
AoI based TTL caching for Dynamic content

Abstract—

I. INTRODUCTION

II. MODEL AND PROBLEM STATEMENT

A. Exact Model

We consider a single cache that receives objects’ requests
defined by the rates λi for an object i. N is the total number
of objects available and B is the cache capacity. The cache
assigns a TTL Ti for each object i upon admittance and
refreshes the TTL upon a cache hit. The objects age in the
cache increases linearly with time after admittance. The TTL
caching policy has the advantage of freely tuning the allocation
of the objects in the cache independently and differently from
each other. Our goal is to jointly optimize caching and age
decisions to minimize the costs incurred by the system. We
propose two different approaches depending on the abundance
of the bandwidth between the cache and the server. In case
of limited bandwidth, we optimize the TTL choice of every
object to optimally balance the trade-off between the caching
goal and the growing age depending on the cost function. In
case of excess bandwidth, in addition to tuning the TTL we
introduce an updating process for each cached object between
the cache and the server. The updating process make use of
the available bandwidth to reduce the age of the cached object.

B. Optimization problem

First, we formulate the general cost function as a linear
combination of the cost of a cache miss and the cost incurred
by the age. We write the objective function as

C =
∑
i

λi

[
Cm(hi) + Cδ(δ̄i)

]
, (1)

Cm(.) and Cδ(.) are the cost functions of the caching misses
and the age of retrieved objects, respectively. The caching cost
is only dependent on the hit probability controlled by the TTL
while the age cost depends on the expected age controlled by
the TTL and the updating process if exists.

min
(hi,ri)∀i

∑
i

λi[Cm(hi) + Cδ(δ̄i(hi, ri))] (2)

subject to
∑
i

E[Oi] ≤ B, (3)

∑
i

(
λi(1− hi) +

E[Oi]

ri

)
≤ R, (4)

1) Case I: Limited Bandwidth: We find the optimal TTLs
that optimize the trade-off between the caching hit probability
and the freshness according to the objective function. Since
the inter-request times and the inter-miss times are renewal,
the retrieved object age between two misses is renewal. As
a result, it is sufficient to derive the expected age within one
cycle i.e., time between two misses. In one cycle, the age
grows linearly during the object occupancy in the cache, where
the age of the retrieved object upon a hit is equivalent to the
request arrival time ta assuming the cycle starts at time t = 0
and the age is 0 upon a miss. This establishes the trade-off
between the increasing age for the cached objects and the
zero age for objects fetched from the server. We calculate the
expected age of the retrieved object upon a request as

δ̄i := E[δi] = hiE[ta|h]

=
1

2
hiE[Oi] =

1

2
h2
i (5)

It is known that the expected value of Poisson arrival times
within a time interval τ is τ/2 []. Therefore, the expected
age during the object occupancy in the cache is equivalent
to E[Oi]/2 and the expected occupancy for Poisson request
arrivals is E[Oi] = hi [].

The expected age is explicitly expressed in terms of the hit
probability and since the hit probability is a bijective function
in terms of the TTL, finding the optimal TTLs is equivalent
to finding the optimal hit probabilities that dictate a unique
TTL. The constant object TTL is related to its hit probability
for Poisson request arrivals as

Ti =

{
−1
λi

ln(1− hi), for hi < 1

∞, hi = 1.
(6)

We formulate the optimization problem using the objective
function in (??) and the caching capacity constraint as

min
hi∀i

∑
i

λi[(1− hi)cf +
1

2
h2
i cδ] (7)

subject to
∑
i

hi ≤ B, (8)

III. APPROACH

We derive the solution to the optimization problems in
Sect. ?? by solving the Karush–Kuhn–Tucker (KKT) condi-
tions.



A. Case I: Limited Bandwidth

We express the KKT conditions for the optimization prob-
lem (??) as

∂L
∂hi

= 0 (Stationarity)∑
i

hi ≤ B (Primal feasibility)

η ≥ 0 (Dual feasibility)

η

[∑
i

hi −B

]
= 0 (Complementary slackness) , (9)

where L is the Lagrangian and η is the Lagrangian multiplier
of the inequality constraint. We obtain the optimal hit proba-
bility in terms of the optimal Lagrangian multiplier using the
stationary condition as

h∗
i =

1

cδ

(
cf −

η∗

λi

)
(10)

Using the optimal hit probability expression into the primal
feasibility condition, we derive the range of the optimal
Lagrangian multiplier as

η∗ ≥ Ncf −Bcδ∑
i(1/λi)

(11)

The complementary slackness condition implies that

η∗ =

{
Ncf−Bcδ∑

i(1/λi)
for

∑
i hi −B = 0,

0 for
∑

i hi −B < 0
(12)

Since η∗ must not be negative,
∑

i hi −B can not be zero if
Ncf−Bcδ∑

i(1/λi)
< 0, hence

η∗ =

{
0 if Bcδ > Ncf
Ncf−Bcδ∑

i(1/λi)
otherwise

(13)

We deduce from the above condition that utilizing the whole
cache is not optimal when the age cost of the full cache
utilization exceeds the fetching cost when not caching at all.
the balance between the fetching cost in case of caching no
objects and the age cost when the whole cache is utilized. The
optimal hit probability in such case is the same for all objects
and is given from (??) as cf

cδ
, hence the expected utilized cache

capacity is N
cf
cδ

. Note that the optimal TTLs resulting in the
same hit probabilities for all users calculated from (??) are
not the same and are decreasing linearly in terms of λi.

Recall that we do not include the hit probabilities constraint
0 ≤ hi ≤ 1 in our derivation, thus the optimal derived hit
probability in (??) might be infeasible. We simply account for
that by iteratively calculating the optimal hit probabilities after
projecting the most infeasible hit probability in each iteration
to the nearest barrier and excluding it from the optimization
in the next iteration. We summarize the iterative approach in
Algorithm ??

Algorithm 1: Joint Caching and Freshness Optimiza-
tion
Input: N , B, and related parameters
Output: Optimized caching and freshness variables

1 Initialization: m← N , S ← {1, 2, . . . , N}, b = B ;
2 repeat
3 Find the optimal Lagrangian multiplier:

η∗ ← max

(
0,

Ncf −Bcδ∑
i(1/λi)

)
4 Calculate hi from (??) ∀i ∈ S ;
5 Find the most infeasible hi:

k ← argmax(hi − 1, hi)

6 Project hk to the feasible range:

hk ← max(min(hk, 1), 0)

7 Exclude k from the decision variables:

S ← S \ {k}

8 Update the optimization function:

m← N − 1, b← b− hk

9 until 0 ≤ hi ≤ 1 are feasible;

IV. NUMERICAL EVALUATIONS

Different experiments:
• Eq 5 verify simulation - for ourselves
• Numerical vs theoretical comparison, for different values

of λ
• fc and fδ on each axis and plot hit probs or TTL
• TTL compared to LRU and static TTL
• ..
• Different µ and λ
• Comparison to others such as: LRU, random eviction,

TTL without refresh rate µ = 0, static TTL if the
constraints are fulfilled.

• comparison to the TTL and u coming from an optimizer
tool (in python)

REFERENCES


