qmk_firmware/tmk_core
Jack Humbert 65faab3b89 Moves features to their own files (process_*), adds tap dance feature (#460)
* non-working commit

* working

* subprojects implemented for planck

* pass a subproject variable through to c

* consolidates clueboard revisions

* thanks for letting me know about conflicts..

* turn off audio for yang's

* corrects starting paths for subprojects

* messing around with travis

* semicolon

* travis script

* travis script

* script for travis

* correct directory (probably), amend files to commit

* remove origin before adding

* git pull, correct syntax

* git checkout

* git pull origin branch

* where are we?

* where are we?

* merging

* force things to happen

* adds commit message, adds add

* rebase, no commit message

* rebase branch

* idk!

* try just pull

* fetch - merge

* specify repo branch

* checkout

* goddammit

* merge? idk

* pls

* after all

* don't split up keyboards

* syntax

* adds quick for all-keyboards

* trying out new script

* script update

* lowercase

* all keyboards

* stop replacing compiled.hex automatically

* adds if statement

* skip automated build branches

* forces push to automated build branch

* throw an add in there

* upstream?

* adds AUTOGEN

* ignore all .hex files again

* testing out new repo

* global ident

* generate script, keyboard_keymap.hex

* skip generation for now, print pandoc info, submodule update

* try trusty

* and sudo

* try generate

* updates subprojects to keyboards

* no idea

* updates to keyboards

* cleans up clueboard stuff

* setup to use local readme

* updates cluepad, planck experimental

* remove extra led.c [ci skip]

* audio and midi moved over to separate files

* chording, leader, unicode separated

* consolidate each [skip ci]

* correct include

* quantum: Add a tap dance feature (#451)

* quantum: Add a tap dance feature

With this feature one can specify keys that behave differently, based on
the amount of times they have been tapped, and when interrupted, they
get handled before the interrupter.

To make it clear how this is different from `ACTION_FUNCTION_TAP`, lets
explore a certain setup! We want one key to send `Space` on single tap,
but `Enter` on double-tap.

With `ACTION_FUNCTION_TAP`, it is quite a rain-dance to set this up, and
has the problem that when the sequence is interrupted, the interrupting
key will be send first. Thus, `SPC a` will result in `a SPC` being sent,
if they are typed within `TAPPING_TERM`. With the tap dance feature,
that'll come out as `SPC a`, correctly.

The implementation hooks into two parts of the system, to achieve this:
into `process_record_quantum()`, and the matrix scan. We need the latter
to be able to time out a tap sequence even when a key is not being
pressed, so `SPC` alone will time out and register after `TAPPING_TERM`
time.

But lets start with how to use it, first!

First, you will need `TAP_DANCE_ENABLE=yes` in your `Makefile`, because
the feature is disabled by default. This adds a little less than 1k to
the firmware size. Next, you will want to define some tap-dance keys,
which is easiest to do with the `TD()` macro, that - similar to `F()`,
takes a number, which will later be used as an index into the
`tap_dance_actions` array.

This array specifies what actions shall be taken when a tap-dance key is
in action. Currently, there are two possible options:

* `ACTION_TAP_DANCE_DOUBLE(kc1, kc2)`: Sends the `kc1` keycode when
  tapped once, `kc2` otherwise.
* `ACTION_TAP_DANCE_FN(fn)`: Calls the specified function - defined in
  the user keymap - with the current state of the tap-dance action.

The first option is enough for a lot of cases, that just want dual
roles. For example, `ACTION_TAP_DANCE(KC_SPC, KC_ENT)` will result in
`Space` being sent on single-tap, `Enter` otherwise.

And that's the bulk of it!

Do note, however, that this implementation does have some consequences:
keys do not register until either they reach the tapping ceiling, or
they time out. This means that if you hold the key, nothing happens, no
repeat, no nothing. It is possible to detect held state, and register an
action then too, but that's not implemented yet. Keys also unregister
immediately after being registered, so you can't even hold the second
tap. This is intentional, to be consistent.

And now, on to the explanation of how it works!

The main entry point is `process_tap_dance()`, called from
`process_record_quantum()`, which is run for every keypress, and our
handler gets to run early. This function checks whether the key pressed
is a tap-dance key. If it is not, and a tap-dance was in action, we
handle that first, and enqueue the newly pressed key. If it is a
tap-dance key, then we check if it is the same as the already active
one (if there's one active, that is). If it is not, we fire off the old
one first, then register the new one. If it was the same, we increment
the counter and the timer.

This means that you have `TAPPING_TERM` time to tap the key again, you
do not have to input all the taps within that timeframe. This allows for
longer tap counts, with minimal impact on responsiveness.

Our next stop is `matrix_scan_tap_dance()`. This handles the timeout of
tap-dance keys.

For the sake of flexibility, tap-dance actions can be either a pair of
keycodes, or a user function. The latter allows one to handle higher tap
counts, or do extra things, like blink the LEDs, fiddle with the
backlighting, and so on. This is accomplished by using an union, and
some clever macros.

In the end, lets see a full example!

```c
enum {
 CT_SE = 0,
 CT_CLN,
 CT_EGG
};

/* Have the above three on the keymap, TD(CT_SE), etc... */

void dance_cln (qk_tap_dance_state_t *state) {
  if (state->count == 1) {
    register_code (KC_RSFT);
    register_code (KC_SCLN);
    unregister_code (KC_SCLN);
    unregister_code (KC_RSFT);
  } else {
    register_code (KC_SCLN);
    unregister_code (KC_SCLN);
    reset_tap_dance (state);
  }
}

void dance_egg (qk_tap_dance_state_t *state) {
  if (state->count >= 100) {
    SEND_STRING ("Safety dance!");
    reset_tap_dance (state);
  }
}

const qk_tap_dance_action_t tap_dance_actions[] = {
  [CT_SE]  = ACTION_TAP_DANCE_DOUBLE (KC_SPC, KC_ENT)
 ,[CT_CLN] = ACTION_TAP_DANCE_FN (dance_cln)
 ,[CT_EGG] = ACTION_TAP_DANCE_FN (dance_egg)
};
```

This addresses #426.

Signed-off-by: Gergely Nagy <algernon@madhouse-project.org>

* hhkb: Fix the build with the new tap-dance feature

Signed-off-by: Gergely Nagy <algernon@madhouse-project.org>

* tap_dance: Move process_tap_dance further down

Process the tap dance stuff after midi and audio, because those don't
process keycodes, but row/col positions.

Signed-off-by: Gergely Nagy <algernon@madhouse-project.org>

* tap_dance: Use conditionals instead of dummy functions

To be consistent with how the rest of the quantum features are
implemented, use ifdefs instead of dummy functions.

Signed-off-by: Gergely Nagy <algernon@madhouse-project.org>

* Merge branch 'master' into quantum-keypress-process

# Conflicts:
#	Makefile
#	keyboards/planck/rev3/config.h
#	keyboards/planck/rev4/config.h

* update build script
2016-06-29 17:49:41 -04:00
..
common Backlight abstraction and other changes (#439) 2016-06-23 22:18:20 -04:00
protocol Backlight abstraction and other changes (#439) 2016-06-23 22:18:20 -04:00
.gitignore
.gitmodules
common.mk Moves features to their own files (process_*), adds tap dance feature (#460) 2016-06-29 17:49:41 -04:00
ldscript_keymap_avr5.x core: Add keymap section ldscript for ATMega32U2 2015-07-12 05:44:10 +09:00
ldscript_keymap_avr35.x core: Add keymap section ldscript for ATMega32U2 2015-07-12 05:44:10 +09:00
protocol.mk
readme.md Backlight abstraction and other changes (#439) 2016-06-23 22:18:20 -04:00
ring_buffer.h
rules.mk Implements subprojects and updates projects for this (#459) 2016-06-29 16:21:41 -04:00

TMK Keyboard Firmware Core Library

This is a keyboard firmware library with some useful features for Atmel AVR and Cortex-M.

Source code is available here: https://github.com/tmk/tmk_keyboard/tree/core

Features

These features can be used in your keyboard.

  • Multi-layer Keymap - Multiple keyboard layouts with layer switching
  • Mouse key - Mouse control with keyboard
  • System Control Key - Power Down, Sleep, Wake Up and USB Remote Wake up
  • Media Control Key - Volume Down/Up, Mute, Next/Prev track, Play, Stop and etc
  • USB NKRO - 120 keys(+ 8 modifiers) simultaneously
  • PS/2 mouse support - PS/2 mouse(TrackPoint) as composite device
  • Keyboard protocols - PS/2, ADB, M0110, Sun and other old keyboard protocols
  • User Function - Customizable function of key with writing code
  • Macro - Very primitive at this time
  • Keyboard Tricks - Oneshot modifier and modifier with tapping feature
  • Debug Console - Messages for debug and interaction with firmware
  • Virtual DIP Switch - Configurations stored EEPROM(Boot Magic)
  • Locking CapsLock - Mechanical switch support for CapsLock
  • Breathing Sleep LED - Sleep indicator with charm during USB suspend
  • Backlight - Control backlight levels

Updates

2015/04/22 separated with TMK Keyboard Firmware Collection

TMK Keyboard Firmware Collection

Complete firmwares for various keyboards and protocol converters.

https://github.com/tmk/tmk_keyboard

License

GPLv2 or later. Some protocol files are under Modified BSD License. LUFA, PJRC and V-USB stack have their own license respectively.

Build Firmware and Program Controller

See doc/build.md.

Start Your Own Project

TBD

Config.h Options

1. USB vendor/product ID and device description

#define VENDOR_ID       0xFEED
#define PRODUCT_ID      0xBEEF
#define MANUFACTURER    t.m.k.
#define PRODUCT         Macway mod
#define DESCRIPTION     t.m.k. keyboard firmware for Macway mod

2. Keyboard matrix configuration

#define MATRIX_ROWS 8
#define MATRIX_COLS 8
#define MATRIX_HAS_GHOST

Architecture

Architecture Diagram
                           +---------------+---------------+-------------+
                           |    Host       |   Keyboard    | Matrix, LED |
   ___________             |-----------+-+ +-------------+ | +-----------|
  /          /| Keys/Mouse | Protocol  |d| | Action      | | | Protocol  |
 /__________/ |<-----------|  LUFA     |r| |  Layer, Tap | | |  Matrix   |
 |.--------.| |   LED      |  V-USB    |i| |-------------| | |  PS/2,IBM |             __________________
 ||        || |----------->|  PJRC     |v| | Keymap      | | |  ADB,M0110|  Keys      / /_/_/_/_/_/_/_/ /|
 ||  Host  || |  Console   |  iWRAP(BT)|e| | Mousekey    | | |  SUN/NEWS |<----------/ /_/_/_/_/_/_/_/ / /
 ||________||/.<-----------|  UART     |r| | Report      | | |  X68K/PC98| Control  / /_/_/_/_/_/_/_/ / /
 `_========_'/|            |---------------------------------------------|-------->/___ /_______/ ___/ /
 |_o______o_|/             | Sendchar, Print, Debug, Command, ...        |         |_________________|/
                           +---------------------------------------------+              Keyboard

Debugging

Use PJRC's hid_listen to see debug messages. You can use the tool for debug even if firmware use LUFA stack.

You can use xprintf() to display debug info on hid_listen, see common/xprintf.h.

Files and Directories

Top

  • common/ - common codes
  • protocol/ - keyboard protocol support
  • doc/ - documents
  • common.mk - Makefile for common
  • protocol.mk - Makefile for protocol
  • rules.mk - Makefile for build rules

Common

  • host.h
  • host_driver.h
  • keyboard.h
  • command.h
  • keymap.h
  • action.h
  • keycode.h
  • matrix.h
  • led.h
  • mousekey.h
  • report.h
  • debug.h
  • print.h
  • bootloader.h
  • sendchar.h
  • timer.h
  • util.h

Keyboard Protocols

  • lufa/ - LUFA USB stack
  • pjrc/ - PJRC USB stack
  • vusb/ - Objective Development V-USB
  • iwrap/ - Bluetooth HID for Bluegiga iWRAP
  • ps2.c - PS/2 protocol
  • adb.c - Apple Desktop Bus protocol
  • m0110.c - Macintosh 128K/512K/Plus keyboard protocol
  • news.c - Sony NEWS keyboard protocol
  • x68k.c - Sharp X68000 keyboard protocol
  • serial_soft.c - Asynchronous Serial protocol implemented by software

Coding Style

  • Doesn't use Tab to indent, use 4-spaces instead.