Pointing Device is a generic name for a feature intended to be generic: moving the system pointer around. There are certainly other options for it - like mousekeys - but this aims to be easily modifiable and hardware driven. You can implement custom keys to control functionality, or you can gather information from other peripherals and insert it directly here - let QMK handle the processing for you.
There are a number of sensors that are supported by default. Note that only one sensor can be enabled by `POINTING_DEVICE_DRIVER` at a time. If you need to enable more than one sensor, then you need to implement it manually.
### ADNS 5050 Sensor
To use the ADNS 5050 sensor, add this to your `rules.mk`
```make
POINTING_DEVICE_DRIVER = adns5050
```
The ADNS 5050 sensor uses a serial type protocol for communication, and requires an additional light source.
This supports the Cirque Pinnacle 1CA027 Touch Controller, which is used in the TM040040, TM035035 and the TM023023 trackpads. These are I2C or SPI compatible, and both configurations are supported.
**`CIRQUE_PINNACLE_ATTENUATION`** is a measure of how much data is suppressed in regards to sensitivity. The higher the attenuation, the less sensitive the touchpad will be.
Default attenuation is set to 4X, although if you are using a thicker overlay (such as the curved overlay) you will want a lower attenuation such as 2X. The possible values are:
Also see the `POINTING_DEVICE_TASK_THROTTLE_MS`, which defaults to 10ms when using Cirque Pinnacle, which matches the internal update rate of the position registers (in standard configuration). Advanced configuration for pen/stylus usage might require lower values.
|`POINTING_DEVICE_GESTURES_CURSOR_GLIDE_ENABLE` | (Optional) Enable inertial cursor. Cursor continues moving after a flick gesture and slows down by kinetic friction | _not defined_ |
|`CIRQUE_PINNACLE_CIRCULAR_SCROLL_ENABLE` | (Optional) Enable circular scroll. Touch originating in outer ring can trigger scroll by moving along the perimeter. Near side triggers vertical scroll and far side triggers horizontal scroll. | _not defined_ |
|`CIRQUE_PINNACLE_TAP_ENABLE` | (Optional) Enable tap to click. This currently only works on the master side. | _not defined_ |
|`CIRQUE_PINNACLE_TAPPING_TERM` | (Optional) Length of time that a touch can be to be considered a tap. | `TAPPING_TERM`/`200` |
|`CIRQUE_PINNACLE_TOUCH_DEBOUNCE` | (Optional) Length of time that a touch can be to be considered a tap. | `TAPPING_TERM`/`200` |
**`POINTING_DEVICE_GESTURES_CURSOR_GLIDE_ENABLE`** is not specific to Cirque trackpad; any pointing device with a lift/contact status can integrate this gesture into its driver. e.g. PMW3360 can use Lift_Stat from Motion register. Note that `POINTING_DEVICE_MOTION_PIN` cannot be used with this feature; continuous polling of `pointing_device_get_report()` is needed to generate glide reports.
To use multiple sensors, instead of setting `PMW3360_CS_PIN` you need to set `PMW3360_CS_PINS` and also handle and merge the read from this sensor in user code.
Note that different (per sensor) values of CPI, speed liftoff, rotational angle or flipping of X/Y is not currently supported.
```c
// in config.h:
#define PMW3360_CS_PINS { B5, B6 }
// in keyboard.c:
#ifdef POINTING_DEVICE_ENABLE
void pointing_device_init_kb(void) {
pmw3360_init(1); // index 1 is the second device.
pointing_device_set_cpi(800); // applies to both sensors
pointing_device_init_user();
}
// Contains report from sensor #0 already, need to merge in from sensor #1
!> Ideally, new sensor hardware should be added to `drivers/sensors/` and `quantum/pointing_device_drivers.c`, but there may be cases where it's very specific to the hardware. So these functions are provided, just in case.
!> When using `SPLIT_POINTING_ENABLE` the `POINTING_DEVICE_MOTION_PIN` functionality is not supported and `POINTING_DEVICE_TASK_THROTTLE_MS` will default to `1`. Increasing this value will increase transport performance at the cost of possible mouse responsiveness.
The following configuration options are only available when using `SPLIT_POINTING_ENABLE` see [data sync options](feature_split_keyboard.md?id=data-sync-options). The rotation and invert `*_RIGHT` options are only used with `POINTING_DEVICE_COMBINED`. If using `POINTING_DEVICE_LEFT` or `POINTING_DEVICE_RIGHT` use the common configuration above to configure your pointing device.
!> If there is a `_RIGHT` configuration option or callback, the [common configuration](feature_pointing_device.md?id=common-configuration) option will work for the left. For correct left/right detection you should setup a [handedness option](feature_split_keyboard?id=setting-handedness), `EE_HANDS` is usually a good option for an existing board that doesn't do handedness by hardware.
| `pointing_device_init_kb(void)` | Callback to allow for keyboard level initialization. Useful for additional hardware sensors. |
| `pointing_device_init_user(void)` | Callback to allow for user level initialization. Useful for additional hardware sensors. |
| `pointing_device_task_kb(mouse_report)` | Callback that sends sensor data, so keyboard code can intercept and modify the data. Returns a mouse report. |
| `pointing_device_task_user(mouse_report)` | Callback that sends sensor data, so user code can intercept and modify the data. Returns a mouse report. |
| `pointing_device_adjust_by_defines(mouse_report)` | Applies rotations and invert configurations to a raw mouse report. |
## Split Keyboard Callbacks and Functions
The combined functions below are only available when using `SPLIT_POINTING_ENABLE` and `POINTING_DEVICE_COMBINED`. The 2 callbacks `pointing_device_task_combined_*` replace the single sided equivalents above. See the [combined pointing devices example](feature_pointing_device.md?id=combined-pointing-devices)
| `pointing_device_set_shared_report(mouse_report)` | Sets the shared mouse report to the assigned `mouse_report_t` data structured passed to the function. |
| `pointing_device_set_cpi_on_side(bool, uint16_t)` | Sets the CPI/DPI of one side, if supported. Passing `true` will set the left and `false` the right` |
| `pointing_device_combine_reports(left_report, right_report)` | Returns a combined mouse_report of left_report and right_report (as a `mouse_report_t` data structure) |
| `pointing_device_task_combined_kb(left_report, right_report)` | Callback, so keyboard code can intercept and modify the data. Returns a combined mouse report. |
| `pointing_device_task_combined_user(left_report, right_report)` | Callback, so user code can intercept and modify. Returns a combined mouse report using `pointing_device_combine_reports` |
| `pointing_device_adjust_by_defines_right(mouse_report)` | Applies right side rotations and invert configurations to a raw mouse report. |
*`mouseReport.x` - this is a signed int from -127 to 127 (not 128, this is defined in USB HID spec) representing movement (+ to the right, - to the left) on the x axis.
*`mouseReport.y` - this is a signed int from -127 to 127 (not 128, this is defined in USB HID spec) representing movement (+ upward, - downward) on the y axis.
*`mouseReport.v` - this is a signed int from -127 to 127 (not 128, this is defined in USB HID spec) representing vertical scrolling (+ upward, - downward).
*`mouseReport.h` - this is a signed int from -127 to 127 (not 128, this is defined in USB HID spec) representing horizontal scrolling (+ right, - left).
*`mouseReport.buttons` - this is a uint8_t in which all 8 bits are used. These bits represent the mouse button state - bit 0 is mouse button 1, and bit 7 is mouse button 8.
*`pointing_device_send()` - Sends the mouse report to the host and zeroes out the report.
When the mouse report is sent, the x, y, v, and h values are set to 0 (this is done in `pointing_device_send()`, which can be overridden to avoid this behavior). This way, button states persist, but movement will only occur once. For further customization, both `pointing_device_init` and `pointing_device_task` can be overridden.
Additionally, by default, `pointing_device_send()` will only send a report when the report has actually changed. This prevents it from continuously sending mouse reports, which will keep the host system awake. This behavior can be changed by creating your own `pointing_device_send()` function.
In this example, a custom key is used to click the mouse and scroll 127 units vertically and horizontally, then undo all of that when released - because that's a totally useful function.
A very common implementation is to use the mouse movement to scroll instead of moving the cursor on the system. This uses the `pointing_device_task_user` callback to intercept and modify the mouse report before it's sent to the host system.