzzjOLj4yVJ27dv18mTJws1HFASpGRk6emFu/TQl9t0NtWmhpV89cuYDrqvXQ0KsgAAAAAAAIBiyGq15HzQGh6dZHIaAABgpt/+Pq2BMzcpLjlTDUJ89f2o6ynIAlAkuv0zheHv+2Jldxgmp8G1UOBOWbt27VL37t3l5+enI0eOaMSIEQoICNCiRYt07NgxzZkzpyhyAsXSjmNn9dj8nTpyJlUWi/Rgp1p6vEeoXJ1pdw4AAAAAAAAUZ2Ehvtp+7JwiohJ1S9NKZscBAAAm+HLjEb344145DKlTvUDNuKeFvN2uaLIpALisFtX85evurLOpNu08flYtqweYHQlFrMCVI+PHj9fQoUO1f/9+ubu75yzv06eP1q5dW6jhgOIqy+7QtN/2686PNurImVRV8nPX3BHXaWLv+hRkAQAAAAAAACVA/X86YETQKQsAgDLH4TA0+ddwPf9DdkFW/1ZV9NmQVhRkAShSzk5WdaoXKElaHRFrchpcCwWuHvnzzz/10EMP5VleuXJlRUdHF0oooDg7diZVA2Zu0ru/7ZPdYahv00r6dWwntatd3uxoAAAAAAAAAPIpLMRXkhQRlWhyEgAAcC2l2+waM2+HPv79kCRpfI96euOOJnJxovECgKJ3fgrDVRExJifBtVDgUl83NzclJub9T+q+ffsUGBhYKKGA4sgwDC3cflIv/bhXyRlZ8nFz1iv9Gqlf88pmRwMAAAAAAABQQKH/dMo6lZCuhFSb/DxdTE4EAACK2rnUTD04Z5u2HImXs9WiN+5oojtaVjE7FoAypHO9QFks0t9RiYpOSFewn/vlN0KJVeBy31tuuUUvv/yybDabJMlisejYsWN66qmndMcddxR6QKA4OJeaqVFzt2vCgr+UnJGlNjUCtGRsRwqyAAAAAAAAgBLK191FVcp5SJIioumWBQBAaXc8PlW3f7hBW47Ey8fNWV/c34aCLADXXHlvNzWt4i9JWhNJt6zSrsBFWVOmTFFycrKCgoKUlpamzp07q06dOvLx8dFrr71WFBkBU63bH6deU9dqye5oOVsteqJXqL558DpVDfA0OxoAAAAAAACAqxAW/M8UhtFJJicBAABFadeJc7ptxgYdik1RiJ+7FjzSTtfXqWB2LABlVNdQpjAsKwo8faGfn59WrFihdevWadeuXUpOTlaLFi3UvXv3osgHmCYjy663lkbq03WHJUm1Knhp6sBmavJP1SoAAAAAAACAkq1+iI9+Cz9NpywAAEqxleGnNXruDqXZ7AoL9tHsYW2YLgyAqbqFBend3/Zp/YE4ZWTZ5ebsZHYkFJECF2Wd16FDB3Xo0KEwswDFRmR0ksbO25HzDbl72lbTszfVl6frFb9kAAAAAAAAABQz5ztlhUfRKQsAgNLoq01H9cIPe+QwpI51K2jGPS3k4+5idiwAZVzDSr4K9HFTbFKG/jx8Vh3q0rmvtLqiCpOVK1dq5cqViomJkcPhyLXu888/L5RggBkcDkOzNxzR60sjlJnlUHkvV71xRxN1b1DR7GgAAAAAAAAACllYiI+k7C9pOhyGrFaLyYkAAEBhcDgMvbksUh/9flCSdFfLKvrf7Y3l4mQ1ORkASFarRV3qBWrBthNaFRFDUVYpVuC7zqRJk9SzZ0+tXLlScXFxOnv2bK4foKQ6nZiuIbO26OWf/1ZmlkNdQwO1dFwnCrIAAAAAAACAUqpGeS+5OVuVZrPrWHyq2XEAAEAhyMiya9z8nTkFWY91r6c372xCQRaAYqVbWJAkaU1kjMlJUJQK3Cnro48+0uzZs3XfffcVRR7AFEv3RGviol06m2qTm7NVz91UX/deV10WC9+MAwAAAAAAAEorJ6tFocE+2nUiQeFRiapRwcvsSAAA4CokpNr04JdbtflwvJytFr1+RxPd2bKK2bEAII/r61aQs9WiQ3EpOhKXwv9FSqkClwNnZmaqffv2RZEFuOZSMrL05Hd/6eGvtulsqk2NKvvqlzEddF+7GhRkAQAAAAAAAGVAWHD2FIbh0UkmJwEAAFfjeHyq7vhogzYfjpe3m7NmD2tDQRaAYsvX3UWtawRIklbTLavUKnBR1ogRIzR37tyiyAJcUzuOnVWf9/7Qt1tPyGKRHulSW4seuV51gnzMjgYAAAAAAADgGgkL9pUkRUQlmpwEAABcqd0nEnT7hxt0ICZZwb7uWvBwO3WoW8HsWABwSeenMFwVQVFWaZWv6QvHjx+f82eHw6GZM2fqt99+U5MmTeTi4pJr7DvvvFO4CYFClmV3aPrqg3pv1X7ZHYYq+bnrnQHNdF2t8mZHAwAAAAAAAHCNhYVkf0kzgk5ZAACUSKsjYjRq7nalZtoVFuyjWcNaK8TPw+xYAHBZXcMC9dqScG0+FK+UjCx5ueWrhAclSL7+Rnfs2JHrcbNmzSRJe/bsybWc6d5Q3B09k6LH5u/U9mPnJEm3NK2kV/o1kp+Hy6U3BAAAAAAAAFAqne+UdSw+VckZWfLmgxAAAEqMuZuP6bnFu+UwpA51KmjGvS3k687nfgBKhtqB3qoa4KHj8WnacPCMejSoaHYkFLJ8/e9y9erVRZ0DKFKGYWjBthOa9ONepWTa5ePmrFdva6Rbm1U2OxoAAAAAAAAAEwV4uaqir5tOJ2YoMjpJLauXMzsSAAC4DIfD0NvLIzVjzUFJ0p0tq2jy7Y3l4mQ1ORkA5J/FYlHX0CDN2XhUqyJiKMoqhQp8V0pISFB8fHye5fHx8UpM/L/27j1Ky7LQG//3mWEYUEFRZBBlKwrbIwcBJTzlAUErX/21M2mXBypqtyXFeZduaCvkYYtZEqkkZZK6XvNQmfvNDGWTZCpBgkiUeMp0lw6oqCOgMM7M7w9fZzdxcB584HHw81lrljzXfd3XfO9nGK6B9fW+60sSCkrp1dXr8q+3LMoFP1mS1esac2ifnfPL8UcqZAEAAAAASf7nblnL6vwbNwB80K19uzHn3bG4pZB17nH98s1PDVDIAtqlY/brkSSZ+8SKNDc3lzkNpVb0zjR69Ojcdttt643fcccdGT16dElCQak8+NTLOeE7D+SXS+vSoaKQC07YN7eO/Uj26LZduaMBAAAAAB8Q++3WJUmy7MU3ypwEANiU19c05IwbFuQ/F7+QDhWFXPmpATnv+H9MoVAodzSAzTJ8713SqaoiL77+VpbV+fvItqboUtb8+fNzzDHHrDd+9NFHZ/78+SUJBe/XWw2NufTuP+ZzN8zP8vq12XvX7fOzfz08/3p031RW+KEMAAAAAPgf+7tTFgB84P3l1TX51IyHM//ZldmhukNmnnVIPj20d7ljAbwvnaoqc9g+3ZMkv1q2osxpKLWiS1lr167N22+/vd54Q0ND3nzzzZKEgvdjWV19Tpn+UG548Nkkyec+8g/5xVePTP89dixzMgAAAADgg+hv75TlkSEA8MGz9K+v5//77sN5asWq1HStzh1fHp6j/nHXcscCKIm/fYQh25aiS1mHHnpovv/97683PmPGjAwZMqQkoWBzNDU154YHn83/uvahLKt7I7ts3zE3nDk0l53SP507VpY7HgAAAADwAbV39x1SVVnIG2vfzl9f8z8fA8AHyf1PrMinvzcvL72xNvv17JKf/evhOaBX13LHAiiZY/Z9p2S68LlX89qadWVOQykVXcq67LLL8oMf/CBHHXVULr744lx88cU56qijMnPmzFx++eVFrfXAAw/kpJNOSq9evVIoFHLXXXe95zlz587N4MGDU11dnb59++bGG29cb8706dOz1157pVOnThk2bFgWLFhQVC7an+X1b+XMHy7IpXf/Mevebsqx+/XIrPFH5bj9a8odDQAAAAD4gOvYoSJ9e/zP3bIAgA+GWxc8ny/e9EjWrGvM4X13yR3/Mjy9dupc7lgAJbVHt+3yjzU7pKk5eeCpl8sdhxIqupR1+OGHZ968eendu3fuuOOO/PznP0/fvn2zZMmSHHnkkUWttXr16gwcODDTp09v0/xnn302H//4x3PMMcdk8eLFGT9+fL74xS/m3nvvbZlz++23p7a2NpMnT86iRYsycODAjBo1KitWuM3btmrW0hczatoD+c1TL6dTVUUuO+Wg3HDm0Ozapbrc0QAAAACAdmL/nv+vlFVXX+YkAEBzc3O+ee+yTLzz92lsas4nB++eH551aLp2qip3NIAt4t1HGN6/TLdlW9Jhc04aNGhQbrnllvf9yU888cSceOKJbZ4/Y8aM9OnTJ1dddVWSZP/998+DDz6Yb3/72xk1alSSZOrUqRk7dmzGjBnTcs4vfvGLzJw5MxMmTHjfmfngWLX27Vzy8z/kjkf+kiQ5aPeumXbawenbY4cyJwMAAAAA2pv9duuSPJo8XudOWQBQTuvebsoFP3ksdy1+IUlyznH9ct6IfikUCmVOBrDlHLNvj3zv13/K3CdWpLGpOZUV/szbFmxWKetdb731Vtata/08y65dt9zze+fNm5cRI0a0Ghs1alTGjx+fJFm3bl0WLlyYiRMnthyvqKjIiBEjMm/evI2uu3bt2qxdu7bldX39O/8nVENDQxoaGkp4Bfy9d9/fYt/nl95Ym8/84Hd5buWaFArJl4/sk68es086dqjwNQOALWxz928AoHzs3wDvre+u2yVJ5jy+PKO+/esyp4F37hLzxqrKTH/mIUUE4EOl/q238+Lrb6WyopBL/9cBOXXI7nn77bfLHQvaxN+/2VwDeu2QLp065NU1DVn455dzcO+dyh2JjSjm+7voUtaaNWtywQUX5I477sgrr7yy3vHGxsZil2yzurq61NTUtBqrqalJfX193nzzzbz66qtpbGzc4Jxly5ZtdN0pU6bk4osvXm/8vvvuy3bbbVea8GzS7Nmzi5q/+JVCnltZme07NOfz+zamb8NT+a/7ntpC6QCADSl2/wYAys/+DbBxqxuSjhWVeauhKU8sX1XuOPD/FPLimtXlDgGw1VVXNGfMvo3Zfvljueeex8odB4rm799sjn22r8jitypywz2/zcd6N5U7DhuxZs2aNs8tupR1/vnn5/777891112X008/PdOnT89f//rXfO9738sVV1xR7HIfCBMnTkxtbW3L6/r6+vTu3TsjR47conf+4p0G4ezZs3P88cenqqrtz4AuLK3LD59ckgP32DnnjD5kCyYEAP7e5u7fAED52L8B2uawj76ZP7/S9n9ghy3p7bffzqKFizJ4yOB06PC+HnwC0O7s17NLdtm+Y7ljQNH8/Zv3Y48Br2fV2rczdM9u6dihotxx2Ih3n77XFkX/FP/zn/88N998c44++uiMGTMmRx55ZPr27Zs999wzt9xySz772c8Wu2Sb9ezZM8uXL281tnz58nTt2jWdO3dOZWVlKisrNzinZ8+eG123uro61dXV641XVVX5g3IrKfa9rqx857duoVDwNQKAMvGzEgC0P/ZvgE3ba9eq7LWr/1GXD4aGhoasfqY5H923xv4NAO2Mv3+zOYb06V7uCLRBMd/bRVfrVq5cmb333jtJ0rVr16xcuTJJcsQRR+SBBx4odrmiDB8+PHPmzGk1Nnv27AwfPjxJ0rFjxwwZMqTVnKampsyZM6dlDgAAAAAAAAAAwJZUdClr7733zrPPPpsk2W+//XLHHXckeecOWjvttFNRa61atSqLFy/O4sWLkyTPPvtsFi9enOeffz7JO48VPOOMM1rm/8u//Ev+9Kc/5YILLsiyZcvy3e9+N3fccUfOO++8ljm1tbW5/vrrc9NNN+Xxxx/PV77ylaxevTpjxowp9lIBAAAAAAAAAACKVvTjC8eMGZPHHnssH/3oRzNhwoScdNJJufbaa9PQ0JCpU6cWtdYjjzySY445puV1bW1tkuTMM8/MjTfemBdffLGloJUkffr0yS9+8Yucd955+c53vpM99tgjP/jBDzJq1KiWOaeddlpeeumlTJo0KXV1dRk0aFBmzZqVmpqaYi8VAAAAAAAAAACgaEWXsv72rlQjRozIsmXLsnDhwvTt2zcDBgwoaq2jjz46zc3NGz1+4403bvCcRx99dJPrjhs3LuPGjSsqCwAAAAAAAAAAQCkUXcr6e3vuuWf23HPPUmQBAAAAAAAAAABo9yraOvFXv/pVDjjggNTX16937PXXX8+BBx6Y3/zmNyUNBwAAAAAAAAAA0N60uZQ1bdq0jB07Nl27dl3v2I477pgvf/nLmTp1aknDAQAAAAAAAAAAtDdtLmU99thjOeGEEzZ6fOTIkVm4cGFJQgEAAAAAAAAAALRXbS5lLV++PFVVVRs93qFDh7z00kslCQUAAAAAAAAAANBetbmUtfvuu2fp0qUbPb5kyZLstttuJQkFAAAAAAAAAADQXrW5lPWxj30sF110Ud566631jr355puZPHlyPvGJT5Q0HAAAAAAAAAAAQHvToa0TL7zwwtx55535x3/8x4wbNy777rtvkmTZsmWZPn16Ghsb8+///u9bLCgAAAAAAAAAAEB70OZSVk1NTR5++OF85StfycSJE9Pc3JwkKRQKGTVqVKZPn56ampotFhQAAAAAAAAAAKA9aHMpK0n23HPP3HPPPXn11Vfz9NNPp7m5Of369Uu3bt22VD4AAAAAAAAAAIB2pahS1ru6deuWQw45pNRZAAAAAAAAAAAA2r2KcgcAAAAAAAAAAADYlihlAQAAAAAAAAAAlJBSFgAAAAAAAAAAQAm1qZQ1ePDgvPrqq0mSSy65JGvWrNmioQAAAAAAAAAAANqrNpWyHn/88axevTpJcvHFF2fVqlVbNBQAAAAAAAAAAEB71aEtkwYNGpQxY8bkiCOOSHNzc771rW9lhx122ODcSZMmlTQgAAAAAAAAAABAe9KmUtaNN96YyZMn5+67706hUMgvf/nLdOiw/qmFQkEpCwAAAAAAAAAA+FBrUylr3333zW233ZYkqaioyJw5c9KjR48tGgwAAAAAAAAAAKA9alMp6281NTVtiRwAAAAAAAAAAADbhKJLWUnyzDPPZNq0aXn88ceTJAcccEDOPffc7LPPPiUNBwAAAAAAAAAA0N5UFHvCvffemwMOOCALFizIgAEDMmDAgMyfPz8HHnhgZs+evSUyAgAAAAAAAAAAtBtF3ylrwoQJOe+883LFFVesN/5v//ZvOf7440sWDgAAAAAAAAAAoL0p+k5Zjz/+eL7whS+sN/75z38+f/zjH0sSCgAAAAAAAAAAoL0qupS16667ZvHixeuNL168OD169ChFJgAAAAAAAAAAgHar6McXjh07Nl/60pfypz/9KYcddliS5KGHHso3vvGN1NbWljwgAAAAAAAAAABAe1J0Keuiiy5Kly5dctVVV2XixIlJkl69euXrX/96zjnnnJIHBAAAAAAAAAAAaE+KLmUVCoWcd955Oe+88/LGG28kSbp06VLyYAAAAAAAAAAAAO1R0aWsv6WMBQAAAAAAAAAA0FpFuQMAAAAAAAAAAABsS5SyAAAAAAAAAAAASkgpCwAAAAAAAAAAoISKKmU1NDTkuOOOy1NPPbWl8gAAAAAAAAAAALRrRZWyqqqqsmTJkpKHmD59evbaa6906tQpw4YNy4IFCzY69+ijj06hUFjv4+Mf/3jLnLPOOmu94yeccELJcwMAAAAAAAAAAPy9oh9f+LnPfS433HBDyQLcfvvtqa2tzeTJk7No0aIMHDgwo0aNyooVKzY4/84778yLL77Y8rF06dJUVlbm1FNPbTXvhBNOaDXv1ltvLVlmAAAAAAAAAACAjelQ7Alvv/12Zs6cmf/6r//KkCFDsv3227c6PnXq1KLWmzp1asaOHZsxY8YkSWbMmJFf/OIXmTlzZiZMmLDe/J133rnV69tuuy3bbbfdeqWs6urq9OzZs6gsAAAAAAAAAAAA71fRpaylS5dm8ODBSZInn3yy1bFCoVDUWuvWrcvChQszceLElrGKioqMGDEi8+bNa9MaN9xwQ0aPHr1eOWzu3Lnp0aNHunXrlmOPPTaXXXZZdtlllw2usXbt2qxdu7bldX19fZKkoaEhDQ0NRV0TxXn3/S32fW5sfDtJ0tzc7GsEAFvZ5u7fAED52L8BoP2xfwNA+2P/hm1fMd/fhebm5uYtmGWTXnjhhey+++55+OGHM3z48JbxCy64IL/+9a8zf/78TZ6/YMGCDBs2LPPnz8+hhx7aMv7u3bP69OmTZ555Jl/72teyww47ZN68eamsrFxvna9//eu5+OKL1xv/0Y9+lO222+59XCFbyqOvFHLjk5Xp27U5Xz2wsdxxAAAAAAAAAADYxq1Zsyb//M//nNdffz1du3bd5Nyi75T1rqeffjrPPPNMjjrqqHTu3DnNzc1F3ynr/brhhhvSv3//VoWsJBk9enTLr/v3758BAwZkn332ydy5c3Pcccett87EiRNTW1vb8rq+vj69e/fOyJEj3/MN5P1paGjI7Nmzc/zxx6eqqqrN5xWW1uXGJ5dk5513zsc+dsgWTAgA/L3N3b8BgPKxfwNA+2P/BoD2x/4N2753n77XFkWXsl555ZV8+tOfzv33359CoZCnnnoqe++9d77whS+kW7duueqqq9q8Vvfu3VNZWZnly5e3Gl++fHl69uy5yXNXr16d2267LZdccsl7fp6999473bt3z9NPP73BUlZ1dXWqq6vXG6+qqvIH5VZS7HtdWfnOb91CoeBrBABl4mclAGh/7N8A0P7YvwGg/bF/w7armO/timIXP++881JVVZXnn3++1aP9TjvttMyaNauotTp27JghQ4Zkzpw5LWNNTU2ZM2dOq8cZbsiPf/zjrF27Np/73Ofe8/P85S9/ySuvvJLddtutqHwAAAAAAAAAAADFKvpOWffdd1/uvffe7LHHHq3G+/Xrl+eee67oALW1tTnzzDMzdOjQHHrooZk2bVpWr16dMWPGJEnOOOOM7L777pkyZUqr82644Yaccsop2WWXXVqNr1q1KhdffHH+6Z/+KT179swzzzyTCy64IH379s2oUaOKzgcAAAAAAAAAAFCMoktZq1evbnWHrHetXLlyg48AfC+nnXZaXnrppUyaNCl1dXUZNGhQZs2alZqamiTJ888/n4qK1jf0euKJJ/Lggw/mvvvuW2+9ysrKLFmyJDfddFNee+219OrVKyNHjsyll166WfkAAAAAAAAAAACKUXQp68gjj8zNN9+cSy+9NElSKBTS1NSUK6+8Msccc8xmhRg3blzGjRu3wWNz585db2zfffdNc3PzBud37tw5995772blAAAAAAAAAAAAeL+KLmVdeeWVOe644/LII49k3bp1ueCCC/KHP/whK1euzEMPPbQlMgIAAAAAAAAAALQbFe89pbWDDjooTz75ZI444oicfPLJWb16dT75yU/m0UcfzT777LMlMgIAAAAAAAAAALQbRd8pK0l23HHH/Pu//3upswAAAAAAAAAAALR7m1XKevXVV3PDDTfk8ccfT5IccMABGTNmTHbeeeeShgMAAAAAAAAAAGhvin584QMPPJC99torV199dV599dW8+uqrufrqq9OnT5888MADWyIjAAAAAAAAAABAu1H0nbLOPvvsnHbaabnuuutSWVmZJGlsbMy//uu/5uyzz87vf//7kocEAAAAAAAAAABoL4q+U9bTTz+d//2//3dLIStJKisrU1tbm6effrqk4QAAAAAAAAAAANqboktZgwcPzuOPP77e+OOPP56BAweWJBQAAAAAAAAAAEB71abHFy5ZsqTl1+ecc07OPffcPP300/nIRz6SJPntb3+b6dOn54orrtgyKQEAAAAAAAAAANqJNpWyBg0alEKhkObm5paxCy64YL15//zP/5zTTjutdOkAAAAAAAAAAADamTaVsp599tktnQMAAAAAAAAAAGCb0KZS1p577rmlcwAAAAAAAAAAAGwT2lTK+nsvvPBCHnzwwaxYsSJNTU2tjp1zzjklCQYAAAAAAAAAANAeFV3KuvHGG/PlL385HTt2zC677JJCodByrFAoKGUBAAAAAAAAAAAfakWXsi666KJMmjQpEydOTEVFxZbIBAAAAAAAAAAA0G4V3apas2ZNRo8erZAFAAAAAAAAAACwAUU3q77whS/kxz/+8ZbIAgAAAAAAAAAA0O4V/fjCKVOm5BOf+ERmzZqV/v37p6qqqtXxqVOnliwcAAAAAAAAAABAe7NZpax77703++67b5KkUCi0HPvbXwMAAAAAAAAAAHwYFV3KuuqqqzJz5sycddZZWyAOAAAAAAAAAABA+1ZR7AnV1dU5/PDDt0QWAAAAAAAAAACAdq/oUta5556ba665ZktkAQAAAAAAAAAAaPeKfnzhggUL8qtf/Sp33313DjzwwFRVVbU6fuedd5YsHAAAAAAAAAAAQHtTdClrp512yic/+cktkQUAAAAAAAAAAKDdK7qU9cMf/nBL5AAAAAAAAAAAANgmVJQ7AAAAAAAAAAAAwLak6Dtl9enTJ4VCYaPH//SnP72vQAAAAAAAAAAAAO1Z0aWs8ePHt3rd0NCQRx99NLNmzcr5559fqlwAAAAAAAAAAADtUtGlrHPPPXeD49OnT88jjzzyvgMBAAAAAAAAAAC0ZxWlWujEE0/MT3/601ItBwAAAAAAAAAA0C6VrJT1k5/8JDvvvHOplgMAAAAAAAAAAGiXin584cEHH5xCodDyurm5OXV1dXnppZfy3e9+t6ThAAAAAAAAAAAA2puiS1mnnHJKq9cVFRXZddddc/TRR2e//fYrVS4AAAAAAAAAAIB2qehS1uTJk0seYvr06fnmN7+Zurq6DBw4MNdcc00OPfTQDc698cYbM2bMmFZj1dXVeeutt1peNzc3Z/Lkybn++uvz2muv5fDDD891112Xfv36lTw7AAAAAAAAAADA36ood4Dbb789tbW1mTx5chYtWpSBAwdm1KhRWbFixUbP6dq1a1588cWWj+eee67V8SuvvDJXX311ZsyYkfnz52f77bfPqFGjWhW3AAAAAAAAAAAAtoQ2l7IqKipSWVm5yY8OHYq+8VamTp2asWPHZsyYMTnggAMyY8aMbLfddpk5c+ZGzykUCunZs2fLR01NTcux5ubmTJs2LRdeeGFOPvnkDBgwIDfffHNeeOGF3HXXXUXnAwAAAAAAAAAAKEabW1Q/+9nPNnps3rx5ufrqq9PU1FTUJ1+3bl0WLlyYiRMntoxVVFRkxIgRmTdv3kbPW7VqVfbcc880NTVl8ODBufzyy3PggQcmSZ599tnU1dVlxIgRLfN33HHHDBs2LPPmzcvo0aPXW2/t2rVZu3Zty+v6+vokSUNDQxoaGoq6Jorz7vtb7Pvc2Ph2kndKeL5GALB1be7+DQCUj/0bANof+zcAtD/2b9j2FfP93eZS1sknn7ze2BNPPJEJEybk5z//eT772c/mkksuafMnTpKXX345jY2Nre50lSQ1NTVZtmzZBs/Zd999M3PmzAwYMCCvv/56vvWtb+Wwww7LH/7wh+yxxx6pq6trWePv13z32N+bMmVKLr744vXG77vvvmy33XZFXRObZ/bs2UXNf/SVQpLKrFy5Mvfcc8+WCQUAbFKx+zcAUH72bwBof+zfAND+2L9h27VmzZo2zy3+eYNJXnjhhUyePDk33XRTRo0alcWLF+eggw7anKWKNnz48AwfPrzl9WGHHZb9998/3/ve93LppZdu1poTJ05MbW1ty+v6+vr07t07I0eOTNeuXd93ZjauoaEhs2fPzvHHH5+qqqo2n1dYWpcbn1ySnXfeOR/72CFbMCEA8Pc2d/8GAMrH/g0A7Y/9GwDaH/s3bPveffpeWxRVynr99ddz+eWX55prrsmgQYMyZ86cHHnkkUUHfFf37t1TWVmZ5cuXtxpfvnx5evbs2aY1qqqqcvDBB+fpp59Okpbzli9fnt12263VmoMGDdrgGtXV1amurt7g2v6g3DqKfa8rK9/5rVsoFHyNAKBM/KwEAO2P/RsA2h/7NwC0P/Zv2HYV871d0daJV155Zfbee+/cfffdufXWW/Pwww+/r0JWknTs2DFDhgzJnDlzWsaampoyZ86cVnfD2pTGxsb8/ve/bylg9enTJz179my1Zn19febPn9/mNQEAAAAAAAAAADZXm++UNWHChHTu3Dl9+/bNTTfdlJtuummD8+68886iAtTW1ubMM8/M0KFDc+ihh2batGlZvXp1xowZkyQ544wzsvvuu2fKlClJkksuuSQf+chH0rdv37z22mv55je/meeeey5f/OIXk7xz56Tx48fnsssuS79+/dKnT59cdNFF6dWrV0455ZSisgEAAAAAAAAAABSrzaWsM844I4VCoeQBTjvttLz00kuZNGlS6urqMmjQoMyaNSs1NTVJkueffz4VFf9zQ69XX301Y8eOTV1dXbp165YhQ4bk4YcfzgEHHNAy54ILLsjq1avzpS99Ka+99lqOOOKIzJo1K506dSp5fgAAAAAAAAAAgL/V5lLWjTfeuMVCjBs3LuPGjdvgsblz57Z6/e1vfzvf/va3N7leoVDIJZdckksuuaRUEQEAAAAAAAAAANqk4r2nAAAAAAAAAAAA0FZKWQAAAAAAAAAAACWklAUAAAAAAAAAAFBCSlkAAAAAAAAAAAAlpJQFAAAAAAAAAABQQkpZAAAAAAAAAAAAJaSUBQAAAAAAAAAAUEJKWQAAAAAAAAAAACWklAUAAAAAAAAAAFBCSlkAAAAAAAAAAAAlpJQFAAAAAAAAAABQQkpZAAAAAAAAAAAAJaSUBQAAAAAAAAAAUEJKWQAAAAAAAAAAACWklAUAAAAAAAAAAFBCSlkAAAAAAAAAAAAlpJQFAAAAAAAAAABQQkpZAAAAAAAAAAAAJaSUBQAAAAAAAAAAUEJKWQAAAAAAAAAAACWklAUAAAAAAAAAAFBCSlkAAAAAAAAAAAAlpJQFAAAAAAAAAABQQkpZAAAAAAAAAAAAJaSUBQAAAAAAAAAAUEJKWQAAAAAAAAAAACWklAUAAAAAAAAAAFBCSlkAAAAAAAAAAAAlpJQFAAAAAAAAAABQQkpZAAAAAAAAAAAAJaSUBQAAAAAAAAAAUEJKWQAAAAAAAAAAACWklAUAAAAAAAAAAFBCH4hS1vTp07PXXnulU6dOGTZsWBYsWLDRuddff32OPPLIdOvWLd26dcuIESPWm3/WWWelUCi0+jjhhBO29GUAAAAAAAAAAACUv5R1++23p7a2NpMnT86iRYsycODAjBo1KitWrNjg/Llz5+Yzn/lM7r///sybNy+9e/fOyJEj89e//rXVvBNOOCEvvvhiy8ett966NS4HAAAAAAAAAAD4kOtQ7gBTp07N2LFjM2bMmCTJjBkz8otf/CIzZ87MhAkT1pt/yy23tHr9gx/8ID/96U8zZ86cnHHGGS3j1dXV6dmzZ5syrF27NmvXrm15XV9fnyRpaGhIQ0ND0ddE2737/hb7Pjc2vp0kaW5u9jUCgK1sc/dvAKB87N8A0P7YvwGg/bF/w7avmO/vspay1q1bl4ULF2bixIktYxUVFRkxYkTmzZvXpjXWrFmThoaG7Lzzzq3G586dmx49eqRbt2459thjc9lll2WXXXbZ4BpTpkzJxRdfvN74fffdl+22266IK2JzzZ49u6j5j75SSFKZlStX5p577tkyoQCATSp2/wYAys/+DQDtj/0bANof+zdsu9asWdPmuWUtZb388stpbGxMTU1Nq/GamposW7asTWv827/9W3r16pURI0a0jJ1wwgn55Cc/mT59+uSZZ57J1772tZx44omZN29eKisr11tj4sSJqa2tbXldX1/f8ljErl27bubV0RYNDQ2ZPXt2jj/++FRVVbX5vMLSutz45JLsvPPO+djHDtmCCQGAv7e5+zcAUD72bwBof+zfAND+2L9h2/fu0/faouyPL3w/rrjiitx2222ZO3duOnXq1DI+evToll/3798/AwYMyD777JO5c+fmuOOOW2+d6urqVFdXrzdeVVXlD8qtpNj3urLynd+6hULB1wgAysTPSgDQ/ti/AaD9sX8DQPtj/4ZtVzHf2xVbMMd76t69eyorK7N8+fJW48uXL0/Pnj03ee63vvWtXHHFFbnvvvsyYMCATc7de++907179zz99NPvOzMAAAAAAAAAAMCmlLWU1bFjxwwZMiRz5sxpGWtqasqcOXMyfPjwjZ535ZVX5tJLL82sWbMydOjQ9/w8f/nLX/LKK69kt912K0luAAAAAAAAAACAjSlrKStJamtrc/311+emm27K448/nq985StZvXp1xowZkyQ544wzMnHixJb53/jGN3LRRRdl5syZ2WuvvVJXV5e6urqsWrUqSbJq1aqcf/75+e1vf5s///nPmTNnTk4++eT07ds3o0aNKss1AgAAAAAAAAAAHx4dyh3gtNNOy0svvZRJkyalrq4ugwYNyqxZs1JTU5Mkef7551NR8T/dseuuuy7r1q3Lpz71qVbrTJ48OV//+tdTWVmZJUuW5Kabbsprr72WXr16ZeTIkbn00ktTXV29Va8NAAAAAAAAAAD48Cl7KStJxo0bl3Hjxm3w2Ny5c1u9/vOf/7zJtTp37px77723RMkAAAAAAAAAAACKU/bHFwIAAAAAAAAAAGxLlLIAAAAAAAAAAABKSCkLAAAAAAAAAACghJSyAAAAAAAAAAAASkgpCwAAAAAAAAAAoISUsgAAAAAAAAAAAEpIKQsAAAAAAAAAAKCElLIAAAAAAAAAAABKSCkLAAAAAAAAAACghJSyAAAAAAAAAAAASkgpCwAAAAAAAAAAoISUsgAAAAAAAAAAAEpIKQsAAAAAAAAAAKCElLIAAAAAAAAAAABKSCkLAAAAAAAAAACghJSyAAAAAAAAAAAASkgpCwAAAAAAAAAAoISUsgAAAAAAAAAAAEpIKQsAAAAAAAAAAKCElLIAAAAAAAAAAABKSCkLAAAAAAAAAACghJSyAAAAAAAAAAAASkgpCwAAAAAAAAAAoISUsgAAAAAAAAAAAEpIKQsAAAAAAAAAAKCElLIAAAAAAAAAAABKSCkLAAAAAAAAAACghJSyAAAAAAAAAAAASkgpCwAAAAAAAAAAoISUsgAAAAAAAAAAAEpIKQsAAAAAAAAAAKCElLIAAAAAAAAAAABK6ANRypo+fXr22muvdOrUKcOGDcuCBQs2Of/HP/5x9ttvv3Tq1Cn9+/fPPffc0+p4c3NzJk2alN122y2dO3fOiBEj8tRTT23JSwAAAAAAAAAAAEjyAShl3X777amtrc3kyZOzaNGiDBw4MKNGjcqKFSs2OP/hhx/OZz7zmXzhC1/Io48+mlNOOSWnnHJKli5d2jLnyiuvzNVXX50ZM2Zk/vz52X777TNq1Ki89dZbW+uyAAAAAAAAAACAD6myl7KmTp2asWPHZsyYMTnggAMyY8aMbLfddpk5c+YG53/nO9/JCSeckPPPPz/7779/Lr300gwePDjXXnttknfukjVt2rRceOGFOfnkkzNgwIDcfPPNeeGFF3LXXXdtxSsDAAAAAAAAAAA+jDqU85OvW7cuCxcuzMSJE1vGKioqMmLEiMybN2+D58ybNy+1tbWtxkaNGtVSuHr22WdTV1eXESNGtBzfcccdM2zYsMybNy+jR49eb821a9dm7dq1La/r6+uTJA0NDWloaNjs6+O9vfv+Fvs+Nza+neSdEp6vEQBsXZu7fwMA5WP/BoD2x/4NAO2P/Ru2fcV8f5e1lPXyyy+nsbExNTU1rcZramqybNmyDZ5TV1e3wfl1dXUtx98d29icvzdlypRcfPHF643fd9992W677dp2Mbwvs2fPLmr+o68UklRm5cqVueeee7ZMKABgk4rdvwGA8rN/A0D7Y/8GgPbH/g3brjVr1rR5bllLWR8UEydObHX3rfr6+vTu3TsjR45M165dy5hs29fQ0JDZs2fn+OOPT1VVVZvPO3TV2hy9fFV27FSVg3b3NQKArWlz928AoHzs3wDQ/ti/AaD9sX/Dtu/dp++1RVlLWd27d09lZWWWL1/eanz58uXp2bPnBs/p2bPnJue/+9/ly5dnt912azVn0KBBG1yzuro61dXV641XVVX5g3IrKfa93q1bVXbrtsMWTAQAvBc/KwFA+2P/BoD2x/4NAO2P/Ru2XcV8b1dswRzvqWPHjhkyZEjmzJnTMtbU1JQ5c+Zk+PDhGzxn+PDhreYn79z67935ffr0Sc+ePVvNqa+vz/z58ze6JgAAAAAAAAAAQKmU/fGFtbW1OfPMMzN06NAceuihmTZtWlavXp0xY8YkSc4444zsvvvumTJlSpLk3HPPzUc/+tFcddVV+fjHP57bbrstjzzySL7//e8nSQqFQsaPH5/LLrss/fr1S58+fXLRRRelV69eOeWUU8p1mQAAAAAAAAAAwIdE2UtZp512Wl566aVMmjQpdXV1GTRoUGbNmpWampokyfPPP5+Kiv+5oddhhx2WH/3oR7nwwgvzta99Lf369ctdd92Vgw46qGXOBRdckNWrV+dLX/pSXnvttRxxxBGZNWtWOnXqtNWvDwAAAAAAAAAA+HApeykrScaNG5dx48Zt8NjcuXPXGzv11FNz6qmnbnS9QqGQSy65JJdcckmpIgIAAAAAAAAAALRJxXtPAQAAAAAAAAAAoK2UsgAAAAAAAAAAAEpIKQsAAAAAAAAAAKCElLIAAAAAAAAAAABKSCkLAAAAAAAAAACghJSyAAAAAAAAAAAASkgpCwAAAAAAAAAAoISUsgAAAAAAAAAAAEpIKQsAAAAAAAAAAKCElLIAAAAAAAAAAABKqEO5A3wQNTc3J0nq6+vLnGTb19DQkDVr1qS+vj5VVVXljgMAtIH9GwDaH/s3ALQ/9m8AaH/s37Dte7dL9G63aFOUsjbgjTfeSJL07t27zEkAAAAAAAAAAIAPkjfeeCM77rjjJucUmttS3fqQaWpqygsvvJAuXbqkUCiUO842rb6+Pr17985///d/p2vXruWOAwC0gf0bANof+zcAtD/2bwBof+zfsO1rbm7OG2+8kV69eqWiomKTc90pawMqKiqyxx57lDvGh0rXrl1tSgDQzti/AaD9sX8DQPtj/waA9sf+Ddu297pD1rs2XdkCAAAAAAAAAACgKEpZAAAAAAAAAAAAJaSURVlVV1dn8uTJqa6uLncUAKCN7N8A0P7YvwGg/bF/A0D7Y/8G/lahubm5udwhAAAAAAAAAAAAthXulAUAAAAAAAAAAFBCSlkAAAAAAAAAAAAlpJQFAAAAAAAAAABQQkpZAAAAAAAAAAAAJaSURdlMnz49e+21Vzp16pRhw4ZlwYIF5Y4EAGzElClTcsghh6RLly7p0aNHTjnllDzxxBPljgUAFOGKK65IoVDI+PHjyx0FANiEv/71r/nc5z6XXXbZJZ07d07//v3zyCOPlDsWALARjY2Nueiii9KnT5907tw5++yzTy699NI0NzeXOxpQZkpZlMXtt9+e2traTJ48OYsWLcrAgQMzatSorFixotzRAIAN+PWvf52zzz47v/3tbzN79uw0NDRk5MiRWb16dbmjAQBt8Lvf/S7f+973MmDAgHJHAQA24dVXX83hhx+eqqqq/PKXv8wf//jHXHXVVenWrVu5owEAG/GNb3wj1113Xa699to8/vjj+cY3vpErr7wy11xzTbmjAWVWaFbPpAyGDRuWQw45JNdee22SpKmpKb17985Xv/rVTJgwoczpAID38tJLL6VHjx759a9/naOOOqrccQCATVi1alUGDx6c7373u7nssssyaNCgTJs2rdyxAIANmDBhQh566KH85je/KXcUAKCNPvGJT6SmpiY33HBDy9g//dM/pXPnzvk//+f/lDEZUG7ulMVWt27duixcuDAjRoxoGauoqMiIESMyb968MiYDANrq9ddfT5LsvPPOZU4CALyXs88+Ox//+Mdb/T0cAPhg+r//9/9m6NChOfXUU9OjR48cfPDBuf7668sdCwDYhMMOOyxz5szJk08+mSR57LHH8uCDD+bEE08sczKg3DqUOwAfPi+//HIaGxtTU1PTarympibLli0rUyoAoK2ampoyfvz4HH744TnooIPKHQcA2ITbbrstixYtyu9+97tyRwEA2uBPf/pTrrvuutTW1uZrX/tafve73+Wcc85Jx44dc+aZZ5Y7HgCwARMmTEh9fX3222+/VFZWprGxMf/xH/+Rz372s+WOBpSZUhYAAEU5++yzs3Tp0jz44IPljgIAbMJ///d/59xzz83s2bPTqVOncscBANqgqakpQ4cOzeWXX54kOfjgg7N06dLMmDFDKQsAPqDuuOOO3HLLLfnRj36UAw88MIsXL8748ePTq1cv+zd8yCllsdV17949lZWVWb58eavx5cuXp2fPnmVKBQC0xbhx43L33XfngQceyB577FHuOADAJixcuDArVqzI4MGDW8YaGxvzwAMP5Nprr83atWtTWVlZxoQAwN/bbbfdcsABB7Qa23///fPTn/60TIkAgPdy/vnnZ8KECRk9enSSpH///nnuuecyZcoUpSz4kKsodwA+fDp27JghQ4Zkzpw5LWNNTU2ZM2dOhg8fXsZkAMDGNDc3Z9y4cfnZz36WX/3qV+nTp0+5IwEA7+G4447L73//+yxevLjlY+jQofnsZz+bxYsXK2QBwAfQ4YcfnieeeKLV2JNPPpk999yzTIkAgPeyZs2aVFS0rl5UVlamqampTImADwp3yqIsamtrc+aZZ2bo0KE59NBDM23atKxevTpjxowpdzQAYAPOPvvs/OhHP8p//ud/pkuXLqmrq0uS7LjjjuncuXOZ0wEAG9KlS5ccdNBBrca233777LLLLuuNAwAfDOedd14OO+ywXH755fn0pz+dBQsW5Pvf/36+//3vlzsaALARJ510Uv7jP/4j//AP/5ADDzwwjz76aKZOnZrPf/7z5Y4GlFmhubm5udwh+HC69tpr881vfjN1dXUZNGhQrr766gwbNqzcsQCADSgUChsc/+EPf5izzjpr64YBADbb0UcfnUGDBmXatGnljgIAbMTdd9+diRMn5qmnnkqfPn1SW1ubsWPHljsWALARb7zxRi666KL87Gc/y4oVK9KrV6985jOfyaRJk9KxY8dyxwPKSCkLAAAAAAAAAACghCreewoAAAAAAAAAAABtpZQFAAAAAAAAAABQQkpZAAAAAAAAAAAAJaSUBQAAAAAAAAAAUEJKWQAAAAAAAAAAACWklAUAAAAAAAAAAFBCSlkAAAAAAAAAAAAlpJQFAAAAAAAAAABQQkpZAAAAAGxzzjrrrJxyyill+/ynn356Lr/88jbNHT16dK666qotnAgAAACAranQ3NzcXO4QAAAAANBWhUJhk8cnT56c8847L83Nzdlpp522Tqi/8dhjj+XYY4/Nc889lx122OE95y9dujRHHXVUnn322ey4445bISEAAAAAW5pSFgAAAADtSl1dXcuvb7/99kyaNClPPPFEy9gOO+zQpjLUlvLFL34xHTp0yIwZM9p8ziGHHJKzzjorZ5999hZMBgAAAMDW4vGFAAAAALQrPXv2bPnYcccdUygUWo3tsMMO6z2+8Oijj85Xv/rVjB8/Pt26dUtNTU2uv/76rF69OmPGjEmXLl3St2/f/PKXv2z1uZYuXZoTTzwxO+ywQ2pqanL66afn5Zdf3mi2xsbG/OQnP8lJJ53Uavy73/1u+vXrl06dOqWmpiaf+tSnWh0/6aSTctttt73/NwcAAACADwSlLAAAAAA+FG666aZ07949CxYsyFe/+tV85StfyamnnprDDjssixYtysiRI3P66adnzZo1SZLXXnstxx57bA4++OA88sgjmTVrVpYvX55Pf/rTG/0cS5Ysyeuvv56hQ4e2jD3yyCM555xzcskll+SJJ57IrFmzctRRR7U679BDD82CBQuydu3aLXPxAAAAAGxVSlkAAAAAfCgMHDgwF154Yfr165eJEyemU6dO6d69e8aOHZt+/fpl0qRJeeWVV7JkyZIkybXXXpuDDz44l19+efbbb78cfPDBmTlzZu6///48+eSTG/wczz33XCorK9OjR4+Wseeffz7bb799PvGJT2TPPffMwQcfnHPOOafVeb169cq6detaPZoRAAAAgPZLKQsAAACAD4UBAwa0/LqysjK77LJL+vfv3zJWU1OTJFmxYkWS5LHHHsv999+fHXbYoeVjv/32S5I888wzG/wcb775Zqqrq1MoFFrGjj/++Oy5557Ze++9c/rpp+eWW25puRvXuzp37pwk640DAAAA0D4pZQEAAADwoVBVVdXqdaFQaDX2bpGqqakpSbJq1aqcdNJJWbx4cauPp556ar3HD76re/fuWbNmTdatW9cy1qVLlyxatCi33nprdtttt0yaNCkDBw7Ma6+91jJn5cqVSZJdd921JNcKAAAAQHkpZQEAAADABgwePDh/+MMfstdee6Vv376tPrbffvsNnjNo0KAkyR//+MdW4x06dMiIESNy5ZVXZsmSJfnzn/+cX/3qVy3Hly5dmj322CPdu3ffYtcDAAAAwNajlAUAAAAAG3D22Wdn5cqV+cxnPpPf/e53eeaZZ3LvvfdmzJgxaWxs3OA5u+66awYPHpwHH3ywZezuu+/O1VdfncWLF+e5557LzTffnKampuy7774tc37zm99k5MiRW/yaAAAAANg6lLIAAAAAYAN69eqVhx56KI2NjRk5cmT69++f8ePHZ6eddkpFxcb/We2LX/xibrnllpbXO+20U+68884ce+yx2X///TNjxozceuutOfDAA5Mkb731Vu66666MHTt2i18TAAAAAFtHobm5ubncIQAAAABgW/Hmm29m3333ze23357hw4e/5/zrrrsuP/vZz3LfffdthXQAAAAAbA3ulAUAAAAAJdS5c+fcfPPNefnll9s0v6qqKtdcc80WTgUAAADA1uROWQAAAAAAAAAAACXkTlkAAAAAAAAAAAAlpJQFAAAAAAAAAABQQkpZAAAAAAAAAAAAJaSUBQAAAAAAAAAAUEJKWQAAAAAAAAAAACWklAUAAAAAAAAAAFBCSlkAAAAAAAAAAAAlpJQFAAAAAAAAAABQQkpZAAAAAAAAAAAAJfT/A6JaIEnqPlYdAAAAAElFTkSuQmCC", "text/plain": [ "