qmk_firmware/keyboards/hotdox/matrix.c
Joel Challis cc5edb9eeb
Port DEBUG_MATRIX_SCAN_RATE to core ()
* Port DEBUG_MATRIX_SCAN_RATE to core

* Remove duplicate DEBUG_MATRIX_SCAN_RATE implementations

* Remove duplicate DEBUG_MATRIX_SCAN_RATE implementation from handwired/xealous

* Add console logic from ergodox_ez
2019-10-15 13:32:52 +01:00

246 lines
5.1 KiB
C

#include <stdint.h>
#include <stdbool.h>
#include <avr/io.h>
#include "wait.h"
#include "action_layer.h"
#include "print.h"
#include "debug.h"
#include "util.h"
#include "matrix.h"
#include "hotdox.h"
#include "left.h"
/*
* This constant define not debouncing time in msecs, but amount of matrix
* scan loops which should be made to get stable debounced results.
*
* On Ergodox matrix scan rate is relatively low, because of slow I2C.
* Now it's only 317 scans/second, or about 3.15 msec/scan.
* According to Cherry specs, debouncing time is 5 msec.
*
* And so, there is no sense to have DEBOUNCE higher than 2.
*/
#ifndef DEBOUNCE
# define DEBOUNCE 5
#endif
/* matrix state(1:on, 0:off) */
static matrix_row_t matrix[MATRIX_ROWS];
// Debouncing: store for each key the number of scans until it's eligible to
// change. When scanning the matrix, ignore any changes in keys that have
// already changed in the last DEBOUNCE scans.
static uint8_t debounce_matrix[MATRIX_ROWS * MATRIX_COLS];
static matrix_row_t read_cols(uint8_t row);
static void init_cols(void);
static void unselect_rows(void);
static void select_row(uint8_t row);
__attribute__ ((weak))
void matrix_init_user(void) {}
__attribute__ ((weak))
void matrix_scan_user(void) {}
__attribute__ ((weak))
void matrix_init_kb(void) {
matrix_init_user();
}
__attribute__ ((weak))
void matrix_scan_kb(void) {
matrix_scan_user();
}
inline
uint8_t matrix_rows(void)
{
return MATRIX_ROWS;
}
inline
uint8_t matrix_cols(void)
{
return MATRIX_COLS;
}
void matrix_init(void)
{
unselect_rows();
init_cols();
//eeprom_update_word(EECONFIG_MAGIC, 0x0000);
// initialize matrix state: all keys off
for (uint8_t i=0; i < MATRIX_ROWS; i++) {
matrix[i] = 0;
for (uint8_t j=0; j < MATRIX_COLS; ++j) {
debounce_matrix[i * MATRIX_COLS + j] = 0;
}
}
matrix_init_quantum();
}
void matrix_power_up(void) {
unselect_rows();
init_cols();
// initialize matrix state: all keys off
for (uint8_t i=0; i < MATRIX_ROWS; i++) {
matrix[i] = 0;
}
}
// Returns a matrix_row_t whose bits are set if the corresponding key should be
// eligible to change in this scan.
matrix_row_t debounce_mask(uint8_t row) {
matrix_row_t result = 0;
for (uint8_t j=0; j < MATRIX_COLS; ++j) {
if (debounce_matrix[row * MATRIX_COLS + j]) {
--debounce_matrix[row * MATRIX_COLS + j];
} else {
result |= (1 << j);
}
}
return result;
}
// Report changed keys in the given row. Resets the debounce countdowns
// corresponding to each set bit in 'change' to DEBOUNCE.
void debounce_report(matrix_row_t change, uint8_t row) {
for (uint8_t i = 0; i < MATRIX_COLS; ++i) {
if (change & (1 << i)) {
debounce_matrix[row * MATRIX_COLS + i] = DEBOUNCE;
}
}
}
uint8_t matrix_scan(void)
{
left_scan();
for (uint8_t i = 0; i < MATRIX_ROWS; i++) {
select_row(i);
wait_us(30); // without this wait read unstable value.
matrix_row_t mask = debounce_mask(i);
matrix_row_t cols = (read_cols(i) & mask) | (matrix[i] & ~mask);
debounce_report(cols ^ matrix[i], i);
matrix[i] = cols;
unselect_rows();
}
matrix_scan_quantum();
return 1;
}
inline
bool matrix_is_on(uint8_t row, uint8_t col)
{
return (matrix[row] & ((matrix_row_t)1<<col));
}
inline
matrix_row_t matrix_get_row(uint8_t row)
{
return matrix[row];
}
void matrix_print(void)
{
print("\nr/c 0123456789ABCDEF\n");
for (uint8_t row = 0; row < MATRIX_ROWS; row++) {
phex(row); print(": ");
pbin_reverse16(matrix_get_row(row));
print("\n");
}
}
uint8_t matrix_key_count(void)
{
uint8_t count = 0;
for (uint8_t i = 0; i < MATRIX_ROWS; i++) {
count += bitpop16(matrix[i]);
}
return count;
}
static void init_cols(void)
{
// Pro Micro
DDRB &= ~(1<<PB0 | 1<<PB1 | 1<<PB2 | 1<<PB3);
PORTB |= (1<<PB0 | 1<<PB1 | 1<<PB2 | 1<<PB3);
DDRD &= ~(1<<PD2 | 1<<PD3);
PORTD |= (1<<PD2 | 1<<PD3);
DDRC &= ~(1<<PC6);
PORTC |= (1<<PC6);
left_init();
}
static matrix_row_t read_cols(uint8_t row)
{
matrix_row_t cols0 = 0x00, cols1 = 0x00;
cols0 = left_read_cols();
cols1 = (PINC&(1<<PC6) ? 0 : (1<<(0+7))) |
(PIND&(1<<PD3) ? 0 : (1<<(1+7))) |
(PIND&(1<<PD2) ? 0 : (1<<(2+7))) |
(PINB&(1<<PB3) ? 0 : (1<<(3+7))) |
(PINB&(1<<PB2) ? 0 : (1<<(4+7))) |
(PINB&(1<<PB1) ? 0 : (1<<(5+7))) |
(PINB&(1<<PB0) ? 0 : (1<<(6+7))) ;
return (cols0 | cols1);
}
static void unselect_rows(void)
{
// Pro Micro
DDRF &= ~(1<<PF7 | 1<< PF6 | 1<<PF5 | 1<<PF4 | 1<<PF1 | 1<<PF0);
PORTF &= ~(1<<PF7 | 1<< PF6 | 1<<PF5 | 1<<PF4 | 1<<PF1 | 1<<PF0);
left_unselect_rows();
}
static void select_row(uint8_t row)
{
// Pro Micro
switch (row) {
case 5:
DDRF |= (1<<PF0);
PORTF &= ~(1<<PF0);
break;
case 4:
DDRF |= (1<<PF1);
PORTF &= ~(1<<PF1);
break;
case 3:
DDRF |= (1<<PF4);
PORTF &= ~(1<<PF4);
break;
case 2:
DDRF |= (1<<PF5);
PORTF &= ~(1<<PF5);
break;
case 1:
DDRF |= (1<<PF6);
PORTF &= ~(1<<PF6);
break;
case 0:
DDRF |= (1<<PF7);
PORTF &= ~(1<<PF7);
break;
}
left_select_row(row);
}