{ "cells": [ { "cell_type": "code", "execution_count": 1, "id": "ab5cd7d1-1a57-46fc-8282-dae0a6cc2944", "metadata": {}, "outputs": [], "source": [ "import matplotlib.pyplot as plt\n", "import numpy as np\n", "import random\n", "import pandas as pd\n", "import itertools\n", "from joblib import Parallel, delayed\n", "import os.path\n", "import seaborn as sns" ] }, { "cell_type": "code", "execution_count": 2, "id": "3d1ad0b9-f6a8-4e98-84aa-6e02e4279954", "metadata": {}, "outputs": [], "source": [ "SEED = 42\n", "np.random.seed(SEED)\n", "random.seed(SEED)" ] }, { "cell_type": "code", "execution_count": 3, "id": "a92c6772-6609-41a8-a3d1-4d640b69a864", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "CPU times: user 596 ms, sys: 151 ms, total: 747 ms\n", "Wall time: 746 ms\n" ] } ], "source": [ "objective_result_file = \"./objective_grid-search_multi-core.csv\"\n", "results_df = None\n", "\n", "if not os.path.isfile(objective_result_file):\n", " print(\"Run `02-objective_multi-core_gridsearch.ipynb`\")\n", "else:\n", " results_df = pd.read_csv(objective_result_file)" ] }, { "cell_type": "code", "execution_count": 4, "id": "45d7f86f-edee-4fc5-835f-1e311ab2e411", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
| \n", " | Objective | \n", "Optimal TTL | \n", "db_object_count | \n", "cache_size | \n", "c_f (Miss Cost) | \n", "c_delta (Refresh Cost) | \n", "
|---|---|---|---|---|---|---|
| 0 | \n", "0.715000 | \n", "[inf -0. -0. inf -0. -0. inf -0. -0. -0.] | \n", "10 | \n", "1.0 | \n", "0.1 | \n", "0.01 | \n", "
| 1 | \n", "0.730000 | \n", "[-0. -0. -0. inf inf -0. -0. -0. inf -0.] | \n", "10 | \n", "1.0 | \n", "0.1 | \n", "0.02 | \n", "
| 2 | \n", "0.940000 | \n", "[-0. inf -0. -0. -0. inf -0. -0. -0. -0.] | \n", "10 | \n", "1.0 | \n", "0.1 | \n", "0.04 | \n", "
| 3 | \n", "1.550000 | \n", "[inf -0. inf -0. -0. -0. -0. -0. -0. -0.] | \n", "10 | \n", "1.0 | \n", "0.1 | \n", "0.05 | \n", "
| 4 | \n", "9.622740 | \n", "[-0. -0. -0. -0. ... | \n", "10 | \n", "1.0 | \n", "0.1 | \n", "0.07 | \n", "
| ... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "
| 32719 | \n", "12506.666667 | \n", "[1.09861229 0.54930614 1.09861229 1.09861229 1... | \n", "500 | \n", "500.0 | \n", "10.0 | \n", "15.00 | \n", "
| 32720 | \n", "16130.000000 | \n", "[0.1732868 0.69314718 0.07701635 0.69314718 0... | \n", "500 | \n", "500.0 | \n", "10.0 | \n", "20.00 | \n", "
| 32721 | \n", "46486.000000 | \n", "[5.10825624e-01 5.10825624e-01 8.51376040e-02 ... | \n", "500 | \n", "500.0 | \n", "10.0 | \n", "25.00 | \n", "
| 32722 | \n", "29780.000000 | \n", "[0.07438118 0.22314355 0.22314355 0.22314355 0... | \n", "500 | \n", "500.0 | \n", "10.0 | \n", "50.00 | \n", "
| 32723 | \n", "15316.000000 | \n", "[0.10536052 0.10536052 0.10536052 0.10536052 0... | \n", "500 | \n", "500.0 | \n", "10.0 | \n", "100.00 | \n", "
32724 rows × 6 columns
\n", "