qmk_firmware/quantum/split_common/transport.c
Nick Brassel 172e6a7030
Extensible split data sync ()
* Extensible split data sync capability through transactions.

- Split common transport has been split up between the transport layer
  and data layer.
- Split "transactions" model used, with convergence between I2C and
  serial data definitions.
- Slave matrix "generation count" is used to determine if the full slave
  matrix needs to be retrieved.
- Encoders get the same "generation count" treatment.
- All other blocks of data are synchronised when a change is detected.
- All transmissions have a globally-configurable deadline before a
  transmission is forced (`FORCED_SYNC_THROTTLE_MS`, default 100ms).
- Added atomicity for all core-synced data, preventing partial updates
- Added retries to AVR i2c_master's i2c_start, to minimise the number of
  failed transactions when interrupts are disabled on the slave due to
  atomicity checks.
- Some keyboards have had slight modifications made in order to ensure
  that they still build due to firmware size restrictions.

* Fixup LED_MATRIX compile.

* Parameterise ERROR_DISCONNECT_COUNT.
2021-06-18 09:10:06 +10:00

118 lines
4.8 KiB
C

/* Copyright 2021 QMK
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <string.h>
#include <debug.h>
#include "transactions.h"
#include "transport.h"
#include "transaction_id_define.h"
#include "atomic_util.h"
#ifdef USE_I2C
# ifndef SLAVE_I2C_TIMEOUT
# define SLAVE_I2C_TIMEOUT 100
# endif // SLAVE_I2C_TIMEOUT
# ifndef SLAVE_I2C_ADDRESS
# define SLAVE_I2C_ADDRESS 0x32
# endif
# include "i2c_master.h"
# include "i2c_slave.h"
// Ensure the I2C buffer has enough space
_Static_assert(sizeof(split_shared_memory_t) <= I2C_SLAVE_REG_COUNT, "split_shared_memory_t too large for I2C_SLAVE_REG_COUNT");
split_shared_memory_t *const split_shmem = (split_shared_memory_t *)i2c_slave_reg;
void transport_master_init(void) { i2c_init(); }
void transport_slave_init(void) { i2c_slave_init(SLAVE_I2C_ADDRESS); }
i2c_status_t transport_trigger_callback(int8_t id) {
// If there's no callback, indicate that we were successful
if (!split_transaction_table[id].slave_callback) {
return I2C_STATUS_SUCCESS;
}
// Kick off the "callback executor", now that data has been written to the slave
split_shmem->transaction_id = id;
split_transaction_desc_t *trans = &split_transaction_table[I2C_EXECUTE_CALLBACK];
return i2c_writeReg(SLAVE_I2C_ADDRESS, trans->initiator2target_offset, split_trans_initiator2target_buffer(trans), trans->initiator2target_buffer_size, SLAVE_I2C_TIMEOUT);
}
bool transport_execute_transaction(int8_t id, const void *initiator2target_buf, uint16_t initiator2target_length, void *target2initiator_buf, uint16_t target2initiator_length) {
i2c_status_t status;
split_transaction_desc_t *trans = &split_transaction_table[id];
if (initiator2target_length > 0) {
size_t len = trans->initiator2target_buffer_size < initiator2target_length ? trans->initiator2target_buffer_size : initiator2target_length;
memcpy(split_trans_initiator2target_buffer(trans), initiator2target_buf, len);
if ((status = i2c_writeReg(SLAVE_I2C_ADDRESS, trans->initiator2target_offset, split_trans_initiator2target_buffer(trans), len, SLAVE_I2C_TIMEOUT)) < 0) {
return false;
}
}
// If we need to execute a callback on the slave, do so
if ((status = transport_trigger_callback(id)) < 0) {
return false;
}
if (target2initiator_length > 0) {
size_t len = trans->target2initiator_buffer_size < target2initiator_length ? trans->target2initiator_buffer_size : target2initiator_length;
if ((status = i2c_readReg(SLAVE_I2C_ADDRESS, trans->target2initiator_offset, split_trans_target2initiator_buffer(trans), len, SLAVE_I2C_TIMEOUT)) < 0) {
return false;
}
memcpy(target2initiator_buf, split_trans_target2initiator_buffer(trans), len);
}
return true;
}
#else // USE_I2C
# include "serial.h"
static split_shared_memory_t shared_memory;
split_shared_memory_t *const split_shmem = &shared_memory;
void transport_master_init(void) { soft_serial_initiator_init(); }
void transport_slave_init(void) { soft_serial_target_init(); }
bool transport_execute_transaction(int8_t id, const void *initiator2target_buf, uint16_t initiator2target_length, void *target2initiator_buf, uint16_t target2initiator_length) {
split_transaction_desc_t *trans = &split_transaction_table[id];
if (initiator2target_length > 0) {
size_t len = trans->initiator2target_buffer_size < initiator2target_length ? trans->initiator2target_buffer_size : initiator2target_length;
memcpy(split_trans_initiator2target_buffer(trans), initiator2target_buf, len);
}
if (soft_serial_transaction(id) != TRANSACTION_END) {
return false;
}
if (target2initiator_length > 0) {
size_t len = trans->target2initiator_buffer_size < target2initiator_length ? trans->target2initiator_buffer_size : target2initiator_length;
memcpy(target2initiator_buf, split_trans_target2initiator_buffer(trans), len);
}
return true;
}
#endif // USE_I2C
bool transport_master(matrix_row_t master_matrix[], matrix_row_t slave_matrix[]) { return transactions_master(master_matrix, slave_matrix); }
void transport_slave(matrix_row_t master_matrix[], matrix_row_t slave_matrix[]) { transactions_slave(master_matrix, slave_matrix); }